JP4509670B2 - Remaining capacity calculation device for power storage device - Google Patents

Remaining capacity calculation device for power storage device Download PDF

Info

Publication number
JP4509670B2
JP4509670B2 JP2004194456A JP2004194456A JP4509670B2 JP 4509670 B2 JP4509670 B2 JP 4509670B2 JP 2004194456 A JP2004194456 A JP 2004194456A JP 2004194456 A JP2004194456 A JP 2004194456A JP 4509670 B2 JP4509670 B2 JP 4509670B2
Authority
JP
Japan
Prior art keywords
current
remaining capacity
value
storage device
calculated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004194456A
Other languages
Japanese (ja)
Other versions
JP2006017544A (en
Inventor
篤史 難波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Jukogyo KK filed Critical Fuji Jukogyo KK
Priority to JP2004194456A priority Critical patent/JP4509670B2/en
Publication of JP2006017544A publication Critical patent/JP2006017544A/en
Application granted granted Critical
Publication of JP4509670B2 publication Critical patent/JP4509670B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

本発明は、二次電池や電気化学キャパシタ等の蓄電デバイスの残存容量を演算する蓄電デバイスの残存容量演算装置に関する。   The present invention relates to a remaining capacity calculation device for a power storage device that calculates the remaining capacity of a power storage device such as a secondary battery or an electrochemical capacitor.

近年、ニッケル水素電池やリチウムイオン電池等の二次電池、電気二重層キャパシタ等の電気化学キャパシタといった蓄電デバイスの小型軽量化・高エネルギー密度化が進み、携帯型の情報通信機器から電気自動車やハイブリッド自動車等の電源として活発に利用されている。   In recent years, energy storage devices such as secondary batteries such as nickel metal hydride batteries and lithium ion batteries, and electrochemical capacitors such as electric double layer capacitors have been reduced in size and weight, and energy density has increased. It is actively used as a power source for automobiles.

このような蓄電デバイスを有効に活用するには、その残存容量を正確に把握することが重要であり、従来から、蓄電デバイスの充放電電流を積算して残存容量を求める技術や、開放電圧に基づいて残存容量を求める技術が知られている。   In order to effectively use such an electricity storage device, it is important to accurately grasp its remaining capacity. Conventionally, a technique for calculating the remaining capacity by accumulating the charge / discharge current of the electricity storage device and an open circuit voltage are used. A technique for obtaining the remaining capacity based on this is known.

例えば、特許文献1には、電気自動車の車両停止時の電池電圧から求めた開放電圧により停止時残存容量を求めると共に、電池の放電電流の積算値に基づいて放電電気容量を検出し、この放電電気容量と停止時残存容量とから満充電容量を算出し、この満充電容量と放電電気容量とから残存容量を求める技術が開示されている。   For example, in Patent Document 1, the remaining capacity at the time of stoppage is obtained from the open-circuit voltage obtained from the battery voltage at the time of stopping the electric vehicle, and the discharge electric capacity is detected based on the integrated value of the discharge current of the battery. A technique is disclosed in which a full charge capacity is calculated from the electric capacity and the remaining capacity at stop, and the remaining capacity is obtained from the full charge capacity and discharge electric capacity.

また、特許文献2には、リチウムイオン電池のような電池容量と電池電圧とに直線的な比例関係があるものにおいて、任意の時間のあいだ放電または充電したときの電流積算量と、放電または充電前の電圧、放電または充電後の電圧より、残存容量を求める技術が開示されている。   Further, in Patent Document 2, a battery capacity and a battery voltage, such as a lithium ion battery, having a linear proportional relationship, an accumulated amount of current when discharging or charging for an arbitrary time, and discharging or charging. A technique for obtaining a remaining capacity from a previous voltage, a voltage after discharge or a charge is disclosed.

更に、特許文献3には、電池の充放電電流を積分して求めた残存容量と、電池の開放端子電圧に基づいて推定した残存容量との差の変化率に基づいて、残存容量の演算方法を補正する技術が開示されている。
特開平6−242193号公報 特開平8−179018号公報 特開平11−223665号公報
Further, Patent Document 3 discloses a method for calculating the remaining capacity based on the rate of change of the difference between the remaining capacity obtained by integrating the charging / discharging current of the battery and the remaining capacity estimated based on the open terminal voltage of the battery. A technique for correcting the above is disclosed.
JP-A-6-242193 JP-A-8-179018 Japanese Patent Laid-Open No. 11-223665

しかしながら、充放電電流を積算して残存容量を求める技術と開放電圧の推定値に基づいて残存容量を求める技術とは、それぞれに一長一短があり、前者は、突入電流等の負荷変動に強く、安定した残存容量が得られる反面、誤差が累積し易い(特に、高負荷継続時には誤差が大きくなる)という欠点があり、また、後者は、通常の使用時において、正確な値を求めることができる反面、短時間で負荷が大きく変動した場合に演算値が変動しやすいという欠点がある。   However, the technology for calculating the remaining capacity by integrating the charge / discharge current and the technology for determining the remaining capacity based on the estimated open circuit voltage have advantages and disadvantages. The former is resistant to load fluctuations such as inrush current and is stable. Although the remaining capacity can be obtained, there is a drawback that errors are likely to accumulate (especially, the error increases when the load is high), and the latter can obtain an accurate value during normal use. There is a drawback that the calculated value tends to fluctuate when the load fluctuates greatly in a short time.

従って、特許文献1,2,3のように、単に、両者の技術を組合わせただけでは、電流積算による誤差の累積を排除することは困難である。特に、ハイブリッド車等のように充放電が連続する状態では、残存容量の演算精度が低下したり、残存容量の演算値が急激に変化するといった事態が生じる虞があり、安定した精度を確保することは困難である。   Therefore, as in Patent Documents 1, 2, and 3, it is difficult to eliminate error accumulation due to current integration simply by combining both techniques. In particular, in a state where charging / discharging continues as in a hybrid vehicle or the like, there is a possibility that the calculation accuracy of the remaining capacity may decrease or the calculation value of the remaining capacity may change suddenly, thus ensuring stable accuracy. It is difficult.

本発明は上記事情に鑑みてなされたもので、電流積算に基づく残存容量における誤差の累積を低減する共に、開放電圧に基づく残存容量における負荷変動の影響を低減し、常に安定した高精度な残存容量を求めることのできる蓄電デバイスの残存容量演算装置を提供することを目的としている。   The present invention has been made in view of the above circumstances, and reduces the accumulation of errors in the remaining capacity based on current integration, and reduces the influence of load fluctuations in the remaining capacity based on the open circuit voltage, so that the stable and highly accurate remaining It is an object of the present invention to provide a remaining capacity calculation device for a power storage device capable of obtaining a capacity.

上記目的を達成するため、本発明による蓄電デバイスの残存容量演算装置は、蓄電デバイスの開放電圧に基づく第1の残存容量の演算値と上記蓄電デバイスの充放電電流の積算値に基づく第2の残存容量の演算値との容量差に基づいて、上記蓄電デバイスの充放電電流の電流誤差を算出する電流誤差算出手段と、上記電流誤差算出手段で算出した電流誤差に基づいて、上記充放電電流の計測値を補正するための電流補正値を算出する電流補正値算出手段と、上記電流補正値算出手段で算出した電流補正値により、上記充放電電流の計測値を補正した電流推定値を算出する電流推定値算出手段と、上記電流推定値算出手段で算出した電流推定値と上記蓄電デバイスの内部インピーダンスとに基づいて開放電圧を推定し、推定した開放電圧に基づいて上記第1の残存容量を算出する第1の残存容量算出手段と、上記電流推定値算出手段で算出した電流推定値を積算して上記第2の残存容量を算出する第2の残存容量算出手段と、上記第1の残存容量と上記第2の残存容量とを上記蓄電デバイスの使用状況に応じて設定したウェイトを用いて重み付け合成し、上記蓄電デバイスの残存容量を算出する第3の残存容量算出手段とを備えたことを特徴とする。   In order to achieve the above object, a storage device remaining capacity calculation device according to the present invention includes a first remaining capacity calculation value based on an open circuit voltage of a storage device and a second value based on an integrated value of charge / discharge currents of the storage device. Based on the capacity difference from the calculated value of the remaining capacity, current error calculation means for calculating the current error of the charge / discharge current of the power storage device, and based on the current error calculated by the current error calculation means, the charge / discharge current A current correction value calculating unit for calculating a current correction value for correcting the measured value of the current and a current correction value calculated by the current correction value calculating unit are used to calculate a current estimated value obtained by correcting the measured value of the charge / discharge current. An open circuit voltage is estimated based on the estimated current value calculating means, the estimated current value calculated by the estimated current value calculation means, and the internal impedance of the power storage device, and is based on the estimated open voltage. The second remaining capacity calculation for calculating the second remaining capacity by integrating the first remaining capacity calculating means for calculating the first remaining capacity and the current estimated value calculated by the current estimated value calculating means. A third remaining capacity for calculating a remaining capacity of the power storage device by weighting and combining the means, the first remaining capacity and the second remaining capacity using a weight set in accordance with the usage state of the power storage device And a capacity calculating means.

