JP2002272011A - Charging and discharging control unit - Google Patents

Charging and discharging control unit

Info

Publication number
JP2002272011A
JP2002272011A JP2001068655A JP2001068655A JP2002272011A JP 2002272011 A JP2002272011 A JP 2002272011A JP 2001068655 A JP2001068655 A JP 2001068655A JP 2001068655 A JP2001068655 A JP 2001068655A JP 2002272011 A JP2002272011 A JP 2002272011A
Authority
JP
Japan
Prior art keywords
voltage
battery
unit
cell
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001068655A
Other languages
Japanese (ja)
Other versions
JP3711881B2 (en
Inventor
Norihiko Hirata
典彦 枚田
Kenichi Sakai
健一 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2001068655A priority Critical patent/JP3711881B2/en
Publication of JP2002272011A publication Critical patent/JP2002272011A/en
Application granted granted Critical
Publication of JP3711881B2 publication Critical patent/JP3711881B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • B60L15/2018Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking for braking on a slope
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/12Recording operating variables ; Monitoring of operating variables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/13Maintaining the SoC within a determined range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/14Preventing excessive discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/22Balancing the charge of battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/10Driver interactions by alarm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/16Driver interactions by display
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/26Driver interactions by pedal actuation
    • B60L2250/28Accelerator pedal thresholds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/44Control modes by parameter estimation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a charging and discharging control unit using power inputted and outputting considering the internal resistance of a unit battery for controlling the charging and discharging of an assembly battery. SOLUTION: When discharging, the total voltage and current of a battery 4 are sampled by a voltage sensor 7 and a current sensor 8. A battery controller 6 carries out a regression operation based on the sampled data for calculating power that can be inputted and outputted. When discharging, the voltage of each cell for composing the battery 4 is detected by a cell controller 5. In the battery controller 6, a regression operation on each cell is carried out based on the sampled cell voltage and current, and a cell having the maximum internal resistance is obtained. Then, the power that can be inputted and outputted is corrected based on the regression operation result of the cell having the maximum internal resistance.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば電気自動車
等の駆動用バッテリーとして用いられる組電池の充放電
制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a charge / discharge control device for a battery pack used as a drive battery of an electric vehicle or the like.

【0002】[0002]

【従来の技術】従来、電気自動車に搭載されるバッテリ
ーには、セルと呼ばれる単位電池を複数直列接続した組
電池が用いられている。このようなバッテリーの入出力
可能電力の算出方法としては、特開平11−41711
号公報に開示されているようなものがある。従来の算出
方法では、放電時にバッテリーの総電圧および放電電流
値をサンプリングし、このサンプリングデータに基づい
てV−I特性を回帰算出することによって入出力可能電
力を求めるようにしている。
2. Description of the Related Art Conventionally, as a battery mounted on an electric vehicle, an assembled battery in which a plurality of unit cells called cells are connected in series is used. Japanese Patent Application Laid-Open No. 11-41711 describes a method for calculating the input / output available power of such a battery.
Is disclosed in Japanese Patent Application Laid-Open Publication No. H10-26095. In the conventional calculation method, the total voltage and the discharge current value of the battery are sampled at the time of discharging, and the input / output available power is obtained by regression calculating the VI characteristic based on the sampled data.

【0003】例えば、入力可能電力を求める際には、放
電中に得られるサンプリングデータに基づいて回帰直線
を算出する。次いで、入力可能電圧の目標電圧であるバ
ッテリー上限電圧Vmaxのときの電流値Icmaxを回帰直
線から求め、次式により入力可能電力Pcmaxを算出して
いる。例えば、制動時の回生制御においては、充電電力
が入力可能電力Pcmaxとなるように制御される。
[0003] For example, when obtaining the inputtable power, a regression line is calculated based on sampling data obtained during discharging. Next, the current value Icmax at the battery upper limit voltage Vmax which is the target voltage of the inputtable voltage is obtained from the regression line, and the inputtable power Pcmax is calculated by the following equation. For example, in the regenerative control during braking, control is performed so that the charging power becomes the inputtable power Pcmax.

【数1】Pcmax=Icmax×Vmax## EQU1 ## Pcmax = Icmax × Vmax

【0004】ところで、回生制御の際には、電池保護の
ために各セルの各々が所定の充電上限電圧を越えないよ
うに回生制限が行われる。また、放電制御の際には、各
セルの各々が所定の放電下限電圧を下回らないように出
力制限が行われる。
In the regenerative control, regenerative control is performed so that each cell does not exceed a predetermined upper limit charging voltage for battery protection. In the discharge control, the output is limited so that each of the cells does not fall below a predetermined discharge lower limit voltage.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、従来の
入出力可能電力演算方法では、上述したように組電池全
体の電圧および電流に基づいて入出力可能電力を算出し
ており、各セルの内部抵抗のばらつきは考慮されていな
かった。この内部抵抗のばらつきが大きいと、例えば、
走行制御中に最大内部抵抗を有するセルが放電下限電圧
に達してしまった場合に、それ以上放電電流が上昇しな
いように放電制限をかけるようにしている。
However, in the conventional input / output available power calculation method, the input / output available power is calculated based on the voltage and current of the entire assembled battery as described above, and the internal resistance of each cell is calculated. Was not taken into account. If the variation in the internal resistance is large, for example,
When the cell having the maximum internal resistance reaches the lower discharge limit voltage during the running control, the discharge is limited so that the discharge current does not increase any more.

【0006】そのため、このような放電制限が実行され
る直前までは、算出された出力可能電力に基づいてアク
セル操作に応じた電力が出力されるが、内部抵抗最大の
セルが放電下限電圧に達すると放電制限が実行されて、
要求された出力電力より小さな電力に出力制限されてし
まう。従って、例えばドライバーが加速を行おうとして
アクセルを所定時間踏み込んだときに出力制限される
と、ドライバーの意図する出力の増加が行われないこと
になり、ドライバーが違和感を感じるということがあっ
た。
Therefore, until immediately before such discharge limitation is performed, power corresponding to the accelerator operation is output based on the calculated available output power, but the cell having the maximum internal resistance reaches the discharge lower limit voltage. Then the discharge limit is executed,
The output is limited to a power smaller than the required output power. Therefore, for example, if the output is limited when the driver steps on the accelerator for a predetermined time to accelerate, the output intended by the driver is not increased, and the driver may feel uncomfortable.

【0007】本発明の目的は、単位電池の内部抵抗を考
慮した入出力可能電力を用いて組電池の充放電制御を行
う充放電制御装置を提供することにある。
An object of the present invention is to provide a charging / discharging control device for controlling charging / discharging of a battery pack by using input / output available power in consideration of the internal resistance of a unit battery.

