JP2015204131A - Specific gravity estimation device and specific gravity estimation method - Google Patents

Specific gravity estimation device and specific gravity estimation method Download PDF

Info

Publication number
JP2015204131A
JP2015204131A JP2014081302A JP2014081302A JP2015204131A JP 2015204131 A JP2015204131 A JP 2015204131A JP 2014081302 A JP2014081302 A JP 2014081302A JP 2014081302 A JP2014081302 A JP 2014081302A JP 2015204131 A JP2015204131 A JP 2015204131A
Authority
JP
Japan
Prior art keywords
specific gravity
circuit voltage
open
error
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014081302A
Other languages
Japanese (ja)
Other versions
JP6279387B2 (en
Inventor
吉広 枝本
Yoshihiro Edamoto
吉広 枝本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Corp
Original Assignee
Calsonic Kansei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Kansei Corp filed Critical Calsonic Kansei Corp
Priority to JP2014081302A priority Critical patent/JP6279387B2/en
Publication of JP2015204131A publication Critical patent/JP2015204131A/en
Application granted granted Critical
Publication of JP6279387B2 publication Critical patent/JP6279387B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a specific gravity estimation device and a specific gravity estimation method in which conversion can be made to a highly accurate charging rate when calculating the charging rate of a lead storage battery.SOLUTION: A specific gravity estimation device 10 includes a first open voltage calculation unit 11 for calculating the variation of a charging rate determined by current integration, and converting into a first open voltage OCVi, a second open voltage calculation unit 12 for calculating the second open voltage OCVv on the basis of the current and the terminal voltage of a lead storage battery B, an error estimation unit 36 for estimating the error of the first open voltage on the basis of the first open voltage and second open voltage, and a specific gravity conversion unit 16 for converting a value, obtained by subtracting an error estimated in the error estimation unit from the first open voltage, into a specific gravity.

Description

本発明は、推定の精度を高めた鉛蓄電池の比重推定装置および比重推定方法に関する。   The present invention relates to a specific gravity estimation device and a specific gravity estimation method for a lead storage battery with improved estimation accuracy.

自動車等の車両には、リチャージャブル・バッテリ(二次電池、以下単に「電池」とする)が搭載されることが多い。このような電池は、例えばエンジン等から伝達される機械的運動エネルギーをオルタネーターで変換して得られる電気エネルギーを蓄積(充電)し、車両を駆動するためのモータへ電気エネルギーを供給(放電)する。このとき、車両の運転者が走行可能距離等を正確に把握できるように、電池の内部状態量である充電率(SOC: State of Charge)が精度よく算出される必要がある。   A vehicle such as an automobile is often equipped with a rechargeable battery (secondary battery, hereinafter simply referred to as “battery”). Such a battery stores (charges) electrical energy obtained by converting mechanical kinetic energy transmitted from an engine or the like with an alternator, and supplies (discharges) electrical energy to a motor for driving the vehicle. . At this time, the state of charge (SOC), which is the internal state quantity of the battery, needs to be accurately calculated so that the driver of the vehicle can accurately grasp the travelable distance and the like.

例えば、特許文献1の発明は、充電率を電流積算法と開放電圧推定法とで求め、カルマン・フィルタで誤差が最小となるように誤差モデルを修正していく手法(いわゆるセンサ・フュージョン技術)によって精度の高い充電率を算出する。   For example, the invention of Patent Document 1 obtains a charging rate by a current integration method and an open-circuit voltage estimation method, and corrects an error model so that the error is minimized by a Kalman filter (so-called sensor fusion technology). To calculate a highly accurate charging rate.

特開2013−238402号公報JP 2013-238402 A

ここで、車両に搭載される電池として鉛蓄電池がよく用いられる。特許文献1の発明は鉛蓄電池に対しても適用できるが、開放電圧(OCV:Open Circuit Voltage)から充電率を求める際に変換テーブル(OCV−SOC変換テーブル)を用いた演算処理が必要である。変換テーブルを用いると、例えば線形変換に比べて精度が低下する可能性がある。   Here, a lead storage battery is often used as a battery mounted on a vehicle. The invention of Patent Document 1 can also be applied to lead-acid batteries, but requires calculation processing using a conversion table (OCV-SOC conversion table) when determining a charging rate from an open circuit voltage (OCV). . When the conversion table is used, there is a possibility that the accuracy is lowered as compared with, for example, linear conversion.

前記のような問題点に鑑みてなされた本発明の目的は、鉛蓄電池の充電率を算出する際に精度の高い充電率へと変換が可能な比重を算出する比重推定装置及び比重推定方法を提供することにある。   An object of the present invention made in view of the above problems is to provide a specific gravity estimation device and a specific gravity estimation method for calculating specific gravity that can be converted into a highly accurate charge rate when calculating the charge rate of a lead storage battery. It is to provide.

前記課題を解決するために第1の発明に係る比重推定装置は、鉛蓄電池の比重推定装置であって、電流積算法で求めた充電率の変化量を算出して、第1の開放電圧に変換する第1の開放電圧算出部と、前記鉛蓄電池の電流および端子電圧に基づいて、第2の開放電圧を算出する第2の開放電圧算出部と、前記第1の開放電圧と前記第2の開放電圧とに基づいて、前記第1の開放電圧の誤差を推定する誤差推定部と、前記第1の開放電圧から前記誤差推定部が推定した誤差を除いた値を比重に変換する比重変換部を含むことを特徴とする。   In order to solve the above problem, a specific gravity estimation device according to a first aspect of the present invention is a specific gravity estimation device for a lead storage battery, and calculates a change amount of a charging rate obtained by a current integration method to obtain a first open circuit voltage. A first open-circuit voltage calculating unit for converting; a second open-circuit voltage calculating unit for calculating a second open-circuit voltage based on a current and a terminal voltage of the lead storage battery; the first open-circuit voltage and the second open-circuit voltage; An error estimation unit that estimates an error of the first open-circuit voltage based on the open-circuit voltage of the first and a specific gravity conversion that converts a value obtained by removing the error estimated by the error estimation unit from the first open-circuit voltage into a specific gravity It is characterized by including a part.

また、第2の発明に係る比重推定装置は、第1の発明の比重推定装置において、前記比重変換部が変換した比重を、前記鉛蓄電池の温度に応じて補正する温度補正部をさらに含む。   The specific gravity estimation device according to a second aspect of the invention further includes a temperature correction unit that corrects the specific gravity converted by the specific gravity conversion unit according to the temperature of the lead storage battery in the specific gravity estimation device of the first aspect of the invention.

また、第3の発明に係る比重推定装置は、第1または第2の発明の比重推定装置において、前記誤差推定部は、カルマン・フィルタを用いて前記第1の開放電圧の誤差を推定する。   The specific gravity estimation apparatus according to a third aspect of the present invention is the specific gravity estimation apparatus according to the first or second aspect, wherein the error estimation unit estimates an error of the first open circuit voltage using a Kalman filter.

また、第4の発明に係る比重推定方法は、鉛蓄電池の比重推定方法であって、(A)電流積算法で求めた充電率の変化量を算出して、第1の開放電圧に変換するステップと、(B)前記鉛蓄電池の電流および端子電圧に基づいて、第2の開放電圧を算出するステップと、(C)前記第1の開放電圧と前記第2の開放電圧とに基づいて、前記第1の開放電圧の誤差を推定するステップと、(D)前記第1の開放電圧から前記ステップ(C)で推定された誤差を除いた値を比重に変換するステップを含むことを特徴とする。   A specific gravity estimation method according to a fourth aspect of the present invention is a specific gravity estimation method for a lead storage battery, and (A) calculates a change amount of a charging rate obtained by a current integration method and converts it into a first open circuit voltage. A step of (B) calculating a second open-circuit voltage based on the current and terminal voltage of the lead-acid battery; and (C) based on the first open-circuit voltage and the second open-circuit voltage, And (D) converting a value obtained by removing the error estimated in step (C) from the first open voltage into specific gravity. To do.