その際、電流誤差は、第1の残存容量に含まれる電流誤差分を蓄電デバイスの電圧に対する残存容量の変化率とインピーダンスとから推定し、第2の残存容量に含まれる電流誤差分を蓄電デバイスの電流容量に基づいて推定することにより算出することができ、電流補正値は、電流誤差をフィルタ処理して算出することができる。   In this case, the current error is estimated from the rate of change of the remaining capacity with respect to the voltage of the power storage device and the impedance, and the current error included in the second remaining capacity is estimated as the current error included in the first remaining capacity. The current correction value can be calculated by filtering the current error.

また、電流推定値は、電流誤差を学習し、その学習結果に応じて学習補正した電流補正値と電流誤差の学習値とを用いて算出することが望ましく、更に、電流補正値に基づいて充放電電流を計測するセンサの故障診断を行うことが望ましい。   The estimated current value is preferably calculated using a current correction value obtained by learning a current error and learning corrected according to the learning result and a learned value of the current error, and is further calculated based on the current correction value. It is desirable to perform failure diagnosis of the sensor that measures the discharge current.

本発明の蓄電デバイスの残存容量演算装置は、電流積算に基づく残存容量における誤差の累積を低減する共に、開放電圧に基づく残存容量における負荷変動の影響を低減することができ、常に安定した高精度な残存容量を求めることができる。   The remaining capacity calculation device for an electricity storage device of the present invention can reduce the accumulation of errors in the remaining capacity based on current integration, and can reduce the influence of load fluctuations in the remaining capacity based on the open circuit voltage, which is always stable and highly accurate. The remaining capacity can be determined.

以下、図面を参照して本発明の実施の形態を説明する。図1〜図11は本発明の実施の一形態に係わり、図1はハイブリッド車への適用例を示すシステム構成図、図2はバッテリ残存容量の推定アルゴリズムを示すブロック図、図3はバッテリ電流容量と温度との関係を示す説明図、図4は等価回路モデルを示す回路図、図5は残存容量と開放電圧との関係を示す説明図、図6はバッテリ残存容量算出処理を示すフローチャート、図7はインピーダンステーブルの説明図、図8は残存容量テーブルの説明図、図9はウェイトテーブルの説明図、図10は電流補正後の残存容量を示す説明図、図11は電流センサの故障診断処理を示すフローチャートである。   Embodiments of the present invention will be described below with reference to the drawings. 1 to 11 relate to an embodiment of the present invention, FIG. 1 is a system configuration diagram showing an application example to a hybrid vehicle, FIG. 2 is a block diagram showing an estimation algorithm of a remaining battery capacity, and FIG. 3 is a battery current. FIG. 4 is a circuit diagram showing an equivalent circuit model, FIG. 5 is an explanatory diagram showing the relationship between remaining capacity and open circuit voltage, and FIG. 6 is a flowchart showing battery remaining capacity calculation processing. 7 is an explanatory diagram of the impedance table, FIG. 8 is an explanatory diagram of the remaining capacity table, FIG. 9 is an explanatory diagram of the weight table, FIG. 10 is an explanatory diagram showing the remaining capacity after current correction, and FIG. It is a flowchart which shows a process.

図1は、本発明をエンジンとモータとを併用して走行するハイブリッド車両(HEV)に適用した例を示し、同図において、符号1は、HEVの電源ユニットである。この電源ユニット1には、蓄電デバイスとして例えば複数のセルを封止した電池パックを複数個直列に接続して構成されるバッテリ2と、バッテリ2の残存容量の演算、バッテリ2の冷却や充電の制御、異常検出及び異常検出時の保護動作等のエネルギーマネージメントを行う演算ユニット(演算ECU)3とが1つの筐体内にパッケージされている。   FIG. 1 shows an example in which the present invention is applied to a hybrid vehicle (HEV) that travels using both an engine and a motor. In the figure, reference numeral 1 denotes a HEV power supply unit. The power supply unit 1 includes, for example, a battery 2 configured by connecting a plurality of battery packs in which a plurality of cells are sealed in series as power storage devices, calculation of the remaining capacity of the battery 2, cooling and charging of the battery 2, and the like. An arithmetic unit (arithmetic ECU) 3 that performs energy management such as control, abnormality detection, and protection operation at the time of abnormality detection is packaged in one casing.

尚、本形態においては、蓄電デバイスとしてリチウムイオン二次電池を例に取って説明するが、本発明による残存容量の演算手法は、電気化学キャパシタやその他の二次電池にも適用可能である。   In this embodiment, a lithium ion secondary battery will be described as an example of an electricity storage device. However, the remaining capacity calculation method according to the present invention can also be applied to an electrochemical capacitor and other secondary batteries.

演算ECU3は、マイクロコンピュータ等から構成され、電圧センサ4で測定したバッテリ2の端子電圧VB、電流センサ5で測定したバッテリ2の充放電電流IB、温度センサ6で測定したバッテリ2の温度(セル温度)温度TBに基いて、所定時間毎に充電状態(State of charge;SOC)すなわち残存容量SOCを演算する。この残存容量SOCは、電源ユニット1の演算ECU3から、例えばCAN(Controller Area Network)通信等を介してHEV制御用電子制御ユニット(HEV制御用ECU)10に出力され、車両制御用の基本データ、バッテリ残量や警告用の表示用データ等として使用される。   The arithmetic ECU 3 is composed of a microcomputer or the like, and the terminal voltage VB of the battery 2 measured by the voltage sensor 4, the charge / discharge current IB of the battery 2 measured by the current sensor 5, and the temperature (cell) of the battery 2 measured by the temperature sensor 6. Temperature) Based on the temperature TB, the state of charge (SOC), that is, the remaining capacity SOC is calculated every predetermined time. This remaining capacity SOC is output from the calculation ECU 3 of the power supply unit 1 to the HEV control electronic control unit (HEV control ECU) 10 via, for example, CAN (Controller Area Network) communication or the like, and the basic data for vehicle control, Used as remaining battery level, warning display data, etc.

HEV制御用ECU10は、同様にマイクロコンピュータ等から構成され、運転者からの指令に基づいて、HEVの運転、その他、必要な制御を行う。すなわち、HEV制御用ECU10は、電源ユニット1からの信号や図示しないセンサ・スイッチ類からの信号により、車両の状態を検出し、バッテリ2の直流電力を交流電力に変換してモータ15を駆動するインバータ20を初めとして、図示しないエンジンや自動変速機等を、専用の制御ユニットを介して或いは直接的に制御する。   The HEV control ECU 10 is similarly composed of a microcomputer or the like, and performs HEV operation and other necessary control based on a command from the driver. That is, the HEV control ECU 10 detects the state of the vehicle based on signals from the power supply unit 1 and signals from sensors and switches (not shown), and converts the DC power of the battery 2 into AC power to drive the motor 15. Starting with the inverter 20, an engine, an automatic transmission, and the like (not shown) are controlled via a dedicated control unit or directly.

演算ECU3における残存容量SOCの演算は、図2のブロック図に示す推定アルゴリズムに従って実行される。このSOC推定アルゴリズムでは、残存容量を算出する上での最も基本的なパラメータ、すなわち、電流センサ5によって測定するバッテリ電流IBの誤差を補正し、この誤差を補正した電流を用いて、電流積算に基づく残存容量SOCIと、バッテリ端子電圧とバッテリ電流と内部インピーダンスとから推定される開放電圧に基づく残存容量SOCVとを並行して演算する。そして、残存容量SOCI,SOCVをバッテリの使用状態に応じて重み付けして合成し、この合成した残存容量SOCをバッテリ2の残存容量として出力する。   The calculation of the remaining capacity SOC in the calculation ECU 3 is executed according to the estimation algorithm shown in the block diagram of FIG. In this SOC estimation algorithm, the most basic parameter for calculating the remaining capacity, that is, the error of the battery current IB measured by the current sensor 5, is corrected, and the current corrected for this error is used for current integration. Based on the remaining capacity SOCI based and the remaining capacity SOCV based on the open circuit voltage estimated from the battery terminal voltage, the battery current, and the internal impedance are calculated in parallel. Then, the remaining capacities SOCI and SOCV are combined by weighting according to the usage state of the battery, and the combined remaining capacity SOC is output as the remaining capacity of the battery 2.

一般的に、バッテリの残存容量を算出する技術としては、バッテリ電流の積算値に基づて残存容量を求める技術と、バッテリの開放電圧に基づいて残存容量を求める技術とがあり、それぞれに一長一短がある。前者は、突入電流等の負荷変動に強く、安定した残存容量が得られる反面、電流誤差が累積し易い(特に、高負荷継続時には誤差が大きくなる)という欠点がある。また、後者は、電流が安定している領域では、正確な値を求めることができる反面、短時間で負荷が大きく変動した場合には、バッテリの開放電圧を推定する際のインピーダンスを正確に求めることができず、残存容量の算出値が振動し易いという欠点がある。   In general, there are two techniques for calculating the remaining capacity of a battery: a technique for obtaining the remaining capacity based on the integrated value of the battery current and a technique for obtaining the remaining capacity based on the open circuit voltage of the battery. There is. The former is resistant to load fluctuations such as an inrush current and provides a stable remaining capacity, but has a drawback that current errors are likely to accumulate (particularly, the errors increase when a high load is continued). In the latter case, an accurate value can be obtained in a region where the current is stable, but when the load fluctuates greatly in a short time, the impedance for estimating the open circuit voltage of the battery is obtained accurately. This is disadvantageous in that the calculated value of the remaining capacity tends to vibrate.

