JP6494923B2 - Charging rate detection apparatus and charging rate detection method - Google Patents

Charging rate detection apparatus and charging rate detection method Download PDF

Info

Publication number
JP6494923B2
JP6494923B2 JP2014098791A JP2014098791A JP6494923B2 JP 6494923 B2 JP6494923 B2 JP 6494923B2 JP 2014098791 A JP2014098791 A JP 2014098791A JP 2014098791 A JP2014098791 A JP 2014098791A JP 6494923 B2 JP6494923 B2 JP 6494923B2
Authority
JP
Japan
Prior art keywords
charging
circuit voltage
integrated value
current
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014098791A
Other languages
Japanese (ja)
Other versions
JP2015215258A (en
Inventor
吉広 枝本
吉広 枝本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Calsonic Kansei Corp
Original Assignee
Calsonic Kansei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Kansei Corp filed Critical Calsonic Kansei Corp
Priority to JP2014098791A priority Critical patent/JP6494923B2/en
Publication of JP2015215258A publication Critical patent/JP2015215258A/en
Application granted granted Critical
Publication of JP6494923B2 publication Critical patent/JP6494923B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は使用中の電池、特に鉛蓄電池の充電率(SOC: State of Charge)を精度よく検出可能な充電率検出装置および充電率検出方法に関する。   The present invention relates to a charging rate detection device and a charging rate detection method capable of accurately detecting a charging rate (SOC: State of Charge) of a battery in use, particularly a lead storage battery.

自動車等の車両には、リチャージャブル・バッテリ(二次電池、以下単に「電池」とする)が搭載されることが多い。このような電池は、例えばエンジン等から伝達される機械的運動エネルギーをオルタネーターで変換して得られる電気エネルギーを蓄積(充電)し、車両を駆動するためのモータへ電気エネルギーを供給(放電)する。車両の運転者が走行可能距離等を正確に把握できるように、車両の走行中にも、電池の内部状態量である充電率が精度よく算出される必要がある。   A vehicle such as an automobile is often equipped with a rechargeable battery (secondary battery, hereinafter simply referred to as “battery”). Such a battery stores (charges) electrical energy obtained by converting mechanical kinetic energy transmitted from an engine or the like with an alternator, and supplies (discharges) electrical energy to a motor for driving the vehicle. . In order for the driver of the vehicle to accurately grasp the travelable distance and the like, it is necessary to accurately calculate the charging rate, which is the internal state quantity of the battery, even while the vehicle is traveling.

使用中の電池の充電率算出方法として、電流を積算して求める方法がある。しかし、車両に搭載されることも多い鉛蓄電池では充電された電荷量がそのまま全て取り出せるわけではない。そのため、鉛蓄電池のような電池の充電率を算出する場合には、充電効率(放電量と充電量の比)を考慮する必要がある。   As a method for calculating the charging rate of a battery in use, there is a method for obtaining by accumulating current. However, in a lead storage battery that is often mounted on a vehicle, not all of the charged charge can be taken out as it is. Therefore, when calculating the charging rate of a battery such as a lead storage battery, it is necessary to consider the charging efficiency (ratio between the amount of discharge and the amount of charge).

例えば、特許文献1の発明は、鉛蓄電池の交換時に充電と放電を行い、元の電圧に戻るまでの放電電流積算値を充電電流積算値で割って充電効率を求めている。そのため、個体差のある鉛蓄電池の充電効率について、その使用開始時に個別に把握することが可能である。   For example, in the invention of Patent Document 1, charging and discharging are performed at the time of replacement of a lead storage battery, and a charging efficiency is obtained by dividing a discharge current integrated value until returning to the original voltage by a charging current integrated value. Therefore, it is possible to individually grasp the charging efficiency of lead-acid batteries having individual differences at the start of use.

特開2006−36003号公報JP 2006-36003 A

しかし、特許文献1の発明は、鉛蓄電池の交換時に求めた充電効率をその電池に対して使い続けるものであり、充電効率の経時変化に対応できない。また、鉛蓄電池の交換時に故意に行う充電と放電は電力を無駄に使用することとなり、その際に放電させ過ぎると鉛蓄電池の劣化を促進してしまう可能性がある。   However, the invention of Patent Document 1 continues to use the charging efficiency obtained at the time of replacement of the lead storage battery for the battery, and cannot cope with the change in charging efficiency over time. Moreover, the charge and discharge intentionally performed at the time of replacement of the lead storage battery use electric power wastefully, and if it is excessively discharged at that time, there is a possibility that the deterioration of the lead storage battery is promoted.

また、近年では常に充電の余力を残しておくために、電池を満充電状態でなく不完全充電状態で使用する場合も多い。特許文献1の発明では、処理のフローに満充電判定が組み込まれており、満充電を基本としたシステムにしか対応できない。   In recent years, the battery is often used in an incompletely charged state rather than a fully charged state in order to always leave a surplus charge. In the invention of Patent Document 1, full charge determination is incorporated in the processing flow, and only a system based on full charge can be handled.

前記のような問題点に鑑みてなされた本発明の目的は、充電効率の経時変化にも対応でき、不完全充電状態での使用であっても、使用中の電池の充電率を精度よく算出できる充電率検出装置及び充電率検出方法を提供することにある。   The object of the present invention, which has been made in view of the above problems, can cope with changes in charging efficiency over time, and accurately calculates the charging rate of a battery in use even when used in an incompletely charged state. An object of the present invention is to provide a charge rate detection device and a charge rate detection method that can be used.

前記課題を解決するために第1の発明に係る充電率検出装置は、動作中の電池の充電電流を積算して、充電電流積算値を生成する充電電流積算部と、前記電池の放電電流を積算して、放電電流積算値を生成する放電電流積算部と、条件(a)又は(b)の少なくとも一方を満たす場合に、前記放電電流積算値の大きさを前記充電電流積算値の大きさで除算して得られる充電効率を算出する充電効率演算部と、を含み、前記条件(a)は、前記電池の推定される開放電圧が、変動があった後、積算開始時に推定された開放電圧から所定の範囲内にあることであり、前記条件(b)は、前記放電電流積算値の絶対値及び前記充電電流積算値の絶対値が、前記除算の精度を確保する大きさとなっていることであることを特徴とする。
In order to solve the above-described problem, a charging rate detection device according to a first aspect of the present invention is configured to integrate a charging current of a battery in operation and generate a charging current integrated value, and a discharging current of the battery. When the discharge current integration unit that integrates and generates the discharge current integration value and at least one of the conditions (a) or (b) is satisfied, the magnitude of the discharge current integration value is the magnitude of the charge current integration value. A charging efficiency calculation unit that calculates a charging efficiency obtained by dividing by the above, and the condition (a) is an open circuit estimated at the start of integration after the estimated open circuit voltage of the battery fluctuates. The condition (b) is such that the absolute value of the discharge current integrated value and the absolute value of the charge current integrated value are large enough to ensure the accuracy of the division. It is characterized by that.

また、第2の発明に係る充電率検出装置は、第1の発明の充電率検出装置において、検出された前記電池の電流および電圧から開放電圧を推定する開放電圧推定部を含み、前記開放電圧推定部が推定した開放電圧に基づいて第1の充電率を算出する。   Further, a charging rate detection device according to a second aspect of the present invention is the charging rate detection device according to the first aspect of the invention, further comprising an open-circuit voltage estimation unit that estimates an open-circuit voltage from the detected current and voltage of the battery. The first charging rate is calculated based on the open circuit voltage estimated by the estimation unit.

また、第3の発明に係る充電率検出装置は、第2の発明の充電率検出装置において、前記充電電流積算値の変化量、前記放電電流積算値の変化量、および前記充電効率に基づいて、前記開放電圧推定部が推定した開放電圧の変化量を調整するフィルタを有するフィルタ部を含み、前記フィルタを通過した前記開放電圧に基づいて前記第1の充電率を算出する。   The charging rate detection device according to a third aspect of the present invention is the charging rate detection device according to the second aspect of the present invention, based on the change amount of the charge current integrated value, the change amount of the discharge current integrated value, and the charge efficiency. The first charging rate is calculated based on the open circuit voltage that has passed through the filter, including a filter unit that includes a filter that adjusts the amount of change in the open circuit voltage estimated by the open circuit voltage estimation unit.

また、第4の発明に係る充電率検出装置は、第2または第3の発明の充電率検出装置において、前記充電効率演算部が前記充電効率を算出した場合に、前記充電電流積算値、前記放電電流積算値、および前記充電効率に基づいて算出される第2の充電率、または前記第1の充電率を選択的に出力する。   The charging rate detection device according to a fourth aspect of the invention is the charging rate detection device of the second or third aspect, wherein the charging current calculation value is calculated when the charging efficiency calculation unit calculates the charging efficiency, The second charging rate calculated based on the discharge current integrated value and the charging efficiency or the first charging rate is selectively output.

また、第5の発明に係る充電率検出装置は、第1から第4の発明のいずれか1つに記載の充電率検出装置において、前記電池は車両に搭載されており、前記充電電流積算部および前記放電電流積算部は、前記車両の複数回の動作において、前記充電電流および前記放電電流を継続して積算する。   According to a fifth aspect of the present invention, there is provided a charge rate detecting device according to any one of the first to fourth aspects, wherein the battery is mounted on a vehicle, and the charge current integrating unit The discharge current integrating unit continuously integrates the charging current and the discharging current in a plurality of operations of the vehicle.