また、第1の発明に係る比重推定装置によれば、第1の開放電圧の誤差を推定する誤差推定部を含む。誤差推定部は、電流積算法を用いた第1の開放電圧と、開放電圧推定法を用いた第2の開放電圧とに基づいて第1の開放電圧の誤差を推定することができる。つまり、第1の開放電圧の誤差を、第2の開放電圧によって修正することができるため、精度よく誤差を求めることができる。また、比重変換部は第1の開放電圧から誤差推定部が推定した誤差を除いた値を比重に変換する。鉛蓄電池の充電率と比重とは一次式の関係にある。そのため、鉛蓄電池の比重から線形変換によって充電率を求めることができ、例えば変換テーブルを用いる場合と比べると、変換の際の誤差も小さくなるので精度の高い充電率へと変換が可能である。   In addition, according to the specific gravity estimation apparatus according to the first aspect of the invention, the error estimation unit for estimating the error of the first open circuit voltage is included. The error estimation unit can estimate the error of the first open-circuit voltage based on the first open-circuit voltage using the current integration method and the second open-circuit voltage using the open-circuit voltage estimation method. That is, since the error of the first open circuit voltage can be corrected by the second open circuit voltage, the error can be obtained with high accuracy. Further, the specific gravity conversion unit converts a value obtained by removing the error estimated by the error estimation unit from the first open circuit voltage into specific gravity. The charge rate and specific gravity of the lead storage battery have a linear relationship. Therefore, the charge rate can be obtained by linear conversion from the specific gravity of the lead storage battery. For example, compared to the case of using a conversion table, the error during conversion is reduced, so that conversion to a highly accurate charge rate is possible.

また、第2の発明に係る比重推定装置によれば、鉛蓄電池の温度に応じて比重を補正する温度補正部を含み、鉛蓄電池の充電率と一次式の関係にある所定の温度における比重を生成できる。そのため、生成された比重から、直ちに線形変換によって充電率を求めることができ、利便性の高い比重推定装置を提供できる。   Moreover, according to the specific gravity estimation apparatus which concerns on 2nd invention, the temperature correction | amendment part which correct | amends specific gravity according to the temperature of lead acid battery is included, and specific gravity in the predetermined temperature which has a linear expression and the charge rate of lead acid battery is obtained. Can be generated. Therefore, the charging rate can be obtained immediately by linear conversion from the generated specific gravity, and a highly convenient specific gravity estimation device can be provided.

また、第3の発明に係る比重推定装置によれば、内部のパラメータを自己修正するのに適したカルマン・フィルタを用いて前記第1の開放電圧の誤差を推定する。そのため、誤差を容易かつ高い精度で推定できるようになる。   Further, according to the specific gravity estimation apparatus according to the third aspect of the invention, the error of the first open circuit voltage is estimated using a Kalman filter suitable for self-correcting internal parameters. Therefore, the error can be estimated easily and with high accuracy.

また、第4の発明に係る比重推定方法によれば、第1の開放電圧の誤差を推定するステップを含む。このステップでは、電流積算法を用いた第1の開放電圧と、開放電圧推定法を用いた第2の開放電圧とに基づいて第1の開放電圧の誤差を推定することができる。つまり、第1の開放電圧の誤差を、第2の開放電圧によって修正することができるため、精度よく誤差を求めることができる。また、第1の開放電圧からこのステップで推定した誤差を除いた値を比重に変換する別のステップが含まれている。鉛蓄電池の充電率と比重とは一次式の関係にある。そのため、鉛蓄電池の比重から線形変換によって充電率を求めることができ、例えば変換テーブルを用いる場合と比べると、変換の際の誤差も小さくなるので精度の高い充電率へと変換が可能である。   In addition, according to the specific gravity estimation method according to the fourth aspect of the invention, the method includes a step of estimating an error of the first open circuit voltage. In this step, the error of the first open-circuit voltage can be estimated based on the first open-circuit voltage using the current integration method and the second open-circuit voltage using the open-circuit voltage estimation method. That is, since the error of the first open circuit voltage can be corrected by the second open circuit voltage, the error can be obtained with high accuracy. Also included is another step of converting the value obtained by removing the error estimated in this step from the first open circuit voltage into specific gravity. The charge rate and specific gravity of the lead storage battery have a linear relationship. Therefore, the charge rate can be obtained by linear conversion from the specific gravity of the lead storage battery. For example, compared to the case of using a conversion table, the error during conversion is reduced, so that conversion to a highly accurate charge rate is possible.

本実施形態に係る比重推定装置を示すブロック図である。It is a block diagram which shows the specific gravity estimation apparatus which concerns on this embodiment. 鉛蓄電池の開放電圧、比重、充電率の関係を示す図である。It is a figure which shows the relationship of the open circuit voltage, specific gravity, and charging rate of a lead acid battery. 鉛蓄電池の比重−充電率特性を示す図である。It is a figure which shows the specific gravity-charge rate characteristic of a lead acid battery. OCVv算出部で用いる電池の等価回路モデルを例示する図である。It is a figure which illustrates the equivalent circuit model of the battery used with an OCVv calculation part. 本実施形態に係る比重推定装置の処理を示すフローチャートである。It is a flowchart which shows the process of the specific gravity estimation apparatus which concerns on this embodiment. 比較例の充電率推定装置を示すブロック図である。It is a block diagram which shows the charging rate estimation apparatus of a comparative example.

以下、本発明の実施の形態について説明する。
(全体構成)
まず、本実施形態の比重推定装置10の全体構成を、図1を参照しながら説明する。比重推定装置10は、例えば自動車等の車両に搭載される電池Bに接続されている。電池Bは鉛蓄電池であり、機械的運動エネルギーを図示しないオルタネーターで変換して得られる電気エネルギーを蓄積(充電)し、図示しない車両の駆動モータ等へ電気エネルギーを供給(放電)する。電池Bは、例えば車両の減速時に発生する回生電力をオルタネーターから受け取り充電してもよい。比重推定装置10は、電池Bの充電率へと変換が可能な比重を算出するものである。比重推定装置10は、車両の動作中に充電・放電を行う電池Bの比重を算出できる。ここで、車両の動作中とは、車両のエンジンが動いており、移動のために走行、停車等している状態をいう。
Embodiments of the present invention will be described below.
(overall structure)
First, the overall configuration of the specific gravity estimation apparatus 10 of the present embodiment will be described with reference to FIG. The specific gravity estimation device 10 is connected to a battery B mounted on a vehicle such as an automobile. The battery B is a lead storage battery, stores (charges) electrical energy obtained by converting mechanical kinetic energy with an alternator (not shown), and supplies (discharges) electrical energy to a vehicle drive motor (not shown). The battery B may be charged by receiving, for example, regenerative power generated when the vehicle decelerates from the alternator. The specific gravity estimation device 10 calculates the specific gravity that can be converted into the charging rate of the battery B. The specific gravity estimation device 10 can calculate the specific gravity of the battery B that is charged and discharged during operation of the vehicle. Here, the operation of the vehicle means a state in which the engine of the vehicle is running and is running or stopped for movement.