従って、本SOC推定アルゴリズムでは、電流センサ5による計測値を補正した電流値を用いて電流積算に基づく残存容量SOCIと開放電圧に基づく残存容量SOCVとを算出し、負荷変動の少ない安定した状態では、開放電圧に基づく残存容量SOCVの重みを大きくすることにより、正確な残存容量SOCを取得し、負荷変動が比較的大きい状態では、電流積算に基づく残存容量SOCIの重みを大きくすることにより、電流誤差の累積を防止しつつ、負荷変動時にも安定した残存容量SOCを取得するようにしている。   Therefore, in this SOC estimation algorithm, the remaining capacity SOCI based on the current integration and the remaining capacity SOCV based on the open circuit voltage are calculated using the current value obtained by correcting the measurement value obtained by the current sensor 5, and in a stable state with little load fluctuation. By increasing the weight of the remaining capacity SOCV based on the open circuit voltage, an accurate remaining capacity SOC is obtained, and in a state where the load fluctuation is relatively large, the weight of the remaining capacity SOCI based on the current integration is increased to obtain the current While preventing the accumulation of errors, a stable remaining capacity SOC is acquired even when the load fluctuates.

このため、演算ECU3には、SOC推定アルゴリズムを形成する各機能として、開放電圧に基づく第1の残存容量としての残存容量SOCVを算出する第1の残存容量算出手段としての第1の残存容量算出部3a、電流積算に基づく第2の残存容量としての残存容量SOCIを算出する第2の残存容量算出手段としての第2の残存容量算出部3b、第1の残存容量の演算値と第2の残存容量の演算値との容量差に基づいて、電流誤差IDを算出する電流誤差算出手段としての電流誤差算出部3c、電流誤差IDを用いて電流センサ5で計測した電流値IBを補正するための電流補正値IDFを算出する電流補正値算出手段としての電流補正値算出部3d、この電流補正値IDFにより電流センサ5で計測した電流値IBを補正し、計測誤差を排除した電流値としての電流推定値ISを算出し、第1の残存容量算出部3a及び第2の残存容量算出部3bに出力する電流推定値算出手段としての電流推定値算出部3e、第1の残存容量SOCVと第2の残存容量SOCIとを、バッテリ2の使用状況に応じて随時変化させるウェイト(重み係数)wにより重み付けして合成し、最終的な残存容量SOCを算出する第3の残存容量算出手段としての第3の残存容量算出部3fが備えられている。   For this reason, the calculation ECU 3 has a first remaining capacity calculation as a first remaining capacity calculation means for calculating a remaining capacity SOCV as a first remaining capacity based on the open circuit voltage as each function forming the SOC estimation algorithm. Unit 3a, second remaining capacity calculating unit 3b as second remaining capacity calculating means for calculating remaining capacity SOCI as the second remaining capacity based on current integration, the calculated value of the first remaining capacity and the second In order to correct the current value IB measured by the current sensor 5 using the current error ID, the current error calculation unit 3c as a current error calculation means for calculating the current error ID based on the difference in capacity from the calculated value of the remaining capacity. The current correction value calculation unit 3d as a current correction value calculation means for calculating the current correction value IDF of the current correction value IDF is used to correct the current value IB measured by the current sensor 5 by using the current correction value IDF, thereby obtaining a measurement error. The estimated current value IS as the excluded current value is calculated and output to the first remaining capacity calculator 3a and the second remaining capacity calculator 3b. The remaining capacity SOCV and the second remaining capacity SOCI are combined by weighting with a weight (weighting factor) w that is changed as needed according to the usage state of the battery 2, and a final remaining capacity SOC is calculated. A third remaining capacity calculating unit 3f is provided as remaining capacity calculating means.

詳細には、電流積算に基づく残存容量SOCIは、バッテリ電流Iにより、初期値SOCI(0)をベース値として以下の(1)式によって表現することができる。尚、以下の各式における電流I,電圧V,温度Tは、理論上のパラメータを表すものとする。
SOCI=SOCI(0)−∫[(100×η×I/AH)+SD]dt/3600…(1)
但し、η :電流効率
AH:電流容量(温度による変数)
SD:自己放電率
Specifically, the remaining capacity SOCI based on the current integration can be expressed by the following equation (1) based on the battery current I with the initial value SOCI (0) as the base value. Note that the current I, voltage V, and temperature T in the following equations represent theoretical parameters.
SOCI = SOCI (0) −∫ [(100 × η × I / AH) + SD] dt / 3600 (1)
Where η: current efficiency
AH: Current capacity (variable depending on temperature)
SD: Self-discharge rate

電流効率η及び自己放電率SDは、本形態のリチウムイオン電池では、それぞれ定数と見なすことができ、実用上、η=1、SD=0とすることができる。従って、(1)式は、以下の(1’)式で表現することができる。
SOCI=SOC(0)−(∫Idt)/(AH×3600)…(1’)
The current efficiency η and the self-discharge rate SD can be regarded as constants in the lithium ion battery of this embodiment, and can be practically η = 1 and SD = 0. Therefore, the expression (1) can be expressed by the following expression (1 ′).
SOCI = SOC (0) − (∫Idt) / (AH × 3600) (1 ′)

ここで、バッテリ電流に誤差IDが重合されている場合の残存容量SOCIは、以下の(2)式で表すことができる。
SOCI=SOCI(0)−[(∫Idt)/(AH×3600)+(∫IDdt)/(AH×3600)]…(2)
Here, the remaining capacity SOCI when the error ID is superimposed on the battery current can be expressed by the following equation (2).
SOCI = SOCI (0) − [(∫Idt) / (AH × 3600) + (∫IDdt) / (AH × 3600)] (2)

一方、バッテリの開放電圧VOCは、端子電圧V、バッテリ電流I、インピーダンスZにより、以下の(3)式で表現することができる。
VOC=V+I×Z…(3)
On the other hand, the open circuit voltage VOC of the battery can be expressed by the following equation (3) by the terminal voltage V, the battery current I, and the impedance Z.
VOC = V + I × Z (3)

開放電圧VOCと、この開放電圧VOCに基づく残存容量SOCVとの関係は、バッテリ内の電気化学的な関係、すなわち、平衡状態での電極電位とイオンの活量との関係を記述した周知のネルンストの式を適用し、以下の(4)式で表現することができる。
VOC=E+[(Rg×T/Ne×F)×lnSOCV/(100−SOCV)]+Y…(4)
但し、E :標準電極電位(本形態のリチウムイオン電池では、E=3.745)
Rg:気体定数(8.314J/mol−K)
T :温度(絶対温度K)
Ne:イオン価数(本形態のリチウムイオン電池では、Ne=1)
F :ファラデー定数(96485C/mol)
The relationship between the open-circuit voltage VOC and the remaining capacity SOCV based on this open-circuit voltage VOC is the well-known Nernst describing the electrochemical relationship in the battery, that is, the relationship between the electrode potential and the ion activity in an equilibrium state. The following expression (4) can be applied.
VOC = E + [(Rg × T / Ne × F) × lnSOCV / (100−SOCV)] + Y (4)
However, E: Standard electrode potential (E = 3.745 in the lithium ion battery of this embodiment)
Rg: Gas constant (8.314 J / mol-K)
T: temperature (absolute temperature K)
Ne: Ion valence (Ne = 1 in the lithium ion battery of this embodiment)
F: Faraday constant (96485 C / mol)

尚、(4)式におけるYは補正項であり、常温における電圧−SOC特性をSOCの関数で表現したものである。SOCV=Xとすると、以下の(5)式に示すように、SOCVの三次関数で表すことができる。
Y=−10-63+9・10-52+0.013X−0.7311…(5)
Note that Y in the equation (4) is a correction term and expresses the voltage-SOC characteristic at normal temperature as a function of SOC. If SOCV = X, it can be expressed by a cubic function of SOCV as shown in the following equation (5).
Y = −10 −6 X 3 + 9 · 10 −5 X 2 + 0.013X−0.7311 (5)

以上の(4)式の関係から、残存容量SOCVを、開放電圧VOCの関数Fによって表現すると、以下の(6)式の関係となり、バッテリ電流に誤差IDが重合されている場合の残存容量SOCVは、関数Fと、誤差電流による電圧の関数Gとを用い、以下の(7)式で近似することができる。
SOCV=F(VOC)…(6)
SOCV=F(V+I×Z)+G(ID×Z)…(7)
From the relationship of the above equation (4), when the remaining capacity SOCV is expressed by the function F of the open circuit voltage VOC, the relationship of the following equation (6) is obtained, and the remaining capacity SOCV when the error ID is superimposed on the battery current. Can be approximated by the following equation (7) using the function F and the function G of the voltage due to the error current.
SOCV = F (VOC) (6)
SOCV = F (V + I × Z) + G (ID × Z) (7)