また、第6の発明に係る充電率検出装置は、第1から第5の発明のいずれか1つに記載の充電率検出装置において、前記電池の開放電圧が一定であるように制御する電池状態制御部を含む。   According to a sixth aspect of the present invention, there is provided a charge rate detecting device according to any one of the first to fifth aspects, wherein the battery state is controlled so that the open circuit voltage of the battery is constant. Includes a control unit.

また、第7の発明に係る充電率検出装置は、第1から第6の発明のいずれか1つに記載の充電率検出装置において、前記充電効率演算部が、前記条件(a)かつ(b)を満たす場合に、前記充電効率を算出する。   Further, a charging rate detection device according to a seventh aspect of the present invention is the charging rate detection device according to any one of the first to sixth aspects, wherein the charging efficiency calculation unit includes the conditions (a) and (b ), The charging efficiency is calculated.

また、第8の発明に係る充電率検出方法は、(A)動作中の電池の充電電流を積算して、充電電流積算値を生成するステップと、(B)前記電池の放電電流を積算して、放電電流積算値を生成するステップと、(C)条件(a)又は(b)の少なくとも一方を満たす場合に、前記放電電流積算値の大きさを前記充電電流積算値の大きさで除算して得られる充電効率を算出するステップと、を含み、前記条件(a)は、前記電池の推定される開放電圧が、変動があった後、積算開始時に推定された開放電圧から所定の範囲内にあることであり、前記条件(b)は、前記放電電流積算値の絶対値及び前記充電電流積算値の絶対値が、前記除算の精度を確保する大きさとなっていることであることを特徴とする。
According to an eighth aspect of the present invention, there is provided a charging rate detection method comprising: (A) accumulating charging current of an operating battery to generate a charging current integrated value; and (B) accumulating discharging current of the battery. When the discharge current integrated value is generated and (C) at least one of the conditions (a) and (b) is satisfied, the discharge current integrated value is divided by the charge current integrated value. And calculating the charging efficiency obtained in the above, wherein the condition (a) is a predetermined range from the open voltage estimated at the start of integration after the estimated open voltage of the battery has changed. The condition (b) is that the absolute value of the discharge current integrated value and the absolute value of the charge current integrated value are of a size that ensures the accuracy of the division. Features.

第1の発明に係る充電率検出装置によれば、使用中の電池についての充電効率を演算で求めるため充電効率の経時変化にも対応し、この充電効率に基づいて充電率を精度よく算出できる。ここで、一度算出した充電効率を交換された電池に対して使い続ける特許文献1の発明では、電池交換の際に満充電状態を基準とする演算を行って各区間の充電効率を求めておく必要があった。しかし、電池の使用中に充電効率を算出できる本発明では、満充電状態を基準とする演算は必要ない。そのため、電池が不完全充電状態で使用される場合でも対応可能である。   According to the charging rate detection device of the first aspect of the invention, the charging efficiency of the battery in use can be obtained by calculation, so that the charging rate can be accurately calculated based on this charging efficiency. . Here, in the invention of Patent Document 1 that continues to use the calculated charging efficiency for the replaced battery, the charging efficiency of each section is obtained by performing a calculation based on the fully charged state when the battery is replaced. There was a need. However, in the present invention in which the charging efficiency can be calculated while the battery is in use, the calculation based on the fully charged state is not necessary. Therefore, even when a battery is used in an incompletely charged state, it can respond.

また、第2の発明に係る充電率検出装置によれば、内部抵抗の電圧降下分の誤差を考慮する必要のない開放電圧(OCV:Open Circuit Voltage)を求めるので、開放電圧に基づいて精度の高い充電率(第1の充電率)の算出が可能である。   Further, according to the charging rate detection device of the second invention, an open circuit voltage (OCV) that does not need to consider an error due to the voltage drop of the internal resistance is obtained. A high charge rate (first charge rate) can be calculated.

また、第3の発明に係る充電率検出装置によれば、充電・放電電流積算値の変化量等を用いて推定された開放電圧の変化量を補正することにより、充電率(第1の充電率)の精度をより高めることができる。   According to the charging rate detection device of the third aspect of the invention, the charging rate (first charging) is corrected by correcting the amount of change in the open-circuit voltage estimated using the amount of change in the integrated charge / discharge current value. Rate) can be further improved.

また、第4の発明に係る充電率検出装置によれば、充電・放電電流積算値に基づく第2の充電率と、推定された開放電圧に基づく第1の充電率とを、状況に応じて選択的に出力でき、最終的に出力される充電率の精度を保つことが可能になる。   Moreover, according to the charging rate detection apparatus which concerns on 4th invention, the 2nd charging rate based on charging / discharging electric current integrated value and the 1st charging rate based on the estimated open circuit voltage are according to a condition. It is possible to selectively output, and it is possible to maintain the accuracy of the charging rate that is finally output.

また、第5の発明に係る充電率検出装置によれば、電池は車両に搭載されている。そして、車両の1回の動作では短距離走行しかされないとしても、繰り返される短距離走行について累積的な積算ができるため、誤差の少ない充電効率が得られる。   Moreover, according to the charging rate detection apparatus which concerns on 5th invention, the battery is mounted in the vehicle. And even if it is only a short distance driving | running | working with one operation | movement of a vehicle, since cumulative integration | stacking can be performed about the repeated short distance driving | running, charging efficiency with few errors is obtained.

また、第6の発明に係る充電率検出装置によれば、充電率が大きく変化する場合には充電効率の誤差が大きくなる可能性があるところ、電池の開放電圧が一定であるように制御することで誤差を小さく抑えることができる。   Further, according to the charging rate detection device of the sixth aspect of the invention, when the charging rate changes greatly, there is a possibility that the error in charging efficiency may become large, so that the open circuit voltage of the battery is controlled to be constant. This can reduce the error.

また、第7の発明に係る充電率検出装置によれば、充電効率は条件(a)かつ(b)を満たす場合に算出されるため、さらに正確になる。   Moreover, according to the charging rate detection apparatus which concerns on 7th invention, since charging efficiency is calculated when the conditions (a) and (b) are satisfy | filled, it becomes further exact.

また、第8の発明に係る充電率検出方法によれば、使用中の電池についての充電効率を演算で求めるため充電効率の経時変化にも対応し、この充電効率に基づいて充電率を精度よく算出できる。ここで、一度算出した充電効率を交換された電池に対して使い続ける特許文献1の発明では、電池交換の際に満充電状態を基準とする演算を行って各区間の充電効率を求めておく必要があった。しかし、電池の使用中に充電効率を算出できる本発明では、満充電状態を基準とする演算は必要ない。そのため、電池が不完全充電状態で使用される場合でも対応可能である。   In addition, according to the charging rate detection method of the eighth aspect of the invention, since the charging efficiency of the battery in use is obtained by calculation, the charging efficiency can be changed over time, and the charging rate can be accurately determined based on the charging efficiency. It can be calculated. Here, in the invention of Patent Document 1 that continues to use the calculated charging efficiency for the replaced battery, the charging efficiency of each section is obtained by performing a calculation based on the fully charged state when the battery is replaced. There was a need. However, in the present invention in which the charging efficiency can be calculated while the battery is in use, the calculation based on the fully charged state is not necessary. Therefore, even when a battery is used in an incompletely charged state, it can respond.

本実施形態に係る充電率検出装置を示すブロック図である。It is a block diagram which shows the charging rate detection apparatus which concerns on this embodiment. 開放電圧推定部で用いる電池の等価回路を例示する図である。It is a figure which illustrates the equivalent circuit of the battery used with an open circuit voltage estimation part. 図3(A)、図3(B)はそれぞれフィルタ通過前、通過後の推定された開放電圧の変化を示す図である。FIGS. 3A and 3B are diagrams showing changes in the estimated open circuit voltage before and after passing through the filter, respectively. 電池の開放電圧−充電率特性を示す図である。It is a figure which shows the open circuit voltage-charging rate characteristic of a battery. 電池の残量を一定に制御する場合の検出される残量と充電効率との関係を示す図である。It is a figure which shows the relationship between the residual amount detected and the charging efficiency in the case of controlling the residual amount of a battery uniformly. 電池の推定される開放電圧の変化を例示する図である。It is a figure which illustrates the change of the estimated open circuit voltage of a battery. 本実施形態に係る充電率検出装置の処理を示すフローチャートである。It is a flowchart which shows the process of the charging rate detection apparatus which concerns on this embodiment.

以下、本発明の実施の形態について説明する。
(全体構成)
まず、本実施形態の充電率検出装置10の全体構成を、図1を参照しながら説明する。充電率検出装置10は、例えば自動車等の車両に搭載される電池Bに接続されている。電池Bの種類は特に限定されるものではないが、以下において鉛蓄電池であるとして説明する。電池Bは、機械的運動エネルギーをオルタネーターAltで変換して得られる電気エネルギーを蓄積(充電)し、図示しない車両の駆動モータ等へ電気エネルギーを供給(放電)する。本実施形態の電池Bは、車両の減速時に発生する回生電力をオルタネーターAltから受け取り充電する。充電率検出装置10は、車両の動作中に、充電・放電を行う電池Bの充電率を算出するものである。また、本実施形態の充電率検出装置10は、オルタネーターAltに制御信号を与えることで電池Bの状態も制御できる。ここで、車両の動作中とは、車両のエンジンが動いており、移動のために走行、停車等している状態をいう。
Embodiments of the present invention will be described below.
(overall structure)
First, the overall configuration of the charging rate detection apparatus 10 of the present embodiment will be described with reference to FIG. The charging rate detection device 10 is connected to a battery B mounted on a vehicle such as an automobile. Although the kind of battery B is not specifically limited, it demonstrates below that it is a lead acid battery. The battery B accumulates (charges) electrical energy obtained by converting mechanical kinetic energy with the alternator Alt, and supplies (discharges) electrical energy to a drive motor or the like of a vehicle (not shown). The battery B of the present embodiment receives and charges regenerative power generated when the vehicle decelerates from the alternator Alt. The charging rate detection apparatus 10 calculates the charging rate of the battery B that is charged and discharged during operation of the vehicle. Moreover, the charging rate detection apparatus 10 of this embodiment can also control the state of the battery B by giving a control signal to the alternator Alt. Here, the operation of the vehicle means a state in which the engine of the vehicle is running and is running or stopped for movement.