【0008】[0008]

【課題を解決するための手段】発明の実施の形態を示す
図1および図3に対応付けて説明する。 (1)図1に対応付けて説明すると、請求項1の発明に
よる充放電制御装置6は、組電池4の電流値を検出する
電流検出部8と、組電池4の総電圧値を検出する総電圧
検出部7と、組電池4を構成する複数の単位電池の各電
圧値を検出する単位電池電圧検出部5と、電流値および
総電圧に基づいて組電池4の電圧・電流特性を回帰演算
するとともに、電流値および単位電池の電圧値に基づい
て各組電池の電圧・電流特性を回帰演算する回帰演算部
6と、組電池4に関する回帰演算部6の演算結果に基づ
いて、組電池4の入力可能電力および出力可能電力を算
出する入出力可能電力演算部6と、回帰演算部6で演算
された内部抵抗の最も大きな単位電池の電圧・電流特性
に基づいて、入力可能電力および/または出力可能電力
を補正する補正演算部6とを備え、入出力可能電力演算
部6および補正演算部6の各演算結果に基づいて組電池
4の充放電制御を行うことにより上述の目的を達成す
る。 (2)図1および図3に対応付けて説明すると、請求項
2の発明は、請求項1に記載の充放電制御装置6におい
て、単位電池電圧検出部5で検出された電圧値のばらつ
きが所定電圧値Y以下であって、かつ、電流値の大きさ
が所定電流値(X/2)以下の場合に、回帰演算部6の
演算を行うようにしたものである。 (3)請求項3の発明は、請求項1または2に記載の充
放電制御装置6において、内部抵抗の最も大きな単位電
池の内部抵抗が所定値以上のときに、その単位電池を異
常と判定する判定部5を設けたものである。
An embodiment of the present invention will be described with reference to FIGS. 1 and 3. FIG. (1) Explaining in association with FIG. 1, the charge / discharge control device 6 according to the first aspect of the present invention detects a current detector 8 for detecting a current value of the battery pack 4 and a total voltage value of the battery pack 4. A total voltage detector 7, a unit battery voltage detector 5 for detecting each voltage value of a plurality of unit batteries constituting the assembled battery 4, and a regression of the voltage / current characteristics of the assembled battery 4 based on the current value and the total voltage. A regression calculation unit 6 that calculates and regressively calculates the voltage and current characteristics of each battery pack based on the current value and the voltage value of the unit battery, and a battery pack based on the calculation result of the regression calculation unit 6 regarding the battery pack 4 4 based on the voltage / current characteristics of the unit battery having the largest internal resistance calculated by the regression calculation unit 6 and the input / output possible power calculation unit 6 for calculating the input possible power and the output possible power. Or a correction function to correct the output power And a section 6, to achieve the above object by charging and discharging control of the battery pack 4 based on the calculation result of the input and output electric power calculating unit 6 and the correction calculating unit 6. (2) When described in association with FIGS. 1 and 3, the invention according to claim 2 is characterized in that, in the charge / discharge control device 6 according to claim 1, the variation in the voltage value detected by the unit battery voltage detection unit 5 is reduced. When the voltage value is equal to or smaller than the predetermined voltage value Y and the magnitude of the current value is equal to or smaller than the predetermined current value (X / 2), the regression calculation unit 6 performs the calculation. (3) In the third aspect of the present invention, in the charge / discharge control device 6 according to the first or second aspect, when the internal resistance of the unit battery having the largest internal resistance is equal to or more than a predetermined value, the unit battery is determined to be abnormal. The determination unit 5 is provided.

【0009】なお、上記課題を解決するための手段の項
では、本発明を分かり易くするために発明の実施の形態
の図を用いたが、これにより本発明が発明の実施の形態
に限定されるものではない。
In the meantime, in the section of the means for solving the above problems, the drawings of the embodiments of the present invention are used to make the present invention easy to understand, but the present invention is not limited to the embodiments of the present invention. Not something.

【0010】[0010]

【発明の効果】(1)請求項1の発明では、内部抵抗の
最も大きな単位電池の電圧・電流特性を回帰演算により
演算して、その演算結果に基づいて組電池の入力可能電
力および/または出力可能電力を補正し、その補正され
た入力可能電力および/または出力可能電力に基づいて
組電池の充放電制御を行うので、内部抵抗が最大の単位
電池が制限電圧になったときに入力電力や出力電力が急
激に制限されるようなことがない。 (2)請求項2の発明では、請求項1と同様の効果が得
られるとともに、各単位電池の電圧値のばらつきが所定
電圧値以下であって、かつ、電流値が所定電流値以下の
ときに各単位電池に関する回帰演算を行うようにしてい
るので、各単位電池の電池状態(SOC)のばらつきの影
響を低減することができ、補正演算部の補正精度の向上
が図れる。 (3)請求項3の発明では、請求項1および2と同様の
効果が得られるとともに、単位電池の異常を精度良く検
出することができる。
According to the first aspect of the present invention, the voltage / current characteristics of the unit battery having the largest internal resistance are calculated by regression calculation, and based on the calculation result, the inputtable power and / or power of the battery pack are calculated. Since the available output power is corrected, and the charge / discharge control of the battery pack is performed based on the corrected available input power and / or the available output power, the input power is set when the unit battery having the maximum internal resistance reaches the limit voltage. And the output power is not sharply limited. (2) According to the second aspect of the present invention, the same effects as those of the first aspect are obtained, and when the variation of the voltage value of each unit battery is equal to or less than a predetermined voltage value and the current value is equal to or less than the predetermined current value. Since the regression calculation is performed for each unit battery, the influence of the variation in the battery state (SOC) of each unit battery can be reduced, and the correction accuracy of the correction calculation unit can be improved. (3) According to the third aspect of the invention, the same effects as those of the first and second aspects can be obtained, and the abnormality of the unit battery can be detected with high accuracy.

【0011】[0011]

【発明の実施の形態】以下、図1〜図9を参照して本発
明の実施の形態を説明する。図1は本発明による充放電
制御装置を備えるハイブリッド電気自動車(HEV)を
示す図であり、パラレルHEVの駆動系の概略構成を示
す図である。エンジン1の主軸には、電動モータ2の回
転子が直結されている。エンジン1および/またはモー
タ2の駆動力は、図示しない駆動系を介して車軸に伝達
される。インバータ3は二次電池で構成されたバッテリ
ー4からの直流電力を交流電力に変換してモータ2に供
給するとともに、後述する発電モード時にはモータ2か
らの交流電力を直流電力に変換してバッテリー4へ供給
する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is a diagram illustrating a hybrid electric vehicle (HEV) including a charge / discharge control device according to the present invention, and is a diagram illustrating a schematic configuration of a drive system of a parallel HEV. The rotor of the electric motor 2 is directly connected to the main shaft of the engine 1. The driving force of the engine 1 and / or the motor 2 is transmitted to the axle via a drive system (not shown). The inverter 3 converts DC power from a battery 4 composed of a secondary battery into AC power and supplies the AC power to the motor 2, and converts AC power from the motor 2 into DC power in a power generation mode described later to convert the AC power into DC power. Supply to