ここで、誤差電流による電圧分(ID×Z)は、端子電圧Vに比べて小さい値であるため、電圧に対する残存容量の変化率を考えた場合、関数Gによる容量分は、電圧に対する一次関数であると仮定することができる。従って、(7)式は、以下の(8)式に示すように、残存容量SOCをパラメータとする係数KSCを用いて表現することができる。
SOCV=F(V+I×Z)+KSC×(ID×Z)…(8)
Here, since the voltage (ID × Z) due to the error current is a smaller value than the terminal voltage V, when considering the rate of change of the remaining capacity with respect to the voltage, the capacity due to the function G is a linear function with respect to the voltage. Can be assumed. Therefore, the equation (7) can be expressed using a coefficient KSC with the remaining capacity SOC as a parameter, as shown in the following equation (8).
SOCV = F (V + I × Z) + KSC × (ID × Z) (8)

以上の(8)式で表現される残存容量SOCVと、(2)式で表現される残存容量SOCIとから、両者の容量差ESOCは、それぞれの電流誤差分、すなわち、電圧に対する残存容量の変化率とインピーダンスZとから推定される電流誤差分と、電流容量AHに基づいて推定される電流誤差分とが重合したものであると考えることができる。従って、この容量差ESOCを用いて電流誤差IDによる容量分を表現すると、以下の(9)式で表現することができ、更に、微分形式で表現した以下の(10)式を得ることができる。
ESOC=(∫IDdt)/(AH×3600)+KSC×(ID×Z)…(9)
d(ESOC)/dt=ID/(AH×3600)+KSC×Z×d(ID)/dt…(10)
但し、ESOC=SOCV−SOCI
From the remaining capacity SOCV expressed by the above expression (8) and the remaining capacity SOCI expressed by the expression (2), the capacity difference ESOC between them is the current error, that is, the change in the remaining capacity with respect to the voltage. It can be considered that the current error estimated from the rate and the impedance Z and the current error estimated based on the current capacity AH are superposed. Therefore, when the capacity component due to the current error ID is expressed using this capacity difference ESOC, it can be expressed by the following expression (9), and further, the following expression (10) expressed in a differential form can be obtained. .
ESOC = (∫IDdt) / (AH × 3600) + KSC × (ID × Z) (9)
d (ESOC) / dt = ID / (AH × 3600) + KSC × Z × d (ID) / dt (10)
However, ESOC = SOCV-SOCI

更に、連続時間系で表現される(10)式を、周期的な演算処理で算出するため、サンプル時間k毎の演算周期DLTTで離散化し、以下の(11)式に簡略化して電流誤差IDを表現する。
ID(k)=[1−DLTT/(KSC×Z×AH×3600)]×ID(K-1)+[1/(KSC×Z)]×[(ESOC(k)−ESOC(k-1)]…(11)
但し、ESOC(k)=SOCV(k-1)−SOCI(k-1)
Further, since the expression (10) expressed in the continuous time system is calculated by a periodic calculation process, it is discretized by the calculation period DLTT for each sample time k, and simplified to the following expression (11) to obtain a current error ID. Express.
ID (k) = [1-DLTT / (KSC × Z × AH × 3600)] × ID (K−1) + [1 / (KSC × Z)] × [(ESOC (k) −ESOC (k−1) )] ... (11)
However, ESOC (k) = SOCV (k-1) -SOCI (k-1)

尚、バッテリの電流容量AHは、図3に示すように、温度に依存して変化し、低温になる程、バッテリ容量が減少するため、例えば、温度TBをパラメータとするテーブルを作成しておき、このテーブルを参照して電流容量AHを算出する。   As shown in FIG. 3, the battery current capacity AH changes depending on the temperature, and the battery capacity decreases as the temperature becomes lower. For example, a table with the temperature TB as a parameter is prepared. The current capacity AH is calculated with reference to this table.

この場合、前述したように、開放電圧に基づく残存容量SOCVは、負荷変動による振動成分を含んでいる可能性がある。従って、(11)式による電流誤差IDにフィルタ処理を施し、以下の(12)式に示すように、電流センサ5によって計測したバッテリ電流を補正するための電流補正値IDFを算出する。
IDF(k)=(1−KA)×IDF(k-1)+KA×ID(k)…(12)
但し、KA:フィルタ定数(0<KA<1)
In this case, as described above, the remaining capacity SOCV based on the open circuit voltage may include a vibration component due to load fluctuation. Therefore, a current correction value IDF for correcting the battery current measured by the current sensor 5 is calculated as shown in the following expression (12) by filtering the current error ID according to the expression (11).
IDF (k) = (1-KA) × IDF (k−1) + KA × ID (k) (12)
KA: filter constant (0 <KA <1)

そして、電流センサ5によるバッテリ電流の計測値IBと、電流誤差IDから算出した電流補正値IDFとを用い、計測誤差を排除した電流値としての電流推定値ISを以下の(13)式によって求める。
IS(k)=IB(k)−IDF(k)…(13)
Then, using the measured value IB of the battery current by the current sensor 5 and the current correction value IDF calculated from the current error ID, a current estimated value IS as a current value excluding the measurement error is obtained by the following equation (13). .
IS (k) = IB (k) −IDF (k) (13)

尚、詳細は後述するが、電流補正値IDFを算出する際に電流誤差IDを学習するようにしても良い。電流推定値ISは、学習結果を反映した電流補正値IDFと、電流誤差IDを学習した学習値とを用いて算出することになる。また、電流補正値IDFは、電流センサ5によるバッテリ電流の実測値を補正するものであることから、電流補正値IDFの取り得る範囲は予め設定された範囲に制限され、この設定範囲を越えているか否かを調べることにより、電流センサ5の故障診断を行うことができる。   Although details will be described later, the current error ID may be learned when the current correction value IDF is calculated. The estimated current value IS is calculated using the current correction value IDF reflecting the learning result and the learned value obtained by learning the current error ID. Further, since the current correction value IDF corrects the actual measured value of the battery current by the current sensor 5, the range that the current correction value IDF can take is limited to a preset range, and exceeds this set range. By investigating whether or not there is a failure diagnosis of the current sensor 5 can be performed.

電流推定値ISを求めた後は、この電流推定値ISを前述の(1)式に適用し、電流積算に基づく残存容量SOCIと、開放電圧に基づく残存容量SOCVとを算出する。電流積算に基づく残存容量SOCIは、以下の(14)式によって算出される。
SOCI(k)=SOCI(k-1)+IS(k)×DLTT/(AH×3600)…(14)
After obtaining the current estimated value IS, the current estimated value IS is applied to the above-described equation (1) to calculate the remaining capacity SOCI based on the current integration and the remaining capacity SOCV based on the open circuit voltage. The remaining capacity SOCI based on the current integration is calculated by the following equation (14).
SOCI (k) = SOCI (k−1) + IS (k) × DLTT / (AH × 3600) (14)

また、開放電圧に基づく残存容量SOCVは、前述の(3)式において、端子電圧V、バッテリ電流Iを、それぞれ、電圧センサ4で測定した端子電圧VB、(13)式で求めた電流推定値ISを適用し、また、インピーダンスZを用いて開放電圧VOCを求めた後、開放電圧VOCをパラメータとして残存容量SOCVを求める。   The remaining capacity SOCV based on the open circuit voltage is the terminal voltage V and the battery current I measured by the voltage sensor 4 in the above-described equation (3), respectively, and the estimated current value obtained from the equation (13). After applying IS and obtaining the open circuit voltage VOC using the impedance Z, the remaining capacity SOCV is obtained using the open circuit voltage VOC as a parameter.

ここで、バッテリのインピーダンスZは、図4に示す等価回路モデルを用いて求めることができる。この等価回路は、抵抗分R1〜R3、容量分C1,CPE1,CPE2(但し、CPE1,CPE2は二重層容量分)の各パラメータを、直列及び並列に組合わせた等価回路モデルであり、交流インピーダンス法における周知のCole-Coleプロットをカーブフィッティングすることにより、各パラメータを決定する。   Here, the impedance Z of the battery can be obtained using the equivalent circuit model shown in FIG. This equivalent circuit is an equivalent circuit model in which parameters of resistance components R1 to R3 and capacitance components C1, CPE1, and CPE2 (where CPE1 and CPE2 are double layer capacitance components) are combined in series and in parallel. Each parameter is determined by curve fitting a well-known Cole-Cole plot in the method.

これらのパラメータから求められるインピーダンスZは、バッテリの温度や電気化学的な反応速度、充放電電流の周波数成分によって大きく変化する。従って、インピーダンスZを決定するパラメータとして、電流の変化率を周波数成分の置き換えとして採用する。電流変化率は、バッテリの負荷変動を直接的に反映しているが、単なる電流変化率では、スパイク的に発生する電流の急激な変化の影響を受けてしまう。   The impedance Z obtained from these parameters varies greatly depending on the temperature of the battery, the electrochemical reaction rate, and the frequency component of the charge / discharge current. Therefore, the current change rate is employed as a frequency component replacement as a parameter for determining the impedance Z. Although the current change rate directly reflects the load change of the battery, the mere current change rate is affected by a sudden change in current that occurs in a spike manner.