充電率検出装置10は、開放電圧推定部12、SOCv算出部14、電流積算部16、SOCi算出部18、SOC選択部20、電池状態制御部22を含む。概略として、充電率検出装置10は、車両の動作中すなわち電池Bの使用中に、電池Bの端子電圧VBと電流IBとを受け取り、所定の条件が満たされた場合にリアルタイムで電池Bの充電効率ηを演算で求める。そのため、電池Bの経時変化にも対応する充電効率ηを取得でき、経時変化を反映した充電効率ηに基づいて精度の高い充電率SOCを算出できる点が従来技術と相違する。なお、電池Bの端子電圧VBは、図示しない電圧センサによって検出されて充電率検出装置10へと出力される。また、電池Bの電流IBは、図示しない電流センサによって検出されて充電率検出装置10へと出力される。   The charging rate detection device 10 includes an open-circuit voltage estimation unit 12, an SOCv calculation unit 14, a current integration unit 16, an SOCi calculation unit 18, an SOC selection unit 20, and a battery state control unit 22. As an outline, the charging rate detection device 10 receives the terminal voltage VB and the current IB of the battery B during operation of the vehicle, that is, during use of the battery B, and charges the battery B in real time when a predetermined condition is satisfied. The efficiency η is obtained by calculation. Therefore, the charging efficiency η corresponding to the change with time of the battery B can be obtained, and the highly accurate charge rate SOC can be calculated based on the charging efficiency η reflecting the change with time. The terminal voltage VB of the battery B is detected by a voltage sensor (not shown) and output to the charging rate detection device 10. Further, the current IB of the battery B is detected by a current sensor (not shown) and output to the charging rate detection device 10.

開放電圧推定部12は、電池Bの端子電圧VBと電流IBとを受け取り、第1の推定開放電圧OCVeを出力する。第1の推定開放電圧OCVeは、開放電圧推定部12が含む電池Bの等価回路(以下、「バッテリモデル」とする)に電流IBを与えることで得られる。バッテリモデルの構成例については後述する。充電率検出装置10は、開放電圧推定部12を含むことで、電池Bの内部抵抗の電圧降下分の誤差を考慮する必要のない開放電圧に基づいて、精度の高い開放電圧充電率SOCvの算出が可能である。   The open circuit voltage estimation unit 12 receives the terminal voltage VB and the current IB of the battery B, and outputs the first estimated open circuit voltage OCVe. The first estimated open circuit voltage OCVe is obtained by applying a current IB to an equivalent circuit (hereinafter referred to as “battery model”) of the battery B included in the open circuit voltage estimation unit 12. A configuration example of the battery model will be described later. The charging rate detection device 10 includes the open-circuit voltage estimation unit 12, so that the open-circuit voltage charging rate SOCv can be calculated with high accuracy based on the open-circuit voltage that does not need to consider the error of the voltage drop of the internal resistance of the battery B. Is possible.

SOCv算出部14は、第1の推定開放電圧OCVeを受け取り、開放電圧充電率SOCvを出力する。開放電圧充電率SOCvは本発明の第1の充電率に対応する。SOCv算出部14は、フィルタ部24、OCV−SOC変換部26を含む。フィルタ部24は第1の推定開放電圧OCVeを受け取り、フィルタ処理を実行する。フィルタ部24は、電流積算部16から、電流積算法で得られる電流積算値Saの変化量に対応する電流(補正値Sd)も受け取る。そして、補正値Sdによって、第1の推定開放電圧OCVeの変化量の制限(以下、「レートリミット」ともいう)を実行するフィルタ処理を行い、第1の推定開放電圧OCVeより誤差の少ない第2の推定開放電圧OCVvを出力する。第1の推定開放電圧OCVeおよび第2の推定開放電圧OCVvの波形の例については後述する。なお、本実施形態では第2の推定開放電圧OCVvが本発明の「推定される開放電圧」に対応するが、別の実施形態として第1の推定開放電圧OCVeを本発明の「推定される開放電圧」としてもよい。   The SOCv calculation unit 14 receives the first estimated open circuit voltage OCVe and outputs the open circuit voltage charging rate SOCv. The open-circuit voltage charging rate SOCv corresponds to the first charging rate of the present invention. The SOCv calculation unit 14 includes a filter unit 24 and an OCV-SOC conversion unit 26. The filter unit 24 receives the first estimated open circuit voltage OCVe and executes a filter process. The filter unit 24 also receives a current (correction value Sd) corresponding to the amount of change in the current integration value Sa obtained by the current integration method from the current integration unit 16. Then, the correction value Sd is used to perform a filtering process for limiting the amount of change in the first estimated open circuit voltage OCVe (hereinafter also referred to as “rate limit”), and the second error is smaller than the first estimated open circuit voltage OCVe. The estimated open circuit voltage OCVv is output. Examples of waveforms of the first estimated open circuit voltage OCVe and the second estimated open circuit voltage OCVv will be described later. In the present embodiment, the second estimated open circuit voltage OCVv corresponds to the “estimated open circuit voltage” of the present invention. However, as another embodiment, the first estimated open circuit voltage OCVe is used as the “estimated open circuit voltage” of the present invention. It may be “voltage”.

OCV−SOC変換部26は、第2の推定開放電圧OCVvを受け取り、開放電圧から充電率への変換(以下、「OCV−SOC変換」とする)を実行して、開放電圧充電率SOCvを出力する。開放電圧と充電率との関係は、温度や劣化に依らず一定に保たれることが知られている。そのため、OCV−SOC変換部26は、例えば実験等により予め得られた電池Bの開放電圧−充電率特性に基づくOCV−SOC変換テーブルを記憶してもよい。開放電圧−充電率特性の例については後に例示する。   The OCV-SOC conversion unit 26 receives the second estimated open circuit voltage OCVv, performs conversion from the open circuit voltage to the charge rate (hereinafter referred to as “OCV-SOC conversion”), and outputs the open circuit voltage charge rate SOCv. To do. It is known that the relationship between the open circuit voltage and the charging rate is kept constant regardless of temperature and deterioration. Therefore, the OCV-SOC conversion unit 26 may store an OCV-SOC conversion table based on the open-circuit voltage-charge rate characteristics of the battery B, which is obtained in advance through experiments or the like. An example of the open-circuit voltage-charge rate characteristic will be described later.

電流積算部16は、電池Bの電流IBを受け取り、電流積算値Saおよび補正値Sdを出力する。電流積算値Saは、電流積算法で得られる電池Bの電流IBの積算値であり、補正値Sdは、電流積算値Saの変化量に対応する電流である。   The current integration unit 16 receives the current IB of the battery B and outputs a current integration value Sa and a correction value Sd. The current integrated value Sa is an integrated value of the current IB of the battery B obtained by the current integrating method, and the correction value Sd is a current corresponding to the change amount of the current integrated value Sa.

電流積算部16は、充電電流積算部33、放電電流積算部32および充電効率演算部35を含む。充電電流積算部33は、電池Bの充電電流Iinを積算して、充電電流積算値∫(Iin)dtを生成する。放電電流積算部32は、電池Bの放電電流Ioutを積算して、放電電流積算値∫(Iout)dtを生成する。充電効率演算部35は、放電電流積算値∫(Iout)dtの大きさ(絶対値)を、充電電流積算値∫(Iin)dtの大きさで除算して得られる充電効率ηを算出する。 The current integrating unit 16 includes a charging current integrating unit 33, a discharge current integrating unit 32, and a charging efficiency calculating unit 35. The charging current integrating unit 33 integrates the charging current I in of the battery B to generate a charging current integrated value ∫ (I in ) dt. The discharge current integrating unit 32 integrates the discharge current I out of the battery B to generate a discharge current integrated value ∫ (I out ) dt. The charging efficiency calculation unit 35 calculates the charging efficiency η obtained by dividing the magnitude (absolute value) of the discharge current integrated value ∫ (I out ) dt by the magnitude of the charge current integrated value ∫ (I in ) dt. To do.

また、本実施形態の充電率検出装置10では、電流積算部16は分離変換部31、乗算器および加算器を含む。分離変換部31は、電池Bの電流IBを受け取り、充電電流Iinと放電電流Ioutとに分離して、後段の回路で効率的な演算が可能なように符号付きの値で出力する。乗算器および加算器は、電流積算値Saおよび補正値Sdを得るための演算で用いられる。電流積算値Saおよび補正値Sdの計算式については後述する。 Further, in the charging rate detection device 10 of the present embodiment, the current integration unit 16 includes a separation conversion unit 31, a multiplier, and an adder. The separation conversion unit 31 receives the current IB of the battery B, separates it into a charging current Iin and a discharging current Iout, and outputs it as a signed value so that efficient calculation can be performed in a subsequent circuit. The multiplier and the adder are used in the calculation for obtaining the current integrated value Sa and the correction value Sd. Formulas for calculating the current integrated value Sa and the correction value Sd will be described later.