比重推定装置10は、OCVi算出部11、OCVv算出部12、開放電圧補正部14、比重変換部16、温度補正部18を含む。概略として、比重推定装置10は鉛蓄電池の比重を算出するが、この比重が2つの異なる方法を用いた開放電圧に基づいて算出される点で従来技術と相違する。それぞれの開放電圧はOCVi算出部11、OCVv算出部12で算出されて、開放電圧補正部14がこれらの開放電圧を用いて誤差補正を実行する。そのため、精度の高い開放電圧の推定が可能になり、結果として精度の高い電池Bの充電率を得ることができる。なお、電池Bの端子電圧VBは、図示しない電圧センサによって検出されて比重推定装置10へと出力される。また、電池Bの電流IBは、図示しない電流センサによって検出されて比重推定装置10へと出力される。また、電池Bの温度TBは、図示しない温度センサによって検出されて比重推定装置10へと出力される。   The specific gravity estimation apparatus 10 includes an OCVi calculation unit 11, an OCVv calculation unit 12, an open circuit voltage correction unit 14, a specific gravity conversion unit 16, and a temperature correction unit 18. As an outline, the specific gravity estimation device 10 calculates the specific gravity of the lead storage battery, which is different from the prior art in that the specific gravity is calculated based on an open circuit voltage using two different methods. Each open circuit voltage is calculated by the OCVi calculation unit 11 and the OCVv calculation unit 12, and the open circuit voltage correction unit 14 performs error correction using these open circuit voltages. Therefore, it is possible to estimate the open-circuit voltage with high accuracy, and as a result, it is possible to obtain the charging rate of the battery B with high accuracy. The terminal voltage VB of the battery B is detected by a voltage sensor (not shown) and output to the specific gravity estimation device 10. In addition, the current IB of the battery B is detected by a current sensor (not shown) and output to the specific gravity estimation device 10. Further, the temperature TB of the battery B is detected by a temperature sensor (not shown) and output to the specific gravity estimation device 10.

OCVi算出部11は、電池Bの電流IBを受け取り、電流積算法で求めた充電率の変化量ΔSOCiに基づく第1の開放電圧OCViを出力する。OCVi算出部11は、本発明の第1の開放電圧算出部に対応する。   The OCVi calculation unit 11 receives the current IB of the battery B, and outputs a first open circuit voltage OCVi based on the change rate ΔSOCi of the charging rate obtained by the current integration method. The OCVi calculation unit 11 corresponds to the first open-circuit voltage calculation unit of the present invention.

OCVi算出部11は、電流積算部32およびOCVi変換部34を含む。電流積算部32は、電池Bの電流IBを受け取り、電流積算法で充電率の変化量ΔSOCiを求める。電流積算法は電流IBを時間積分して電荷量を求めて充電率を算出する手法である。電流積算部32は、電流IBを正の値である充電電流と負の値である放電電流とに分離してから充電率の変化量ΔSOCiを求めてもよい。ここで、電流積算法では一般に電池Bの初期値を加える処理も行うが、電流積算部32では初期値を加算せずに、充電率の変化量ΔSOCi(電流IBを時間積分した電荷量を電池Bの満充電容量で除算して得られる値)を求める。   The OCVi calculation unit 11 includes a current integration unit 32 and an OCVi conversion unit 34. The current integrating unit 32 receives the current IB of the battery B and obtains the change rate ΔSOCi of the charging rate by the current integrating method. The current integration method is a method of calculating the charge rate by obtaining the charge amount by integrating the current IB with time. The current integrating unit 32 may obtain the change rate ΔSOCi of the charging rate after separating the current IB into a charging current having a positive value and a discharging current having a negative value. Here, in the current integration method, processing for adding the initial value of the battery B is also generally performed. However, the current integration unit 32 does not add the initial value, and the change rate ΔSOCi (the amount of charge obtained by time integration of the current IB is calculated as the battery amount). (Value obtained by dividing by the full charge capacity of B).

OCVi変換部34は、充電率の変化量ΔSOCiを、開放電圧の変化量ΔOCVに変換する。そして、電池Bの開放電圧の初期値OCVを加えて、第1の開放電圧OCViを生成する。OCVi変換部34は乗算器を含み、充電率の変化量ΔSOCiと係数ciとの乗算を行って開放電圧の変化量ΔOCVを生成する。ここで、係数ciは、電池Bの充電率100%〜0%の開放電圧差、電池Bの充電効率(または放電効率)、電池Bを構成するセル数等によって定められる。例えば、電池Bのセルについて充電率100%〜0%の開放電圧差が0.18[V]であって、電池Bがセルを6個直列に接続した構成であれば、係数ciはこれらの数値を乗算することで与えられる。また、さらに充電率に応じた充電効率を考慮して係数ciを定めれば、より正確に開放電圧の変化量ΔOCVを得ることができる。 The OCVi conversion unit 34 converts the change amount ΔSOCi of the charging rate into an open circuit voltage change amount ΔOCV. Then, the initial value OCV 0 of the open voltage of the battery B is added to generate the first open voltage OCVi. The OCVi conversion unit 34 includes a multiplier, and generates a change amount ΔOCV of the open-circuit voltage by multiplying the change amount ΔSOCi of the charging rate by the coefficient ci. Here, the coefficient ci is determined by the open-circuit voltage difference of 100% to 0% of the charging rate of the battery B, the charging efficiency (or discharging efficiency) of the battery B, the number of cells constituting the battery B, and the like. For example, for a battery B cell, if the open-circuit voltage difference between the charging rate of 100% and 0% is 0.18 [V], and the battery B has a configuration in which six cells are connected in series, the coefficient ci is It is given by multiplying numerical values. Further, if the coefficient ci is determined in consideration of the charging efficiency according to the charging rate, the change amount ΔOCV of the open-circuit voltage can be obtained more accurately.

また、OCVi変換部34は加算器を含み、開放電圧の変化量ΔOCVに電池Bの開放電圧の初期値OCVを加えて、第1の開放電圧OCViを生成する。初期値OCVは、電流積算部32が電池Bの電流IBを受け取って積算を開始した時の電池Bの開放電圧の値である。例えば、電池Bが満充電状態のときに電流積算部32が積算を開始したとする。このとき、初期値OCVは、充電率100%に対応する開放電圧の2.12[V]にセル数の6を乗じた12.72[V]と計算される(図2参照)。 Further, the OCVi conversion unit 34 includes an adder, and adds the initial value OCV 0 of the open circuit voltage of the battery B to the change amount ΔOCV of the open circuit voltage to generate the first open circuit voltage OCVi. The initial value OCV 0 is a value of the open circuit voltage of the battery B when the current integrating unit 32 receives the current IB of the battery B and starts integration. For example, it is assumed that the current integration unit 32 starts integration when the battery B is fully charged. At this time, the initial value OCV 0 is calculated as 12.72 [V] obtained by multiplying the open circuit voltage 2.12 [V] corresponding to the charging rate of 100% by 6 of the number of cells (see FIG. 2).

OCVv算出部12は、電池Bの端子電圧VBと電流IBとを受け取り、開放電圧推定法によって第2の開放電圧OCVvを生成する。第2の開放電圧OCVvは、OCVv算出部12が含む電池Bの等価回路(以下、「バッテリモデル」とする)に電流IBを与えることで得られる。なお、バッテリモデルの構成例については後述する。OCVv算出部12は、本発明の第2の開放電圧算出部に対応する。   The OCVv calculation unit 12 receives the terminal voltage VB and the current IB of the battery B, and generates the second open circuit voltage OCVv by the open circuit voltage estimation method. The second open circuit voltage OCVv is obtained by applying a current IB to an equivalent circuit (hereinafter referred to as “battery model”) of the battery B included in the OCVv calculation unit 12. A configuration example of the battery model will be described later. The OCVv calculation unit 12 corresponds to the second open circuit voltage calculation unit of the present invention.