このスパイク的な電流の影響は、所定のサンプリング数の単純平均、移動平均、加重平均等の処理により軽減することができるが、特に、電流の遅れを考慮した場合、バッテリの充放電状態の変化に対して、過去の履歴を過剰となることなく適切に反映することのできる移動平均を用いるようにしている。すなわち、電流の移動平均は、電流の高周波成分に対するローパスフィルタとなり、この移動平均のフィルタリングにより、走行中の負荷変動で発生する電流のスパイク成分を、遅れ成分を助長することなく除去することができる。   The effects of this spike-like current can be mitigated by processing such as simple averaging, moving average, weighted averaging, etc. of a predetermined number of samplings, but especially when current delay is taken into account, changes in the charge / discharge state of the battery On the other hand, a moving average that can appropriately reflect the past history without being excessive is used. In other words, the moving average of the current becomes a low-pass filter for the high frequency component of the current, and the filtering of the moving average can remove the spike component of the current generated due to the load fluctuation during traveling without promoting the delay component. .

具体的には、バッテリ電流の移動平均値をIMとすると、この移動平均値IMの時間tにおける電流変化率ΔIM/Δtと温度TBとを条件とするインピーダンス測定を行ってデータを蓄積した後、温度TBと電流変化率ΔIM/Δtとに基づいてインピーダンスZのテーブル(後述する図7のインピーダンステーブル)を作成する。そして、このテーブルを利用してインピーダンスZを求め、このインピーダンスZと、端子電圧VBと電流推定値ISとを前述の(3)式に適用して開放電圧VOCを求める。   Specifically, assuming that the moving average value of the battery current is IM, after performing impedance measurement under the condition of the current change rate ΔIM / Δt and the temperature TB at time t of the moving average value IM, Based on the temperature TB and the current change rate ΔIM / Δt, a table of impedance Z (an impedance table in FIG. 7 described later) is created. Then, the impedance Z is obtained using this table, and the open-circuit voltage VOC is obtained by applying the impedance Z, the terminal voltage VB, and the estimated current value IS to the above-described equation (3).

尚、バッテリの内部インピーダンスZは、詳細には、低温になるほど増加し、これに伴って電流変化率が小さくなることから、後述するように、直接的には、電流変化率ΔIM/Δtを温度補正した補正後電流変化率TKΔIM/Δtを用いてインピーダンスZを決定する。   In detail, the internal impedance Z of the battery increases as the temperature decreases, and the current change rate decreases accordingly. Therefore, as will be described later, the current change rate ΔIM / Δt is directly set to the temperature. Impedance Z is determined using the corrected current change rate TKΔIM / Δt after correction.

開放電圧VOCと残存容量SOCVとの関係は、ネルンストの式に基づく前述の(4)式から求めることができるが、具体的な相関関係は、電池の種類や特性によって異なり、例えば、リチウムイオン電池では、図5に示すような曲線で表すことができる。図5に示す開放電圧VOCと基準残存容量SOCVとの関係は、開放電圧VOCの変化に対して基準残存容量SOCVの変化が平坦となることなく、単調変化する曲線によって表される相関関係であり、開放電圧VOCの値を知ることで基準残存容量SOCVの値を明確に把握することができる。   The relationship between the open-circuit voltage VOC and the remaining capacity SOCV can be obtained from the above equation (4) based on the Nernst equation, but the specific correlation varies depending on the type and characteristics of the battery, for example, a lithium ion battery Then, it can be represented by a curve as shown in FIG. The relationship between the open circuit voltage VOC and the reference remaining capacity SOCV shown in FIG. 5 is a correlation represented by a curve that changes monotonically without a change in the reference remaining capacity SOCV being flat with respect to a change in the open circuit voltage VOC. By knowing the value of the open circuit voltage VOC, the value of the reference remaining capacity SOCV can be clearly grasped.

また、残存容量SOCVは、開放電圧VOCのみならずバッテリ温度との間にも強い相関性があり、図5に示すように、開放電圧VOCが同じ値であっても、バッテリ温度が下がると基準残存容量SOCVが減少する。この場合、開放電圧VOCと温度TBとをパラメータとして、直接、(4)式を用いて残存容量SOCVを算出することも可能であるが、実際には使用する電池特有の充放電特性や使用条件等に対する考慮が必要となる。   Further, the remaining capacity SOCV has a strong correlation not only with the open circuit voltage VOC but also with the battery temperature. As shown in FIG. 5, even if the open circuit voltage VOC is the same value, the reference is given when the battery temperature decreases. The remaining capacity SOCV decreases. In this case, it is possible to directly calculate the remaining capacity SOCV using the equation (4) using the open circuit voltage VOC and the temperature TB as parameters. Etc. need to be considered.

従って、以上の(4)式の関係から実際の電池の状態を把握する場合には、常温でのSOCV−VOC特性を基準として、各温度域での充放電試験或いはシミュレーションを行い、実測データを蓄積する。そして、蓄積した実測データから開放電圧VOCと温度TBとをパラメータする残存容量SOCVのテーブル(後述する図8の残存容量テーブル)を作成しておき、このテーブルを利用して残存容量SOCVを求める。   Therefore, when grasping the actual state of the battery from the relationship of the above equation (4), a charge / discharge test or simulation in each temperature range is performed based on the SOCV-VOC characteristics at room temperature, and the measured data is obtained. accumulate. Then, a table of remaining capacity SOCV (remaining capacity table in FIG. 8 described later) that parameters open circuit voltage VOC and temperature TB is created from the accumulated measured data, and the remaining capacity SOCV is obtained using this table.

以上の残存容量SOCI,SOCVは、バッテリ2の使用状況に応じて随時変化させるウェイト(重み係数)wにより重み付けして合成され、最終的な残存容量SOCが算出される。ウェイトwは、w=0〜1の間で変化させ、合成後の最終的な残存容量SOC(k)は、以下の(15)式で与えられる。
SOC(k)=w×SOCI(k)+(1−w)×SOCV(k)…(15)
The above remaining capacities SOCI and SOCV are combined by weighting with a weight (weighting factor) w that is changed as needed according to the usage state of the battery 2, and a final remaining capacity SOC is calculated. The weight w is changed between w = 0 and 1, and the final remaining capacity SOC (k) after synthesis is given by the following equation (15).
SOC (k) = w × SOCI (k) + (1−w) × SOCV (k) (15)

ウェイトwは、現在のバッテリの使用状況を的確に表すことのできるパラメータを用いて決定する必要があり、そのパラメータとしては、単位時間当たりの電流の変化率や残存容量SOCI,SOCVの間の偏差等を用いることが可能である。好適には、前述した移動平均による電流変化率ΔIM/Δtを単位時間当たりの電流変化率として用いることができ、本形態においては、電流変化率ΔIM/Δtを用いてウェイトwを決定する。   The weight w needs to be determined using a parameter that can accurately represent the current battery usage. The parameters include the current change rate per unit time and the deviation between the remaining capacities SOCI and SOCV. Etc. can be used. Preferably, the current change rate ΔIM / Δt by the moving average described above can be used as the current change rate per unit time. In this embodiment, the weight w is determined using the current change rate ΔIM / Δt.

そして、電流変化率ΔIM/Δtが大きいときには、電流積算に基づく残存容量SOCIの重みを大きくして開放電圧に基づく残存容量SOCVの重みを小さくすることにより、負荷変動にも拘らず電流積算による正確な残存容量を得ることができると共に、開放電圧推定時の振動を防止することができる。逆に、電流変化率ΔIM/Δtが小さいときには、電流積算に基づく残存容量SOCIの重みを小さくして、開放電圧に基づく残存容量SOCVの重みを大きくすることにより、電流積算時の誤差の累積による影響を回避し、開放電圧に基づく正確な残存容量を得ることができる。   When the current change rate ΔIM / Δt is large, the weight of the remaining capacity SOCI based on the current integration is increased and the weight of the remaining capacity SOCV based on the open circuit voltage is reduced, so that the accuracy by the current integration can be improved regardless of the load fluctuation. In addition, it is possible to obtain a large remaining capacity and to prevent vibration during open circuit voltage estimation. Conversely, when the current change rate ΔIM / Δt is small, the weight of the remaining capacity SOCI based on the current integration is reduced and the weight of the remaining capacity SOCV based on the open circuit voltage is increased, thereby accumulating errors during current integration. The influence can be avoided and an accurate remaining capacity based on the open circuit voltage can be obtained.

これにより、電流積算による誤差の累積を抑制すると共に、外乱が発生した場合にも、安定した正確な残存容量を求めることができ、残存容量SOCI,SOCV双方の欠点を打消して互いの利点を最大限に引き出し、残存容量の推定精度を大幅に向上することができる。   As a result, the accumulation of errors due to current integration is suppressed, and even when a disturbance occurs, a stable and accurate remaining capacity can be obtained, and the disadvantages of both the remaining capacity SOCI and SOCV can be canceled and mutual advantages can be obtained. It is possible to maximize the accuracy of estimation of the remaining capacity.