SOCi算出部18は、電流積算値Saを受け取り、積算開始時の初期値(以下、「初期充電率」とする)を加算して、電流積算充電率SOCiを出力する。電流積算充電率SOCiは本発明の第2の充電率に対応する。SOCi算出部18は、記憶部38を含む。記憶部38は例えば不揮発性メモリであって、初期充電率が記憶されている。また、記憶部38は以前にSOCi算出部18が出力した電流積算充電率SOCi(以下、「過去の電流積算充電率SOCi」とする)を記憶してもよい。そして、SOCi算出部18は、電流積算値Saに基づいて演算で得られる電流積算充電率SOCiの精度が低いような場合に、記憶部38から読み出した過去の電流積算充電率SOCiを出力することができる。   The SOCi calculation unit 18 receives the current integrated value Sa, adds an initial value at the start of integration (hereinafter referred to as “initial charge rate”), and outputs a current integrated charge rate SOCi. The current integrated charging rate SOCi corresponds to the second charging rate of the present invention. The SOCi calculation unit 18 includes a storage unit 38. The storage unit 38 is a non-volatile memory, for example, and stores an initial charging rate. Further, the storage unit 38 may store the current integrated charging rate SOCi (hereinafter referred to as “past current integrated charging rate SOCi”) previously output by the SOCi calculating unit 18. Then, the SOCi calculation unit 18 outputs the past current integration charge rate SOCi read from the storage unit 38 when the accuracy of the current integration charge rate SOCi obtained by calculation based on the current integration value Sa is low. Can do.

SOC選択部20は、選択信号Selに応じて開放電圧充電率SOCv、または電流積算充電率SOCiを選択して、充電率SOCとして出力する。選択信号Selは図示しない選択制御部から出力され、選択制御部は、例えば開放電圧充電率SOCvと電流積算充電率SOCiとを比較して、より精度が高いと思われる方を選択させるように選択信号Selを出力してもよい。また、選択制御部は、車両の動作に連動した選択(例えば、車両が停車しているときには電流積算充電率SOCiを出力する等)をするように選択信号Selを出力してもよい。本実施形態では、後述するように、原則として電流積算充電率SOCiが充電率SOCとして選択されるが、充電電流積算部33、放電電流積算部32および記憶部38のデータがリセットされた場合には開放電圧充電率SOCvが選択される。充電率検出装置10は、SOC選択部20を含むことで、開放電圧充電率SOCvと電流積算充電率SOCiとを状況に応じて選択的に出力でき、最終的に出力される充電率SOCの精度を保つことが可能になる。   The SOC selection unit 20 selects the open circuit voltage charging rate SOCv or the current integrated charging rate SOCi according to the selection signal Sel, and outputs it as the charging rate SOC. The selection signal Sel is output from a selection control unit (not shown), and the selection control unit compares, for example, the open-circuit voltage charging rate SOCv and the current integrated charging rate SOCi and selects the one that seems to have higher accuracy. The signal Sel may be output. Further, the selection control unit may output the selection signal Sel so as to make a selection linked to the operation of the vehicle (for example, output the current integrated charging rate SOCi when the vehicle is stopped). In the present embodiment, as will be described later, in principle, the current integrated charging rate SOCi is selected as the charging rate SOC, but when the data in the charging current integrating unit 33, the discharge current integrating unit 32, and the storage unit 38 are reset. The open-circuit voltage charging rate SOCv is selected. By including the SOC selection unit 20, the charging rate detection device 10 can selectively output the open-circuit voltage charging rate SOCv and the current integrated charging rate SOCi according to the situation, and the accuracy of the finally output charging rate SOC Can be kept.

電池状態制御部22は、第2の推定開放電圧OCVvに基づいて、オルタネーターAltに制御信号を与えることで、電池Bがターゲットの開放電圧となるように制御する。充電率検出装置10は、電池状態制御部22を含むことで、電池Bの開放電圧が一定であるように制御することが可能である。電流積算中に電池Bの充電率が大きく変化している場合には充電効率ηの誤差が大きくなる可能性があるところ、電池状態制御部22が電池Bの開放電圧が一定であるように制御すれば、充電効率ηの誤差を小さく抑えることができる。また、充電効率演算部35は、満充電を基準に充電効率ηを求めるわけではないので、電池Bを満充電にする必要性はない。そのため、電池状態制御部22を備える充電率検出装置10は、電池Bを不完全充電状態で用いるシステムで好適に用いられる。   The battery state control unit 22 controls the battery B to be the target open circuit voltage by giving a control signal to the alternator Alt based on the second estimated open circuit voltage OCVv. By including the battery state control unit 22, the charging rate detection device 10 can control the open voltage of the battery B to be constant. When the charging rate of the battery B changes greatly during the current integration, there is a possibility that the error of the charging efficiency η may increase. Therefore, the battery state control unit 22 performs control so that the open voltage of the battery B is constant. If this is done, the error in charging efficiency η can be kept small. Further, since the charging efficiency calculation unit 35 does not obtain the charging efficiency η based on the full charge, there is no need to fully charge the battery B. Therefore, the charging rate detection device 10 including the battery state control unit 22 is preferably used in a system that uses the battery B in an incompletely charged state.

以上、図1を参照しながら充電率検出装置10の全体構成を説明したが、以下に、開放電圧推定部12、SOCv算出部14、電流積算部16の詳細について説明し、その後、充電率検出装置10の処理について説明する。   The overall configuration of the charging rate detection device 10 has been described above with reference to FIG. 1, but the details of the open-circuit voltage estimation unit 12, the SOCv calculation unit 14, and the current integration unit 16 will be described below, and then the charging rate detection is performed. Processing of the device 10 will be described.

(開放電圧推定部)
図2は、電池Bの等価回路(バッテリモデル)である。バッテリモデルは、電解液抵抗とオーム抵抗等の直流成分を設定する抵抗R0と、電荷移動過程における動的な振る舞いを表す反応抵抗として設定する抵抗R1と、電気二重層として設定するC1と、拡散過程における動的な振る舞いを表すものとして設定するR2、C2とにより構成される。ここでは、電荷移動過程で一次の並列回路、拡散過程で二次の並列回路の等価回路モデルで表しているが、次数は必要に応じて設定する。
(Open voltage estimation part)
FIG. 2 is an equivalent circuit (battery model) of the battery B. The battery model includes a resistance R0 that sets a direct current component such as an electrolyte resistance and an ohmic resistance, a resistance R1 that is set as a reaction resistance that represents a dynamic behavior in a charge transfer process, C1 that is set as an electric double layer, diffusion R2 and C2 set to represent dynamic behavior in the process. Here, although the equivalent circuit model of the primary parallel circuit in the charge transfer process and the secondary parallel circuit in the diffusion process is represented, the order is set as necessary.

電流IBをバッテリモデルに入力したとき、電池Bの端子電圧VBとバッテリモデルの端子電圧推定値VBmとの差分がなくなるように図示しない適応機構によってバッテリモデルの各パラメータR0、R1、R2、C1、C2を逐次修正することで、現在の電池Bの状態に合致したバッテリモデルを得ることができる。   When the current IB is input to the battery model, each parameter R0, R1, R2, C1, and so on of the battery model is set by an adaptive mechanism (not shown) so that there is no difference between the terminal voltage VB of the battery B and the terminal voltage estimated value VBm of the battery model. By sequentially correcting C2, a battery model that matches the current state of the battery B can be obtained.

開放電圧推定部12は、推定した各パラメータR0、R1、R2、C1、C2と電流IBから過電圧VRを算出し、端子電圧VBから過電圧VRを減算して開放電圧OCVを計算する。計算される開放電圧OCVは、図1の第1の推定開放電圧OCVeに対応する。   The open-circuit voltage estimation unit 12 calculates the overvoltage VR from the estimated parameters R0, R1, R2, C1, and C2 and the current IB, and calculates the open-circuit voltage OCV by subtracting the overvoltage VR from the terminal voltage VB. The calculated open circuit voltage OCV corresponds to the first estimated open circuit voltage OCVe of FIG.

ここで、各パラメータR0、R1、R2、C1、C2を逐次修正する適応機構は、例えばカルマン・フィルタであってもよい。カルマン・フィルタは内部のパラメータを自己修正するのに適したフィルタで、逐次パラメータ推定に用いられる。なお、カルマン・フィルタによるパラメータ推定の詳細については、本出願人の特願2011−007874号に説明してある。   Here, the adaptive mechanism for sequentially correcting the parameters R0, R1, R2, C1, and C2 may be, for example, a Kalman filter. The Kalman filter is a filter suitable for self-correcting internal parameters, and is used for sequential parameter estimation. Details of parameter estimation by the Kalman filter are described in Japanese Patent Application No. 2011-007874 of the present applicant.