開放電圧補正部14は、OCVi算出部11からの第1の開放電圧OCVi、およびOCVv算出部12からの第2の開放電圧OCVvを受け取り、第1の開放電圧OCViの誤差Eaを推定し、第1の開放電圧OCViから推定された誤差Eaを除いた(減算した)値を補正後開放電圧OCVとして出力する。なお、補正後開放電圧OCVは、本発明の「第1の開放電圧から誤差推定部が推定した誤差を除いた値」に対応する。   The open-circuit voltage correction unit 14 receives the first open-circuit voltage OCVi from the OCVi calculation unit 11 and the second open-circuit voltage OCVv from the OCVv calculation unit 12, estimates the error Ea of the first open-circuit voltage OCVi, and A value obtained by removing (subtracting) the estimated error Ea from the open circuit voltage OCVi of 1 is output as the corrected open circuit voltage OCV. The corrected open circuit voltage OCV corresponds to “a value obtained by removing the error estimated by the error estimation unit from the first open circuit voltage” of the present invention.

開放電圧補正部14は誤差推定部36を含む。誤差推定部36は、減算器によって第2の開放電圧OCVvから第1の開放電圧OCViを減算した値(減算値E)を受け取る。誤差推定部36は、誤差モデルで推定する値と減算値Eとを比較して修正する手法によって誤差Eaを推定する。本実施形態において、誤差推定部36はカルマン・フィルタを用いて誤差Eaを推定するので、精度の高い補正後開放電圧OCVを得ることができる。なお、誤差推定部36で用いるカルマン・フィルタの詳細については後述する。 The open-circuit voltage correction unit 14 includes an error estimation unit 36. The error estimation unit 36 receives a value (subtraction value E 0 ) obtained by subtracting the first open circuit voltage OCVi from the second open circuit voltage OCVv by the subtractor. Error estimator 36 estimates the error Ea by a technique to correct by comparing the value estimated by the error model and the subtracted value E 0. In the present embodiment, since the error estimation unit 36 estimates the error Ea using a Kalman filter, it is possible to obtain the corrected open circuit voltage OCV with high accuracy. Details of the Kalman filter used in the error estimation unit 36 will be described later.

比重変換部16は、補正後開放電圧OCVを受け取り、比重に変換して原推定比重SGを出力する。ここで、具体例は後述するが、電池Bのような鉛蓄電池において開放電圧と比重とは一次式の関係にある。よって、比重変換部16における変換処理では、変換テーブルを用いる必要はないため、精度を低下させずに原推定比重SGを算出することが可能である。 Density conversion unit 16 receives the corrected open-circuit voltage OCV, and converts the specific gravity to output the original estimated specific gravity SG 0. Here, although a specific example will be described later, in a lead storage battery such as the battery B, the open circuit voltage and the specific gravity are in a linear relationship. Therefore, the conversion processing in the specific gravity converter 16, it is not necessary to use a conversion table, it is possible to calculate the original estimated specific gravity SG 0 without reducing the accuracy.

温度補正部18は、電池Bの温度TB、原推定比重SGを受け取り、推定比重SGを生成する。温度補正部18は、電池Bの温度TBに基づいて原推定比重SGを所定の温度(例えば20℃)の比重へと補正する温度補正を行う。具体例は後述するが、電池Bのような鉛蓄電池において比重と充電率とは一次式の関係にあり、簡単な計算式を保存しておくことで例えば20℃の比重から充電率を求められる。よって、比重推定装置10は、推定比重SGを出力することで、後段の回路が容易に充電率SOCへと変換できるようにする。 The temperature correction unit 18 receives the temperature TB of the battery B and the original estimated specific gravity SG 0 and generates an estimated specific gravity SG. The temperature correction unit 18 performs temperature correction for correcting the original estimated specific gravity SG 0 to a specific gravity of a predetermined temperature (for example, 20 ° C.) based on the temperature TB of the battery B. Although a specific example will be described later, in a lead storage battery such as the battery B, the specific gravity and the charging rate are in a linear relationship, and by storing a simple calculation formula, the charging rate can be obtained from the specific gravity of 20 ° C., for example. . Therefore, the specific gravity estimation device 10 outputs the estimated specific gravity SG so that the subsequent circuit can be easily converted into the charge rate SOC.

例えば、図1のように、比重推定装置10の後段に線形変換を行う簡単な回路(線形変換部20)を加えるだけで、充電率推定装置を構成することができる。線形変換部20は変換テーブルを用いる必要はなく、後述する比較例と比べて、比重推定装置10を含む充電率推定装置全体としての演算処理の負荷を抑えることができる。ここで、本実施形態では比重推定装置10が温度補正部18を含んでいるが、別の実施形態として、温度補正部18を含まずに原推定比重SGが出力されてもよい。このとき、温度補正は例えば前記の線形変換部20で充電率SOCへの変換とともに実行されてもよい。 For example, as shown in FIG. 1, the charging rate estimation device can be configured simply by adding a simple circuit (linear conversion unit 20) that performs linear conversion to the subsequent stage of the specific gravity estimation device 10. The linear conversion unit 20 does not need to use a conversion table, and can reduce the calculation processing load of the entire charging rate estimation apparatus including the specific gravity estimation apparatus 10 as compared with a comparative example described later. Here, although the specific gravity estimation apparatus 10 includes the temperature correction unit 18 in the present embodiment, the original estimated specific gravity SG 0 may be output without including the temperature correction unit 18 as another embodiment. At this time, for example, the temperature correction may be performed by the linear conversion unit 20 together with the conversion to the charging rate SOC.

以上のように図1を参照しながら比重推定装置10の全体構成を説明したが、以下では、その利点を明確にするために比較例の充電率推定装置1010との対比説明を行い、鉛蓄電池の特性および具体的な計算式を示し、OCVv算出部12、開放電圧補正部14の詳細について説明し、その後に、比重推定装置10の処理について説明する。   As described above, the overall configuration of the specific gravity estimation device 10 has been described with reference to FIG. 1, but in the following, in order to clarify the advantages, the comparison with the charge rate estimation device 1010 of the comparative example is performed, and the lead storage battery The details of the OCVv calculation unit 12 and the open-circuit voltage correction unit 14 will be described, and then the processing of the specific gravity estimation device 10 will be described.

(比較例との対比)
図1の本実施形態の比重推定装置10と線形変換部20とで構成される充電率推定装置(以下、「比重推定装置10を含む充電率推定装置」とする)と、図6の比較例の充電率推定装置1010とを対比させて説明する。
(Contrast with comparative example)
A charging rate estimation device (hereinafter referred to as a “charging rate estimation device including the specific gravity estimation device 10”) configured by the specific gravity estimation device 10 and the linear conversion unit 20 of the present embodiment of FIG. 1 and a comparative example of FIG. The charging rate estimation apparatus 1010 will be described in comparison.

図6は、比較例の充電率推定装置1010を示すブロック図である。なお、図1と同じ要素については同じ符号を付しており詳細な説明を省略する。充電率推定装置1010は、車両の動作中に充電・放電を行う電池Bの充電率を推定する。なお、充電率推定装置1010では温度補正を行わないので電池Bの温度TBの検出は行われない。また、充電率推定装置1010は、鉛蓄電池以外の電池B(例えば、リチウムイオン電池)も充電率を推定する対象とできる。   FIG. 6 is a block diagram illustrating a charging rate estimation apparatus 1010 of the comparative example. In addition, the same code | symbol is attached | subjected about the same element as FIG. 1, and detailed description is abbreviate | omitted. The charging rate estimation device 1010 estimates the charging rate of the battery B that is charged and discharged during operation of the vehicle. Note that the charging rate estimation apparatus 1010 does not perform temperature correction, so the temperature TB of the battery B is not detected. In addition, the charging rate estimation apparatus 1010 can also target batteries B (for example, lithium ion batteries) other than lead storage batteries to estimate the charging rate.