次に、以上の電流補正によるバッテリの残存容量SOCの算出処理について、図6のフローチャートを用いて説明する。尚、図6に示す残存容量算出処理では、電流誤差IDの学習制御を取入れている。   Next, the calculation process of the remaining capacity SOC of the battery by the above current correction will be described with reference to the flowchart of FIG. In the remaining capacity calculation process shown in FIG. 6, learning control of the current error ID is taken in.

図6のフローチャートは、電源ユニット1の演算ECU3における残存容量推定の基本的な処理を示すものであり、所定時間毎(例えば、0.1sec毎)に実行される。この処理がスタートすると、先ず、ステップS1において、バッテリのインピーダンスZ、電流容量AHをテーブル参照等により読込むと共に、電流誤差IDの算出に用いる係数KSCを読込む。   The flowchart of FIG. 6 shows a basic process of remaining capacity estimation in the arithmetic ECU 3 of the power supply unit 1 and is executed at predetermined time intervals (for example, every 0.1 sec). When this processing starts, first, in step S1, the battery impedance Z and current capacity AH are read by referring to a table or the like, and the coefficient KSC used for calculating the current error ID is read.

尚、バッテリ2の端子電圧VBは、複数の電池パックの平均値、電流IBは複数の電池パックの電流の総和を取り、それぞれ、例えば0.1sec毎に、データを取得するものとする。また、温度TBは、例えば10sec毎に取得するものとする。   The terminal voltage VB of the battery 2 is the average value of the plurality of battery packs, and the current IB is the sum of the currents of the plurality of battery packs, and data is acquired, for example, every 0.1 sec. The temperature TB is acquired every 10 sec, for example.

図7は、電流の移動平均による電流変化率ΔIM/Δtを温度補正した補正後電流変化率TKΔIM/Δtと温度TBとをパラメータとして、インピーダンスZを格納したインピーダンステーブルの例であり、概略的には、補正後電流変化率TKΔIM/Δtが同じ場合には、温度TBが低くなる程、インピーダンスZが増加し、同じ温度では、補正後電流変化率TKΔIM/Δtが小さくなる程、インピーダンスZが増加する傾向を有している。   FIG. 7 is an example of an impedance table in which impedance Z is stored using the corrected current change rate TKΔIM / Δt obtained by temperature correction of the current change rate ΔIM / Δt based on the moving average of the current and the temperature TB as parameters. When the corrected current change rate TKΔIM / Δt is the same, the impedance Z increases as the temperature TB decreases. At the same temperature, the impedance Z increases as the corrected current change rate TKΔIM / Δt decreases. Have a tendency to

尚、電流の移動平均は、例えば、電流のサンプリングを0.1sec毎、電流積算の演算周期を0.5sec毎とした場合、5個のデータを移動平均する。   For example, when the current sampling is performed every 0.1 sec and the current integration calculation cycle is performed every 0.5 sec, the moving average of the current is averaged over five data.

次に、ステップS2へ進み、1演算周期前の残存容量SOCI(k-1),SOCV(k-1)を読込む。今回読込んだ残存容量SOCI(k-1),SOCV(k-1)は、前回の演算周期で読込んだ残存容量SOCI(k-2),SOCV(k-2)と共に、容量差ESOC(k),ESOC(k-1)を算出する際に用いられる。そして、ステップS3において、インピーダンスZ、電流容量AH、係数KSC、容量差ESOC(k)、容量差ESOC(k-1)を用い、前述の(11)式に従って、電流誤差IDを算出する。そして、ステップS4で、前述の(12)式に従い、電流誤差IDをフィルタ定数KAを用いてフィルタ処理し、電流補正値IDFを算出する。   Next, the process proceeds to step S2, and the remaining capacities SOCI (k-1) and SOCV (k-1) one calculation cycle before are read. The remaining capacities SOCI (k-1) and SOCV (k-1) read this time, together with the remaining capacities SOCI (k-2) and SOCV (k-2) read in the previous calculation cycle, the capacity difference ESOC ( k), used when calculating ESOC (k-1). In step S3, the current error ID is calculated according to the above-described equation (11) using the impedance Z, the current capacity AH, the coefficient KSC, the capacity difference ESOC (k), and the capacity difference ESOC (k-1). In step S4, the current error ID is filtered using the filter constant KA according to the above-described equation (12) to calculate the current correction value IDF.

ステップS4に続くステップS5からステップS11までは、電流誤差IDに対する学習制御の処理であり、先ず、ステップS5において、以下の(16)式に示すように、電流補正値IDFに対してフィルタ処理を施し、電流誤差の学習値(電流誤差学習値)IDLを更新する際の基準値となる学習更新量基準値ILBを算出する。
ILB(k)=(1−KA)×ILB(k-1)+KB×KL×ID(k)…(16)
但し、KB:フィルタ定数(0<KB<1)
KL:学習値定数(0<KL<1)
Steps S5 to S11 following step S4 are learning control processes for the current error ID. First, in step S5, as shown in the following equation (16), a filter process is performed on the current correction value IDF. Then, a learning update amount reference value ILB serving as a reference value for updating the current error learning value (current error learning value) IDL is calculated.
ILB (k) = (1-KA) × ILB (k−1) + KB × KL × ID (k) (16)
However, KB: filter constant (0 <KB <1)
KL: learning value constant (0 <KL <1)

次いで、ステップS6へ進み、学習値更新のタイミングを決定するためのカウンタCLをカウントアップし(CL=CL+1)、ステップS7で、カウンタCLが設定値TL(例えば、10min程度に相当するカウンタ値)に達したか否かを調べる。その結果、CL<TLの場合には、ステップS7からステップS12へジャンプし、CL=TLになった場合、ステップS7からステップS8へ進み、以下の(17)式に示すように、メモリに格納されている前回までの電流誤差学習値IDL(k-1)に、学習更新量基準値ILB(k)を加算して新たな電流誤差学習値IDL(k)を算出する。そして、この新たな電流誤差学習値IDL(k)でメモリに格納されている電流誤差学習値IDL(k-1)を書換え、学習値を更新する。
IDL(k)=IDL(k-1)+ILB(k)…(17)
Next, the process proceeds to step S6, where the counter CL for determining the learning value update timing is counted up (CL = CL + 1). In step S7, the counter CL is set to a set value TL (for example, a counter value corresponding to about 10 min). Check whether or not. As a result, if CL <TL, the process jumps from step S7 to step S12. If CL = TL, the process proceeds from step S7 to step S8, and is stored in the memory as shown in the following equation (17). The learning update amount reference value ILB (k) is added to the current error learning value IDL (k−1) up to the previous time to calculate a new current error learning value IDL (k). Then, the current error learning value IDL (k−1) stored in the memory is rewritten with the new current error learning value IDL (k), and the learning value is updated.
IDL (k) = IDL (k-1) + ILB (k) (17)

電流誤差学習値IDLを更新した後は、ステップS9へ進み、以下の(18)式に示すように、先にステップS4で算出した電流補正値IDFから学習更新量基準値ILBを減算して新たな電流補正値IDFに補正する。この電流補正値IDFの補正は、以下のステップS12において電流補正値IDFにより電流推定値ISを算出する際の段差をなくし、演算上の連続性を確保するためである。
IDF=IDF−ILB…(18)
After updating the current error learning value IDL, the process proceeds to step S9, and as shown in the following equation (18), the learning update amount reference value ILB is subtracted from the current correction value IDF previously calculated in step S4 to newly To a correct current correction value IDF. The correction of the current correction value IDF is to eliminate the step when calculating the current estimation value IS using the current correction value IDF in the following step S12, and to ensure continuity in calculation.
IDF = IDF-ILB (18)

次に、ステップS10,S11において、それぞれ、学習更新量基準値ILBをリセットし(ILB=0)、また、カウンタCLをクリアし(CL=0)、ステップS12へ進む。ステップS12では、バッテリ電流の計測値IB、電流補正値IDF、電流誤差学習値IDLを用い、前述の(13)式に電流誤差学習値IDLを取入れた以下の(19)式により、電流推定値ISを算出する。
IS=IB−(IDF+IDL)…(19)
Next, in steps S10 and S11, the learning update amount reference value ILB is reset (ILB = 0), the counter CL is cleared (CL = 0), and the process proceeds to step S12. In step S12, the estimated current value is obtained from the following equation (19) using the measured current value IB, the current correction value IDF, and the current error learned value IDL of the battery current and incorporating the current error learned value IDL into the aforementioned equation (13). Calculate IS.
IS = IB- (IDF + IDL) (19)

尚、学習制御を行わない場合には、上述のステップS5〜S11を省略し、ステップS4で算出した電流補正値IDFとバッテリ電流の計測値IBとから、前述の(13)式、すなわち(19)式においてIDL=0とした式に従って電流推定値ISを算出する。   When learning control is not performed, the above steps S5 to S11 are omitted, and from the current correction value IDF calculated in step S4 and the measured value IB of the battery current, the above equation (13), that is, (19 ) To calculate the current estimated value IS according to the equation where IDL = 0.