(SOCv算出部)
SOCv算出部14は、前記の通り、フィルタ部24、OCV−SOC変換部26を含む。図3(A)、図3(B)はそれぞれフィルタ部24を通過する前、通過した後の推定された開放電圧の変化を示す図である。図3(A)は第1の推定開放電圧OCVeの時間変化の例を示す。この第1の推定開放電圧OCVeに対し、フィルタ部24でレートリミットを実行するフィルタ処理が行われる。そのため、図3(B)に示される第2の推定開放電圧OCVvの時間変化は、第1の推定開放電圧OCVeに比べて緩やかになっている。この例では、第2の推定開放電圧OCVvはVtgを中心に変動している。ここで、Vtgは積算開始時に得られた第2の推定開放電圧OCVvの値である。積算開始時は、充電電流積算部33、放電電流積算部32が積算を開始した時である。後述するように、積算は複数回の車両の動作(例えば、「エンジンをかけて走行を開始してから目的地に着いてエンジンを切るまで」を1回の動作と考えることができる)を通して実行されることが好ましい。このような場合、最初の車両の動作の開始時が積算開始時となる。図3(A)、図3(B)の例において、Vtgは時間軸の原点より前に得られたものであってもよい。また、Vtgは、電池状態制御部22がターゲットとする開放電圧に等しい値であってもよい。
(SOCv calculation unit)
The SOCv calculation unit 14 includes the filter unit 24 and the OCV-SOC conversion unit 26 as described above. FIG. 3A and FIG. 3B are diagrams showing changes in the estimated open circuit voltage before and after passing through the filter unit 24, respectively. FIG. 3A shows an example of the time change of the first estimated open circuit voltage OCVe. Filter processing for performing rate limiting is performed on the first estimated open circuit voltage OCVe by the filter unit 24. Therefore, the time change of the second estimated open circuit voltage OCVv shown in FIG. 3B is more gradual than the first estimated open circuit voltage OCVe. In this example, the second estimated open circuit voltage OCVv varies around Vtg. Here, Vtg is the value of the second estimated open circuit voltage OCVv obtained at the start of integration. The integration start time is when the charging current integration unit 33 and the discharge current integration unit 32 start integration. As will be described later, the accumulation is performed through a plurality of vehicle operations (for example, “from the start of running the engine to the destination and turning off the engine” can be considered as a single operation). It is preferred that In such a case, the start time of the first vehicle operation is the start of integration. In the examples of FIGS. 3A and 3B, Vtg may be obtained before the origin of the time axis. Further, Vtg may be a value equal to the open circuit voltage targeted by the battery state control unit 22.

フィルタ部24は、例えば電流積算部16から受け取った補正値Sdに基づく分散(電流積算法分散)と、開放電圧推定部12から受け取った第1の推定開放電圧OCVeに基づく分散(開放電圧推定法分散)とを算出して、これらの分散の関係に基づいてレートリミットを行って第2の推定開放電圧OCVvを生成してもよい。ここで、第2の推定開放電圧OCVvの生成についても、カルマン・フィルタで誤差が最小となるように誤差モデルを修正していく手法が採られてもよい。このとき、フィルタ部24は、電流積算法に基づく値と開放電圧推定法に基づく値とを用いて推定誤差を補正していく、いわゆるセンサ・フュージョン技術を用いる。なお、前記の通り、カルマン・フィルタによるパラメータ推定の詳細については、本出願人の特願2011−007874号に説明してある。   The filter unit 24, for example, a variance based on the correction value Sd received from the current integrating unit 16 (current integrating method variance) and a variance based on the first estimated open-circuit voltage OCVe received from the open-circuit voltage estimating unit 12 (open-circuit voltage estimating method). The second estimated open circuit voltage OCVv may be generated by calculating the (dispersion) and performing a rate limit based on the relationship of these dispersions. Here, with respect to generation of the second estimated open circuit voltage OCVv, a method of correcting the error model so that the error is minimized by the Kalman filter may be employed. At this time, the filter unit 24 uses a so-called sensor fusion technique in which an estimation error is corrected using a value based on the current integration method and a value based on the open-circuit voltage estimation method. As described above, details of parameter estimation by the Kalman filter are described in Japanese Patent Application No. 2011-007874 of the present applicant.

図4は電池Bの開放電圧−充電率特性を例示する図である。図4の特性では、開放電圧OCVがV0[V]であるときに充電率SOCは0[%]である。また、開放電圧OCVがV1[V]であるときに充電率SOCは100[%]である。鉛蓄電池である電池Bについて具体例を示すと、例えばV0は約1.9[V]、V1は約2.1[V]である。OCV−SOC変換部26は、開放電圧と充電率の関係式(例えば、鉛蓄電池では一次の関係式)を記憶し、受け取った第2の推定開放電圧OCVvの値に応じた充電率SOCの値を開放電圧充電率SOCvとして出力する。   FIG. 4 is a diagram illustrating an open-circuit voltage-charge rate characteristic of the battery B. In the characteristic of FIG. 4, when the open circuit voltage OCV is V0 [V], the charging rate SOC is 0 [%]. Further, when the open circuit voltage OCV is V1 [V], the charging rate SOC is 100 [%]. A specific example of the battery B, which is a lead storage battery, shows, for example, V0 of about 1.9 [V] and V1 of about 2.1 [V]. The OCV-SOC conversion unit 26 stores a relational expression between the open circuit voltage and the charging rate (for example, a primary relational expression in the case of a lead storage battery), and the value of the charging rate SOC according to the received value of the second estimated open circuit voltage OCVv. Is output as the open circuit voltage charge rate SOCv.

(電流積算部)
ここで、再び図1を参照して、電流積算部16における演算について説明する。分離変換部31は、受け取った電池Bの電流IBを、充電電流Iinと放電電流Ioutとに分ける。ここで、充電電流Iinと放電電流Ioutとは互いに逆の符号を付され、以下では充電電流Iinが正の値を、放電電流Ioutは負の値をとるものとして説明する。
(Current integration part)
Here, referring to FIG. 1 again, the calculation in the current integrating unit 16 will be described. Separating converter 31, a current IB of the received battery B, divided into the charging current I in and the discharge current I out. Here, the charging current I in and the discharging current I out are given opposite signs, and the following description will be made assuming that the charging current I in takes a positive value and the discharging current I out takes a negative value.

そして、充電電流積算部33は、積算開始時から充電電流Iinを積算して充電電流積算値∫(Iin)dtを生成する。放電電流積算部32は、積算開始時から放電電流Ioutを積算して放電電流積算値∫(Iout)dtを生成する。 Then, the charging current integrating unit 33 integrates the charging current I in from the start of integration to generate a charging current integrated value ∫ (I in ) dt. The discharge current integrating unit 32 integrates the discharge current I out from the start of integration to generate a discharge current integrated value ∫ (I out ) dt.

充電効率演算部35は、充電効率ηを算出するが、放電電流積算値∫(Iout)dtの大きさを、充電電流積算値∫(Iin)dtの大きさで除算して得られる。すなわち、
η=|∫(Iout)dt|/∫(Iin)dt …(式1)
となる。
The charging efficiency calculation unit 35 calculates the charging efficiency η, and is obtained by dividing the magnitude of the discharge current integrated value ∫ (I out ) dt by the size of the charging current integrated value ∫ (I in ) dt. That is,
η = | ∫ (I out ) dt | / ∫ (I in ) dt (Formula 1)
It becomes.

また、電流積算部16は、電流積算値Saと、電流積算値Saの変化量に対応する電流である補正値Sdとを出力する。ここで、電流積算値Saは以下の式で与えられる。
Sa=∫(Iout)dt+η×∫(Iin)dt …(式2)
そして、補正値Sdは以下の式で与えられる。
Sd=Iout+η×Iin …(式3)
The current integrating unit 16 outputs a current integrated value Sa and a correction value Sd that is a current corresponding to the amount of change in the current integrated value Sa. Here, the current integrated value Sa is given by the following equation.
Sa = ∫ (I out ) dt + η × ∫ (I in ) dt (Formula 2)
The correction value Sd is given by the following equation.
Sd = I out + η × I in (Expression 3)

ここで、電池状態制御部22によって、電池Bの残量が一定であるように制御されているとする。図5は、検出される残量と充電効率ηとの関係を示す図である。充電効率ηが充電効率演算部35によって更新される場合には、更新時における電池Bの経時変化等を反映した充電効率ηが用いられることになる。図5の例では、η変動と示された実線が充電効率演算部35によって充電効率ηを更新する場合を示しており、電池Bの残量がほぼ一定であることを正しく検出している。一方、従来技術のように充電効率ηを固定的に用いて経時変化を考慮しない場合および充電効率η自体を考慮しない場合には、時間の経過とともに電池Bの残量の検出値に誤差が生じる(図5のη固定と示された点線)。   Here, it is assumed that the battery state control unit 22 performs control so that the remaining amount of the battery B is constant. FIG. 5 is a diagram illustrating the relationship between the detected remaining amount and the charging efficiency η. When the charging efficiency η is updated by the charging efficiency calculation unit 35, the charging efficiency η reflecting the change with time of the battery B at the time of updating is used. In the example of FIG. 5, the solid line indicated as η fluctuation indicates a case where the charging efficiency calculation unit 35 updates the charging efficiency η, and correctly detects that the remaining amount of the battery B is substantially constant. On the other hand, when the charging efficiency η is fixedly used and the change with time is not considered as in the prior art, and when the charging efficiency η itself is not taken into account, an error occurs in the detected value of the remaining battery B over time. (Dotted line shown as η fixation in FIG. 5).