充電率推定装置1010は、OCVv算出部1012、SOCi算出部1017、SOCv変換部1018、充電率補正部1015を含む。ここで、OCVv算出部1012は、比重推定装置10のOCVv算出部12に対応し、第2の開放電圧OCVvを出力する。   The charging rate estimation apparatus 1010 includes an OCVv calculation unit 1012, an SOCi calculation unit 1017, an SOCv conversion unit 1018, and a charging rate correction unit 1015. Here, the OCVv calculation unit 1012 corresponds to the OCVv calculation unit 12 of the specific gravity estimation device 10 and outputs the second open circuit voltage OCVv.

SOCi算出部1017は、電流を積算してΔSOCiを求めて、充電率SOCの初期値を加算して第1の充電率SOCiを出力する。SOCv変換部1018は、第2の開放電圧OCVvを受け取り、変換テーブルを用いる変換処理を行い、第2の充電率SOCvを出力する。   The SOCi calculating unit 1017 adds up the current to obtain ΔSOCi, adds the initial value of the charging rate SOC, and outputs the first charging rate SOCi. The SOCv conversion unit 1018 receives the second open circuit voltage OCVv, performs a conversion process using the conversion table, and outputs a second charge rate SOCv.

充電率補正部1015は、第1の開放電圧OCVi、第2の開放電圧OCVvに代えて、第1の充電率SOCi、第2の充電率SOCvを受け取ること、および、補正後開放電圧OCVに代えて、充電率SOCが出力されることを除けば、その構成は「比重推定装置10を含む充電率推定装置」の開放電圧補正部14と同様である。   The charging rate correction unit 1015 receives the first charging rate SOCi and the second charging rate SOCv instead of the first open circuit voltage OCVi and the second open circuit voltage OCVv, and replaces the corrected open circuit voltage OCV with it. Except for the output of the charge rate SOC, the configuration is the same as the open-circuit voltage correction unit 14 of the “charge rate estimation device including the specific gravity estimation device 10”.

そして、比較例の充電率推定装置1010では、充電率補正部1015が充電率SOCを出力する。そのため、比較例の充電率推定装置1010は、「比重推定装置10を含む充電率推定装置」が有する比重変換部16、温度補正部18および線形変換部20を含まない。   In the charging rate estimation apparatus 1010 of the comparative example, the charging rate correction unit 1015 outputs the charging rate SOC. Therefore, the charging rate estimation device 1010 of the comparative example does not include the specific gravity conversion unit 16, the temperature correction unit 18, and the linear conversion unit 20 included in the “charging rate estimation device including the specific gravity estimation device 10”.

以上をまとめると、比較例の充電率推定装置1010はSOCv変換部1018を含むが、「比重推定装置10を含む充電率推定装置」は、これらの変換部を含まず、比重変換部16、温度補正部18および線形変換部20を用いて鉛蓄電池の充電率SOCを算出している。つまり、「比重推定装置10を含む充電率推定装置」は、第1の開放電圧OCVi、第2の開放電圧OCVvから一度比重を求めて充電率SOCを算出している。   In summary, the charging rate estimation device 1010 of the comparative example includes the SOCv conversion unit 1018, but the “charging rate estimation device including the specific gravity estimation device 10” does not include these conversion units, the specific gravity conversion unit 16, temperature The charge rate SOC of the lead storage battery is calculated using the correction unit 18 and the linear conversion unit 20. That is, the “charge rate estimation device including the specific gravity estimation device 10” calculates the charge rate SOC by obtaining the specific gravity once from the first open circuit voltage OCVi and the second open circuit voltage OCVv.

一度比重へと変換する「比重推定装置10を含む充電率推定装置」の手法は、比較例と比べて演算の効率が低下するようにも思える。しかし、後述するように、鉛蓄電池の特性によって比重変換部16、温度補正部18および線形変換部20において実行される演算はいずれも一次式に従う。したがって、比較例のSOCv変換部1018のような変換テーブルを用いた演算処理を実行せずに済む。つまり、電池Bが鉛蓄電池である場合には、「比重推定装置10を含む充電率推定装置」を用いることで、精度の高い充電率への変換が可能になり、全体として演算処理の負荷を軽減できる。   The method of the “charge rate estimation device including the specific gravity estimation device 10” that once converts to specific gravity seems to be less efficient in calculation than the comparative example. However, as will be described later, all calculations performed in the specific gravity conversion unit 16, the temperature correction unit 18 and the linear conversion unit 20 according to the characteristics of the lead storage battery follow a linear expression. Therefore, it is not necessary to execute a calculation process using a conversion table such as the SOCv conversion unit 1018 of the comparative example. That is, when the battery B is a lead storage battery, by using the “charge rate estimation device including the specific gravity estimation device 10”, it is possible to convert the charge rate to a highly accurate charge rate, and as a whole, the calculation processing load is reduced. Can be reduced.

(鉛蓄電池の特性および具体的な計算式)
以下に、図2、図3を参照して、鉛蓄電池の特性を説明する。また、比重変換部16、温度補正部18における具体的な計算式について説明する。図2は、鉛蓄電池の充電率、20℃における比重、および開放電圧の関係を示す図である。また、図3は鉛蓄電池の比重−充電率特性を示す図である。まず、図3のように、鉛蓄電池では比重と充電率とは一次式の関係があり、比重が1.1のときに充電率(SOC)が0%であり、比重が1.28のときに充電率(SOC)が100%である。そして、これらの間の比重をとる場合にも、容易に充電率を算出することができる。
(Characteristics of lead-acid battery and specific calculation formula)
Below, the characteristic of a lead acid battery is demonstrated with reference to FIG. 2, FIG. Further, specific calculation formulas in the specific gravity conversion unit 16 and the temperature correction unit 18 will be described. FIG. 2 is a diagram showing the relationship between the charge rate of the lead storage battery, the specific gravity at 20 ° C., and the open circuit voltage. Moreover, FIG. 3 is a figure which shows the specific gravity-charge rate characteristic of a lead storage battery. First, as shown in FIG. 3, in a lead storage battery, the specific gravity and the charging rate have a linear relationship, and when the specific gravity is 1.1, the charging rate (SOC) is 0% and the specific gravity is 1.28. The charging rate (SOC) is 100%. And also when taking the specific gravity between these, a charge rate is easily computable.

さらに、鉛蓄電池では、比重と開放電圧との間にも一次式の関係があることが知られている。具体的には、図2からわかるように、比重の数値に0.84を加えると開放電圧の数値[V]と等しくなる関係がある。つまり、鉛蓄電池では、開放電圧から比重への変換、および比重から充電率への変換を、一次式を用いて行うことができる。   Furthermore, it is known that in lead-acid batteries, there is also a linear relationship between specific gravity and open circuit voltage. Specifically, as can be seen from FIG. 2, when 0.84 is added to the specific gravity value, there is a relationship that becomes equal to the open circuit voltage value [V]. That is, in the lead storage battery, the conversion from the open circuit voltage to the specific gravity and the conversion from the specific gravity to the charge rate can be performed using a primary expression.

なお、ここでの開放電圧は、鉛蓄電池のセル1個当たりの値である。実際には、車両等で、複数のセルが直列に接続されて高電圧(例えば、充電率100%のセルを6つ直列接続した場合には12.72[V])を供給するように用いられることがある。しかし、以下では、わかりやすさのためにセル1個当たりの開放電圧を用いて説明する。   In addition, the open circuit voltage here is the value per cell of a lead acid battery. Actually, in a vehicle or the like, a plurality of cells are connected in series and used to supply a high voltage (for example, 12.72 [V] when six cells having a charging rate of 100% are connected in series). May be. However, for the sake of simplicity, the following description will be made using an open circuit voltage per cell.

次に、比重変換部16、温度補正部18における具体的な計算式について説明する。比重変換部16では、補正後開放電圧OCV[V]を受け取り、下記の式(1)に従って変換を行い、原推定比重SGを出力する。
SG=OCV−0.84 …(1)
Next, specific calculation formulas in the specific gravity conversion unit 16 and the temperature correction unit 18 will be described. The specific gravity conversion unit 16 receives the corrected open-circuit voltage OCV [V], performs conversion according to the following equation (1), and outputs the original estimated specific gravity SG 0.
SG 0 = OCV−0.84 (1)

また、温度補正部18では、原推定比重SGおよび電池Bの温度TB[℃]を受け取り、下記の式(2)に従って変換を行い、20℃の比重へと変換された推定比重SGを出力する。
SG=SG+0.0007×(TB−20) …(2)
つまり、温度補正部18における温度補正でも、式(2)のように線形の関係がある。
Further, the temperature correction unit 18 receives the original estimated specific gravity SG 0 and the temperature TB [° C.] of the battery B, performs conversion according to the following formula (2), and outputs the estimated specific gravity SG converted to a specific gravity of 20 ° C. To do.
SG = SG 0 + 0.0007 × (TB−20) (2)
In other words, the temperature correction in the temperature correction unit 18 also has a linear relationship as shown in Expression (2).

また、具体的な計算式については省略するが、図3を参照して説明したとおり、線形変換部20における推定比重SGから充電率SOCへの変換も、一次式に従って行われる。このように、本実施形態の比重推定装置10の比重変換部16、温度補正部18、線形変換部20では、変換テーブルを用いる必要はないため、比重推定装置10を含む充電率推定装置は精度の高い充電率を生成できる。   Although a specific calculation formula is omitted, as described with reference to FIG. 3, the conversion from the estimated specific gravity SG to the charge rate SOC in the linear conversion unit 20 is also performed according to the linear expression. As described above, in the specific gravity conversion unit 16, the temperature correction unit 18, and the linear conversion unit 20 of the specific gravity estimation device 10 of the present embodiment, it is not necessary to use the conversion table. Therefore, the charging rate estimation device including the specific gravity estimation device 10 is accurate. High charge rate can be generated.

(OCVv算出部)
図4は、電池Bの等価回路(バッテリモデル)である。バッテリモデルは、電解液抵抗とオーム抵抗等の直流成分を設定する抵抗R0と、電荷移動過程における動的な振る舞いを表す反応抵抗として設定する抵抗R1と、電気二重層として設定するC1と、拡散過程における動的な振る舞いを表すものとして設定するR2、C2とにより構成される。ここでは、電荷移動過程で一次の並列回路、拡散過程で二次の並列回路の等価回路モデルで表しているが、次数は必要に応じて設定する。
(OCVv calculation unit)
FIG. 4 is an equivalent circuit (battery model) of the battery B. The battery model includes a resistance R0 that sets a direct current component such as an electrolyte resistance and an ohmic resistance, a resistance R1 that is set as a reaction resistance that represents a dynamic behavior in a charge transfer process, C1 that is set as an electric double layer, diffusion R2 and C2 set to represent dynamic behavior in the process. Here, although the equivalent circuit model of the primary parallel circuit in the charge transfer process and the secondary parallel circuit in the diffusion process is represented, the order is set as necessary.

電流IBをバッテリモデルに入力したとき、電池Bの端子電圧VBとバッテリモデルの端子電圧推定値VBmとの差分がなくなるように図示しない適応機構によってバッテリモデルの各パラメータR0、R1、R2、C1、C2を逐次修正することで、現在の電池Bの状態に合致したバッテリモデルを得ることができる。   When the current IB is input to the battery model, each parameter R0, R1, R2, C1, and so on of the battery model is set by an adaptive mechanism (not shown) so that there is no difference between the terminal voltage VB of the battery B and the terminal voltage estimated value VBm of the battery model. By sequentially correcting C2, a battery model that matches the current state of the battery B can be obtained.

OCVv算出部12は、推定した各パラメータR0、R1、R2、C1、C2と電流IBから過電圧VRを算出し、端子電圧VBから過電圧VRを減算して開放電圧OCVを計算する。計算される開放電圧OCVは、図1の第2の開放電圧OCVvに対応する。   The OCVv calculation unit 12 calculates the overvoltage VR from the estimated parameters R0, R1, R2, C1, and C2 and the current IB, and calculates the open circuit voltage OCV by subtracting the overvoltage VR from the terminal voltage VB. The calculated open circuit voltage OCV corresponds to the second open circuit voltage OCVv of FIG.

ここで、各パラメータR0、R1、R2、C1、C2を逐次修正する適応機構は、例えばカルマン・フィルタであってもよい。カルマン・フィルタは内部のパラメータを自己修正するのに適したフィルタで、逐次パラメータ推定に用いられる。なお、カルマン・フィルタによるパラメータ推定の詳細については、例えば本出願人の特願2013−502943号に説明してある。   Here, the adaptive mechanism for sequentially correcting the parameters R0, R1, R2, C1, and C2 may be, for example, a Kalman filter. The Kalman filter is a filter suitable for self-correcting internal parameters, and is used for sequential parameter estimation. Details of parameter estimation by the Kalman filter are described in, for example, Japanese Patent Application No. 2013-502943 of the present applicant.

(開放電圧補正部)
開放電圧補正部14(図1参照)は、前記の通り、誤差推定部36を含む。誤差推定部36では、カルマン・フィルタを用いて、誤差モデルで推定した誤差の差を減算値Eと比較し、両者に差があれば、この差にカルマン・ゲインを掛けてフィードバックし、誤差が最小になるように推定誤差を修正していく。これを逐次繰り返して、真の開放電圧誤差(誤差Ea)を推定する。前記の通り、カルマン・フィルタは内部のパラメータを自己修正するのに適したフィルタであり、誤差Eaを容易かつ高い精度で推定できるようになる。なお、カルマン・フィルタによるパラメータ推定の詳細については、例えば本出願人の特願2013−502943号に説明してあり、電流積算法、開放電圧推定法のそれぞれで算出した充電率に代えて、第1の開放電圧OCVi、第2の開放電圧OCVvを用いる。
(Open voltage correction unit)
The open-circuit voltage correction unit 14 (see FIG. 1) includes the error estimation unit 36 as described above. The error estimator 36 uses a Kalman filter to compare the difference in error estimated by the error model with the subtraction value E 0, and if there is a difference between the two, this difference is multiplied by the Kalman gain and fed back. The estimation error is corrected so that is minimized. This is repeated sequentially to estimate the true open-circuit voltage error (error Ea). As described above, the Kalman filter is a filter suitable for self-correcting internal parameters, and the error Ea can be estimated easily and with high accuracy. The details of parameter estimation by the Kalman filter are described in, for example, Japanese Patent Application No. 2013-502943 of the present applicant, and instead of the charging rate calculated by each of the current integration method and the open-circuit voltage estimation method, The first open circuit voltage OCVi and the second open circuit voltage OCVv are used.

(比重推定装置の処理について)
本実施形態の比重推定装置10では、以下のような処理に従って、精度の高い充電率へと変換が可能な推定比重SGを算出することができる。図5は、車両に搭載された電池Bに設けられた比重推定装置10の処理を示すフローチャートである。まず、比重推定装置10は、車両の動作開始まで待機している(ステップS2のNo)。車両が動作開始すると(ステップS2のYes)、比重推定装置10は、電池Bの端子電圧VB、電流IB、温度TBを取得する(ステップS4)。
(About processing of specific gravity estimation device)
In the specific gravity estimation apparatus 10 of the present embodiment, an estimated specific gravity SG that can be converted into a highly accurate charging rate can be calculated according to the following process. FIG. 5 is a flowchart showing the processing of the specific gravity estimation device 10 provided in the battery B mounted on the vehicle. First, the specific gravity estimation device 10 stands by until the vehicle starts operating (No in step S2). When the vehicle starts to operate (Yes in Step S2), the specific gravity estimation device 10 acquires the terminal voltage VB, current IB, and temperature TB of the battery B (Step S4).

比重推定装置10は、電流積算法、開放電圧推定法のそれぞれに基づく第1の開放電圧OCVi、第2の開放電圧OCVvを算出する。つまり、電流積算法によりΔSOCiを算出して第1の開放電圧OCViに変換し(ステップS6)、端子電圧VB、電流IBに基づいて第2の開放電圧OCVvを算出する(ステップS8)。   The specific gravity estimation device 10 calculates a first open-circuit voltage OCVi and a second open-circuit voltage OCVv based on the current integration method and the open-circuit voltage estimation method. That is, ΔSOCi is calculated by the current integration method and converted to the first open circuit voltage OCVi (step S6), and the second open circuit voltage OCVv is calculated based on the terminal voltage VB and the current IB (step S8).

次に、比重推定装置10は、第1の開放電圧OCVi、第2の開放電圧OCVvに基づいて、カルマン・フィルタでこれらの誤差が最小となるように誤差モデルを修正していく手法(いわゆるセンサ・フュージョン技術)によって精度の高い誤差Eaを推定する(ステップS10)。ここで、誤差Eaは第1の開放電圧OCViの誤差である。   Next, the specific gravity estimation device 10 corrects an error model by a Kalman filter based on the first open circuit voltage OCVi and the second open circuit voltage OCVv (so-called sensor). A highly accurate error Ea is estimated by the fusion technique (step S10). Here, the error Ea is an error of the first open circuit voltage OCVi.

その後、比重推定装置10は、第1の開放電圧OCViから誤差Eaを除いた値(図1の補正後開放電圧OCV)を用いて、前記の式(1)に従って、原推定比重SGに変換する(ステップS12)。そして、比重推定装置10は、電池Bの温度TBに基づいて、前記の式(2)に従って原推定比重SGの温度補正を行い、20℃の比重に相当する推定比重SGを生成する(ステップS14)。その後、比重推定装置10は、車両の動作が停止すれば一連の処理を終了し(ステップS16のYes)、車両が動作中であれば(ステップS16のNo)、ステップS4に戻る。 Thereafter, the specific gravity estimation device 10 converts the first estimated open circuit voltage OCVi into the original estimated specific gravity SG 0 using the value obtained by removing the error Ea (the corrected open circuit voltage OCV in FIG. 1) according to the above equation (1). (Step S12). Then, the specific gravity estimation device 10 corrects the temperature of the original estimated specific gravity SG 0 based on the temperature TB of the battery B according to the equation (2), and generates an estimated specific gravity SG corresponding to a specific gravity of 20 ° C. (step) S14). Thereafter, the specific gravity estimation device 10 ends the series of processes when the operation of the vehicle stops (Yes in Step S16), and returns to Step S4 if the vehicle is operating (No in Step S16).

以上のように、本実施形態の比重推定装置10および比重推定方法によれば、電流積算法で求めた値(充電率の変化量ΔSOCi)に基づく第1の開放電圧OCViだけでなく、開放電圧推定法による第2の開放電圧OCVvにも基づいて鉛蓄電池の比重(推定比重SG)を算出する。例えば、電流積算法では時間の経過とともに誤差が蓄積されて精度が低くなる可能性があるが、開放電圧推定法による第2の開放電圧OCVvによる修正が可能であるため、精度よく誤差Eaを求めることができる。そのため、精度の高い比重を算出でき、結果として精度の高い充電率へと変換が可能である。また、鉛蓄電池の充電率SOCと比重とは一次式の関係にある。鉛蓄電池の比重(推定比重SG)から線形変換によって充電率SOCを求めることができ、例えば変換テーブルを用いる場合と比べると、変換の際の誤差も小さくなるので精度の高い充電率SOCへと変換が可能である。さらに一般的に鉛蓄電池では、目標とする比重(目標比重)を仕向け地(寒冷地用、高気温地域用等)で変えている。本実施形態の比重推定装置10によれば比重を出力するため、各仕向け地の目標比重に合わせた鉛蓄電池の調整を容易に行うことができる。   As described above, according to the specific gravity estimation device 10 and the specific gravity estimation method of the present embodiment, not only the first open circuit voltage OCVi based on the value obtained by the current integration method (change amount ΔSOCi of the charging rate) but also the open circuit voltage The specific gravity (estimated specific gravity SG) of the lead storage battery is calculated based also on the second open circuit voltage OCVv obtained by the estimation method. For example, in the current integration method, errors may accumulate over time and the accuracy may be lowered. However, since the correction by the second open-circuit voltage OCVv by the open-circuit voltage estimation method is possible, the error Ea is obtained with high accuracy. be able to. Therefore, it is possible to calculate the specific gravity with high accuracy, and as a result, it is possible to convert the charge rate with high accuracy. Moreover, the charge rate SOC and the specific gravity of the lead storage battery are in a linear relationship. The charge rate SOC can be obtained by linear conversion from the specific gravity of the lead storage battery (estimated specific gravity SG). For example, compared to the case where a conversion table is used, the error during conversion is reduced, so conversion to a highly accurate charge rate SOC is possible. Is possible. Furthermore, in general, in lead-acid batteries, the target specific gravity (target specific gravity) is changed depending on the destination (for cold regions, high-temperature regions, etc.). According to the specific gravity estimation apparatus 10 of this embodiment, since specific gravity is output, the lead acid battery can be easily adjusted according to the target specific gravity of each destination.

本発明を諸図面や実施例に基づき説明してきたが、当業者であれば本開示に基づき種々の変形や修正を行うことが容易であることに注意されたい。従って、これらの変形や修正は本発明の範囲に含まれることに留意されたい。例えば、各手段及びステップ等に含まれる機能等は論理的に矛盾しないように再配置可能であり、複数の手段及びステップを1つに組み合わせたり、或いは分割したりすることが可能である。   Although the present invention has been described based on the drawings and examples, it should be noted that those skilled in the art can easily make various modifications and corrections based on the present disclosure. Therefore, it should be noted that these variations and modifications are included in the scope of the present invention. For example, functions and the like included in each means and step can be rearranged so as not to be logically contradictory, and a plurality of means and steps can be combined into one or divided.

10 比重推定装置
11 OCVi算出部
12 OCVv算出部
14 開放電圧補正部
16 比重変換部
18 温度補正部
20 線形変換部
32 電流積算部
34 OCVi変換部
36 誤差推定部
B 電池
DESCRIPTION OF SYMBOLS 10 Specific gravity estimation apparatus 11 OCVi calculation part 12 OCVv calculation part 14 Open circuit voltage correction part 16 Specific gravity conversion part 18 Temperature correction part 20 Linear conversion part 32 Current integration part 34 OCVi conversion part 36 Error estimation part B Battery

Claims (4)

鉛蓄電池の比重推定装置であって、
電流積算法で求めた充電率の変化量を算出して、第1の開放電圧に変換する第1の開放電圧算出部と、
前記鉛蓄電池の電流および端子電圧に基づいて、第2の開放電圧を算出する第2の開放電圧算出部と、
前記第1の開放電圧と前記第2の開放電圧とに基づいて、前記第1の開放電圧の誤差を推定する誤差推定部と、
前記第1の開放電圧から前記誤差推定部が推定した誤差を除いた値を比重に変換する比重変換部を含む比重推定装置。
A specific gravity estimation device for a lead storage battery,
A first open-circuit voltage calculation unit that calculates a change amount of the charging rate obtained by the current integration method and converts the change into a first open-circuit voltage;
A second open-circuit voltage calculation unit for calculating a second open-circuit voltage based on the current and terminal voltage of the lead storage battery;
An error estimation unit that estimates an error of the first open-circuit voltage based on the first open-circuit voltage and the second open-circuit voltage;
A specific gravity estimation device including a specific gravity conversion unit that converts a value obtained by removing the error estimated by the error estimation unit from the first open circuit voltage into specific gravity.
請求項1に記載の比重推定装置において、
前記比重変換部が変換した比重を、前記鉛蓄電池の温度に応じて補正する温度補正部をさらに含む比重推定装置。
The specific gravity estimation apparatus according to claim 1,
The specific gravity estimation apparatus further including a temperature correction unit that corrects the specific gravity converted by the specific gravity conversion unit according to the temperature of the lead storage battery.
請求項1または2に記載の比重推定装置において、
前記誤差推定部は、カルマン・フィルタを用いて前記第1の開放電圧の誤差を推定する比重推定装置。
In the specific gravity estimation apparatus according to claim 1 or 2,
The error estimation unit is a specific gravity estimation device that estimates an error of the first open-circuit voltage using a Kalman filter.
鉛蓄電池の比重推定方法であって、
(A)電流積算法で求めた充電率の変化量を算出して、第1の開放電圧に変換するステップと、
(B)前記鉛蓄電池の電流および端子電圧に基づいて、第2の開放電圧を算出するステップと、
(C)前記第1の開放電圧と前記第2の開放電圧とに基づいて、前記第1の開放電圧の誤差を推定するステップと、
(D)前記第1の開放電圧から前記ステップ(C)で推定された誤差を除いた値を比重に変換するステップを含むことを特徴とする比重推定方法。
A method for estimating the specific gravity of a lead storage battery,
(A) calculating a change amount of the charging rate obtained by the current integration method and converting it to a first open-circuit voltage;
(B) calculating a second open circuit voltage based on the current and terminal voltage of the lead storage battery;
(C) estimating an error of the first open-circuit voltage based on the first open-circuit voltage and the second open-circuit voltage;
(D) A specific gravity estimation method including a step of converting a value obtained by removing the error estimated in step (C) from the first open circuit voltage into specific gravity.
JP2014081302A 2014-04-10 2014-04-10 Specific gravity estimation device and specific gravity estimation method Active JP6279387B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014081302A JP6279387B2 (en) 2014-04-10 2014-04-10 Specific gravity estimation device and specific gravity estimation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014081302A JP6279387B2 (en) 2014-04-10 2014-04-10 Specific gravity estimation device and specific gravity estimation method

Publications (2)

Publication Number Publication Date
JP2015204131A true JP2015204131A (en) 2015-11-16
JP6279387B2 JP6279387B2 (en) 2018-02-14

Family

ID=54597502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014081302A Active JP6279387B2 (en) 2014-04-10 2014-04-10 Specific gravity estimation device and specific gravity estimation method

Country Status (1)

Country Link
JP (1) JP6279387B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020043084A (en) * 2016-01-15 2020-03-19 株式会社Gsユアサ Electricity storage element management device, electricity storage element module, vehicle, and electricity storage element management method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6215148A (en) * 1985-07-15 1987-01-23 Automob Antipollut & Saf Res Center Diagnostic device for vehicle-mounted battery
JPH09211090A (en) * 1996-01-30 1997-08-15 Yuasa Corp Method for measuring remaining capacity of lead storage battery
JP2000150003A (en) * 1998-11-10 2000-05-30 Nissan Motor Co Ltd Method and device for charged amount calculation for hybrid vehicle
JP2006098134A (en) * 2004-09-28 2006-04-13 Fuji Heavy Ind Ltd Residual capacity arithmetic unit for charge accumulation device
JP2012176661A (en) * 2011-02-25 2012-09-13 Furukawa Electric Co Ltd:The Secondary battery state detection device and secondary battery state detection method
JP2013083496A (en) * 2011-10-07 2013-05-09 Calsonic Kansei Corp State-of-charge estimation device and method for the same
US20140055100A1 (en) * 2012-08-24 2014-02-27 Hitachi Vehicle Energy, Ltd. Battery state estimation system, battery control system, battery system, and battery state estimation method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6215148A (en) * 1985-07-15 1987-01-23 Automob Antipollut & Saf Res Center Diagnostic device for vehicle-mounted battery
JPH09211090A (en) * 1996-01-30 1997-08-15 Yuasa Corp Method for measuring remaining capacity of lead storage battery
JP2000150003A (en) * 1998-11-10 2000-05-30 Nissan Motor Co Ltd Method and device for charged amount calculation for hybrid vehicle
JP2006098134A (en) * 2004-09-28 2006-04-13 Fuji Heavy Ind Ltd Residual capacity arithmetic unit for charge accumulation device
JP2012176661A (en) * 2011-02-25 2012-09-13 Furukawa Electric Co Ltd:The Secondary battery state detection device and secondary battery state detection method
JP2013083496A (en) * 2011-10-07 2013-05-09 Calsonic Kansei Corp State-of-charge estimation device and method for the same
US20140055100A1 (en) * 2012-08-24 2014-02-27 Hitachi Vehicle Energy, Ltd. Battery state estimation system, battery control system, battery system, and battery state estimation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020043084A (en) * 2016-01-15 2020-03-19 株式会社Gsユアサ Electricity storage element management device, electricity storage element module, vehicle, and electricity storage element management method

Also Published As

Publication number Publication date
JP6279387B2 (en) 2018-02-14

Similar Documents

Publication Publication Date Title
JP6055960B1 (en) Battery state estimation device
Kim Nonlinear state of charge estimator for hybrid electric vehicle battery
CN108819731B (en) Charge rate estimation method and vehicle-mounted battery system
JP5419832B2 (en) Battery capacity calculation device and battery capacity calculation method
JP5393619B2 (en) Battery charge rate estimation device
JP5506100B2 (en) Battery management system and battery SOC estimation method using the same
US8000915B2 (en) Method for estimating state of charge of a rechargeable battery
JP2013238402A (en) Battery charge ratio estimation device
CN104937431A (en) Charge rate estimation device and charge rate estimation method
JP5389136B2 (en) Charging rate estimation apparatus and method
Chaoui et al. Adaptive state of charge estimation of lithium-ion batteries with parameter and thermal uncertainties
JP4810417B2 (en) Remaining capacity calculation device for power storage device
US11754631B2 (en) Chargeable battery temperature estimation apparatus and chargeable battery temperature estimation method
US10557891B2 (en) Battery system and control method thereof
JP6494923B2 (en) Charging rate detection apparatus and charging rate detection method
JP2019105521A (en) Secondary battery system and soc estimation method of secondary battery
JP2012063244A (en) Charging rate estimation device of battery
JP2012057964A (en) Charging rate estimation apparatus for battery
JP2010243447A (en) Apparatus and method for estimating electric storage capacity
JP2013195319A (en) Charging equivalent amount calculation device of secondary battery
JP6500795B2 (en) Vehicle battery SOC management system
WO2016178308A1 (en) Secondary battery charging rate calculation device and storage battery system
JP6279387B2 (en) Specific gravity estimation device and specific gravity estimation method
JP5090865B2 (en) Electromotive force calculation device and charging state estimation device
JP2019148492A (en) Secondary battery system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170228

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180117

R150 Certificate of patent or registration of utility model

Ref document number: 6279387

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S343 Written request for registration of root pledge or change of root pledge

Free format text: JAPANESE INTERMEDIATE CODE: R316354

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

SZ02 Written request for trust registration

Free format text: JAPANESE INTERMEDIATE CODE: R316Z02

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S803 Written request for registration of cancellation of provisional registration

Free format text: JAPANESE INTERMEDIATE CODE: R316803

SZ02 Written request for trust registration

Free format text: JAPANESE INTERMEDIATE CODE: R316Z02

SZ03 Written request for cancellation of trust registration

Free format text: JAPANESE INTERMEDIATE CODE: R316Z03

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350