その後、ステップS13へ進み、前述の(14)式に従って、電流推定値ISを積算して残存容量SOCIを算出する。更に、ステップS14において、バッテリの温度TBと開放電圧VOCとをパラメータとするテーブル参照により、開放電圧に基づく残存容量SOCVを算出する。図8は、前述したようにネルンストの式に基づいてバッテリ内の電気化学的な状態を把握して作成した残存容量テーブルであり、概略的には、温度TB及び開放電圧VOCが低くなる程、残存容量SOCVが小さくなり、温度TB及び開放電圧VOCが高くなる程、残存容量SOCVが大きくなる傾向を有している。   Thereafter, the process proceeds to step S13, and the remaining capacity SOCI is calculated by integrating the current estimated value IS according to the above-described equation (14). Further, in step S14, the remaining capacity SOCV based on the open circuit voltage is calculated by referring to a table using the battery temperature TB and the open circuit voltage VOC as parameters. FIG. 8 is a remaining capacity table created by grasping the electrochemical state in the battery based on the Nernst equation as described above. In general, the lower the temperature TB and the open circuit voltage VOC, The remaining capacity SOCV tends to increase as the temperature TB and the open circuit voltage VOC increase as the remaining capacity SOCV decreases.

尚、図7,8においては、通常の条件下で使用される範囲のデータを示し、他の範囲のデータは記載を省略してある。   7 and 8 show data in a range that is used under normal conditions, and data in other ranges is omitted.

その後、ステップS15へ進み、図9に示すウェイトテーブルを参照してウェイトwを算出する。ウェイトテーブルは、補正後電流変化率TKΔIM/Δtをパラメータとする一次元テーブルであり、概略的には、補正後電流変化率TKΔIM/Δtが小さくなる程、すなわち、バッテリ負荷変動が小さい程、ウェイトwの値を小さくして電流積算による残存容量SOCIの重みを小さくする傾向を有している。そして、前述の(15)式に従って、電流積算による残存容量SOCIと開放電圧に基づく残存容量SOCVとをウェイトwを用いて重み付けして合成し、最終的な残存容量SOCを算出して1サイクルの本演算処理を終了する。   Thereafter, the process proceeds to step S15, and the weight w is calculated with reference to the weight table shown in FIG. The weight table is a one-dimensional table using the corrected current change rate TKΔIM / Δt as a parameter. In general, the smaller the corrected current change rate TKΔIM / Δt, that is, the smaller the battery load fluctuation, There is a tendency that the value of w is reduced to reduce the weight of the remaining capacity SOCI by current integration. Then, according to the above-described equation (15), the remaining capacity SOCI based on the current integration and the remaining capacity SOCV based on the open circuit voltage are weighted and synthesized using the weight w, and the final remaining capacity SOC is calculated to calculate one cycle. This calculation process is terminated.

以上の電流補正処理による残存容量SOCは、電流補正無しの場合の準残存容量、電流誤差が無い場合の理論上の残存容量と共に、図10に示される。電流補正無しの残存容量は、時間の経過と共に電流誤差が累積してゆき、真の残存容量とのずれが大きくなって行くが、電流誤差を補正した本方式の残存容量では、負荷変動による振動もなく、電流誤差の累積を効果的に抑制することができ、真値に近い正確且つ安定した残存容量とすることができる。   The remaining capacity SOC by the above current correction processing is shown in FIG. 10 together with the quasi-remaining capacity without current correction and the theoretical remaining capacity without current error. In the remaining capacity without current correction, the current error accumulates over time, and the deviation from the true remaining capacity increases, but the remaining capacity of this method with corrected current error causes vibration due to load fluctuations. Therefore, accumulation of current error can be effectively suppressed, and an accurate and stable remaining capacity close to the true value can be obtained.

また、以上の電流推定値ISを用いた残存容量SOCの算出処理と並行して、図11に示す電流センサ5の故障診断処理が実行される。   In parallel with the calculation process of the remaining capacity SOC using the current estimation value IS described above, the fault diagnosis process for the current sensor 5 shown in FIG. 11 is executed.

この電流センサ5の故障診断処理では、最初のステップS21において、電流補正値IDFを読込み、ステップS22で、電流補正値IDFの絶対値│IDF│と予め設定した診断値IDMAXとを比較する。診断値IDMAXは、例えば、電流センサ5による測定値が通常取り得る範囲から逸脱した場合に生じる電流誤差の最大値である。   In the failure diagnosis process of the current sensor 5, the current correction value IDF is read in the first step S21, and the absolute value | IDF | of the current correction value IDF is compared with the preset diagnosis value IDMAX in step S22. The diagnostic value IDMAX is, for example, the maximum value of the current error that occurs when the measurement value obtained by the current sensor 5 deviates from the normal range.

そして、│IDF│≦IDMAXの場合は、電流センサ5は正常であると判定してステップS22から処理を抜け、│IDF│>IDMAXの場合、ステップS22からステップS23へ進み、電流センサ5が異常であるとの故障判定を行って処理を抜ける。この故障判定がなされた場合には、演算ECU3からHEV制御用ECU10にフェール信号が出力され、直ちにフェール制御に移行する。   If | IDF | ≦ IDMAX, it is determined that the current sensor 5 is normal and the process exits from step S22. If | IDF |> IDMAX, the process proceeds from step S22 to step S23, and the current sensor 5 is abnormal. The failure is determined to be and the process is exited. When this failure determination is made, a fail signal is output from the arithmetic ECU 3 to the HEV control ECU 10, and the process immediately shifts to fail control.

この電流センサ異常時の残存容量SOCは、例えば、ウェイトwを「0」に固定し、開放電圧に基づく残存容量SOCVのみを用いて推定した値とすることが可能である。この場合、開放電圧VOCの推定精度が低下するが、異常時の短時間のフェール制御を可能として安全を確保することができる。   The remaining capacity SOC when the current sensor is abnormal can be a value estimated using only the remaining capacity SOCV based on the open circuit voltage with the weight w fixed at “0”, for example. In this case, although the estimation accuracy of the open-circuit voltage VOC is lowered, it is possible to ensure safety by enabling a short-time fail control at the time of abnormality.

ハイブリッド車への適用例を示すシステム構成図System configuration diagram showing an example of application to a hybrid vehicle バッテリ残存容量の推定アルゴリズムを示すブロック図Block diagram showing the remaining battery capacity estimation algorithm バッテリ電流容量と温度との関係を示す説明図Explanatory diagram showing the relationship between battery current capacity and temperature 等価回路モデルを示す回路図Circuit diagram showing equivalent circuit model 残存容量と開放電圧との関係を示す説明図Explanatory diagram showing the relationship between remaining capacity and open circuit voltage バッテリ残存容量算出処理を示すフローチャートFlow chart showing battery remaining capacity calculation processing インピーダンステーブルの説明図Illustration of impedance table 残存容量テーブルの説明図Explanation of remaining capacity table ウェイトテーブルの説明図Illustration of weight table 電流補正後の残存容量を示す説明図Explanatory diagram showing remaining capacity after current correction 電流センサの故障診断処理を示すフローチャートFlow chart showing fault diagnosis processing of current sensor

符号の説明Explanation of symbols

1 電源ユニット
2 バッテリ
3 演算ユニット
3a 第1の残存容量算出部
3b 第2の残存容量算出部
3c 電流誤差算出部
3d 電流補正値算出部
3e 電流推定値算出部
3f 第3の残存容量算出部
VOC バッテリ開放電圧
SOCV 残存容量(第1の残存容量)
SOCI 残存容量(第2の残存容量)
SOC 残存容量(最終的な残存容量)
ESOC 容量差
IB バッテリ電流の計測値
ID 電流誤差
IDL 電流誤差学習値
IDF 電流補正値
IS 電流推定値
代理人 弁理士 伊 藤 進
DESCRIPTION OF SYMBOLS 1 Power supply unit 2 Battery 3 Computation unit 3a 1st remaining capacity calculation part 3b 2nd remaining capacity calculation part 3c Current error calculation part 3d Current correction value calculation part 3e Current estimated value calculation part 3f 3rd remaining capacity calculation part VOC Battery open voltage SOCV remaining capacity (first remaining capacity)
SOCI remaining capacity (second remaining capacity)
SOC remaining capacity (final remaining capacity)
ESOC Capacity Difference IB Battery Current Measurement Value ID Current Error IDL Current Error Learning Value IDF Current Correction Value IS Current Estimated Value
Agent Patent Attorney Susumu Ito

Claims (5)

蓄電デバイスの開放電圧に基づく第1の残存容量の演算値と上記蓄電デバイスの充放電電流の積算値に基づく第2の残存容量の演算値との容量差に基づいて、上記蓄電デバイスの充放電電流の電流誤差を算出する電流誤差算出手段と、
上記電流誤差算出手段で算出した電流誤差に基づいて、上記充放電電流の計測値を補正するための電流補正値を算出する電流補正値算出手段と、
上記電流補正値算出手段で算出した電流補正値により、上記充放電電流の計測値を補正した電流推定値を算出する電流推定値算出手段と、
上記電流推定値算出手段で算出した電流推定値と上記蓄電デバイスの内部インピーダンスとに基づいて開放電圧を推定し、推定した開放電圧に基づいて上記第1の残存容量を算出する第1の残存容量算出手段と、
上記電流推定値算出手段で算出した電流推定値を積算して上記第2の残存容量を算出する第2の残存容量算出手段と、
上記第1の残存容量と上記第2の残存容量とを上記蓄電デバイスの使用状況に応じて設定したウェイトを用いて重み付け合成し、上記蓄電デバイスの残存容量を演算する第3の残存容量算出手段とを備えたことを特徴とする蓄電デバイスの残存容量演算装置。
Based on the capacity difference between the calculated value of the first remaining capacity based on the open circuit voltage of the power storage device and the calculated value of the second remaining capacity based on the integrated value of the charge / discharge current of the power storage device, the charge / discharge of the power storage device Current error calculation means for calculating a current error of the current;
Current correction value calculation means for calculating a current correction value for correcting the measured value of the charge / discharge current based on the current error calculated by the current error calculation means;
Current estimated value calculating means for calculating a current estimated value obtained by correcting the measured value of the charge / discharge current by the current corrected value calculated by the current corrected value calculating means;
A first remaining capacity that estimates an open circuit voltage based on the estimated current value calculated by the current estimated value calculation means and an internal impedance of the power storage device, and calculates the first remaining capacity based on the estimated open circuit voltage A calculation means;
A second remaining capacity calculating means for calculating the second remaining capacity by integrating the current estimated values calculated by the current estimated value calculating means;
Third remaining capacity calculation means for calculating a remaining capacity of the power storage device by weighting and combining the first remaining capacity and the second remaining capacity using a weight set in accordance with a usage state of the power storage device. And a remaining capacity computing device for an electricity storage device.
上記電流誤差算出手段は、
上記第1の残存容量に含まれる電流誤差分を、上記蓄電デバイスの電圧に対する残存容量の変化率とインピーダンスとから推定すると共に、上記第2の残存容量に含まれる電流誤差分を、上記蓄電デバイスの電流容量に基づいて推定し、上記電流誤差を算出することを特徴とする請求項1記載の蓄電デバイスの残存容量演算装置。
The current error calculation means is
The current error included in the first remaining capacity is estimated from the change rate and impedance of the remaining capacity with respect to the voltage of the power storage device, and the current error included in the second remaining capacity is estimated as the power storage device. The remaining capacity calculation device for an electricity storage device according to claim 1, wherein the current error is calculated based on a current capacity of the storage device.
上記電流補正値算出手段は、
上記電流誤差をフィルタ処理して上記電流補正値を算出することを特徴とする請求項1又は2記載の蓄電デバイスの残存容量演算装置。
The current correction value calculation means includes:
3. The storage device remaining capacity calculation device according to claim 1, wherein the current correction value is calculated by filtering the current error.
上記電流補正値算出手段は、
上記電流誤差を学習し、その学習結果に応じて上記電流補正値を学習補正し、
上記電流推定値算出手段は、
学習補正した上記電流補正値と上記電流誤差の学習値とを用いて上記電流推定値を算出することを特徴とする請求項1〜3の何れか一に記載の蓄電デバイスの残存容量演算装置。
The current correction value calculation means includes:
Learning the current error, learning and correcting the current correction value according to the learning result,
The current estimated value calculation means includes:
The remaining capacity calculation apparatus for an electricity storage device according to any one of claims 1 to 3, wherein the current estimation value is calculated using the current correction value subjected to learning correction and the learned value of the current error.
上記電流補正値算出手段で算出した電流補正値に基づいて上記充放電電流を計測するセンサの故障診断を行う故障診断手段を、更に備えたことを特徴とする請求項1〜4の何れか一に記載の蓄電デバイスの残存容量演算装置。   5. The apparatus according to claim 1, further comprising a failure diagnosis unit that performs failure diagnosis of the sensor that measures the charge / discharge current based on the current correction value calculated by the current correction value calculation unit. The remaining capacity calculation device for an electricity storage device according to claim 1.
JP2004194456A 2004-06-30 2004-06-30 Remaining capacity calculation device for power storage device Expired - Fee Related JP4509670B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004194456A JP4509670B2 (en) 2004-06-30 2004-06-30 Remaining capacity calculation device for power storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004194456A JP4509670B2 (en) 2004-06-30 2004-06-30 Remaining capacity calculation device for power storage device

Publications (2)

Publication Number Publication Date
JP2006017544A JP2006017544A (en) 2006-01-19
JP4509670B2 true JP4509670B2 (en) 2010-07-21

Family

ID=35791976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004194456A Expired - Fee Related JP4509670B2 (en) 2004-06-30 2004-06-30 Remaining capacity calculation device for power storage device

Country Status (1)

Country Link
JP (1) JP4509670B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105548906A (en) * 2016-01-13 2016-05-04 厦门科华恒盛股份有限公司 Method for dynamically estimating battery state of charge
CN110470993A (en) * 2019-09-23 2019-11-19 骆驼集团武汉光谷研发中心有限公司 A kind of start and stop battery SOC algorithm

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4820329B2 (en) * 2007-05-09 2011-11-24 本田技研工業株式会社 Storage amount calculation device and storage amount calculation method
KR100962856B1 (en) 2008-04-03 2010-06-09 현대자동차주식회사 Method for estimating remaining capacity of battery
JP5771909B2 (en) * 2010-06-08 2015-09-02 日産自動車株式会社 Secondary battery charge capacity estimation device
US9260104B2 (en) * 2010-06-23 2016-02-16 Toyota Jidosha Kabushiki Kaisha Vehicle control device and vehicle control method
KR101191624B1 (en) 2010-10-13 2012-10-17 삼성에스디아이 주식회사 BATTERY MANAGEMENT SYSTEM AND METHOD OF ESTIMATING BATTERY SOCstate of charge USING THE SAME
WO2012176275A1 (en) * 2011-06-21 2012-12-27 トヨタ自動車株式会社 Device for charging storage device and vehicle mounting same
US8918300B2 (en) 2011-10-07 2014-12-23 Calsonic Kansei Corporation Apparatus and method for battery state of charge estimation
JP5975925B2 (en) * 2013-03-29 2016-08-23 日立オートモティブシステムズ株式会社 Battery control device, power storage device
JP2015137952A (en) 2014-01-23 2015-07-30 スズキ株式会社 Residual capacity estimation device for power storage device
KR102382988B1 (en) * 2020-05-11 2022-04-05 주식회사 실리콘마이터스 Coulomb counter based battery state of charge estimation apparatus and method
CN112034366B (en) * 2020-08-25 2023-07-14 惠州市蓝微电子有限公司 SOC dynamic compensation method and electronic system
JP2022182459A (en) * 2021-05-28 2022-12-08 株式会社Gsユアサ Correction device, power storage device, and correction method
CN114062933A (en) * 2021-11-09 2022-02-18 浙江欣动能源科技有限公司 Battery SOC correction method and device, computer storage medium and processor
CN115092012B (en) * 2022-07-20 2024-04-12 四川轻化工大学 Equivalent state of charge estimation method considering multiple working modes of composite power supply system
CN117890799B (en) * 2024-03-15 2024-05-31 广汽埃安新能源汽车股份有限公司 Battery state of charge acquisition method and device, electronic equipment and storage medium

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105548906A (en) * 2016-01-13 2016-05-04 厦门科华恒盛股份有限公司 Method for dynamically estimating battery state of charge
CN105548906B (en) * 2016-01-13 2018-08-24 厦门科华恒盛股份有限公司 A kind of battery remaining power dynamic estimation method
CN110470993A (en) * 2019-09-23 2019-11-19 骆驼集团武汉光谷研发中心有限公司 A kind of start and stop battery SOC algorithm
CN110470993B (en) * 2019-09-23 2021-07-23 骆驼集团武汉光谷研发中心有限公司 SOC algorithm for starting and stopping battery

Also Published As

Publication number Publication date
JP2006017544A (en) 2006-01-19

Similar Documents

Publication Publication Date Title
JP4571000B2 (en) Remaining capacity calculation device for power storage device
JP4583765B2 (en) Remaining capacity calculation device for power storage device
JP4638251B2 (en) Battery management device
JP4570991B2 (en) Battery management system
JP4509670B2 (en) Remaining capacity calculation device for power storage device
JP4481080B2 (en) Remaining capacity calculation device for power storage device
JP4638195B2 (en) Battery degradation degree estimation device
JP2007024687A (en) Battery management system
JP2006226788A (en) Battery management system
JP4570918B2 (en) Remaining capacity calculation device for power storage device
JP4638194B2 (en) Remaining capacity calculation device for power storage device
JP4519523B2 (en) Remaining capacity calculation device for power storage device
JP4509674B2 (en) Remaining capacity calculation device for power storage device
JP4570916B2 (en) Remaining capacity calculation device for power storage device
JP2006020401A (en) Battery managing system of hybrid vehicle
JP4519551B2 (en) Remaining capacity calculation device for power storage device
JP4519518B2 (en) Remaining capacity calculation device for power storage device
JP4638211B2 (en) Remaining capacity calculation device for power storage device
JP4124755B2 (en) Battery protection device
JP4638175B2 (en) Remaining capacity display device for power storage device
JP4519524B2 (en) Remaining capacity calculation device for power storage device
JP2005326377A (en) Arithmetic processing unit for power quantity of charge accumulating device
JP2005341759A (en) Battery management device of hybrid vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100420

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100428

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4509670

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees