JP2012063244A - Charging rate estimation device of battery - Google Patents

Charging rate estimation device of battery Download PDF

Info

Publication number
JP2012063244A
JP2012063244A JP2010207526A JP2010207526A JP2012063244A JP 2012063244 A JP2012063244 A JP 2012063244A JP 2010207526 A JP2010207526 A JP 2010207526A JP 2010207526 A JP2010207526 A JP 2010207526A JP 2012063244 A JP2012063244 A JP 2012063244A
Authority
JP
Japan
Prior art keywords
open
circuit voltage
battery
value
charging rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010207526A
Other languages
Japanese (ja)
Other versions
JP5292375B2 (en
Inventor
Toshiyuki Iwahana
利幸 岩鼻
Kensuke Nagamura
謙介 長村
Shuichi Adachi
修一 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keio University
Marelli Corp
Original Assignee
Calsonic Kansei Corp
Keio University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Kansei Corp, Keio University filed Critical Calsonic Kansei Corp
Priority to JP2010207526A priority Critical patent/JP5292375B2/en
Publication of JP2012063244A publication Critical patent/JP2012063244A/en
Application granted granted Critical
Publication of JP5292375B2 publication Critical patent/JP5292375B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a charging rate estimation device of a battery for obtaining more accurate charging rate whether a charge and discharge current is constant current or open-circuit voltage changes.SOLUTION: The battery charging rate estimation device includes: an open-circuit voltage estimation means 4 for obtaining an open-circuit voltage estimation value OCV^ from a charge and discharge current value I and a terminal voltage value V on the basis of a battery equivalent circuit model 4A comprising a resistor and an open-circuit voltage generation part capacitor; a charging rate calculation means 5 for calculating charging rate SOC from the open-circuit voltage estimation value on the basis of relation data between the open-circuit voltage value and the charging rate; a delay means 6 for obtaining an open-circuit voltage estimation value OCV^obtained at the last sampling of the obtained open-circuit voltage estimation value; and an open-circuit voltage generation part capacitor capacity calculation means for calculating a capacity COCV of the open-circuit voltage generation part capacitor by using the open-circuit voltage estimation value at the time of the last sampling. The open-circuit voltage estimation means 4 uses the open-circuit voltage generation part capacitor capacity to estimate an open-circuit voltage estimation value of a battery.

Description

本発明は、電気自動車等のバッテリの充電率を推定するバッテリの充電率推定装置に関する。   The present invention relates to a battery charge rate estimation device that estimates a battery charge rate of an electric vehicle or the like.

たとえば、電気自動車やハイブリッド電気自動車などでは、これらの車両を駆動するのに用いられる電気モータへ電力を供給(放電)したり、制動時のエネルギを発電機として機能させる電気モータから、あるいは地上に設置した電源から充電して電気エネルギを蓄積したりするため、リチャージャブル・バッテリ(二次電池)が用いられる。   For example, in an electric vehicle or a hybrid electric vehicle, electric power is supplied (discharged) to an electric motor used to drive these vehicles, or an electric motor that causes braking energy to function as a generator or on the ground. A rechargeable battery (secondary battery) is used to store electric energy by charging from an installed power source.

この場合、長期にわたってバッテリを最適な状態に保つためには、バッテリの状態、とりわけ充電率(SOC: State of Charge)を常にモニタしてバッテリ・マネージメントを行う必要がある。ところが、バッテリを用いる場合、その充放電・蓄電が化学的作用によるので、間接的にバッテリの状態を推定せざるを得ない。この場合、温度変化の影響等も大きく、バッテリの状態は使用環境や使用履歴で絶えず変化するので、充電率の推定は大変である。そこで、従来から種々のバッテリの充電率を推定する方法が提案されてきている。   In this case, in order to keep the battery in an optimum state for a long period of time, it is necessary to perform battery management by constantly monitoring the state of the battery, particularly the state of charge (SOC). However, when a battery is used, the charge / discharge / storage is due to chemical action, so the state of the battery must be estimated indirectly. In this case, the influence of the temperature change is large, and the state of the battery constantly changes depending on the usage environment and usage history. Therefore, various methods for estimating the charging rate of various batteries have been proposed.

従来のバッテリの充電率推定装置は、バッテリの電流値と端子電圧値とを計測して、これらの計測値から、適応ディジタル・フィルタを用いて、抵抗とコンデンサからなるバッテリ等価回路モデルのパラメータを推定して回路電圧値(開放電圧値)を求め、この回路電圧値から、予め求めた回路電圧値と充電率との関係に基づいて、充電率を推定するようにしている(例えば、特許文献1参照)。   The conventional battery charge rate estimation device measures the battery current value and the terminal voltage value, and uses these adaptive values to calculate the parameters of the battery equivalent circuit model consisting of a resistor and a capacitor using an adaptive digital filter. The circuit voltage value (open circuit voltage value) is obtained by estimation, and the charging rate is estimated from the circuit voltage value based on the relationship between the previously obtained circuit voltage value and the charging rate (for example, Patent Documents). 1).

また、別の従来のバッテリの充電率推定装置は、バッテリの電流値と端子電圧値とを計測して、これらの計測値から、カルマン・フィルタを用いて、抵抗とコンデンサからなるバッテリ等価回路モデルに基づき開放電圧値を推定し、予め求めた回路電圧値と充電率との関係に基づいて充電率を推定するようにしている(例えば、非特許文献1参照)。   Another conventional battery charge rate estimation device measures a battery current value and a terminal voltage value, and uses a Kalman filter from these measured values to form a battery equivalent circuit model composed of a resistor and a capacitor. The open-circuit voltage value is estimated based on the above, and the charge rate is estimated based on the relationship between the circuit voltage value obtained in advance and the charge rate (see, for example, Non-Patent Document 1).

特開2001−384606号公報JP 2001-384606 A

Gregory L. Plett "Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs" Journal of Power Sources 134(2004) 252-261Gregory L. Plett "Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs" Journal of Power Sources 134 (2004) 252-261

しかしながら、上記従来のバッテリの充電率推定装置には以下に説明するような問題がそれぞれある。
まず、前者の従来のバッテリの充電率推定装置にあっては、適応ディジタル・フィルタによる、等価回路モデルのパラメータ推定精度は、充放電電流の特性によって異なり、一般的に一定電流の場合は推定精度が低下してしまう。このようにパラメータの推定精度が低下すると、開放電圧値の算出精度も低下してしまうことから、この値に基づいて決める充電率の推定精度も悪くなってしまうといった問題がある。
However, the above-described conventional battery charge rate estimation apparatus has problems as described below.
First, in the former conventional battery charge rate estimation device, the parameter estimation accuracy of the equivalent circuit model by the adaptive digital filter differs depending on the characteristics of the charge / discharge current, and generally the estimation accuracy for a constant current Will fall. If the parameter estimation accuracy decreases in this manner, the calculation accuracy of the open circuit voltage value also decreases, so that there is a problem that the estimation accuracy of the charging rate determined based on this value also deteriorates.

また、後者の従来のバッテリの充電率推定装置にあっては、バッテリ等価回路の開放電圧発生部としてコンデンサで表したバッテリ等価回路モデルに基づいてカルマン・フィルタで開放電圧を推定しているが、この際、上記開放電圧発生部コンデンサの値を一定値として推定演算を行っている。しかしながら、開放電圧発生部コンデンサの値は、開放電圧の値により変化するため、開放電圧値が変化すると、充電率の演算精度も悪化してしまうといった問題がある。   Further, in the latter conventional battery charge rate estimation device, the open-circuit voltage is estimated by a Kalman filter based on a battery equivalent circuit model represented by a capacitor as an open-circuit voltage generation unit of the battery equivalent circuit. At this time, the estimation calculation is performed with the value of the open-circuit voltage generator capacitor as a constant value. However, since the value of the open-circuit voltage generation unit capacitor varies depending on the open-circuit voltage value, there is a problem that when the open-circuit voltage value changes, the calculation accuracy of the charging rate also deteriorates.

本発明は、上記問題に着目してなされたもので、その目的とするところは、充放電電流が一定電流であっても、また開放電圧が変化しても、いずれの場合にもより精度の高い充電率を得ることができるようにしたバッテリの充電率推定装置を提供することにある。   The present invention has been made paying attention to the above-mentioned problems, and the object of the present invention is to provide more accurate in any case even when the charge / discharge current is a constant current or the open-circuit voltage changes. An object of the present invention is to provide a battery charge rate estimation device capable of obtaining a high charge rate.

この目的のため本発明によるバッテリの充電率推定装置は、
バッテリの充放電電流値を検出する充放電電流検出手段と、
バッテリの端子電圧値を検出する端子電圧検出手段と、
抵抗と開放電圧発生部コンデンサからなる、バッテリのバッテリ等価回路モデルに基づいて、充放電電流検出手段で検出した充放電電流値と端子電圧検出手段で検出した端子電圧値からバッテリの開放電圧推定値を推定する開放電圧推定手段と、
開放電圧推定手段で推定した開放電圧推定値から、開放電圧値とバッテリの充電率の関係データに基づいて充電率を算出する充電率算出手段と、
開放電圧推定手段で求めた開放電圧推定値の1つ前のサンプリング時に得た開放電圧推定値を得る遅延手段と、
1つ前のサンプリング時に得た開放電圧推定値を用いて開放電圧発生部コンデンサの容量を算出する開放電圧発生部コンデンサ容量算出手段と、
を備え、
開放電圧推定手段が、開放電圧発生部コンデンサ容量算出手段で得た開放電圧発生部コンデンサ容量をバッテリのバッテリ等価回路モデルに用いてバッテリの開放電圧推定値を推定する
ことを特徴とする。
For this purpose, the battery charging rate estimation device according to the present invention is:
Charge / discharge current detection means for detecting a charge / discharge current value of the battery;
Terminal voltage detection means for detecting the terminal voltage value of the battery;
Based on the battery equivalent circuit model of the battery consisting of a resistor and an open-circuit voltage generator capacitor, the estimated open-circuit voltage of the battery from the charge / discharge current value detected by the charge / discharge current detection means and the terminal voltage value detected by the terminal voltage detection means An open-circuit voltage estimating means for estimating
From the open circuit voltage estimated value estimated by the open circuit voltage estimating means, the charge rate calculating means for calculating the charge rate based on the relationship data between the open circuit voltage value and the battery charge rate,
Delay means for obtaining an open-circuit voltage estimated value obtained at the time of sampling immediately before the open-circuit voltage estimated value obtained by the open-circuit voltage estimating means;
An open-circuit voltage generating unit capacitor capacity calculating means for calculating the capacity of the open-circuit voltage generating unit capacitor using the open-circuit voltage estimated value obtained at the time of the previous sampling;
With
The open-circuit voltage estimating means estimates the open-circuit voltage estimated value of the battery using the open-circuit voltage generating section capacitor capacity obtained by the open-circuit voltage generating section capacitor capacity calculating means for the battery equivalent circuit model of the battery.

本発明のバッテリの充電率推定装置にあっては、バッテリのバッテリ等価回路モデルの開放電圧発生部コンデンサの容量に、開放電圧発生部コンデンサ容量算出手段で算出した、1つ前のサンプリング時に得た開放電圧推定値から求めた開放電圧発生部コンデンサ容量を用いて、本来逐次変化していくバッテリ等価回路モデルの開放電圧発生部コンデンサの容量に合わせてこれを可変となるようにしたので、充放電電流が一定電流であっても開放電圧が変化しても、従来技術のものより精度の高い充電率を得ることができる。   In the battery charging rate estimation device of the present invention, the capacity of the open-circuit voltage generation unit capacitor of the battery equivalent circuit model of the battery was obtained at the time of the previous sampling calculated by the open-circuit voltage generation unit capacitor capacity calculation means. Using the open-circuit voltage generation unit capacitor capacity obtained from the open-circuit voltage estimated value, it was made variable according to the open-circuit voltage generation unit capacitor capacity of the battery equivalent circuit model that originally changes sequentially. Even if the current is constant or the open-circuit voltage changes, a charging rate with higher accuracy than that of the prior art can be obtained.

本発明の実施例1に係るバッテリの充電率推定装置の構成を示すブロック図である。It is a block diagram which shows the structure of the charging rate estimation apparatus of the battery which concerns on Example 1 of this invention. 実施例1のバッテリの充電率推定装置で用いるバッテリ等価回路モデルの図である。It is a figure of the battery equivalent circuit model used with the charging rate estimation apparatus of the battery of Example 1. バッテリの開放電圧と充電率との関係を示すグラフである。It is a graph which shows the relationship between the open circuit voltage of a battery, and a charging rate. 実施例1のバッテリの充電率推定装置を構成する開放電圧推定部の構成を示すブロック線図である。It is a block diagram which shows the structure of the open circuit voltage estimation part which comprises the charging rate estimation apparatus of the battery of Example 1. FIG. 図4の開放電圧推定部のカルマン・ゲイン算出部の構成を示すブロック線図である。FIG. 5 is a block diagram illustrating a configuration of a Kalman gain calculation unit of the open circuit voltage estimation unit of FIG. 4. 図4の開放電圧推定部の状態量推定部の構成を示すブロック線図である。It is a block diagram which shows the structure of the state quantity estimation part of the open circuit voltage estimation part of FIG. 開放電圧発生部コンデンサ容量算出方法で利用する、バッテリの性質に基づく開放電圧算出のためのブロック線図である。It is a block diagram for open circuit voltage calculation based on the property of a battery utilized with the open circuit voltage generation part capacitor capacity calculation method. 開放電圧発生部コンデンサ容量算出方法で利用する、バッテリ等価回路モデルに基づく開放電圧算出のためのブロック線図である。It is a block diagram for open circuit voltage calculation based on a battery equivalent circuit model used with the open circuit voltage generation part capacitor capacity calculation method. 開放電圧発生部コンデンサ容量部の構成を示すブロック線図である。It is a block diagram which shows the structure of an open circuit voltage generation part capacitor | condenser capacity | capacitance part. 実施例1のバッテリの充電率推定装置へ入力する入力を示す図で、(a)はバッテリの充放電電流を示す図、(b)はバッテリの端子電圧を示す図である。It is a figure which shows the input input into the charging rate estimation apparatus of the battery of Example 1, (a) is a figure which shows the charging / discharging current of a battery, (b) is a figure which shows the terminal voltage of a battery. 図10の入力に対する実施例1のバッテリの充電率推定装置の出力を示す図で、(a)はバッテリの充電率推定値を示す図、(b)はそのときの充電率推定誤差を示す図である。10 is a diagram illustrating an output of the battery charging rate estimation apparatus according to the first embodiment with respect to the input of FIG. 10, in which (a) is a diagram illustrating a battery charging rate estimation value, and (b) is a diagram illustrating a charging rate estimation error at that time; FIG. It is.

以下、本発明の実施の形態を、図面に示す実施例に基づき詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail based on examples shown in the drawings.

図1に、実施例1のバッテリ1の充電率推定装置およびこの装置が接続されるバッテリ1の構成関係およびそれらの信号の流れを示す。
実施例1のバッテリ1の充電率推定装置は、電気自動車やハイブリッド電気自動車などの車両に用いられる。このような車両には、車両を駆動する図示しない電気モータ、バッテリ1、これらのコントローラ(図示せず)が搭載され、車両駆動時にはバッテリ1から電気モータへ電力を供給(放電)したり、制動時には電気モータを発電機として機能させそのとき得た制動エネルギを電気エネルギとしてバッテリ1へ回収(充電)したり、あるいは地上に設置した電源からバッテリ1に充電したりする。このような充放電電流のバッテリ1への出入りをバッテリ1の充電率推定装置でモニタし、バッテリ1の状態の一つである充電率を推定するものである。
FIG. 1 shows a configuration relationship of the charging rate estimation device for the battery 1 and the battery 1 to which the device is connected and the flow of signals thereof according to the first embodiment.
The charging rate estimation device for the battery 1 according to the first embodiment is used for vehicles such as electric vehicles and hybrid electric vehicles. Such a vehicle is equipped with an electric motor (not shown) that drives the vehicle, a battery 1, and a controller (not shown), and when the vehicle is driven, power is supplied (discharged) from the battery 1 to the electric motor, or braking is performed. Sometimes, the electric motor functions as a generator, and the braking energy obtained at that time is collected (charged) into the battery 1 as electric energy, or the battery 1 is charged from a power supply installed on the ground. The charging / discharging current of the battery 1 is monitored by a charging rate estimation device of the battery 1 to estimate the charging rate which is one of the states of the battery 1.

まず、バッテリ1の充電率推定装置の全体構成につき説明する。
実施例1のバッテリ1の充電率推定装置は、図1に示すように、電圧センサ2、電流センサ3、開放電圧推定部4、充電率算出部5、遅延器6、および開放電圧発生部コンデンサ容量算出部7を有し、電圧センサ2および電流センサ3を介してバッテリ1に接続される。なお、開放電圧推定部4、充電率算出部5、遅延器6、および開放電圧発生部コンデンサ容量算出部7は、車載のマイクロ・コンピュータで構成する。
First, the overall configuration of the charging rate estimation device for the battery 1 will be described.
As shown in FIG. 1, the battery 1 charging rate estimation apparatus according to the first embodiment includes a voltage sensor 2, a current sensor 3, an open-circuit voltage estimation unit 4, a charging rate calculation unit 5, a delay device 6, and an open-circuit voltage generation unit capacitor. It has a capacity calculation unit 7 and is connected to the battery 1 via the voltage sensor 2 and the current sensor 3. The open-circuit voltage estimation unit 4, the charging rate calculation unit 5, the delay device 6, and the open-circuit voltage generation unit capacitor capacity calculation unit 7 are configured by an on-vehicle microcomputer.

バッテリ1は、本実施例にあっては、リチャージャブル・バッテリ、たとえばリチウム・イオン・バッテリを用いるが、これに限られることはなく、ニッケル・水素バッテリ等、他の種類のバッテリを用いてもよいことは言うまでもない。   In this embodiment, the battery 1 uses a rechargeable battery, for example, a lithium ion battery, but is not limited to this, and other types of batteries such as a nickel-hydrogen battery may be used. Needless to say.

電流センサ2はバッテリ1から電気モータ等へ電力を供給する場合の放電電流の大きさ、および制動時に電気モータを発電機として機能させて制動エネルギの一部を回収したり地上の電源設備から充電したりする場合の充電電流の大きさを検出するもので、たとえば、シャント抵抗等を使ってバッテリ1に流れる電流値Iを検出する。検出した充放電電流値Iは、入力信号として開放電圧推定部4へ入力される。
電圧センサ3は、バッテリ1の端子間の電圧を検出するものであり、この検出した端子電圧値Vは開放電圧推定部4へ入力される。
なお、電流センサ2、電圧センサ3は、種々の構造・形式を有するものを適宜採用でき、それぞれ本発明の充放電電流検出手段、端子電圧検出手段に相当する。
The current sensor 2 collects a part of the braking energy by charging the electric power facility on the ground by making the electric motor function as a generator during braking when the electric power is supplied from the battery 1 to the electric motor or the like. For example, the current value I flowing in the battery 1 is detected using a shunt resistor or the like. The detected charge / discharge current value I is input to the open-circuit voltage estimation unit 4 as an input signal.
The voltage sensor 3 detects the voltage between the terminals of the battery 1, and the detected terminal voltage value V is input to the open circuit voltage estimation unit 4.
Note that the current sensor 2 and the voltage sensor 3 can appropriately adopt ones having various structures and formats, and correspond to the charge / discharge current detection means and the terminal voltage detection means of the present invention, respectively.

開放電圧推定部4は、バッテリ等価回路モデル4A、状態量推定部4Bおよびカルマン・ゲイン算出部4Cを有するもので、電流センサ2で検出した充放電電流値Iと電圧センサ3で検出した端子電圧値Vから、バッテリ等価回路モデル4Aのパラメータを推定し、状態量である開放電圧OCV^を求める。なお、開放電圧推定部4は、本発明の開放電圧推定検出手段に相当する。   The open-circuit voltage estimation unit 4 includes a battery equivalent circuit model 4A, a state quantity estimation unit 4B, and a Kalman gain calculation unit 4C. The charge / discharge current value I detected by the current sensor 2 and the terminal voltage detected by the voltage sensor 3 The parameter of the battery equivalent circuit model 4A is estimated from the value V, and the open circuit voltage OCV ^ that is the state quantity is obtained. The open-circuit voltage estimation unit 4 corresponds to open-circuit voltage estimation detection means of the present invention.

本実施例で用いるバッテリ等価回路モデル4Aを図2に示す。この等価回路モデル4Aとしては、本実施例では図2に示すフォスタ型RC梯子回路(ただし1段のみ)を用いる。すなわち、この回路は、バッテリ1の電解液抵抗と結線によるオーム抵抗等の直流成分を設定するバスク抵抗(R)に、抵抗(R:ファラデー・インピーダンスでありバッテリ1中の電荷移動過程における動的振る舞いを表す反応抵抗として設定)とコンデンサ(C:非ファラデー・インピーダンスであり電気二重層を表わすものとして設定)の並列回路を接続したものである。また、同図中には、開放電圧部を表わす開放電圧部コンデンサ(COCV)の開放電圧値をOCV、端子電圧値をV、上記並列回路で発生する過電圧値をVでそれぞれ表示してある。端子電圧値Vは、開放電圧値OCVと過電圧値Vとの合計に等しくなる。なお、RおよびRは上記各抵抗の抵抗値を表わし、CおよびCOCVは上記各コンデンサの容量を表わす。 A battery equivalent circuit model 4A used in the present embodiment is shown in FIG. As this equivalent circuit model 4A, a Foster-type RC ladder circuit (however, only one stage) shown in FIG. 2 is used in this embodiment. That is, in this circuit, a resistance (R 1 : Faraday impedance) is set in a basque resistance (R 0 ) for setting a direct current component such as an ohmic resistance due to the electrolyte resistance and connection of the battery 1. A parallel circuit of a capacitor (set as a reaction resistance representing dynamic behavior) and a capacitor (C 1 : set as a non-Faraday impedance and representing an electric double layer) is connected. Further, in the figure, the open-circuit voltage value of the open voltage unit capacitor representing the open circuit voltage unit (C OCV) OCV, the terminal voltage value V, to display each overvoltage value generated by the parallel circuit with V 1 is there. Terminal voltage value V is equal to the sum of the open circuit voltage value OCV and overvoltage value V 1. R 0 and R 1 represent resistance values of the respective resistors, and C 1 and C OCV represent capacitances of the respective capacitors.

状態量推定部4Bは、本実施例ではカルマン・フィルタを用いてバッテリ等価回路モデル4Aに基づきこの状態量を推定する。すなわち、この状態量推定部4Bでは、バッテリ等価回路モデル4Aの状態方程式(離散化して用いる)を用いて、入力を充放電電流値I、出力を端子電圧値V^、状態量を開放電圧推定値OCV^として、同じ入力に対するバッテリ等価回路モデル4Aの推定出力値V^と実際のバッテリ1の出力値Vとの誤差εに、カルマン・ゲイン算出部4Cで算出したカルマン・ゲインLを掛けたものをフィードバックして誤差が最小になるようにバッテリ等価回路モデル4Aを修正していき、そのときのパラメータを求めていく。この詳細構成については、後で説明する。状態量推定部4Bで推定した開放電圧推定値OCV^は充電率算出部5と遅延器6へそれぞれ入力する。なお、記号^は、推定を表わすが、明細書中では図中の記号とは異なり便宜上右側へずらして記載する。   In this embodiment, the state quantity estimation unit 4B estimates this state quantity based on the battery equivalent circuit model 4A using a Kalman filter. That is, the state quantity estimation unit 4B uses the state equation (discretized) of the battery equivalent circuit model 4A to estimate the charge / discharge current value I for the input, the terminal voltage value V ^ for the output, and the open circuit voltage for the state quantity. As the value OCV ^, the error ε between the estimated output value V ^ of the battery equivalent circuit model 4A for the same input and the actual output value V of the battery 1 is multiplied by the Kalman gain L calculated by the Kalman gain calculator 4C. The battery equivalent circuit model 4A is corrected so that the error is minimized by feeding back the parameters, and the parameters at that time are obtained. This detailed configuration will be described later. The open-circuit voltage estimated value OCV ^ estimated by the state quantity estimating unit 4B is input to the charging rate calculating unit 5 and the delay device 6, respectively. Note that the symbol ^ represents estimation, but is shifted to the right for convenience in the specification, unlike the symbol in the figure.

カルマン・ゲイン算出部4Cは、バッテリ等価回路モデル4Aの推定出力(電圧推定値V^)とバッテリ1の出力(端子電圧V)との誤差εを、フィードバックするに当たっての重みづけとなるカルマン・ゲインLを決めるためのもので、その詳細構成については後で説明する。   The Kalman gain calculation unit 4C is a Kalman gain that is used to weight the error ε between the estimated output (voltage estimated value V ^) of the battery equivalent circuit model 4A and the output of the battery 1 (terminal voltage V). This is for determining L, and its detailed configuration will be described later.

充電率算出部5は、バッテリの種類ごとにあらかじめ実験等で測定した開放電圧値OCVと充電率SOCとの関係データを記憶する開放電圧値(OCV)と充電率(SOC)との関係データを記憶する関係データ記憶部5Aを有する。この関係データの例を図3に示す。したがって、バッテリ1の開放電圧が推定されれば、この推定値OCV^から関係データに基づき充電率SOCを求めることが可能となる。この充電率SOCは、バッテリ・マネージメントに利用される。   The charging rate calculation unit 5 stores relational data between the open-circuit voltage value (OCV) and the charging rate (SOC) for storing relational data between the open-circuit voltage value OCV and the charging rate SOC measured in advance for each type of battery. It has a relational data storage unit 5A for storing. An example of this relationship data is shown in FIG. Therefore, if the open circuit voltage of the battery 1 is estimated, the charge rate SOC can be obtained from the estimated value OCV ^ based on the relational data. This charge rate SOC is used for battery management.

遅延器6は、上記バッテリ等価回路モデル4Aの離散化した状態方程式を用いて状態量推定部4Bで得られたk番目の開放電圧推定値OCV^に1/z(zはz変換を示す)を掛けて、このk番目の1つ前であるk−1番目の開放電圧推定値OCV^を得るものである。この1つ前であるk−1番目の開放電圧推定値OCV^は、開放電圧部コンデンサ容量算出部7に入力される。なお、遅延器6は、本発明の遅延手段に相当する。 The delay unit 6 uses 1 / z (z indicates z conversion) to the kth open-circuit voltage estimated value OCV ^ obtained by the state quantity estimation unit 4B using the discrete state equation of the battery equivalent circuit model 4A. To obtain the (k-1) th open circuit voltage estimated value OCV ^ - , which is the previous one of the kth. The immediately previous k−1th open circuit voltage estimated value OCV ^ is input to the open circuit voltage section capacitor capacity calculation section 7. The delay device 6 corresponds to the delay means of the present invention.

開放電圧部コンデンサ容量算出部7では、入力されたk−1番目の開放電圧推定値OCV^から開放電圧部コンデンサの容量COCVを算出し、開放電圧推定部4に入力して、バッテリ等価回路モデル4Aにおける開放電圧部コンデンサの容量COCVを絶えず更新して行く。 In the open-circuit voltage section capacitor capacity calculation section 7, the capacity C OCV of the open-circuit voltage section capacitor is calculated from the inputted (k−1) th open-circuit voltage estimated value OCV ^ −, and is input to the open-circuit voltage estimation section 4 for battery equivalent The capacitance C OCV of the open circuit voltage capacitor in the circuit model 4A is continuously updated.

以上が、本実施例のバッテリの充電率推定装置の主な構成である。次に、この開放電圧推定部4にカルマン・フィルタを適用するにあたって、その考え方につき以下に説明する。   The above is the main configuration of the battery charging rate estimation apparatus of the present embodiment. Next, the concept of applying the Kalman filter to the open-circuit voltage estimation unit 4 will be described below.

まず、カルマン・フィルタの設計にあたっては、推定対象となるシステムを以下の状態方程式で表現しなければならない。
dx/dt = Ax + Bu (式1)
y = Cx + Du (式2)
ここで、xはシステムの状態ベクトル(パラメータである状態量を表わす)、uはシステムへの入力ベクトル、yは出力ベクトル、A、B,C,Dはシステムのダイナミックスを記述する行列であり、それぞれシステム行列、入力行列、出力行列、伝達行列であり、d/dtは時間微分である。
First, in designing the Kalman filter, the system to be estimated must be expressed by the following equation of state.
dx / dt = Ax + Bu (Formula 1)
y = Cx + Du (Formula 2)
Here, x is a system state vector (representing a state quantity as a parameter), u is an input vector to the system, y is an output vector, and A, B, C, and D are matrices describing system dynamics. Are a system matrix, an input matrix, an output matrix, and a transfer matrix, respectively, and d / dt is a time derivative.

また、図2に示したバッテリ等価回路モデル4Aでは、上記(式1)、(式2)における行列A,B,C,Dの値は次のようになる。

Figure 2012063244
ただし、状態ベクトルx=[過電圧値 開放電圧値]、入力は充放電電流検出値I(充電をプラス、放電をマイナスにとる)、出力は端子電圧値Vである。なお、上記式中、行列の右上の添え字Tは、その行列の転置を意味する。 In the battery equivalent circuit model 4A shown in FIG. 2, the values of the matrices A, B, C, and D in the above (Expression 1) and (Expression 2) are as follows.
Figure 2012063244
However, the state vector x = [overvoltage value, open-circuit voltage value] T , the input is the charge / discharge current detection value I (plus charge and minus minus discharge), and the output is the terminal voltage value V. In the above formula, the subscript T on the upper right of the matrix means transposition of the matrix.

ここで、上記状態方程式の(式1)、(式2)は連続系で記述してあるので、これらを、以下のように、サンプリング時間をTとして0次ホールドで離散化する。
なお、以下の式において、添え字kはサンプリングの順番の番号、uはk番目における入力データ(本実施例では検出電流値I)、yはk番目における出力データ(本実施例では推測端子電圧V^)、Σ^x,kはk番目における推定誤差共分散値、Lはk番目におけるカルマン・ゲイン、Σはプロセス・ノイズ、Σは観測ノイズ、^は推定値、_は時前推定、+は時後推定、εはk番目における検出出力と推定出力の差(すなわち、本実施例では端子電圧検出値と端子電圧予測値の差)を、それぞれ表す。ただし、カルマン・フィルタを用いるにあたって、εは平均値0、正規性白色雑音であり、またプロセス・ノイズと観測ノイズは互いに独立であると仮定してある。なお、上記記号中、^、 、 _、 + の各記号については、記載上、明細書では図中での使用とは異なり、右側へずらした位置に記載する。
Here, since (Equation 1) and (Equation 2) of the above state equation are described in a continuous system, they are discretized with a 0th-order hold with sampling time T as follows.
In the following equations, the subscript k is a sampling of the order of numbers, u k is inputted in the k-th data (detected current value I in this embodiment), y k guess the output data (the example in the k-th terminal voltage V ^), sigma ^ x ~, k is the estimated error covariance value of the k-th, L k is the Kalman gain in the k-th, sigma V process noise, sigma W is measurement noise, ^ is the estimated value, _ Represents the pre-time estimation, + represents the post-time estimation, and ε k represents the difference between the detected output and the estimated output at the k-th (that is, the difference between the terminal voltage detected value and the terminal voltage predicted value in this embodiment). However, when using the Kalman filter, it is assumed that ε k is an average value of 0, normal white noise, and that process noise and observation noise are independent of each other. In addition, in the above symbols, the symbols ^, ˜ , _, + are described at the positions shifted to the right in the description, unlike the use in the drawings.

離散化したカルマン・フィルタの状態方程式は、以下のように表わすことができる。

Figure 2012063244
The state equation of the discrete Kalman filter can be expressed as follows.
Figure 2012063244

上記(式3)、(式4)中のA,B,C,Dは、それぞれ以下のようになる。

Figure 2012063244
なお、上記(式5)、(式6)中におけるeATは、状態遷移マトリクスである。ここで、eは自然数、Tは入出力信号のサンプリング周期(行列やベクトルの転置を表す上付き添え字Tとは異なる)となる番号である。 A k , B k , C k , and D k in the above (Formula 3) and (Formula 4) are as follows.
Figure 2012063244
The above equation (5), e AT in the equation (6) is a state transition matrix. Here, e is a natural number, and T is a number that is a sampling period of the input / output signal (different from the superscript T representing the transposition of a matrix or a vector).

したがって、カルマン・フィルタの状態方程式は、以下のように表される。

Figure 2012063244
これらの式(式9)〜(式12)は状態量を推定するための式である。
これらの式により、カルマン・フィルタを用いる開放電圧推定部4は、図4のブロック線図にて表わすことができる。このブロック線図については後で説明する。 Therefore, the state equation of the Kalman filter is expressed as follows.
Figure 2012063244
These equations (Equation 9) to (Equation 12) are equations for estimating the state quantity.
From these equations, the open-circuit voltage estimation unit 4 using the Kalman filter can be represented by the block diagram of FIG. This block diagram will be described later.

また、このときk番目の事前推定、事後推定での推定誤差共分散値およびカルマン・ゲインは以下の式で表わされる。

Figure 2012063244
これらの式(式13)〜(式15)により、カルマン・ゲイン算出部4Cのブロック線図は、図5のように表すことができる。このブロック線図については後で説明する。 At this time, the estimation error covariance value and the Kalman gain in the k-th prior estimation and post-estimation are expressed by the following equations.
Figure 2012063244
From these equations (Equation 13) to (Equation 15), the block diagram of the Kalman gain calculator 4C can be expressed as shown in FIG. This block diagram will be described later.

以上のように、カルマン・フィルタKFを用いた状態量の推定は、(式9)〜(式15)と図2のバッテリ等価モデル4Aの状態方程式(式2)により、状態量算出部4Bとカルマン・ゲイン算出部4Cにて行う。
図4に示すように、状態量推定部4Bには電流センサ3で測定された充放電電流値Iと開放電圧部コンデンサ容量算出部7で算出された開放電圧部コンデンサ容量COCVとが入力され、後で説明する演算によって、バッテリ等価回路モデル4Aにおける状態量として開放電圧推定値OCV^と端子電圧推定値V^を出力する。この端子電圧推定値V^は、減算器109に入力されて、ここで、電圧センサ3にて測定されたバッテリ1の端子電圧知値Vから減算されることにより、これらの誤差εが得られる。
この誤差εは、カルマン・ゲイン算出部4Cで算出したカルマン・ゲインLが乗算器108で掛けられて、この乗算値L・εが状態量推定部4Bにフィードバックされる。
As described above, the estimation of the state quantity using the Kalman filter KF is performed by the state quantity calculation unit 4B according to (Formula 9) to (Formula 15) and the state equation (Formula 2) of the battery equivalent model 4A of FIG. This is performed by the Kalman gain calculation unit 4C.
As shown in FIG. 4, the state quantity estimation unit 4B receives the charge / discharge current value I measured by the current sensor 3 and the open-circuit voltage unit capacitor capacity COCV calculated by the open-circuit voltage unit capacitor capacity calculation unit 7. The open circuit voltage estimated value OCV ^ and the terminal voltage estimated value V ^ are output as state quantities in the battery equivalent circuit model 4A by calculation described later. The terminal voltage estimated value V ^ is input to the subtractor 109, where the error ε is obtained by subtracting from the terminal voltage knowledge value V of the battery 1 measured by the voltage sensor 3. .
The error ε is multiplied by the Kalman gain L calculated by the Kalman gain calculation unit 4C by the multiplier 108, and the multiplication value L · ε is fed back to the state quantity estimation unit 4B.

次に、カルマン・ゲイン算出部4Cにおけるカルマン・ゲインLの推定は、(式13)〜(式15)により行なわれ、そのブロック線図を図5に示す。
同図に示すように、加算器110には、プロセス・ノイズΣに、遅延器112の出力であるk番目の一つ前(k-1番目)の推定誤差共分散値Σ ,k−1 に係数倍器113、114にてA、A を掛けた値が加算され、k番目の時前推定としての推定誤差共分散値Σx ,k として出力される(式13)。
Next, the estimation of the Kalman gain L in the Kalman gain calculation unit 4C is performed by (Expression 13) to (Expression 15), and a block diagram thereof is shown in FIG.
As shown in the figure, the adder 110 includes the process noise Σ V and the kth previous (k−1) th estimated error covariance value Σ x ˜ , k, which is the output of the delay unit 112. A value obtained by multiplying −1 + by coefficient multipliers 113 and 114 by A k and A k T is added and output as estimated error covariance values Σ x to , k as the k-th previous estimation ( Equation 13).

乗算器111では、減算器115で充放電電流検出値Iからカルマン・ゲインLに行列Cを掛けた積算値が減算されて得た減算値に、加算器110から出力された推定誤差共分散値Σx ,k が、掛け合わされ、k番目の時後推定としての推定誤差共分散値Σx ,k が得られる(式14)。この推定誤差共分散値Σx ,k は、Z変換による遅延器12(Z−1を掛ける)でk番目の一つ前(k-1番目)の推定誤差共分散値Σx ,k−1 を得る。この推定誤差共分散値Σx ,k−1 は、上記のように係数倍器113、114で、それぞれ行列Aおよびこの転置行列A が掛けられた後、この乗算値が加算器110に入力される。 In the multiplier 111, the estimated error output from the adder 110 is subtracted from the subtracted value obtained by subtracting the accumulated value obtained by multiplying the Kalman gain L k by the matrix C k from the charge / discharge current detection value I. The variance values Σ x ˜ , k are multiplied to obtain an estimation error covariance value Σ x ˜ , k + as a k-th post-estimation (Equation 14). The estimated error covariance value sigma x ~, k + is (multiplied by Z -1) delay unit 12 by Z conversion k-th previous (k-1 th) estimation error covariance value sigma x ~ a, k-1 is obtained. The estimated error covariance values Σ x ˜ , k−1 are multiplied by the matrix A k and the transposed matrix A k T respectively by the coefficient multipliers 113 and 114 as described above, and then the multiplied value is added. Input to the device 110.

一方、加算器110の出力であるk番目の時前推定としての推定誤差共分散値Σx ,k は、係数倍器116にて転置行列C が掛けられて除算器117に入力されるとともに、係数倍器118にて行列Cが掛けられて得た積算値が加算器119に入力される。この積算値は、加算器119で観測ノイズΣと加算された後、この加算値が除算器117に入力される。除算器117では、係数倍器116からの出力を加算器119からの出力で割算してカルマン・ゲインLとして出力する(式15)。なお、このカルマン・ゲインLは、上述したように、係数倍器120にて行列Cが掛けられて減算器115に入力される。 On the other hand, the estimation error covariance values Σ x ˜ , k as the k-th pre-estimation output from the adder 110 are multiplied by the transpose matrix C k T by the coefficient multiplier 116 and input to the divider 117. In addition, an integrated value obtained by multiplying the matrix C k by the coefficient multiplier 118 is input to the adder 119. The integrated value are summed and observation noise sigma W by the adder 119, the added value is inputted to the divider 117. The divider 117 divides the output from the coefficient multiplier 116 by the output from the adder 119 and outputs the result as a Kalman gain L k (Equation 15). The Kalman gain L k is multiplied by the matrix C k by the coefficient multiplier 120 and input to the subtractor 115 as described above.

次に、状態量算出部4Aにおける状態量算出は、状態量(式9)〜(式12)により行なわれ、そのブロック図を図6に示す。
同図において、入力u(=充放電電流検出値I)は、Z変換による遅延器122にてZ−1を掛けることでk番目の一つ前の(k−1)番目の入力uk−1が得られる。この入力uk−1は乗算器123に入力され、ここで、入力uk−1に行列Bが掛けられてBk−1が得られる。このBk−1は加算器124に入力される。
Next, the state quantity calculation in the state quantity calculation unit 4A is performed by the state quantities (Equation 9) to (Equation 12), and a block diagram thereof is shown in FIG.
In the figure, an input u k (= charge / discharge current detection value I) is multiplied by Z −1 by a delay unit 122 based on Z conversion, whereby the (k−1) th previous input k k. -1 is obtained. The input u k−1 is input to the multiplier 123, where the input u k−1 is multiplied by the matrix B k to obtain B k u k−1 . This B k u k−1 is input to the adder 124.

加算器124では、さらに、係数倍器126からの出力である推定値Ak−1^が入力されて加算され、k番目の時前推定の状態量x^が得られる(式9)。なお、上記推定値Ak−1^は、加算器127から出力されたk番目の時後推定の状態量x^(=開放電圧推定値OCV^)に遅延器125でz−1が掛けられることで得られた一つ前の状態量xk−1^に、上記のように係数倍器126で、行列Aが掛けることで得られる。 The adder 124 further receives and adds the estimated value A k x k−1 ^ +, which is the output from the coefficient multiplier 126, and obtains the k- th pre-estimated state quantity x k ^ ( Formula 9). The estimated value A k x k−1 ^ + is converted into the k-th post-estimated state quantity x k ^ + (= open-circuit voltage estimated value OCV ^) output from the adder 127 by the delay unit 125. It is obtained by multiplying the previous state quantity x k-1 ^ + obtained by multiplying by −1 by the matrix A k by the coefficient multiplier 126 as described above.

加算器124での推定状態量x^は、加算器127で、カルマン・ゲイン算出部4Bと乗算器108とで得られた積算値L・εが加算されて、推定状態量x^(=開放電圧推定値OCV^)が得られる(式10)。この開放電圧推定値OCV^は充電率算出部5および遅延器6に入力される。 The estimated state quantity x k ^ in the adder 124 is added to the accumulated value L k · ε k obtained by the Kalman gain calculation unit 4B and the multiplier 108 in the adder 127, and the estimated state quantity x k ^ + (= open-circuit voltage estimated value OCV ^) is obtained (Equation 10). This open-circuit voltage estimated value OCV ^ is input to the charging rate calculation unit 5 and the delay unit 6.

一方、加算器124からの出力x^は、係数倍器128にも入力されて行列Cが掛けられてC^が得られる。このC^は加算器130に入力される。この加算器130には、さらに、係数倍器129で入力u(=充放電電流検出値I)に行列Dが掛けられて得たDが入力されて加算され、状態量C^+D、すなわちy^(=端子電圧推定値V^)が得られる(式12)。この端子電圧推定値V^は図4の減算器109に入力され、ここで端子電圧検出値Vから端子電圧推定値V^が減算されて端子電圧差εkが得られる。 On the other hand, the output x k ^ from the adder 124 is also input to the coefficient multiplier 128 and multiplied by the matrix C k to obtain C k x k ^ . This C k x k ^ is input to the adder 130. Further, D k u k obtained by multiplying the input u k (= charge / discharge current detection value I) by the matrix D k by the coefficient multiplier 129 is input to the adder 130 and added, and the state quantity C k x k ^ + D k u k , that is, y k ^ (= terminal voltage estimated value V ^) is obtained (formula 12). This terminal voltage estimated value V ^ is input to the subtractor 109 in FIG. 4, where the terminal voltage estimated value V ^ is subtracted from the terminal voltage detection value V to obtain a terminal voltage difference εk.

開放電圧推定部4は以上のように構成されるが、次に、開放電圧部コンデンサ容量算出部7における開放電圧部コンデンサ容量の算出方法につき、図7〜図9の模式図を用いて以下に説明する。   The open-circuit voltage estimation unit 4 is configured as described above. Next, the calculation method of the open-circuit voltage unit capacitor capacity in the open-circuit voltage unit capacitor capacity calculation unit 7 will be described below with reference to the schematic diagrams of FIGS. explain.

開放電圧部コンデンサ容量算出部7では、推定した1つ前のサンプリング時に得られた開放電圧値OCVを用いて、バッテリ1の性質に基づいた開放電圧の式と、バッテリ等価回路モデル4Aに基づいた開放電圧の式とが等価であることから、以下能のように開放電圧部コンデンサ容量COCVを導出する。 The open-circuit voltage unit capacitor capacity calculation unit 7 uses the open-circuit voltage value OCV obtained at the time of the previous sampling estimated and uses the open-circuit voltage equation based on the characteristics of the battery 1 and the battery equivalent circuit model 4A. Therefore, the open circuit voltage capacitor capacitance COCV is derived as follows.

バッテリ1の性質に基づいて算出する開放電圧OCV1は、図7に示すように、まず充放電電流Iを時間積分して、この積分値をバッテリ1の設計容量FCCで割算し、次いで百分率(%)にするため100を掛けることで充電率SOCが算出する。この充電率SOCから、関係データ記憶部5A内に記憶した充電率−開放電圧の関係データを基に開放電圧OCV1を推定する。   As shown in FIG. 7, the open-circuit voltage OCV1 calculated based on the properties of the battery 1 is obtained by first integrating the charge / discharge current I with time and dividing the integrated value by the design capacity FCC of the battery 1 and then by percentage ( %) To calculate the charge rate SOC. From this charge rate SOC, the open circuit voltage OCV1 is estimated based on the charge rate-open circuit voltage relationship data stored in the relationship data storage unit 5A.

バッテリ等価回路モデル4Aを用いて算出する開放電圧OCV2は、開放電圧部コンデンサの電圧であることから、充放電電流値Iを積分して得た積分値(電荷量に相当)を開放電圧部コンデンサ容量COCVで割算することで得られる。   Since the open circuit voltage OCV2 calculated using the battery equivalent circuit model 4A is the voltage of the open circuit voltage section capacitor, the integrated value (corresponding to the charge amount) obtained by integrating the charge / discharge current value I is used as the open circuit voltage section capacitor. It is obtained by dividing by the capacity COCV.

これら開放電圧OCV1、OCV2が等価であるので、これらを求める両式から、以下の関係式が得られる。
COCV=FCC/{100×(1つ前のサンプリング時に得られた開放電圧値OCVのときの、充放電率に対する開放電圧の傾きSL)}
Since these open-circuit voltages OCV1 and OCV2 are equivalent, the following relational expression is obtained from both equations for obtaining them.
COCV = FCC / {100 × (inclination SL of open-circuit voltage with respect to charge / discharge rate when open-circuit voltage value OCV obtained at the previous sampling)}

この式から、開放電圧部コンデンサ容量算出部7のブロック線図は、図9に示すようになる。
すなわち、1つ前のサンプリング時に得られた開放電圧値OCVが入力されて、この開放電圧値OCVから、予め実験で測定した開放電圧OCV−SL(1つ前のサンプリング時に得られた開放電圧値OCVのときの、充放電率に対する開放電圧の傾き)の関係データを基に、傾きSLを得る。この傾きSLは乗算器で100倍され、除算器にてバッテリ1の設計容量を100×SLの値で割算することで開放電圧部コンデンサ容量COCVが算出される。
From this equation, a block diagram of the open-circuit voltage section capacitor capacity calculation section 7 is as shown in FIG.
That is, the open circuit voltage value OCV obtained at the previous sampling is input, and the open circuit voltage OCV−SL (the open circuit voltage obtained at the previous sampling is measured in advance from the open circuit voltage value OCV ). voltage OCV - when the, on the basis of the relationship data of the slope) of the open circuit voltage for the charge and discharge rate, to obtain the slope SL. This slope SL is multiplied by 100 by a multiplier, and the open circuit voltage section capacitor capacity COCV is calculated by dividing the design capacity of the battery 1 by a value of 100 × SL by a divider.

以上のように構成した本実施例の充電率推定装置につき、バッテリ1の充放電電流値Iと端子電圧値Vの入力データを用いて充電率の推定を行った実験結果につき説明する。   With respect to the charging rate estimation device of the present embodiment configured as described above, the experimental results of estimating the charging rate using the input data of the charge / discharge current value I and the terminal voltage value V of the battery 1 will be described.

図10はバッテリ1と本実施例の充電率推定装置とに入力した充放電電流Iと電圧値Vを示しており、図10(a)は横軸に時間を、また縦軸に充放電電流Iを表わし、また同図(b)は横軸に時間を、また縦軸に端子電圧Vを表わしている。これらの入力を、上記で挙げた適応ディジタル・フィルタを用いた第1従来例、開放電圧部コンデンサ容量一定のバッテリ等価回路モデルにカルマン・フィルタを用いた第2従来例、および本実施例の充電率推定装置に、それぞれ入れて、そのとき得られた充電率を比較するようにした。
なお、充電率の真値を知るため、本実験では、車載するには高価すぎるが測定精度が非常に高い電流センサを用いて、バッテリ1の充放電電流を測定し、クーロン・カウント法(電流値を積算し、この積算値を満充電容量で割算して充電率を算出する方法)により充電率を推定し、これを充電率の真値とした。
FIG. 10 shows the charge / discharge current I and the voltage value V input to the battery 1 and the charging rate estimation apparatus of this embodiment. FIG. 10 (a) shows time on the horizontal axis and charge / discharge current on the vertical axis. In the figure, (b) shows time on the horizontal axis and terminal voltage V on the vertical axis. These inputs are the first conventional example using the adaptive digital filter mentioned above, the second conventional example using the Kalman filter in the battery equivalent circuit model with a constant open-circuit voltage section capacitor capacity, and the charging of this embodiment. Each was put in a rate estimation device, and the charging rates obtained at that time were compared.
In order to know the true value of the charging rate, in this experiment, the charge / discharge current of the battery 1 is measured using a current sensor that is too expensive to mount on the vehicle but has very high measurement accuracy, and the Coulomb count method (current The charging rate was estimated by a method of calculating the charging rate by dividing the integrated value and dividing the integrated value by the full charging capacity, and this was taken as the true value of the charging rate.

この実験結果を図11に示す。図11(a)に、充電率の真値(実線で示す)に対する、本実施例での充電率推定値(点線で示す)、第1従来例(図では従来例1と表記)での充電率推定値(鎖線で示す)、および第2従来例(図では従来例2と表記)での充電率推定値(一点鎖線で示す)を示す。
また、図11(b)に、本実施例での充電率推定誤差(点線で示す)、第1従来例での充電率推定誤差(鎖線で示す)、および第2従来例での充電率推定誤差(一点鎖線で示す)を示す。
The result of this experiment is shown in FIG. FIG. 11 (a) shows a charge rate estimated value (indicated by a dotted line) in the present embodiment for the true value of the charge rate (indicated by a solid line), and charging in a first conventional example (indicated as conventional example 1 in the figure). A rate estimation value (indicated by a chain line) and a charge rate estimation value (indicated by a one-dot chain line) in a second conventional example (denoted as conventional example 2 in the figure) are shown.
FIG. 11B shows the charging rate estimation error in this embodiment (shown by a dotted line), the charging rate estimation error in the first conventional example (shown by a chain line), and the charging rate estimation in the second conventional example. An error (indicated by a dashed line) is shown.

図11から分かるように、第1従来例では、入力電流Iの変化が少なくなる、約5,000秒〜約10,000秒の区間、約15,000秒〜約20,000秒の区間、および約25,000秒〜約30,000秒の区間では、充電率推定の精度が、入力電流の変化が大きくなるそれ以外の区間での充電率推定値に比べ、悪化していることが分かる。   As can be seen from FIG. 11, in the first conventional example, the change of the input current I is reduced, the interval of about 5,000 seconds to about 10,000 seconds, the interval of about 15,000 seconds to about 20,000 seconds, and about 25,000 seconds to about 30,000 seconds. It can be seen that the accuracy of the charge rate estimation is worse in the section of, compared with the charge rate estimation value in the other sections where the change in the input current is large.

また、第2従来例では、バッテリ等価回路モデルの開放電圧部コンデンサの容量を一定とみなしているため、この前提と合わない開放電圧が大きく変化するような入力電流の区間では、充電率推定の精度が良くないことが分かる。   In the second conventional example, the capacity of the open-circuit voltage section capacitor of the battery equivalent circuit model is regarded as constant. Therefore, in the input current section where the open-circuit voltage largely does not meet this assumption, the charge rate estimation is performed. It turns out that the accuracy is not good.

このように、図11から、これら従来例に比較して、本実施例のバッテリの充電率推測装置では、入力される電流が一定電流であっても、またバッテリ1の開放電圧が変化しても、そのバッテリ1の充電率をより精度高く検出できることが示されていることが分かる。   Thus, from FIG. 11, compared with these conventional examples, in the battery charge rate estimation device of this embodiment, even when the input current is a constant current, the open-circuit voltage of the battery 1 also changes. It can be seen that the charging rate of the battery 1 can be detected with higher accuracy.

以上のように、実施例1にあっては、以下の効果を得ることができる。
(1)実施例1のバッテリの充電率推定装置は、バッテリ等価回路モデル4Aの開放電圧部コンデンサの容量COCVを可変として実際のバッテリの特性に近付けたので、入力される電流が一定電流であっても、またバッテリ1の開放電圧が変化しても、そのバッテリ1の充電率をより精度高く検出できる。
As described above, the following effects can be obtained in the first embodiment.
(1) Since the battery charging rate estimation apparatus of the first embodiment approaches the characteristics of the actual battery by changing the capacitance COCV of the open-circuit voltage section capacitor of the battery equivalent circuit model 4A, the input current is a constant current. However, even if the open circuit voltage of the battery 1 changes, the charging rate of the battery 1 can be detected with higher accuracy.

(2)また、開放電圧部コンデンサの容量COCVを、開放電圧発生部コンデンサ容量算出部7で算出した1つ前のサンプリング時に得た開放電圧推定値OCV^から求めた開放電圧発生部コンデンサ容量を用いるようにしたので、簡単かつ精度よく開放電圧部コンデンサ容量COCVを求めることができる。 (2) Also, the open-circuit voltage generation unit capacitor capacity obtained from the open-circuit voltage estimated value OCV ^ obtained at the previous sampling calculated by the open-circuit voltage generation unit capacitor capacity calculation unit 7 Therefore, the open-circuit voltage section capacitor capacitance COCV can be obtained easily and accurately.

(3)開放電圧推定部4にカルマン・フィルタを用いたので、簡単かつ精度よくその時々の開放電圧を推定でき、より高い充電率推定の精度が得られる。 (3) Since a Kalman filter is used for the open-circuit voltage estimation unit 4, the open-circuit voltage at that time can be estimated easily and accurately, and higher charge rate estimation accuracy can be obtained.

本発明を上記各実施例に基づき説明してきたが、本発明はこれらの実施例に限られず、本発明の要旨を逸脱しない範囲で設計変更等があった場合でも、本発明に含まれる。   Although the present invention has been described based on each of the above embodiments, the present invention is not limited to these embodiments, and even if there is a design change or the like without departing from the gist of the present invention, it is included in the present invention.

たとえば、バッテリ等価回路モデルとしては、実施例のモデルに限られず開放電圧部にコンデンサを用いるものであれば良く、フォスタ型RC梯子回路で拡散過程における動的振る舞いを表すものとして、抵抗とコンデンサの並列回路をさらに複数段直列接続したものを用いてもよい。あるいは、フォスタ型RC梯子回路とは異なるバッテリ等価回路モデル、たとえばカウエル型梯子回路を用いてもよい。   For example, the battery equivalent circuit model is not limited to the model of the embodiment as long as it uses a capacitor in the open-circuit portion, and the Foster RC ladder circuit represents the dynamic behavior in the diffusion process. A parallel circuit in which a plurality of stages are connected in series may be used. Alternatively, a battery equivalent circuit model different from the Foster type RC ladder circuit, for example, a Cowell type ladder circuit may be used.

また、開放電圧推定部4での開放電圧推定にあたっては、カルマン・フィルタに限られず、他の方法、たとえば逐次最小二乗法などを用いてもよい。   The open-circuit voltage estimation in open-circuit voltage estimation unit 4 is not limited to the Kalman filter, and other methods such as a sequential least square method may be used.

また、本発明のバッテリの充電率推定装置は、リチウム・イオン・バッテリに限らず他の種類のバッテリを対象とすることもでき、また、バッテリも電気自動車やハイブリッド電気自動車などの車両のみならず、地上や構造物に使用するバッテリの充電率推定にも利用できる。   In addition, the battery charge rate estimation device of the present invention is not limited to a lithium ion battery, and can also be applied to other types of batteries, and the battery is not limited to vehicles such as electric vehicles and hybrid electric vehicles. It can also be used to estimate the charging rate of batteries used on the ground and structures.

1 バッテリ
2 電流センサ(充放電電流検出手段)
3 電圧センサ(端子電圧検出手段)
4 開放電圧推定部(開放電圧推定手段)
4A バッテリ等価回路モデル
4B 状態量推定部
4C カルマン・ゲイン算出部
5 充電率算出部
5A 充電率−開放電圧関係データ記憶部
6 遅延器
7 開放電圧発生部コンデンサ
108,111,123 乗算器
109,115 減算器
110,119,124,127,130 加算器
112,122,125 遅延器
117 除算器
113,114,116,118,120,126,128,129 係数倍器
1 battery 2 current sensor (charge / discharge current detection means)
3 Voltage sensor (terminal voltage detection means)
4 Open-circuit voltage estimation unit (open-circuit voltage estimation means)
4A Battery equivalent circuit model 4B State quantity estimation unit 4C Kalman gain calculation unit 5 Charging rate calculation unit 5A Charging rate-open voltage relationship data storage unit 6 Delay device 7 Open voltage generator capacitor 108, 111, 123 Multiplier 109, 115 Subtractor 110, 119, 124, 127, 130 Adder 112, 122, 125 Delay device 117 Divider 113, 114, 116, 118, 120, 126, 128, 129 Coefficient multiplier

Claims (2)

バッテリの充放電電流値を検出する充放電電流検出手段と、
前記バッテリの端子電圧値を検出する端子電圧検出手段と、
抵抗と開放電圧発生部コンデンサからなる、前記バッテリのバッテリ等価回路モデルに基づいて、前記充放電電流検出手段で検出した充放電電流値と前記端子電圧検出手段で検出した端子電圧値から前記バッテリの開放電圧推定値を推定する開放電圧推定手段と、
該開放電圧推定手段で推定した開放電圧推定値から、開放電圧値と前記バッテリの充電率の関係データに基づいて充電率を算出する充電率算出手段と、
前記開放電圧推定手段で求めた開放電圧推定値の1つ前のサンプリング時に得た開放電圧推定値を得る遅延手段と、
該遅延手段で1つ前のサンプリング時に得た開放電圧推定値を用いて前記開放電圧発生部コンデンサの容量を算出する開放電圧発生部コンデンサ容量算出手段と、
を備え、
前記開放電圧推定手段が、前記開放電圧発生部コンデンサ容量算出手段で得た開放電圧発生部コンデンサ容量を前記バッテリのバッテリ等価回路モデルに用いて前記バッテリの開放電圧推定値を推定する、
ことを特徴とするバッテリの充電率推定装置。
Charge / discharge current detection means for detecting a charge / discharge current value of the battery;
Terminal voltage detection means for detecting a terminal voltage value of the battery;
Based on the battery equivalent circuit model of the battery, which is composed of a resistor and an open-circuit voltage generating capacitor, the charge / discharge current value detected by the charge / discharge current detection means and the terminal voltage value detected by the terminal voltage detection means An open-circuit voltage estimating means for estimating an open-circuit voltage estimated value;
A charging rate calculating means for calculating a charging rate based on the relationship between the open voltage value and the charging rate of the battery from the open voltage estimated value estimated by the open voltage estimating means;
Delay means for obtaining an open-circuit voltage estimated value obtained at the time of sampling immediately before the open-circuit voltage estimated value obtained by the open-circuit voltage estimating means;
An open-circuit voltage generation unit capacitor capacity calculation unit for calculating the capacitance of the open-circuit voltage generation unit capacitor using the open-circuit voltage estimation value obtained at the time of the previous sampling by the delay unit;
With
The open-circuit voltage estimating means estimates the open-circuit voltage estimated value of the battery using the open-circuit voltage generating section capacitor capacity obtained by the open-circuit voltage generating section capacitor capacity calculating means in the battery equivalent circuit model of the battery;
An apparatus for estimating a charging rate of a battery.
請求項1に記載のバッテリの充電率推定装置において、
前記開放電圧推定手段は、カルマン・フィルタである、
ことを特徴とするバッテリの充電率推定装置。
The battery charge rate estimation apparatus according to claim 1,
The open-circuit voltage estimation means is a Kalman filter.
An apparatus for estimating a charging rate of a battery.
JP2010207526A 2010-09-16 2010-09-16 Battery charge rate estimation device Active JP5292375B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010207526A JP5292375B2 (en) 2010-09-16 2010-09-16 Battery charge rate estimation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010207526A JP5292375B2 (en) 2010-09-16 2010-09-16 Battery charge rate estimation device

Publications (2)

Publication Number Publication Date
JP2012063244A true JP2012063244A (en) 2012-03-29
JP5292375B2 JP5292375B2 (en) 2013-09-18

Family

ID=46059108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010207526A Active JP5292375B2 (en) 2010-09-16 2010-09-16 Battery charge rate estimation device

Country Status (1)

Country Link
JP (1) JP5292375B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013253784A (en) * 2012-06-05 2013-12-19 Doshisha Equivalent circuit synthesis method and device, and circuit diagnostic method
KR20150020270A (en) * 2012-05-11 2015-02-25 르노 에스.아.에스. Estimating the state of charge of a battery
JP2015081800A (en) * 2013-10-21 2015-04-27 カルソニックカンセイ株式会社 Battery parameter estimation device and method
JP2015184219A (en) * 2014-03-25 2015-10-22 富士通株式会社 Estimation program, estimation method, and estimation device
JP2015184217A (en) * 2014-03-25 2015-10-22 富士通株式会社 Estimation program, estimation method, and estimation device
JP2016011916A (en) * 2014-06-30 2016-01-21 セイコーインスツル株式会社 Battery state monitoring circuit and battery device
US9272635B2 (en) 2012-11-16 2016-03-01 Toyota Jidosha Kabushiki Kaisha Power storage system and method of calculating full charge capacity
KR20160037830A (en) 2014-07-25 2016-04-06 가부시끼가이샤 도시바 Internal condition estimating system and estimating method
WO2019012930A1 (en) * 2017-07-12 2019-01-17 日立オートモティブシステムズ株式会社 Secondary battery control device
CN110741267A (en) * 2018-02-01 2020-01-31 株式会社Lg化学 Method for estimating parameters of equivalent circuit model for battery and battery management system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016135853A1 (en) 2015-02-24 2016-09-01 株式会社東芝 Storage battery management device, method and program

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002223526A (en) * 2001-01-25 2002-08-09 Honda Motor Co Ltd Residue detector for electric dipole layer capacitor
JP2003243017A (en) * 2002-02-13 2003-08-29 Kansai Electric Power Co Inc:The Electric equivalent circuit model forming method for secondary battery and simulation method and program using this
JP2006516326A (en) * 2003-01-30 2006-06-29 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング State quantity and parameter estimation device using multiple partial models for electrical energy storage
JP2009204314A (en) * 2008-02-26 2009-09-10 Nissan Motor Co Ltd Charge rate estimating device and charge rate estimating method for secondary cell
JP2010127729A (en) * 2008-11-27 2010-06-10 Calsonic Kansei Corp Deterioration estimation method and device of battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002223526A (en) * 2001-01-25 2002-08-09 Honda Motor Co Ltd Residue detector for electric dipole layer capacitor
JP2003243017A (en) * 2002-02-13 2003-08-29 Kansai Electric Power Co Inc:The Electric equivalent circuit model forming method for secondary battery and simulation method and program using this
JP2006516326A (en) * 2003-01-30 2006-06-29 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング State quantity and parameter estimation device using multiple partial models for electrical energy storage
JP2009204314A (en) * 2008-02-26 2009-09-10 Nissan Motor Co Ltd Charge rate estimating device and charge rate estimating method for secondary cell
JP2010127729A (en) * 2008-11-27 2010-06-10 Calsonic Kansei Corp Deterioration estimation method and device of battery

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015524048A (en) * 2012-05-11 2015-08-20 ルノー エス.ア.エス. Estimating battery charge
KR20150020270A (en) * 2012-05-11 2015-02-25 르노 에스.아.에스. Estimating the state of charge of a battery
KR102022426B1 (en) 2012-05-11 2019-09-18 르노 에스.아.에스. Estimating the state of charge of a battery
JP2013253784A (en) * 2012-06-05 2013-12-19 Doshisha Equivalent circuit synthesis method and device, and circuit diagnostic method
US9272635B2 (en) 2012-11-16 2016-03-01 Toyota Jidosha Kabushiki Kaisha Power storage system and method of calculating full charge capacity
JP2015081800A (en) * 2013-10-21 2015-04-27 カルソニックカンセイ株式会社 Battery parameter estimation device and method
WO2015059879A1 (en) * 2013-10-21 2015-04-30 カルソニックカンセイ株式会社 Battery parameter estimation device and parameter estimation method
US10175303B2 (en) 2013-10-21 2019-01-08 Calsonic Kansei Corporation Battery parameter estimation device and parameter estimation method
JP2015184217A (en) * 2014-03-25 2015-10-22 富士通株式会社 Estimation program, estimation method, and estimation device
JP2015184219A (en) * 2014-03-25 2015-10-22 富士通株式会社 Estimation program, estimation method, and estimation device
JP2016011916A (en) * 2014-06-30 2016-01-21 セイコーインスツル株式会社 Battery state monitoring circuit and battery device
KR20160037830A (en) 2014-07-25 2016-04-06 가부시끼가이샤 도시바 Internal condition estimating system and estimating method
US10338152B2 (en) 2014-07-25 2019-07-02 Kabushiki Kaisha Toshiba Internal condition estimating system and estimating method
WO2019012930A1 (en) * 2017-07-12 2019-01-17 日立オートモティブシステムズ株式会社 Secondary battery control device
JP2019020174A (en) * 2017-07-12 2019-02-07 日立オートモティブシステムズ株式会社 Secondary battery controller
CN110741267A (en) * 2018-02-01 2020-01-31 株式会社Lg化学 Method for estimating parameters of equivalent circuit model for battery and battery management system
CN110741267B (en) * 2018-02-01 2021-12-28 株式会社Lg化学 Method for estimating parameters of equivalent circuit model for battery and battery management system
US11269013B2 (en) 2018-02-01 2022-03-08 Lg Energy Solution, Ltd. Method for estimating parameter of equivalent circuit model for battery, and battery management system

Also Published As

Publication number Publication date
JP5292375B2 (en) 2013-09-18

Similar Documents

Publication Publication Date Title
JP5292375B2 (en) Battery charge rate estimation device
JP5393619B2 (en) Battery charge rate estimation device
US10312699B2 (en) Method and system for estimating battery open cell voltage, state of charge, and state of health during operation of the battery
JP5404964B2 (en) Battery charging rate estimation device and charging rate estimation method
JP6403746B2 (en) Battery state estimation device
EP2700964B1 (en) Battery state estimation system, battery control system, battery system, and battery state estimation method
CN108291944B (en) Battery management device
JP5329500B2 (en) Battery charge rate estimation device
US7202632B2 (en) Battery management apparatus
JP5393837B2 (en) Battery charge rate estimation device
JP5389136B2 (en) Charging rate estimation apparatus and method
US20100017155A1 (en) Battery management system
KR102534688B1 (en) Automatic method for estimating the state of charge of a cell of a battery
WO2003061054A1 (en) Method for estimating polarization voltage of secondary cell, method and device for estimating remaining capacity of secondary cell, battery pack system, and electric vehicle
JP2003197272A (en) Estimating method and device of residual capacity of secondary battery, as well as battery pack system
JP6450565B2 (en) Battery parameter estimation device
JP2006098135A (en) Device for estimating degree of deterioration in battery
JP5389137B2 (en) Charging rate estimation apparatus and method
WO2008099298A1 (en) Method and apparatus for determination of the state-of-charge (soc) of a rechargeable battery
JP4509670B2 (en) Remaining capacity calculation device for power storage device
JP4638194B2 (en) Remaining capacity calculation device for power storage device
JP5886225B2 (en) Battery control device and battery control method
WO2016178308A1 (en) Secondary battery charging rate calculation device and storage battery system
JP5904916B2 (en) Battery soundness calculation device and soundness calculation method
JP2005326377A (en) Arithmetic processing unit for power quantity of charge accumulating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130610

R150 Certificate of patent or registration of utility model

Ref document number: 5292375

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250