【0012】バッテリー4には、複数の単セルを直列接
続した組電池と呼ばれるものが用いられる。組電池を構
成する各々の単セルのセル電圧はセルコントローラ5に
より検出され、その検出値はバッテリーコントローラ6
へと出力される。単セルには、例えば、リチウムイオン
電池等が用いられる。バッテリーコントローラ6には、
セルコントローラ5から送られたセル電圧値、電圧セン
サ7で検出されるバッテリー4の総電圧値、電流センサ
8で検出される充放電電流値が入力される。マイクロコ
ンピュータとその周辺部品から構成されるバッテリーコ
ントローラ6は、これらの値に基づいてバッテリー4の
充放電制御を行う。インジケータ9には、バッテリーコ
ントローラ6で検出されたセル状態(セル異常等)が表
示される。
As the battery 4, a battery called an assembled battery in which a plurality of single cells are connected in series is used. The cell voltage of each single cell constituting the assembled battery is detected by the cell controller 5, and the detected value is stored in the battery controller 6.
Is output to. For example, a lithium ion battery or the like is used for the single cell. The battery controller 6 includes:
The cell voltage value sent from the cell controller 5, the total voltage value of the battery 4 detected by the voltage sensor 7, and the charge / discharge current value detected by the current sensor 8 are input. A battery controller 6 composed of a microcomputer and its peripheral components controls charging and discharging of the battery 4 based on these values. The indicator 9 displays a cell state (cell abnormality or the like) detected by the battery controller 6.

【0013】パラレルHEVにおけるモータ2の運転モ
ードには、車軸を駆動する駆動モードとバッテリー4を
充電する発電モードとがある。車両の駆動時、すなわち
加速時,平坦路走行時や登坂時等に、モータ2へ電力を
供給するバッテリー4が充分な充電状態にある場合に
は、モータ2を駆動モードで運転してエンジン1とモー
タ2の両方の駆動力により走行する。ただし、バッテリ
ー4の充電状態が低い場合にはモータ2を発電モードで
運転して、エンジン1の駆動力により走行を行うととも
にモータ2の回転子を回転し、モータ2による発電を行
ってバッテリー4を充電する。
The operation modes of the motor 2 in the parallel HEV include a drive mode for driving the axle and a power generation mode for charging the battery 4. When the battery 4 for supplying electric power to the motor 2 is in a sufficiently charged state when the vehicle is driven, that is, when accelerating, traveling on a flat road, climbing a hill, or the like, the motor 2 is driven in the drive mode to start the engine 1. The vehicle travels with the driving force of both the motor and the motor 2. However, when the state of charge of the battery 4 is low, the motor 2 is operated in the power generation mode, the vehicle is driven by the driving force of the engine 1, the rotor of the motor 2 is rotated, and the power is generated by the motor 2. Charge.

【0014】一方、車両の制動時、すなわち減速時や降
坂時などには、駆動系を介した車輪の回転力によってエ
ンジン1およびモータ2が駆動される。このとき、モー
タ2を発電モードで運転し、回生エネルギーを吸収して
バッテリー4を充電する。
On the other hand, when the vehicle is braking, that is, when decelerating or going down a hill, the engine 1 and the motor 2 are driven by the rotational force of the wheels via the drive system. At this time, the motor 2 is operated in the power generation mode, and the battery 4 is charged by absorbing regenerative energy.

【0015】次いで、充放電制御の際のバッテリー4の
入出力可能電力の算出方法について説明する。まず、放
電中に電圧センサ7および電流センサ8により電圧V,
電流Iをサンプリングし、それらのサンプリングデータ
に基づいてV−I特性の回帰直線を求める。図2はV−
I特性を示す図であり、「×」はサンプリングデータ
を、L1は回帰直線をそれぞれ示している。回帰直線L1
の傾きはバッテリー4の内部抵抗Rを表しており、回帰
直線L1とV軸との交点の値Eがバッテリー4の開放電
圧である。
Next, a method of calculating the input / output available power of the battery 4 during the charge / discharge control will be described. First, during discharge, the voltage V,
The current I is sampled, and a regression line of the VI characteristic is obtained based on the sampled data. FIG.
It is a figure which shows I characteristic, "x" has shown sampling data and L1 has shown each regression line. Regression line L1
Represents the internal resistance R of the battery 4, and the value E at the intersection of the regression line L1 and the V axis is the open voltage of the battery 4.

【0016】充電上限電圧Vmaxを示す直線と回帰直線
L1との交点Aの電流値Icmaxを用いると、バッテリー
4の入力可能電力Pcmaxは次式(1)で算出される。
Using the current value Icmax at the intersection A between the straight line indicating the charging upper limit voltage Vmax and the regression line L1, the inputtable power Pcmax of the battery 4 is calculated by the following equation (1).

【数2】Pcmax=Icmax×Vmax …(1)## EQU2 ## Pcmax = Icmax × Vmax (1)

【0017】また、放電下限電圧Vminを示す直線と回
帰直線L1との交点Bの電流値Icmaxを用いると、バッ
テリー4の出力可能電力Pdminは次式(2)で算出され
る。
When the current value Icmax at the intersection B between the straight line indicating the discharge lower limit voltage Vmin and the regression line L1 is used, the outputable power Pdmin of the battery 4 is calculated by the following equation (2).

【数3】Pdmax=Idmax×Vmin …(2)## EQU3 ## Pdmax = Idmax × Vmin (2)

【0018】このようにして算出された入力可能電力P
cmaxおよび出力可能電力Pdminを、各セルの内部抵抗の
ばらつきに応じて補正する。図3,4は補正方法を説明
するための図であり、セル毎のV−I特性を示したもの
である。図4は、図3の充電領域の部分を拡大して示し
た図である。
The inputtable power P calculated as described above
The cmax and the outputtable power Pdmin are corrected according to the variation in the internal resistance of each cell. FIGS. 3 and 4 are diagrams for explaining the correction method, and show the VI characteristics for each cell. FIG. 4 is an enlarged view of a portion of the charging area in FIG.