後述するように、本実施形態では所定の条件を満たしたときに充電効率ηを更新する。更新によって充電効率ηの経時変化に対応でき、充電効率ηを固定的に用いる場合に比べて誤差を小さくできる。   As will be described later, in this embodiment, the charging efficiency η is updated when a predetermined condition is satisfied. By updating, it is possible to cope with the change with time of the charging efficiency η, and the error can be reduced as compared with the case where the charging efficiency η is fixedly used.

(充電率検出装置の処理について)
本実施形態の充電率検出装置10では、「第2の推定開放電圧OCVvが、変動があった後、積算開始時の値から所定の範囲内にあること(以下、条件(a)とする)」、「充電電流積算値∫(Iin)dtおよび放電電流積算値∫(Iout)dtが所定の値よりも大きくなること(以下、条件(b)とする)」、の少なくとも一方が満たされる場合に、充電効率演算部35が充電効率ηを更新する。ここで、条件(a)は充電率が積算開始時の近くまで戻っている、すなわち、放電したまま、あるいは充電したままでないことを意味し、条件(b)は充電効率を計算するときに除算する値と除算される値の絶対値が十分大きく、同じ電圧に戻っていなくてもその除算結果の精度が確保されていることを意味する。換言すれば、更新した充電効率ηを用いて開放電圧充電率SOCv、電流積算充電率SOCiを計算しても、十分な精度が得られない場合には、充電率検出装置10は充電効率ηを更新しない。
(About the processing of the charging rate detection device)
In the charging rate detection apparatus 10 of the present embodiment, “the second estimated open circuit voltage OCVv is within a predetermined range from the value at the start of integration after fluctuation (hereinafter referred to as condition (a)). And “Charging current integrated value ∫ (I in ) dt and discharge current integrated value ∫ (I out ) dt are larger than predetermined values (hereinafter referred to as condition (b))” are satisfied. The charging efficiency calculation unit 35 updates the charging efficiency η. Here, the condition (a) means that the charging rate has returned to near the start of integration, that is, it remains discharged or not charged, and the condition (b) is divided when calculating the charging efficiency. This means that the absolute value of the value to be divided and the value to be divided are sufficiently large, and the accuracy of the division result is ensured even if the value does not return to the same voltage. In other words, if sufficient accuracy cannot be obtained even when the open-circuit voltage charging rate SOCv and the current integrated charging rate SOCi are calculated using the updated charging efficiency η, the charging rate detection device 10 sets the charging efficiency η to Do not update.

また、条件(a)の「所定の範囲」とは、積算開始前の充電率に十分近い範囲、すなわち積算された充電電流と放電電流を比較することに意味がある範囲のことである。充電率が積算開始前の値から大きくずれている場合に充電電流積算値と放電電流積算値とを比較しても、正確な充電効率ηは求められないためである。図6は電池Bの第2の推定開放電圧OCVvの変化を例示するが、Vtg(積算開始時に得られた第2の推定開放電圧OCVvの値)を中心とする−ΔV〜+ΔVの範囲が条件(a)の「所定の範囲」に対応する。なお、ΔVはゼロであってもよい。   The “predetermined range” in the condition (a) is a range that is sufficiently close to the charging rate before the start of integration, that is, a range in which it is meaningful to compare the integrated charge current and discharge current. This is because when the charging rate is greatly deviated from the value before the start of integration, the accurate charging efficiency η cannot be obtained even if the charging current integrated value and the discharge current integrated value are compared. FIG. 6 exemplifies a change in the second estimated open circuit voltage OCVv of the battery B, but the condition is a range of −ΔV to + ΔV centered on Vtg (the value of the second estimated open circuit voltage OCVv obtained at the start of integration). This corresponds to the “predetermined range” in (a). Note that ΔV may be zero.

一方、条件(b)の「所定の値」は、第2の推定開放電圧OCVvが積算開始前の値まで戻っていなくても(充電率に多少のずれがあっても)、充電効率ηを求める際に、そのずれが無視できるように設定される値である。つまり、充電電流、放電電流の積算量が十分大きければ、充電率に多少のずれがあっても充電効率ηがほぼ正確な値となることが期待される。条件(b)の「所定の値」は、その程度に充電電流、放電電流の積算量が大きくなるように設定される。   On the other hand, the “predetermined value” in the condition (b) sets the charging efficiency η even if the second estimated open circuit voltage OCVv does not return to the value before the start of integration (even if there is a slight deviation in the charging rate). This value is set so that the deviation can be ignored when obtaining. That is, if the integrated amount of the charging current and the discharging current is sufficiently large, it is expected that the charging efficiency η will be an almost accurate value even if there is a slight deviation in the charging rate. The “predetermined value” in the condition (b) is set so that the integrated amount of the charging current and discharging current is increased to that extent.

ここで、図6を参照して、上記の条件(a)、条件(b)と充電効率ηの算出処理との関係について説明する。まず、時刻taが積算開始時であるとし、このときの第2の推定開放電圧OCVvの値がVtgであったとする。その後、時刻tbで第2の推定開放電圧OCVvの値がVtg−ΔVを下回り、時刻tcになってVtg−ΔVに戻ったとする。このとき、時刻tb〜tcの区間Z0では、条件(a)が満たされない。ここで、充電電流積算部33、放電電流積算部32による積算は、時刻taで開始されたばかりであるため、区間Z0では条件(b)も満たされない。そのため、充電効率ηの算出処理は行われない。   Here, with reference to FIG. 6, the relationship between said conditions (a) and (b) and the calculation process of charging efficiency (eta) is demonstrated. First, it is assumed that the time ta is the start of integration, and the value of the second estimated open circuit voltage OCVv at this time is Vtg. Thereafter, it is assumed that the value of the second estimated open circuit voltage OCVv falls below Vtg−ΔV at time tb and returns to Vtg−ΔV at time tc. At this time, the condition (a) is not satisfied in the zone Z0 between the times tb and tc. Here, since the integration by the charging current integration unit 33 and the discharge current integration unit 32 has just started at time ta, the condition (b) is not satisfied in the zone Z0. Therefore, the calculation process of charging efficiency η is not performed.

その後、第2の推定開放電圧OCVvの値は、時刻tdでVtgに戻り、さらに時刻teでVtg+ΔVまで上昇する。時刻tc〜teの区間Z1では、第2の推定開放電圧OCVvの値が、Vtg−ΔVからVtg+ΔVの範囲(条件(a)の所定の範囲)に収まっており、条件(a)を満たすので充電効率ηの算出処理が行われる。   Thereafter, the value of the second estimated open circuit voltage OCVv returns to Vtg at time td, and further increases to Vtg + ΔV at time te. In the zone Z1 from time tc to te, the value of the second estimated open circuit voltage OCVv is within the range of Vtg−ΔV to Vtg + ΔV (predetermined range of the condition (a)), and charging is performed because the condition (a) is satisfied. An efficiency η calculation process is performed.

そして、第2の推定開放電圧OCVvの値は、時刻tfになってVtg+ΔVに戻り、時刻tgになってVtgまで戻る。時刻te以降を区間Z2とすると、区間Z2においては、少なくとも時刻te〜tfの間で条件(a)を満たさない。しかし、時刻te以降においては、時刻taから充電電流積算部33、放電電流積算部32による積算が行われていたことにより、条件(b)が満たされる。そのため、区間Z2では充電効率ηの算出処理が行われる。   Then, the value of the second estimated open circuit voltage OCVv returns to Vtg + ΔV at time tf, and returns to Vtg at time tg. Assuming that the section after the time te is the section Z2, in the section Z2, the condition (a) is not satisfied at least between the times te and tf. However, after time te, the condition (b) is satisfied because the charging current integration unit 33 and the discharge current integration unit 32 perform integration from time ta. Therefore, calculation processing of charging efficiency η is performed in the section Z2.

図7は、車両に搭載された電池Bに設けられた充電率検出装置10の処理を示すフローチャートである。まず、充電率検出装置10は、車両の動作開始まで待機している(ステップS2のNo)。車両が動作開始すると(ステップS2のYes)、前回の動作から所定の時間が経過したかを判定する(ステップS4)。   FIG. 7 is a flowchart showing processing of the charging rate detection device 10 provided in the battery B mounted on the vehicle. First, the charging rate detection device 10 is on standby until the vehicle starts operating (No in step S2). When the vehicle starts to operate (Yes in step S2), it is determined whether a predetermined time has elapsed since the previous operation (step S4).

ここで、所定の時間とは、車両が動作しなかった間に電池Bの状態が大きく変化したと考えられる期間である。例えば、車両が1週間動作しなかった場合、鉛蓄電池状態が暗電流等の自己放電によって大きく変わっていることがある。このような場合、充電率検出装置10は、車両が動作しない間の電流IBを受け取ることができないため、保存している充電電流積算値∫(Iin)dt、放電電流積算値∫(Iout)dtおよび電流積算充電率SOCi等と実際の電池Bの状態とが合致しない可能性がある。そのため、前回の動作から所定の時間が経過した場合(ステップS4のYes)、充電電流積算部33、放電電流積算部32および記憶部38のデータをリセットする(ステップS6)。 Here, the predetermined time is a period during which the state of the battery B is considered to have changed significantly while the vehicle is not operating. For example, if the vehicle has not been operated for a week, the lead-acid battery state may have changed significantly due to self-discharge such as dark current. In such a case, since the charging rate detection device 10 cannot receive the current IB while the vehicle is not operating, the stored charging current integrated value ∫ (I in ) dt, discharge current integrated value ∫ (I out) ) There is a possibility that dt, current integrated charge rate SOCi, and the like do not match the actual state of battery B. Therefore, when a predetermined time has elapsed from the previous operation (Yes in step S4), the data in the charging current integrating unit 33, the discharging current integrating unit 32, and the storage unit 38 are reset (step S6).

ステップS6の後、または前回の車両の動作から所定の時間が経過していない場合(ステップS4のNo)には、充電率検出装置10は、電池Bの端子電圧VBと電流IBとを取得し、第2の推定開放電圧OCVv、充電電流積算値∫(Iin)dt、放電電流積算値∫(Iout)dtを求める(ステップS8)。 After step S6 or when the predetermined time has not elapsed since the previous vehicle operation (No in step S4), the charging rate detection device 10 acquires the terminal voltage VB and current IB of the battery B. The second estimated open circuit voltage OCVv, the charging current integrated value ∫ (I in ) dt, and the discharge current integrated value ∫ (I out ) dt are obtained (step S8).

第2の推定開放電圧OCVvについて、積算開始時の推定開放電圧(図6のVtg)から所定の範囲内であれば(ステップS10のYes)、充電効率ηを算出し、選択信号Selに応じて、更新後の開放電圧充電率SOCvまたは電流積算充電率SOCiを充電率SOCとして出力する(ステップS16)。   If the second estimated open-circuit voltage OCVv is within a predetermined range from the estimated open-circuit voltage at the start of integration (Vtg in FIG. 6) (Yes in step S10), the charging efficiency η is calculated, and according to the selection signal Sel. Then, the updated open-circuit voltage charging rate SOCv or current integrated charging rate SOCi is output as the charging rate SOC (step S16).

第2の推定開放電圧OCVvが積算開始時の推定開放電圧から所定の範囲内でなければ(ステップS10のNo)、充電電流積算値∫(Iin)dtと放電電流積算値∫(Iout)dtの大きさが所定の値より大きいかを判定する(ステップS12)。ステップS12で前記大きさが所定の値より大きい場合には(ステップS12のYes)、ステップS16が実行される。ステップS16が実行されることは、前記の条件(a)又は条件(b)の少なくとも一方が満たされて充電効率ηが算出されることに対応する。 If the second estimated open circuit voltage OCVv is not within a predetermined range from the estimated open circuit voltage at the start of integration (No in step S10), the charging current integrated value ∫ (I in ) dt and the discharge current integrated value ∫ (I out ) It is determined whether the magnitude of dt is larger than a predetermined value (step S12). If the size is larger than the predetermined value in step S12 (Yes in step S12), step S16 is executed. Execution of step S16 corresponds to the calculation of the charging efficiency η by satisfying at least one of the condition (a) or the condition (b).

一方、ステップS12で前記大きさが所定の値以下である場合には(ステップS12のNo)、さらに、記憶部38のデータ(過去の電流積算充電率SOCi)がリセットされているかが判定される(ステップS14)。記憶部38のデータがリセットされていなければ(ステップS14のNo)、記憶された過去の電流積算充電率SOCiを充電率SOCとして出力する(ステップS18)。電池Bの状態が大きく変化したのでなければ、過去に算出した電流積算充電率SOCiが電池Bの現在の充電率に十分近いと考えられるからである。一方、記憶部38のデータがリセットされている場合(ステップS14のYes)、記憶部38に出力可能なデータはなく、充電効率ηも算出されていないため、開放電圧充電率SOCvを充電率SOCとして出力する(ステップS20)。   On the other hand, if the magnitude is equal to or smaller than the predetermined value in step S12 (No in step S12), it is further determined whether the data in the storage unit 38 (past current integrated charging rate SOCi) is reset. (Step S14). If the data in the storage unit 38 has not been reset (No in step S14), the stored past current integrated charge rate SOCi is output as the charge rate SOC (step S18). This is because, if the state of the battery B has not changed significantly, it is considered that the current integrated charging rate SOCi calculated in the past is sufficiently close to the current charging rate of the battery B. On the other hand, when the data in the storage unit 38 is reset (Yes in step S14), there is no data that can be output to the storage unit 38, and the charging efficiency η is not calculated. Therefore, the open-circuit voltage charging rate SOCv is set as the charging rate SOC. (Step S20).

ステップS16、S18、S20が実行された後、車両の動作が停止すれば一連の処理を終了し(ステップS22のYes)、車両が動作中であれば(ステップS22のNo)、再びステップS8に戻る。   After steps S16, S18, and S20 are executed, if the operation of the vehicle stops, the series of processes is terminated (Yes in step S22). If the vehicle is operating (No in step S22), the process returns to step S8. Return.

ここで、前回の車両の動作から所定の時間が経過した場合(ステップS4のYes)には、充電電流積算部33、放電電流積算部32がリセットされる(ステップS6)が、それ以外の場合には充電電流積算値∫(Iin)dt、放電電流積算値∫(Iout)dtは保存される。つまり、車両の1回の動作では短距離走行しかされないとしても、繰り返される短距離走行について累積的な積算(継続した積算)がされるため、十分に大きな充電電流積算値∫(Iin)dt、放電電流積算値∫(Iout)dtを得ることができる。このことにより、誤差(元の充電率に戻っていない等)の影響(相対的な大きさ)を小さくすることができ、その結果として、算出される充電効率ηの誤差も小さくすることができる。 Here, when a predetermined time has elapsed since the previous operation of the vehicle (Yes in step S4), the charging current integration unit 33 and the discharge current integration unit 32 are reset (step S6), but otherwise Is stored with the charge current integrated value ∫ (I in ) dt and the discharge current integrated value ∫ (I out ) dt. That is, even if the vehicle is only operated for a short distance in a single operation, a cumulative integration (continuous integration) is performed for repeated short-distance travel, so that a sufficiently large charging current integrated value ∫ (I in ) dt The discharge current integrated value ∫ (I out ) dt can be obtained. As a result, the influence (relative magnitude) of the error (such as not returning to the original charging rate) can be reduced, and as a result, the error of the calculated charging efficiency η can also be reduced. .

以上のように、本実施形態の充電率検出装置10および充電率検出方法によれば、交換時等ではなく使用中の電池Bについての充電効率ηを演算で求めるため、電力を無駄に使用することや鉛蓄電池の劣化を促進してしまうこともなく、充電効率ηの経時変化にも対応できる。また、満充電状態を基準とする演算は必要ないため、電池Bの不完全充電状態での使用も対応可能である。   As described above, according to the charging rate detection device 10 and the charging rate detection method of the present embodiment, since the charging efficiency η for the battery B being used is obtained by calculation rather than during replacement, power is wasted. In addition, the deterioration of the lead storage battery is not promoted, and the change in charging efficiency η over time can be handled. Further, since the calculation based on the fully charged state is not required, the battery B can be used in an incompletely charged state.

本発明を諸図面や実施例に基づき説明してきたが、当業者であれば本開示に基づき種々の変形や修正を行うことが容易であることに注意されたい。従って、これらの変形や修正は本発明の範囲に含まれることに留意されたい。例えば、各手段及びステップ等に含まれる機能等は論理的に矛盾しないように再配置可能であり、複数の手段及びステップを1つに組み合わせたり、或いは分割したりすることが可能である。   Although the present invention has been described based on the drawings and examples, it should be noted that those skilled in the art can easily make various modifications and corrections based on the present disclosure. Therefore, it should be noted that these variations and modifications are included in the scope of the present invention. For example, functions and the like included in each means and step can be rearranged so as not to be logically contradictory, and a plurality of means and steps can be combined into one or divided.

10 充電率検出装置
12 開放電圧推定部
14 SOCv算出部
16 電流積算部
18 SOCi算出部
20 SOC選択部
22 電池状態制御部
24 フィルタ部
26 OCV−SOC変換部
31 分離変換部
32 放電電流積算部
33 充電電流積算部
35 充電効率演算部
38 記憶部
Alt オルタネーター
B 電池
DESCRIPTION OF SYMBOLS 10 Charge rate detection apparatus 12 Open circuit voltage estimation part 14 SOCv calculation part 16 Current integration part 18 SOCi calculation part 20 SOC selection part 22 Battery state control part 24 Filter part 26 OCV-SOC conversion part 31 Separation conversion part 32 Discharge current integration part 33 Charging current integrating unit 35 Charging efficiency calculating unit 38 Storage unit Alt alternator B Battery

Claims (8)

動作中の鉛蓄電池の充電電流を積算して、充電電流積算値を生成する充電電流積算部と、
前記鉛蓄電池の放電電流を積算して、放電電流積算値を生成する放電電流積算部と、
条件(a)又は(b)の少なくとも一方を満たす場合に、前記放電電流積算値の大きさを前記充電電流積算値の大きさで除算して得られる充電効率を算出する充電効率演算部と、
を含み、
前記条件(a)は、前記鉛蓄電池の推定される開放電圧が、変動があった後、積算開始時に推定された開放電圧から所定の範囲内にあることであり、
前記条件(b)は、前記放電電流積算値の絶対値及び前記充電電流積算値の絶対値が、前記除算の精度を確保する大きさとなっていることを特徴とする充電率検出装置。
A charging current integrating unit that integrates the charging current of the lead acid battery in operation and generates a charging current integrated value;
A discharge current integrating unit that integrates the discharge current of the lead storage battery and generates a discharge current integrated value;
A charging efficiency calculation unit that calculates charging efficiency obtained by dividing the magnitude of the discharge current integrated value by the magnitude of the charging current integrated value when at least one of the conditions (a) and (b) is satisfied;
Including
The condition (a) is that the estimated open-circuit voltage of the lead storage battery is within a predetermined range from the open-circuit voltage estimated at the start of integration after a change.
The condition (b) is characterized in that the absolute value of the discharge current integrated value and the absolute value of the charge current integrated value are large enough to ensure the accuracy of the division .
請求項1に記載の充電率検出装置において、
検出された前記鉛蓄電池の電流および電圧から開放電圧を推定する開放電圧推定部を含み、
前記開放電圧推定部が推定した開放電圧に基づいて第1の充電率を算出する充電率検出装置。
The charging rate detection device according to claim 1,
An open-circuit voltage estimation unit for estimating an open-circuit voltage from the detected current and voltage of the lead storage battery,
A charge rate detection device that calculates a first charge rate based on an open circuit voltage estimated by the open circuit voltage estimation unit.
請求項2に記載の充電率検出装置において、
前記充電電流積算値の変化量、前記放電電流積算値の変化量、および前記充電効率に基づいて、前記開放電圧推定部が推定した開放電圧の変化量を調整するフィルタを有するフィルタ部を含み、
前記フィルタを通過した前記開放電圧に基づいて前記第1の充電率を算出する充電率検出装置。
In the charging rate detection device according to claim 2,
A filter unit having a filter that adjusts the change amount of the open-circuit voltage estimated by the open-circuit voltage estimation unit based on the change amount of the charge current integrated value, the change amount of the discharge current integrated value, and the charging efficiency;
A charging rate detection device that calculates the first charging rate based on the open circuit voltage that has passed through the filter.
請求項2または3に記載の充電率検出装置において、
前記充電効率演算部が前記充電効率を算出した場合に、前記充電電流積算値、前記放電電流積算値、および前記充電効率に基づいて算出される第2の充電率、または前記第1の充電率を選択的に出力する充電率検出装置。
In the charging rate detection device according to claim 2 or 3,
When the charging efficiency calculation unit calculates the charging efficiency, the second charging rate calculated based on the charging current integrated value, the discharge current integrated value, and the charging efficiency, or the first charging rate Is a charge rate detection device that selectively outputs.
請求項1から4のいずれか1項に記載の充電率検出装置において、
前記鉛蓄電池は車両に搭載されており、
前記充電電流積算部および前記放電電流積算部は、
前記車両の複数回の動作において、前記充電電流および前記放電電流を継続して積算する充電率検出装置。
In the charge rate detection device according to any one of claims 1 to 4,
The lead storage battery is mounted on a vehicle,
The charging current integrating unit and the discharging current integrating unit are
A charging rate detection device that continuously integrates the charging current and the discharging current in a plurality of operations of the vehicle.
請求項1から5のいずれか1項に記載の充電率検出装置において、
前記鉛蓄電池の開放電圧が一定であるように制御する電池状態制御部を含む充電率検出装置。
In the charge rate detection apparatus according to any one of claims 1 to 5,
The charge rate detection apparatus containing the battery state control part which controls so that the open circuit voltage of the said lead acid battery is constant.
請求項1から6のいずれか1項に記載の充電率検出装置において、
前記充電効率演算部は、前記条件(a)かつ(b)を満たす場合に、前記充電効率を算出する充電率検出装置。
In the charging rate detection device according to any one of claims 1 to 6,
The charging efficiency calculation unit is a charging rate detection device that calculates the charging efficiency when the conditions (a) and (b) are satisfied.
(A)動作中の鉛蓄電池の充電電流を積算して、充電電流積算値を生成するステップと、
(B)前記鉛蓄電池の放電電流を積算して、放電電流積算値を生成するステップと、
(C)条件(a)又は(b)の少なくとも一方を満たす場合に、前記放電電流積算値の大きさを前記充電電流積算値の大きさで除算して得られる充電効率を算出するステップと、
を含み、
前記条件(a)は、前記鉛蓄電池の推定される開放電圧が、変動があった後、積算開始時に推定された開放電圧から所定の範囲内にあることであり、
前記条件(b)は、前記放電電流積算値の絶対値及び前記充電電流積算値の絶対値が、前記除算の精度を確保する大きさとなっていることを特徴とする充電率検出方法。


(A) integrating the charging current of the lead acid battery in operation, and generating a charging current integrated value;
(B) integrating the discharge current of the lead storage battery to generate a discharge current integrated value;
(C) calculating at least one of the conditions (a) and (b) and calculating the charging efficiency obtained by dividing the magnitude of the discharge current integrated value by the magnitude of the charge current integrated value;
Including
The condition (a) is that the estimated open-circuit voltage of the lead storage battery is within a predetermined range from the open-circuit voltage estimated at the start of integration after a change.
The condition (b) is characterized in that the absolute value of the discharge current integrated value and the absolute value of the charge current integrated value are large enough to ensure the accuracy of the division .


JP2014098791A 2014-05-12 2014-05-12 Charging rate detection apparatus and charging rate detection method Active JP6494923B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014098791A JP6494923B2 (en) 2014-05-12 2014-05-12 Charging rate detection apparatus and charging rate detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014098791A JP6494923B2 (en) 2014-05-12 2014-05-12 Charging rate detection apparatus and charging rate detection method

Publications (2)

Publication Number Publication Date
JP2015215258A JP2015215258A (en) 2015-12-03
JP6494923B2 true JP6494923B2 (en) 2019-04-03

Family

ID=54752270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014098791A Active JP6494923B2 (en) 2014-05-12 2014-05-12 Charging rate detection apparatus and charging rate detection method

Country Status (1)

Country Link
JP (1) JP6494923B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102464753B1 (en) * 2016-12-19 2022-11-07 엘에스일렉트릭(주) Apparatus for updating charging/discharging efficiency factor of energy storage system
KR20200102927A (en) 2019-02-22 2020-09-01 주식회사 엘지화학 Battery management system, battery management method, battery pack and electric vehicle
CN113508488B (en) * 2019-02-28 2024-03-29 古河电气工业株式会社 Rechargeable battery state detection device and rechargeable battery state detection method
JP6719853B1 (en) * 2019-03-25 2020-07-08 マレリ株式会社 Charge control device, charge control method, and charge control program
JP2022530281A (en) * 2019-06-05 2022-06-28 ジーレクトリック インコーポレイテッド Cyclic coulometry method
KR102538238B1 (en) * 2020-12-04 2023-05-30 경북대학교 산학협력단 Apparatus and method for estimating state of charge according to battery voltage in steady state

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006036003A (en) * 2004-07-27 2006-02-09 Mazda Motor Corp Charging efficiency sensing device for battery
US9625529B2 (en) * 2011-11-11 2017-04-18 Stmicroelectronics, Inc. Battery pack management

Also Published As

Publication number Publication date
JP2015215258A (en) 2015-12-03

Similar Documents

Publication Publication Date Title
JP6494923B2 (en) Charging rate detection apparatus and charging rate detection method
EP3664247B1 (en) Charging time computation method and charge control device
JP4586832B2 (en) Electric vehicle
CN107817450B (en) Storage element pack, management device, SOC estimation method, medium, and panel system
US10838011B2 (en) Method for estimating state of charge and on-vehicle battery system
JP4806558B2 (en) Secondary battery control device and secondary battery deterioration judgment method
JP4527047B2 (en) Secondary battery control device and secondary battery output control method
US9667079B2 (en) Charge control device and charge time calculation method
EP3107146B1 (en) Secondary battery internal temperature estimation device and secondary battery internal temperature estimation method
WO2014147475A2 (en) Electrical storage system, and full charge capacity estimation method for electrical storage device
US9523740B2 (en) Method for determining remaining lifetime
WO2017170621A1 (en) Secondary battery deterioration estimation device and secondary battery deterioration estimation method
JP2013102592A (en) Battery equalization device and method
CN105378499A (en) Secondary battery state detection device and secondary battery state detection method
JP2007139536A (en) Inputtable/outputtable power estimation apparatus for secondary battery
JP2007159248A (en) Controller for secondary battery and input control method of secondary battery
JP2010243447A (en) Apparatus and method for estimating electric storage capacity
JP6500795B2 (en) Vehicle battery SOC management system
JP6729460B2 (en) In-vehicle battery charge controller
JP6631377B2 (en) Charge amount calculation device, computer program, and charge amount calculation method
JP3891845B2 (en) Charge control device for secondary battery for vehicle
JP6355942B2 (en) Charge control device and charge control method
JP6801583B2 (en) Electric vehicle
JP6672976B2 (en) Charge amount calculation device, computer program, and charge amount calculation method
JP6459864B2 (en) Battery control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190306

R150 Certificate of patent or registration of utility model

Ref document number: 6494923

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S343 Written request for registration of root pledge or change of root pledge

Free format text: JAPANESE INTERMEDIATE CODE: R316354

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

SZ02 Written request for trust registration

Free format text: JAPANESE INTERMEDIATE CODE: R316Z02

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S803 Written request for registration of cancellation of provisional registration

Free format text: JAPANESE INTERMEDIATE CODE: R316803

SZ02 Written request for trust registration

Free format text: JAPANESE INTERMEDIATE CODE: R316Z02

SZ03 Written request for cancellation of trust registration

Free format text: JAPANESE INTERMEDIATE CODE: R316Z03

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350