【0019】図3において、L12はセル内部抵抗rが最
大rmaxのセルの回帰直線であり、L13はセル内部抵抗
rが最小rminのセルの回帰直線である。すなわち、セ
ル内部抵抗rはrmin≦r≦rmaxの範囲でばらついてい
る。また、L11はセル内部抵抗の平均値に関する回帰直
線である。この回帰直線L11は、各セルのセル電圧に基
づいて回帰演算して求めても良いし、総電圧を用いたバ
ッテリー4の回帰直線を1セル当たりに表したものでも
良い。E0,F0は、回帰直線L11,L12から得られる開放
電圧である。また、電流Icmaxのときには、内部抵抗r
maxのセルの電圧はF1で、平均電圧はE1である。電流Id
maxのときには、内部抵抗rmaxのセルの電圧はF2で、平
均電圧はE2である。
In FIG. 3, L12 is a regression line for a cell having a maximum internal resistance r of rmax, and L13 is a regression line for a cell having a minimum internal resistance r of rmin. That is, the cell internal resistance r varies in the range of rmin ≦ r ≦ rmax. L11 is a regression line related to the average value of the cell internal resistance. The regression line L11 may be obtained by performing a regression operation based on the cell voltage of each cell, or may be a regression line of the battery 4 using the total voltage for each cell. E0 and F0 are open-circuit voltages obtained from the regression lines L11 and L12. When the current is Icmax, the internal resistance r
The voltage of the max cell is F1 and the average voltage is E1. Current Id
At the time of max, the voltage of the cell having the internal resistance rmax is F2, and the average voltage is E2.

【0020】図4において、E1はE1=Vmax/(セル
数)となっており、ここではVmax/(セル数)をvmax
で表す。いま、充電電流をゼロから次第に増加すると、
回帰直線L12で表される最大内部抵抗rmaxのセルは、
電流I3(<Icmax)でセルの充電上限電圧vmaxに達し
てしまう。そこで、1セル当たりの出力可能電力ΔPcm
axを、従来の「Icmax×vmax」から「I3×vmax」に
補正すれば、最大内部抵抗rmaxのセルは充電上限電圧
vmaxを越えることがない。
In FIG. 4, E1 is E1 = Vmax / (number of cells). Here, Vmax / (number of cells) is represented by vmax.
Expressed by Now, if the charging current is gradually increased from zero,
The cell of the maximum internal resistance rmax represented by the regression line L12 is
At the current I3 (<Icmax), the charging upper limit voltage vmax of the cell is reached. Therefore, the outputable power per cell ΔPcm
If ax is corrected from "Icmax.times.vmax" to "I3.times.vmax", the cell having the maximum internal resistance rmax does not exceed the charging upper limit voltage vmax.

【0021】このとき、充電補正係数K1は次式(3)
で算出される。そして、総電圧より求めたバッテリー4
の入力可能電圧演算値Pcmaxを充電補正係数K1で式
(4)のように補正し、この補正され電力K1×Pcmax
を入力可能電力P'cmaxとしてバッテリー4の回生制御
を行う。
At this time, the charge correction coefficient K1 is given by the following equation (3).
Is calculated. And the battery 4 calculated from the total voltage
Is calculated by the charge correction coefficient K1 as shown in equation (4), and the corrected power K1 × Pcmax
And the regenerative control of the battery 4 is performed with the inputtable power P′cmax.

【数4】K1=(I3×vmax)/(Icmax×vmax) =(E1−F0)/(F1−F0) …(3) P'cmax=K1×Pcmax …(4)K1 = (I3.times.vmax) / (Icmax.times.vmax) = (E1-F0) / (F1-F0) (3) P'cmax = K1.times.Pcmax (4)

【0022】一方、出力可能電力の場合も同様であり、
出力補正係数K2は次式(5)により算出され、式
(6)により算出される電力K2×Pdmaxを出力可能電
力P'dmaxとして放電制御を行う。
On the other hand, the same applies to the case of the outputable power.
The output correction coefficient K2 is calculated by the following equation (5), and discharge control is performed using the power K2 × Pdmax calculated by the equation (6) as the outputable power P′dmax.

【数5】 K2=(F0−E2)/(F0−F2) …(5) P'dmax=K2×Pdmax …(6)K2 = (F0−E2) / (F0−F2) (5) P′dmax = K2 × Pdmax (6)

【0023】図5および図6に示すフローチャートは、
バッテリーコントローラ6で行われる入出力電力演算の
処理手順を示したものであり、図6は図5に続く手順を
示す図である。なお、図5,6に示す一連の処理は、充
放電中に所定のタイミングで繰り返し行われる。ステッ
プS1では、セルコントローラ5によりバッテリー4の
各セル電圧が検出され、それらの検出値がバッテリーコ
ントローラ6に送信される。ステップS2では、ステッ
プS1で検出されたセル電圧の平均電圧Eaveが算出さ
れる。ステップS3では、電流センサ8によりバッテリ
ー4とインバータ3との間の電流が検出される。
The flowcharts shown in FIG. 5 and FIG.
FIG. 6 shows a processing procedure of input / output power calculation performed by the battery controller 6, and FIG. 6 is a view showing a procedure following FIG. A series of processes shown in FIGS. 5 and 6 are repeatedly performed at a predetermined timing during charging and discharging. In step S1, each cell voltage of the battery 4 is detected by the cell controller 5, and the detected values are transmitted to the battery controller 6. In step S2, the average voltage Eave of the cell voltages detected in step S1 is calculated. In step S3, the current between the battery 4 and the inverter 3 is detected by the current sensor 8.

【0024】ステップS4では、検出されたセル電圧が
図3の所定範囲Y内であるか否かを判定する。この所定
範囲Yは、ステップS2で算出した平均電圧Eaveを挟
んだ電圧(Eave−Y/2)から電圧(Eave+Y/2)
の範囲である。ステップS4において所定範囲Y内と判
定されるとステップS5へ進み、一方、範囲外と判定さ
れるとステップS1へ戻る。続くステップS5では、ス
テップS3で検出された電流値が図3の所定範囲X内で
あるか否か、すなわち、電流値≦X/2であるか否かを
判定する。ステップS5において所定範囲X内と判定さ
れるとステップS6へ進み、一方、範囲外と判定される
とステップS1へ戻る。
In step S4, it is determined whether or not the detected cell voltage is within a predetermined range Y of FIG. This predetermined range Y ranges from the voltage (Eave-Y / 2) sandwiching the average voltage Eave calculated in step S2 to the voltage (Eave + Y / 2).
Range. If it is determined in step S4 that it is within the predetermined range Y, the process proceeds to step S5, while if it is determined that it is out of the range, the process returns to step S1. In the following step S5, it is determined whether or not the current value detected in step S3 is within the predetermined range X in FIG. 3, that is, whether or not the current value ≦ X / 2. If it is determined in step S5 that it is within the predetermined range X, the process proceeds to step S6, while if it is determined that it is out of the range, the process returns to step S1.

【0025】車両駆動用バッテリーに用いられるリチウ
ムイオン電池では、セル開放電圧とSOCとの間に図7に
示すような相関があり、開放電圧からSOCを把握するこ
とができる。一方、セル内部抵抗とSOCとの間には図8
に示すような相関があり、内部抵抗はSOCにより変化す
る。そのため、内部抵抗のばらつきによる補正演算をよ
り精度良く行うには、SOCのばらつきによる内部抵抗の
ばらつきへの影響を排除する必要がある。
In a lithium ion battery used for a vehicle drive battery, there is a correlation between the cell open circuit voltage and the SOC as shown in FIG. 7, and the SOC can be grasped from the open circuit voltage. On the other hand, between the cell internal resistance and SOC, FIG.
The internal resistance changes with SOC. Therefore, in order to more accurately perform the correction operation due to the variation in the internal resistance, it is necessary to eliminate the influence of the variation in the SOC on the variation in the internal resistance.

【0026】従って上述した所定範囲Yは、例えばSOC
が3%の範囲になるようにすることを目的とするが、図
7に示すようにSOCの変化量に対する開放電圧の変化量
は比例していないので、開放電圧の値によって変わるこ
とになる。すなわち、例えばSOCが80%程度である場
合、SOCの3%分に対応する電圧幅は30mVと小さ
く、SOCが20%程度である場合、SOCの3%に対応する
電圧幅は50mVと大きくなることになる。よって、所
定範囲Yは、ステップS2で算出されたEaveに基づい
て、図7に示す開放電圧−SOC特性を考慮し、変更され
るものとなる。
Therefore, the predetermined range Y is, for example, SOC
Is intended to be in the range of 3%. However, as shown in FIG. 7, since the change amount of the open-circuit voltage is not proportional to the change amount of the SOC, the change depends on the value of the open-circuit voltage. That is, for example, when the SOC is about 80%, the voltage width corresponding to 3% of the SOC is as small as 30 mV, and when the SOC is about 20%, the voltage width corresponding to 3% of the SOC is as large as 50 mV. Will be. Therefore, the predetermined range Y is changed based on the Eave calculated in step S2 in consideration of the open-circuit voltage-SOC characteristic shown in FIG.

【0027】次に上述した所定範囲Xについて説明する
と、全ての温度範囲で、開放電圧−負荷電圧の差異を最
小に抑えられる程度が望ましく、本実施の形態では、例
えば±2.5A以内とする。
Next, a description will be given of the above-mentioned predetermined range X. It is desirable that the difference between the open circuit voltage and the load voltage be minimized in all the temperature ranges. In this embodiment, the difference is, for example, within ± 2.5 A. .

【0028】SOCのばらつきは開放電圧のばらつきから
推定できるので、ステップS4の処理により各セルのSO
Cがばらついているか否かを判定することができる。ま
た、ステップS5で電流値が電流値≦X/2であるか否
かを判定することによって、電流値がゼロに近い値のも
のだけを採用することにより、ステップS4の判定に用
いられるセル電圧が開放電圧に近い値となるように制限
している。これにより補正演算におけるSOCのばらつき
の影響を低減させ、補正精度の向上を図っている。ま
た、放電電流値が小さい場合だけに補正演算を行うこと
により、演算時の誤差を小さくすることができる。
The variation in the SOC can be estimated from the variation in the open circuit voltage.
It can be determined whether or not C varies. Also, by determining whether or not the current value satisfies the current value ≦ X / 2 in step S5, by adopting only the current value close to zero, the cell voltage used in the determination in step S4 is determined. Is limited to a value close to the open circuit voltage. As a result, the influence of the variation in SOC in the correction calculation is reduced, and the correction accuracy is improved. Further, by performing the correction calculation only when the discharge current value is small, it is possible to reduce an error in the calculation.

【0029】次いで、ステップS6において、電圧セン
サ7で検出される総電圧,電流センサ8で検出される電
流値およびセルコントローラ5により検出される各セル
のセル電圧を複数サンプリングする。ステップS7で
は、ステップS6で検出された電流値に基づいて、サン
プリングが放電中に行われたか否かを判定する。ステッ
プS7において放電状態と判定されると、ステップS8
へ進んでサンプリングデータを補正演算のデータとして
取得する。一方、ステップS7でNOと判定されるとス
テップS6へ戻り、再びデータサンプリングを行う。
Next, in step S6, a plurality of samples are taken of the total voltage detected by the voltage sensor 7, the current value detected by the current sensor 8, and the cell voltage of each cell detected by the cell controller 5. In step S7, based on the current value detected in step S6, it is determined whether or not sampling has been performed during discharging. If it is determined in step S7 that the battery is in the discharge state, step S8 is performed.
Proceed to and acquire sampling data as correction calculation data. On the other hand, if NO is determined in the step S7, the process returns to the step S6, and data sampling is performed again.

【0030】図6のステップS9では、ステップS8で
取得された複数のセル電圧および電流値に基づいて、図
3に示すようなセル毎の回帰直線を演算する。ステップ
S10では、ステップS6でサンプリングされた複数の
総電圧および電流値に基づいて、バッテリー4全体の回
帰直線を演算する。ステップS11では、バッテリー4
全体の回帰演算に基づいて、各セルの内部抵抗を平均し
たものである平均内部抵抗raveを算出する。ステップ
S12では、各セルの回帰演算からそれぞれの内部抵抗
を算出し、最大内部抵抗rmaxを有するセルを求める。
この最大内部抵抗rmaxは、図3のF0,F2およびIdmax
を用いて次式(7)により算出される。
In step S9 of FIG. 6, a regression line for each cell as shown in FIG. 3 is calculated based on the plurality of cell voltages and current values obtained in step S8. In step S10, a regression line for the entire battery 4 is calculated based on the plurality of total voltages and current values sampled in step S6. In step S11, the battery 4
An average internal resistance rave, which is an average of the internal resistance of each cell, is calculated based on the entire regression calculation. In step S12, each internal resistance is calculated from the regression calculation of each cell, and the cell having the maximum internal resistance rmax is obtained.
This maximum internal resistance rmax is represented by F0, F2 and Idmax in FIG.
And is calculated by the following equation (7).

【数6】rmax=(F0−F2)/Idmax …(7)Rmax = (F0−F2) / Idmax (7)

【0031】ステップS13では、ステップS12で算
出された最大内部抵抗rmaxが所定値r0以上か否かを
判定する。所定値r0としては、電池が新品のときの2
〜3倍の値とし、例えば1.2Ωとする。ステップS1
3でrmax≧r0と判定されると、ステップS14へ進
んで図1のインジケータ9にセル異常が生じたことを示
す警告を表示した後に、ステップS15へ進む。一方、
ステップS13でrmax<r0と判定されると、ステッ
プS15に進んで上述した式(5)により出力補正係数
K2を算出し、次のステップS16において式(3)に
より充電補正係数K1を算出する。そして、ステップS
17で式(6)の出力可能電力K2×Pcmaxを算出した
ならば、続くステップS18で式(4)により入力可能
電力K1×Pdmaxを算出し、一連の処理を終了する。
In step S13, it is determined whether or not the maximum internal resistance rmax calculated in step S12 is equal to or greater than a predetermined value r0. The predetermined value r0 is 2 when the battery is new.
値 3 times, for example, 1.2Ω. Step S1
If it is determined in step 3 that rmax ≧ r0, the process proceeds to step S14, where a warning indicating that a cell abnormality has occurred is displayed on the indicator 9 in FIG. 1, and then the process proceeds to step S15. on the other hand,
If it is determined in step S13 that rmax <r0, the process proceeds to step S15, where the output correction coefficient K2 is calculated by the above equation (5), and in the next step S16, the charge correction coefficient K1 is calculated by the equation (3). And step S
After calculating the possible output power K2 × Pcmax of the equation (6) in 17, the possible input power K1 × Pdmax is calculated by the following equation (4) in a succeeding step S18, and a series of processing ends.

【0032】図9は、本発明による充放電制御装置によ
る出力例を、従来と比較して示した図である。(A)は
アクセル踏み込み量に応じた要求出力を示しており、
(B)はバッテリー4の回帰演算のみを用いて算出した
従来の出力可能電力を用いた場合の出力電力を示し、
(C)は本実施の形態の補正された出力可能電力を用い
た場合の出力電力を示したものである。図9に示す例で
は、要求出力は最終的にP1となるが、(B)および
(C)ではセルの内部抵抗のばらつきにより、最終的な
出力はP2に制限されている。
FIG. 9 is a diagram showing an output example by the charge / discharge control device according to the present invention in comparison with a conventional example. (A) shows the required output according to the accelerator depression amount,
(B) shows the output power when the conventional output possible power calculated using only the regression calculation of the battery 4 is used,
(C) shows the output power when the corrected available output power of the present embodiment is used. In the example shown in FIG. 9, the required output eventually becomes P1, but in (B) and (C), the final output is limited to P2 due to the variation in the internal resistance of the cell.

【0033】従来の出力(B)の場合には、出力可能電
力にセル内部抵抗のばらつきが考慮されていないため、
出力がP2となるまでは、要求出力と一致して増加して
いる。しかし、出力がP2に達すると、最大内部抵抗r
maxのセル電圧が上限電圧に達するため、セルコントロ
ーラ5のセル上下限電圧保護機能が作動して、出力P2
に出力制限される。そのため、時刻t0までは要求通り
に出力されていたものが、時刻t0になると急に要求通
りの出力が出なくなる。一方、出力(C)では、式
(6)で示すように出力補正係数K2により出力可能電
力が補正されるため、要求出力に対して出力補正係数K
2に応じた所定比率の出力が出力開始時から出力され
る。そのため、出力Bに達するまではアクセル踏み込み
量の変化に比例して出力が変化するので、ドライバーは
違和感を感じることがない。
In the case of the conventional output (B), the variation in the internal resistance of the cell is not taken into account in the available output power.
Until the output reaches P2, it increases in accordance with the required output. However, when the output reaches P2, the maximum internal resistance r
Since the cell voltage of max reaches the upper limit voltage, the cell upper and lower limit voltage protection function of the cell controller 5 is activated, and the output P2
Output is limited to Therefore, what was output as requested until time t0, output suddenly stops at time t0. On the other hand, in the output (C), the available output power is corrected by the output correction coefficient K2 as shown in Expression (6), so that the output correction coefficient K
An output of a predetermined ratio according to 2 is output from the start of output. Therefore, the output changes in proportion to the change in the amount of depression of the accelerator until the output B is reached, so that the driver does not feel uncomfortable.

【0034】上述した実施の形態では、E0およびF0とし
て回帰直線L11,L12から算出される開放電圧を用いた
が、所定範囲Xで検出された総電圧およびセル電圧を使
用しても良い。また、回帰演算を用いて単位電池の最大
内部抵抗を算出しているが、回帰演算以外の方法により
最大内部抵抗を算出して、補正をするようにしても良
い。
In the above-described embodiment, the open voltage calculated from the regression lines L11 and L12 is used as E0 and F0, but the total voltage and the cell voltage detected in the predetermined range X may be used. Further, although the maximum internal resistance of the unit battery is calculated using the regression calculation, the correction may be performed by calculating the maximum internal resistance by a method other than the regression calculation.

【0035】また、上述した実施の形態では、放電中に
電圧センサ7および電流センサ8によって電圧V、電流
Iをサンプリングするようにしたが、充電中に電圧V、
電流Iをンプリングするようにしても、放電中および充
電中の両方において行っても良い。特に、組電池がリチ
ウム・イオンで構成されている場合には、放電および充
電で、電流と電圧の特性に変化が少ないので特に効果的
である。
In the above-described embodiment, the voltage V and the current I are sampled by the voltage sensor 7 and the current sensor 8 during discharging. However, the voltage V and the current I are sampled during charging.
The current I may be sampled or both during discharging and during charging. In particular, when the battery pack is made of lithium ions, discharge and charging are particularly effective because there is little change in current and voltage characteristics.

【0036】なお、上述した実施の形態では、ハイブリ
ッド電気自動車に搭載された駆動用バッテリーを例に説
明したが、本発明の充放電制御装置は他のバッテリーに
も適用することができる。
In the above-described embodiment, the driving battery mounted on the hybrid electric vehicle has been described as an example. However, the charge / discharge control device of the present invention can be applied to other batteries.

【0037】以上説明した実施の形態と特許請求の範囲
の要素との対応において、バッテリーコントローラ6は
充放電制御装置,補正演算部,入出力電力演算部および
回帰演算部を、セルコントローラ5は電圧検出部および
判定部をそれぞれ構成する。
In the correspondence between the embodiment described above and the elements of the claims, the battery controller 6 includes a charge / discharge control device, a correction calculation unit, an input / output power calculation unit, and a regression calculation unit. The detection unit and the determination unit are respectively configured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による充放電制御装置を備えるハイブリ
ッド電気自動車(HEV)の駆動系の概略構成を示す図
である。
FIG. 1 is a diagram showing a schematic configuration of a drive system of a hybrid electric vehicle (HEV) including a charge / discharge control device according to the present invention.

【図2】バッテリー4のV−I特性を示す図である。FIG. 2 is a diagram showing VI characteristics of a battery 4.

【図3】セル毎のV−I特性を示す図である。FIG. 3 is a diagram showing VI characteristics for each cell.

【図4】図3に示すV−I特性の充電領域の拡大図であ
る。
FIG. 4 is an enlarged view of a charging region having a VI characteristic shown in FIG. 3;

【図5】バッテリーコントローラ6で行われる入出力電
力演算の処理手順を示すフローチャートである。
FIG. 5 is a flowchart showing a processing procedure of input / output power calculation performed by the battery controller 6;

【図6】図5に続く手順を示すフローチャートである。FIG. 6 is a flowchart showing a procedure following FIG. 5;

【図7】開放電圧とSOCとの相関を示す図である。FIG. 7 is a diagram showing a correlation between open-circuit voltage and SOC.

【図8】内部抵抗とSOCとの相関を示す図である。FIG. 8 is a diagram showing a correlation between internal resistance and SOC.

【図9】本発明による充放電制御装置の出力例を示す図
である。
FIG. 9 is a diagram showing an output example of the charge / discharge control device according to the present invention.

【符号の説明】[Explanation of symbols]

1 エンジン 2 モータ 3 インバータ 4 バッテリー 5 セルコントローラ 6 バッテリーコントローラ 7 電圧センサ 8 電流センサ 9 インジケータ K1 充電補正係数 K2 出力補正係数 L1,L11〜L13 回帰直線 Reference Signs List 1 engine 2 motor 3 inverter 4 battery 5 cell controller 6 battery controller 7 voltage sensor 8 current sensor 9 indicator K1 charge correction coefficient K2 output correction coefficient L1, L11 to L13 regression line

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H02J 7/00 ZHV H02J 7/00 ZHVY Fターム(参考) 5G003 AA07 BA01 CA01 CA11 DA15 EA08 FA06 GB06 5H030 AA03 AA04 AA06 AS08 BB01 BB21 FF42 FF43 FF44 5H115 PA01 PC06 PG04 PI16 PO02 PO10 PO17 PU25 PV09 QN02 SE06 TI05 TI06 TI10 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H02J 7/00 ZHV H02J 7/00 ZHVY F-term (Reference) 5G003 AA07 BA01 CA01 CA11 DA15 EA08 FA06 GB06 5H030 AA03 AA04 AA06 AS08 BB01 BB21 FF42 FF43 FF44 5H115 PA01 PC06 PG04 PI16 PO02 PO10 PO17 PU25 PV09 QN02 SE06 TI05 TI06 TI10

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 組電池の電流値を検出する電流検出部
と、 前記組電池の総電圧値を検出する総電圧検出部と、 前記組電池を構成する複数の単位電池の各電圧値を検出
する単位電池電圧検出部と、 前記電流値および総電圧に基づいて前記組電池の電圧・
電流特性を回帰演算するとともに、前記電流値および前
記単位電池の電圧値に基づいて各組電池の電圧・電流特
性を回帰演算する回帰演算部と、 前記組電池に関する前記回帰演算部の演算結果に基づい
て、前記組電池の入力可能電力および出力可能電力を算
出する入出力可能電力演算部と、 前記回帰演算部で演算された内部抵抗の最も大きな単位
電池の電圧・電流特性に基づいて、前記入力可能電力お
よび/または出力可能電力を補正する補正演算部とを備
え、前記入出力可能電力演算部および補正演算部の各演
算結果に基づいて前記組電池の充放電制御を行うことを
特徴とする充放電制御装置。
A current detecting unit for detecting a current value of the battery pack; a total voltage detecting unit for detecting a total voltage value of the battery pack; and detecting each voltage value of a plurality of unit batteries constituting the battery pack. A unit battery voltage detection unit, and a voltage / voltage of the battery pack based on the current value and the total voltage.
A regression calculation unit for performing a regression calculation on the current characteristic, and a regression calculation unit for performing a regression calculation on the voltage / current characteristics of each battery pack based on the current value and the voltage value of the unit battery; An input / output available power calculation unit for calculating an input available power and an output available power of the battery pack, based on a voltage / current characteristic of a unit battery having the largest internal resistance calculated by the regression calculation unit. A correction operation unit that corrects input possible power and / or output possible power, and performs charge / discharge control of the battery pack based on each calculation result of the input / output possible power calculation unit and the correction calculation unit. Charge and discharge control device.
【請求項2】 請求項1に記載の充放電制御装置におい
て、 前記回帰演算部は、前記単位電池電圧検出部で検出され
た電圧値のばらつきが所定電圧値以下であって、かつ、
前記電流値の大きさが所定電流値以下の場合に、前記回
帰演算を行うことを特徴とする充放電制御装置。
2. The charge / discharge control device according to claim 1, wherein the regression calculation unit is configured such that a variation in a voltage value detected by the unit battery voltage detection unit is equal to or less than a predetermined voltage value, and
A charge / discharge control device, wherein the regression calculation is performed when the magnitude of the current value is equal to or smaller than a predetermined current value.
【請求項3】 請求項1または2に記載の充放電制御装
置において、 前記内部抵抗の最も大きな単位電池の内部抵抗が所定値
以上のときに、その単位電池を異常と判定する判定部を
設けたことを特徴とする充放電制御装置。
3. The charge / discharge control device according to claim 1, further comprising: a determination unit that determines that the unit battery is abnormal when the internal resistance of the unit battery having the largest internal resistance is equal to or greater than a predetermined value. A charge / discharge control device, characterized in that:
JP2001068655A 2001-03-12 2001-03-12 Charge / discharge control device Expired - Fee Related JP3711881B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001068655A JP3711881B2 (en) 2001-03-12 2001-03-12 Charge / discharge control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001068655A JP3711881B2 (en) 2001-03-12 2001-03-12 Charge / discharge control device

Publications (2)

Publication Number Publication Date
JP2002272011A true JP2002272011A (en) 2002-09-20
JP3711881B2 JP3711881B2 (en) 2005-11-02

Family

ID=18926809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001068655A Expired - Fee Related JP3711881B2 (en) 2001-03-12 2001-03-12 Charge / discharge control device

Country Status (1)

Country Link
JP (1) JP3711881B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006081334A (en) * 2004-09-10 2006-03-23 Nissan Motor Co Ltd Charge/discharge controller of battery pack
JP2008104289A (en) * 2006-10-19 2008-05-01 Hitachi Vehicle Energy Ltd Storage battery management device and vehicle controller equipped with it
JP2009112113A (en) * 2007-10-30 2009-05-21 Sony Corp Battery pack, and method and apparatus for charging secondary cell
WO2009063688A1 (en) * 2007-11-13 2009-05-22 Toyota Jidosha Kabushiki Kaisha Secondary battery control device and method
US7656124B2 (en) 2005-07-29 2010-02-02 Samsung Sdi Co., Ltd. Battery management system and driving method thereof
JP2010220391A (en) * 2009-03-17 2010-09-30 Honda Motor Co Ltd Charging controller
JP2011030397A (en) * 2009-07-29 2011-02-10 Shinmaywa Industries Ltd Motor-driven system having power storage device
JP2012090392A (en) * 2010-10-18 2012-05-10 Denso Corp Battery state monitoring apparatus
JP2012178953A (en) * 2011-02-28 2012-09-13 Hitachi Vehicle Energy Ltd Method of detecting state of assembled battery and controller
JP2013117435A (en) * 2011-12-02 2013-06-13 Toyota Motor Corp Power storage system
US9018907B2 (en) 2009-10-19 2015-04-28 Robert Bosch Gmbh Method for precise power prediction for battery packs
EP2580842A4 (en) * 2010-06-09 2015-12-16 Nissan Motor Charging control system
CN105490331A (en) * 2015-12-19 2016-04-13 江苏常隆客车有限公司 Battery management system for electric vehicles
EP2874270A4 (en) * 2012-09-18 2016-08-10 Toshiba Kk Battery pack and electric vehicle
CN106394273A (en) * 2015-07-30 2017-02-15 丰田自动车株式会社 Power supply system for vehicle
CN110509814A (en) * 2019-09-10 2019-11-29 海汇新能源汽车有限公司 Electric vehicle battery low battery Preservation tactics
DE102007004368B4 (en) 2006-01-31 2019-12-05 Denso Corporation Method and device for controlling the supply voltage of a vehicle
KR20210108889A (en) * 2020-02-25 2021-09-03 삼성에스디아이 주식회사 Method and detection unit for detecting inhomogeneous cell performance of battery system
EP4145586A4 (en) * 2020-04-27 2023-09-06 Nissan Motor Co., Ltd. Output control method for secondary battery and output control system for secondary battery

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006081334A (en) * 2004-09-10 2006-03-23 Nissan Motor Co Ltd Charge/discharge controller of battery pack
US7656124B2 (en) 2005-07-29 2010-02-02 Samsung Sdi Co., Ltd. Battery management system and driving method thereof
DE102007004368B4 (en) 2006-01-31 2019-12-05 Denso Corporation Method and device for controlling the supply voltage of a vehicle
US7755331B2 (en) 2006-10-19 2010-07-13 Hitachi, Ltd. Storage battery managing apparatus and vehicle controlling apparatus providing the same
JP4484858B2 (en) * 2006-10-19 2010-06-16 日立ビークルエナジー株式会社 Storage battery management device and vehicle control device including the same
JP2008104289A (en) * 2006-10-19 2008-05-01 Hitachi Vehicle Energy Ltd Storage battery management device and vehicle controller equipped with it
JP2009112113A (en) * 2007-10-30 2009-05-21 Sony Corp Battery pack, and method and apparatus for charging secondary cell
US9172261B2 (en) 2007-10-30 2015-10-27 Sony Corporation Battery pack, method of charging secondary battery and battery charger
JP4494453B2 (en) * 2007-11-13 2010-06-30 トヨタ自動車株式会社 Secondary battery control device and control method
JP2009123435A (en) * 2007-11-13 2009-06-04 Toyota Motor Corp Device and method of controlling secondary battery
WO2009063688A1 (en) * 2007-11-13 2009-05-22 Toyota Jidosha Kabushiki Kaisha Secondary battery control device and method
JP2010220391A (en) * 2009-03-17 2010-09-30 Honda Motor Co Ltd Charging controller
JP2011030397A (en) * 2009-07-29 2011-02-10 Shinmaywa Industries Ltd Motor-driven system having power storage device
US9018907B2 (en) 2009-10-19 2015-04-28 Robert Bosch Gmbh Method for precise power prediction for battery packs
EP2580842A4 (en) * 2010-06-09 2015-12-16 Nissan Motor Charging control system
JP2012090392A (en) * 2010-10-18 2012-05-10 Denso Corp Battery state monitoring apparatus
US8878493B2 (en) 2010-10-18 2014-11-04 Denso Corporation Apparatus for monitoring operation state of battery pack composed of plurality of cells mutually connected in series
JP2012178953A (en) * 2011-02-28 2012-09-13 Hitachi Vehicle Energy Ltd Method of detecting state of assembled battery and controller
JP2013117435A (en) * 2011-12-02 2013-06-13 Toyota Motor Corp Power storage system
EP2874270A4 (en) * 2012-09-18 2016-08-10 Toshiba Kk Battery pack and electric vehicle
CN106394273A (en) * 2015-07-30 2017-02-15 丰田自动车株式会社 Power supply system for vehicle
CN105490331A (en) * 2015-12-19 2016-04-13 江苏常隆客车有限公司 Battery management system for electric vehicles
CN110509814A (en) * 2019-09-10 2019-11-29 海汇新能源汽车有限公司 Electric vehicle battery low battery Preservation tactics
KR20210108889A (en) * 2020-02-25 2021-09-03 삼성에스디아이 주식회사 Method and detection unit for detecting inhomogeneous cell performance of battery system
EP3871919B1 (en) * 2020-02-25 2022-04-06 Samsung SDI Co., Ltd. Method and detection unit for detecting inhomogeneous cell performance of a battery system
KR102533200B1 (en) * 2020-02-25 2023-05-15 삼성에스디아이 주식회사 Method and detection unit for detecting inhomogeneous cell performance of battery system
EP4145586A4 (en) * 2020-04-27 2023-09-06 Nissan Motor Co., Ltd. Output control method for secondary battery and output control system for secondary battery

Also Published As

Publication number Publication date
JP3711881B2 (en) 2005-11-02

Similar Documents

Publication Publication Date Title
JP3711881B2 (en) Charge / discharge control device
JP3409661B2 (en) Control device for hybrid vehicle
US9475480B2 (en) Battery charge/discharge control device and hybrid vehicle using the same
US8981729B2 (en) Charging control apparatus and charging control method for battery
JP3050073B2 (en) Power generation control device for hybrid electric vehicles
US6359419B1 (en) Quasi-adaptive method for determining a battery&#39;s state of charge
JP2004014205A (en) Detection system of battery abnormality and degradation
JP4722976B2 (en) Storage capacity controller
JP2002243813A (en) Arithmetic unit for computing deterioration of capacity of secondary battery
US8947051B2 (en) Storage capacity management system
JP2000150003A (en) Method and device for charged amount calculation for hybrid vehicle
EP1731350B1 (en) Control apparatus for fuel cell vehicle and control method for fuel cell vehicle
JP3543662B2 (en) SOC calculation method for secondary battery for electric vehicle
US11285842B2 (en) Fuel cell vehicle
JP2002305011A (en) Fuel cell electric power supply device
US20140062409A1 (en) Power supply system
JP7447631B2 (en) Cruising range calculation device
US7084589B1 (en) Vehicle and method for controlling power to wheels in a vehicle
JP3692192B2 (en) Battery remaining capacity detector
JP5741189B2 (en) VEHICLE CHARGE CONTROL DEVICE AND CHARGE CONTROL METHOD
JP3772730B2 (en) Deterioration diagnosis device for vehicle battery
JP2017191701A (en) Controller of fuel battery vehicle
JP3674465B2 (en) Maximum charge / discharge power calculation device for batteries for electric vehicles
JP4876340B2 (en) Battery control device
JPH10191502A (en) Running controller for electric car

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050808

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080826

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090826

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090826

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100826

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees