JP2019020174A - Secondary battery controller - Google Patents

Secondary battery controller Download PDF

Info

Publication number
JP2019020174A
JP2019020174A JP2017136614A JP2017136614A JP2019020174A JP 2019020174 A JP2019020174 A JP 2019020174A JP 2017136614 A JP2017136614 A JP 2017136614A JP 2017136614 A JP2017136614 A JP 2017136614A JP 2019020174 A JP2019020174 A JP 2019020174A
Authority
JP
Japan
Prior art keywords
secondary battery
charging rate
socv
rate
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017136614A
Other languages
Japanese (ja)
Other versions
JP6821525B2 (en
Inventor
大輝 小松
Daiki Komatsu
大輝 小松
晋 山内
Susumu Yamauchi
晋 山内
啓 坂部
Hiroshi Sakabe
啓 坂部
ファニー マテ
Fany Mate
ファニー マテ
大川 圭一朗
Keiichiro Okawa
圭一朗 大川
亮平 中尾
Ryohei Nakao
亮平 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2017136614A priority Critical patent/JP6821525B2/en
Priority to PCT/JP2018/023396 priority patent/WO2019012930A1/en
Publication of JP2019020174A publication Critical patent/JP2019020174A/en
Application granted granted Critical
Publication of JP6821525B2 publication Critical patent/JP6821525B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

To solve the problem that the computation of SOCv contains an error due to a deviation of the equivalent circuit model of a secondary battery itself from actual measurement, etc. caused by deterioration or the like.SOLUTION: A secondary battery controller 102 finds a first open-circuit voltage OCV of a secondary battery 100 from an equivalent circuit that includes at least a polarization component represented by a parallel connection between polarization resistance and capacitive component and an internal resistance component R of the secondary battery 100, and finds a state of charge SOCv of the secondary battery 100 from a relationship between the first open-circuit voltage OCV and the state of charge of the secondary battery 100. Then, the secondary battery controller 102 computes a value subtracting, from the value of measured voltage of the secondary battery 100, the value of a second open-circuit voltage computed by a method different from the first open-circuit voltage OCV, a voltage value Vp of the polarization component computed in accordance with the current information of the secondary battery 100 and a value RI represented by the product of the internal resistance value R and the current value I of the secondary battery 100.SELECTED DRAWING: Figure 3

Description

本発明は、二次電池制御装置に関する。   The present invention relates to a secondary battery control device.

近年、地球温暖化問題に対応するため、エネルギーの有効利用が可能な蓄電池に注目が集まっている。特に、移動体向け蓄電装置や系統連系安定化用蓄電装置といった電池システムは、化石燃料への依存度を下げることが可能であるため、一層の普及が期待されている。これらシステムの性能を引き出すには二次電池の充電率(State of Charge、以下SOCと略す)や劣化度(State of Health、以下SOHと略す)、充放電可能な最大電流(許容電流)といったパラメータを用いた充放電制御や、各電池の充電率の均等化を適切に行う必要がある。その為には、二次電池の充放電中の電圧から推定した開回路電圧(Open Circuit Voltage、以下OCVと略す)を元に算出したSOC(以下SOCvと略す)に誤差が少ないことが望まれる。   In recent years, attention has been focused on storage batteries that can effectively use energy in order to cope with the global warming problem. In particular, since battery systems such as power storage devices for mobile bodies and power storage devices for grid connection stabilization can reduce the dependence on fossil fuels, further spread is expected. In order to bring out the performance of these systems, parameters such as the charging rate of the secondary battery (State of Charge, hereinafter referred to as SOC), the degree of deterioration (State of Health, hereinafter referred to as SOH), and the maximum current (allowable current) that can be charged and discharged It is necessary to appropriately perform charge / discharge control using a battery and equalize the charging rate of each battery. For this purpose, it is desirable that there is little error in the SOC (hereinafter abbreviated as SOCv) calculated based on the open circuit voltage (hereinafter abbreviated as OCV) estimated from the voltage during charging and discharging of the secondary battery. .

特許文献1には、SOCvの演算の誤差を判定する装置が記載されている。この装置では、SOCvの演算を、OCVと、内部抵抗と、分極抵抗及びキャパシタンス成分の並列接続対との直列接続で表現される電池の等価回路モデルを用いて演算する。この際に、キャパシタンス成分が飽和した際はSOCvの演算の誤差が大きいと判定している。   Patent Document 1 describes an apparatus for determining an SOCv calculation error. In this apparatus, the SOCv is calculated using an equivalent circuit model of a battery expressed by a series connection of an OCV, an internal resistance, and a parallel connection pair of a polarization resistance and a capacitance component. At this time, when the capacitance component is saturated, it is determined that the error in the calculation of the SOCv is large.

特開2016−099156号公報JP 2006-099156 A

特許文献1では、キャパシタンス成分が飽和した状態、すなわち、二次電池の等価回路モデルによる誤差が発生しやすい条件のみを捉えているので、例えば劣化等による二次電池の等価回路モデル自体の実測との乖離や、演算に用いている電流と電圧の計測タイミングのずれによる誤差等を捉える事ができなかった。   Since Patent Document 1 captures only a state in which the capacitance component is saturated, that is, a condition in which an error due to the equivalent circuit model of the secondary battery is likely to occur, for example, an actual measurement of the equivalent circuit model of the secondary battery due to deterioration or the like. It was not possible to grasp the error due to the difference in the measurement timing of the current and voltage used in the calculation.

本発明による二次電池制御装置は、分極抵抗と容量成分との並列接続で表わされる分極成分と、二次電池の内部抵抗成分Rと、を少なくとも有する等価回路から前記二次電池の第1開回路電圧OCVを求め、前記第1開回路電圧OCV、および、前記二次電池の充電率との関係から前記二次電池の充電率SOCvを求める二次電池制御装置であって、前記二次電池制御装置は、前記二次電池の実測電圧の値から、前記第1開回路電圧OCVとは異なる方法で演算された第2開回路電圧の値、前記二次電池の電流情報に応じて演算される前記分極成分の電圧値Vp、および前記内部抵抗成分Rと前記二次電池の電流値Iの積にて表される値RI、を引いた値を演算する。
本発明による二次電池制御装置は、分極抵抗と容量成分との並列接続で表わされる分極成分と、二次電池の内部抵抗成分と、を少なくとも有する等価回路から前記二次電池の第1開回路電圧を求め、前記第1開回路電圧と前記二次電池の充電率SOCとの対応関係から前記二次電池の充電率SOCvを求めるSOCv演算部と、前記第1開回路電圧とは異なる第2開回路電圧、前記二次電池の電流情報に応じて演算される前記分極成分の電圧値、および前記内部抵抗成分と前記二次電池の電流値の積で表される値を元に電池電圧を推定する電池電圧推定部と、前記電池電圧推定部で推定された電池電圧と前記二次電池の実測電圧との誤差を演算する誤差演算部と、を備える。
A secondary battery control device according to the present invention includes a first open circuit of the secondary battery from an equivalent circuit having at least a polarization component represented by a parallel connection of a polarization resistance and a capacity component, and an internal resistance component R of the secondary battery. A secondary battery control device for obtaining a circuit voltage OCV and obtaining a charge rate SOCv of the secondary battery from a relationship between the first open circuit voltage OCV and a charge rate of the secondary battery, wherein the secondary battery The control device calculates from the measured voltage value of the secondary battery according to the second open circuit voltage value calculated by a method different from the first open circuit voltage OCV and the current information of the secondary battery. The value obtained by subtracting the voltage value Vp of the polarization component and the value RI represented by the product of the internal resistance component R and the current value I of the secondary battery is calculated.
A secondary battery control device according to the present invention includes a first open circuit of the secondary battery from an equivalent circuit having at least a polarization component represented by a parallel connection of a polarization resistance and a capacity component, and an internal resistance component of the secondary battery. An SOCv calculation unit that obtains a voltage and obtains a charge rate SOCv of the secondary battery from a correspondence relationship between the first open circuit voltage and the charge rate SOC of the secondary battery, and a second different from the first open circuit voltage The battery voltage is calculated based on the open circuit voltage, the voltage value of the polarization component calculated according to the current information of the secondary battery, and the value represented by the product of the internal resistance component and the current value of the secondary battery. A battery voltage estimator for estimation; and an error calculator for calculating an error between the battery voltage estimated by the battery voltage estimator and the measured voltage of the secondary battery.

本発明によれば、SOCvの演算の誤差を演算することができる。   According to the present invention, it is possible to calculate an SOCv calculation error.

電池システムの構成を示す図である。It is a figure which shows the structure of a battery system. 二次電池の等価回路モデルを示す図である。It is a figure which shows the equivalent circuit model of a secondary battery. SOH演算部の構成を示す図である。It is a figure which shows the structure of a SOH calculating part. (a)、(b)実測電圧とモデル推定電圧、及び両者の差の推移を示す図である。(A), (b) It is a figure which shows transition of the actual voltage and model estimation voltage, and the difference of both. (a)、(b)誤差αとSOCv演算誤差の関係を示す図である。(A), (b) It is a figure which shows the relationship of the error (alpha) and SOCv calculation error. Qmax’の推移を示す図である。It is a figure which shows transition of Qmax '. OCV近似曲線を示す図である。It is a figure which shows an OCV approximation curve. 第2の実施形態によるSOH演算部の構成を示す図である。It is a figure which shows the structure of the SOH calculating part by 2nd Embodiment. 第3の実施形態による第2のSOC演算部の構成を示す図である。It is a figure which shows the structure of the 2nd SOC calculating part by 3rd Embodiment.

-第1の実施形態-
以下、第1の実施形態について、図1〜図7を参照して説明する。図1は、電池システムの構成を示す図である。図1で示す構成は、移動体向け蓄電装置、系統連系安定化用蓄電装置等幅広い用途で使用される形態であり、電力を蓄える電池システム1と、電池システム1に対し充放電を行うインバータ104と、インバータ104に接続された負荷105と、電池システム1やインバータ104を制御する上位コントローラ103より構成される。
-First embodiment-
Hereinafter, the first embodiment will be described with reference to FIGS. FIG. 1 is a diagram illustrating a configuration of a battery system. The configuration shown in FIG. 1 is a form used in a wide range of applications such as a power storage device for a mobile body and a power storage device for grid connection stabilization, and a battery system 1 that stores electric power and an inverter that charges and discharges the battery system 1 104, a load 105 connected to the inverter 104, and a host controller 103 that controls the battery system 1 and the inverter 104.

電池システム1は、二次電池100に対する電力の蓄電や放電、及びこれらに必要な制御値である充電率SOCや、二次電池100の現在の性能把握に必要な制御値である劣化度SOHの演算を行う。上位コントローラ103は、負荷105の状態や電池システム1が出力した二次電池100の制御値とその他外部からの指令とに応じ二次電池100の制御や、インバータ104に対する電力の入出力指令を行う。インバータ104は上位コントローラ103からの指令に従い、二次電池100及び負荷105に対して電力の入出力を行う。負荷105は例えば三相交流モータや電力系統である。   The battery system 1 stores the power storage and discharge of the secondary battery 100, the charge rate SOC which is a control value necessary for these, and the deterioration degree SOH which is a control value necessary for grasping the current performance of the secondary battery 100. Perform the operation. The host controller 103 controls the secondary battery 100 and issues an input / output command of power to the inverter 104 according to the state of the load 105, the control value of the secondary battery 100 output from the battery system 1, and other external commands. . The inverter 104 inputs and outputs power to the secondary battery 100 and the load 105 in accordance with a command from the host controller 103. The load 105 is, for example, a three-phase AC motor or a power system.

二次電池100の出力する電圧は充電率SOCに応じて変化する直流電圧であり、多くの場合、交流を必要とする負荷105へ電力を直接提供することはできない。そこで、インバータ104は必要に応じ直流から交流への変換や電圧の変換を行う。このような構成にすることで、電池システム1は負荷に適した出力を適宜供給することが可能となる。以下、この構成を実現するための電池システム1の構成について述べる。   The voltage output from the secondary battery 100 is a DC voltage that changes in accordance with the charging rate SOC, and in many cases, power cannot be directly provided to the load 105 that requires AC. Therefore, the inverter 104 performs conversion from DC to AC and voltage conversion as necessary. With such a configuration, the battery system 1 can appropriately supply an output suitable for the load. Hereinafter, the configuration of the battery system 1 for realizing this configuration will be described.

電池システム1は、二次電池100と、電池情報取得部101と、二次電池制御装置102から構成され、電力の蓄電・放電を行い、SOC・許容電流といった二次電池100の制御値を演算する。   The battery system 1 includes a secondary battery 100, a battery information acquisition unit 101, and a secondary battery control device 102. The battery system 1 stores and discharges electric power, and calculates control values of the secondary battery 100 such as SOC and allowable current. To do.

二次電池100は複数の電池セルより構成される。各電池セルは、二次電池100に要求される出力電圧や容量に応じ、直列、又は並列に接続されている。
電池情報取得部101は、二次電池100に流れる電流値を測定する電流センサ106、二次電池100の表面温度を測定する温度センサ107、二次電池100の電圧を測定する電圧センサ108を有する。
The secondary battery 100 is composed of a plurality of battery cells. Each battery cell is connected in series or in parallel according to the output voltage and capacity required for the secondary battery 100.
The battery information acquisition unit 101 includes a current sensor 106 that measures the value of current flowing through the secondary battery 100, a temperature sensor 107 that measures the surface temperature of the secondary battery 100, and a voltage sensor 108 that measures the voltage of the secondary battery 100. .

電流センサ106は、二次電池100と外部との間に1つ、もしくは複数設置する場合がある。1つ設置した場合にはコストを最小限に抑えることが可能である。複数設置した場合には並列接続している電池セル間の電流配分を把握することが可能である。   One or a plurality of current sensors 106 may be installed between the secondary battery 100 and the outside. If one is installed, the cost can be minimized. When a plurality of batteries are installed, it is possible to grasp the current distribution between the battery cells connected in parallel.

温度センサ107は、二次電池100の温度を把握するために1つ、もしくは複数設置する。1つ設置した場合には、最小限のコストで二次電池100内の最高温度になる予測できる地点の温度を計測できる。複数設置した場合には、電池セルの温度ばらつきを計測することで、最低温度や最高温度を考慮した制御が可能となる。   One or a plurality of temperature sensors 107 are installed to grasp the temperature of the secondary battery 100. When one is installed, the temperature at a point where the maximum temperature in the secondary battery 100 can be predicted can be measured at a minimum cost. When a plurality of batteries are installed, it is possible to perform control in consideration of the minimum temperature and the maximum temperature by measuring the temperature variation of the battery cells.

電圧センサ108は、各電池セルに1つ設置する。これにより各電池セル間の電圧差の測定が可能となり、これを元に各電池セルの電圧の均等化制御が可能となる。電流センサ106、温度センサ107、電圧センサ108で計測された電池情報I、T、Vは二次電池制御装置102へ入力される。   One voltage sensor 108 is installed in each battery cell. As a result, the voltage difference between the battery cells can be measured, and the voltage equalization control of each battery cell can be performed based on this measurement. The battery information I, T, V measured by the current sensor 106, the temperature sensor 107, and the voltage sensor 108 is input to the secondary battery control device 102.

二次電池制御装置102は、SOC演算部109、SOH演算部110、許容電流演算部111を有する。SOC演算部109は、電流積算量からSOCiを演算するSOCi演算部112と、電池情報から推定したOCVを元にSOCvを演算するSOCv演算部113を有する。SOCiとSOCvは後で説明する。   The secondary battery control apparatus 102 includes an SOC calculation unit 109, an SOH calculation unit 110, and an allowable current calculation unit 111. The SOC calculation unit 109 includes an SOCi calculation unit 112 that calculates SOCi from the current integration amount, and an SOCv calculation unit 113 that calculates SOCv based on the OCV estimated from the battery information. SOCi and SOCv will be described later.

SOH演算部110は、容量の劣化率であるSOHQを演算するSOHQ演算部115を有する。また、電池情報取得部101からの電池情報と充電率SOCを元に、抵抗の劣化率であるSOHRを演算するSOHR演算部を有する構成であってもよい。   The SOH calculation unit 110 includes a SOHQ calculation unit 115 that calculates SOHQ that is a capacity deterioration rate. Moreover, the structure which has the SOHR calculating part which calculates SOHR which is a deterioration rate of resistance based on the battery information from the battery information acquisition part 101 and charging rate SOC may be sufficient.

許容電流演算部111は、SOH演算部110からのSOH及び電池情報取得部101からの電池情報を元にして充放電可能な最大電流である許容電流Ilimitを演算する。   The allowable current calculation unit 111 calculates an allowable current Ilimit that is the maximum current that can be charged and discharged based on the SOH from the SOH calculation unit 110 and the battery information from the battery information acquisition unit 101.

二次電池制御装置102は、SOC演算部109、SOH演算部110、及び許容電流演算部111がそれぞれ演算したSOC、SOH、及び許容電流Ilimitを上位コントローラ103へ出力する。上位コントローラ103は二次電池100の状態を考慮した上で、負荷105に対応した電力出力指令を二次電池制御装置102に送る。   The secondary battery control device 102 outputs the SOC, SOH, and allowable current Ilimit calculated by the SOC calculation unit 109, the SOH calculation unit 110, and the allowable current calculation unit 111 to the host controller 103, respectively. The host controller 103 sends a power output command corresponding to the load 105 to the secondary battery control device 102 in consideration of the state of the secondary battery 100.

[SOC演算部109の動作]
SOC演算部109は、SOCi演算部112で求められたSOCiと、SOCv演算部113で求められたSOCvを元に、次式(1)により、SOCを演算する。この演算において、SOCiとSOCvを重み付け加算するための重み係数Wを用いる。一般に、重み係数Wは、電流Iの絶対値が小さいときはSOCvを主に用いてSOCを算出し、電流Iの絶対値が大きいときはSOCiを主に用いてSOCを算出するように、重み係数Wを設定する。また、二次電池100の内部抵抗Rが小さいときはSOCvを主に用いてSOCを算出し、内部抵抗Rが大きいときはSOCiを主に用いてSOCを算出するように、重み係数Wを設定する。
SOC=W×SOCi+(1−W)×SOCv ・・・(1)
ここで、重み係数Wは0以上1以下の値である。
[Operation of SOC Calculation Unit 109]
The SOC calculation unit 109 calculates the SOC by the following expression (1) based on the SOCi obtained by the SOCi calculation unit 112 and the SOCv obtained by the SOCv calculation unit 113. In this calculation, a weighting coefficient W for weighting and adding SOCi and SOCv is used. In general, the weighting factor W is weighted so that when the absolute value of the current I is small, SOC is mainly used to calculate the SOC, and when the absolute value of the current I is large, SOCi is mainly used to calculate the SOC. A coefficient W is set. Further, when the internal resistance R of the secondary battery 100 is small, the SOC is mainly used to calculate the SOC, and when the internal resistance R is large, the weight coefficient W is set so that the SOC is mainly calculated using the SOCi. To do.
SOC = W × SOCi + (1−W) × SOCv (1)
Here, the weight coefficient W is a value between 0 and 1.

[SOCi演算部112の動作]
SOCi演算部112の動作について説明する。SOCi演算部112は、二次電池100が充放電する電流Iを次式(2)にしたがって積算することにより、二次電池100のSOCiを求める。式(2)において、Qmaxは二次電池100の満充電容量であり、予め図示省略した記憶部に格納されている。SOColdは、前回の演算周期において式(1)により算出されたSOCの値である。
SOCi=SOCold+100×∫I/Qmax ・・・(2)
[Operation of SOCi Operation Unit 112]
The operation of the SOCi calculation unit 112 will be described. The SOCi calculation unit 112 calculates the SOCi of the secondary battery 100 by accumulating the current I charged / discharged by the secondary battery 100 according to the following equation (2). In Expression (2), Qmax is the full charge capacity of the secondary battery 100, and is stored in advance in a storage unit (not shown). SOCold is the SOC value calculated by the equation (1) in the previous calculation cycle.
SOCi = SOCold + 100 × ∫I / Qmax (2)

[SOCv演算部113の動作]
次に、SOCv演算部113の動作について図2を参照して説明する。SOCv演算部113は二次電池100の等価回路を用いてSOCvを演算する。演算に用いる二次電池100の等価回路モデルを図2に示す。この等価回路モデルは、開回路電圧OCVを電圧源200で表現し、電解液の抵抗等を表現する直流抵抗を抵抗201(二次電池の内部抵抗R)で表現している。更に、分極抵抗と容量成分との並列接続で表わされる分極成分は、電解液中のイオンの濃度分極等に由来する分極の抵抗成分である抵抗202と、分極の容量成分であるキャパシタ203とにより表現している。そして、二次電池100の開回路電圧OCV,二次電池100の内部抵抗による電圧V,分極成分による電圧(以下、分極電圧)Vpを足し合わせることで二次電池100の現在の電圧(Closed circuit voltage、以下CCVと略す)を表現する。なお、本実施形態では抵抗202とキャパシタ203からなる分極項が1個の例を示したが、複数個用いて等価回路モデルの高精度化を図ってもよい。
[Operation of SOCv Operation Unit 113]
Next, the operation of the SOCv calculation unit 113 will be described with reference to FIG. The SOCv calculation unit 113 calculates the SOCv using the equivalent circuit of the secondary battery 100. FIG. 2 shows an equivalent circuit model of the secondary battery 100 used for the calculation. In this equivalent circuit model, the open circuit voltage OCV is expressed by the voltage source 200, and the direct current resistance expressing the resistance of the electrolytic solution and the like is expressed by the resistor 201 (internal resistance R of the secondary battery). Furthermore, the polarization component represented by the parallel connection of the polarization resistance and the capacitance component is composed of a resistance 202 that is a polarization resistance component derived from concentration polarization of ions in the electrolytic solution and a capacitor 203 that is a capacitance component of polarization. expressing. The current voltage (Closed) of the secondary battery 100 is obtained by adding the open circuit voltage OCV of the secondary battery 100, the voltage V 0 due to the internal resistance of the secondary battery 100, and the voltage (hereinafter referred to as polarization voltage) Vp due to the polarization component. circuit voltage (hereinafter abbreviated as CCV). In the present embodiment, an example in which the polarization term composed of the resistor 202 and the capacitor 203 is one is shown. However, it is possible to increase the accuracy of the equivalent circuit model by using a plurality of polarization terms.

二次電池100に電流Iを印加すると、二次電池100の端子間電圧である閉回路電圧CCVは次式(3)で表される。式(3)において、Vpは分極電圧であり、I・Rは抵抗202とキャパシタ203の並列接続対の両端電圧に相当する。
CCV=OCV+I・R+Vp ・・・(3)
When the current I is applied to the secondary battery 100, the closed circuit voltage CCV, which is the voltage between the terminals of the secondary battery 100, is expressed by the following equation (3). In Expression (3), Vp is a polarization voltage, and I · R corresponds to a voltage across a parallel connection pair of the resistor 202 and the capacitor 203.
CCV = OCV + I · R + Vp (3)

SOCvの算出には開回路電圧OCVが用いられるが、二次電池100が充放電している間は直接測定することができない。そこで、SOCv演算部113は、次式(4)のように閉回路電圧CCVからIRドロップと分極電圧Vpを差し引くことにより、開回路電圧OCVを求める。
OCV=CCV−I・R−Vp ・・・(4)
The open circuit voltage OCV is used to calculate the SOCv, but cannot be directly measured while the secondary battery 100 is being charged / discharged. Therefore, the SOCv calculation unit 113 obtains the open circuit voltage OCV by subtracting the IR drop and the polarization voltage Vp from the closed circuit voltage CCV as in the following equation (4).
OCV = CCV-I.R-Vp (4)

開回路電圧OCVとSOCとの対応関係は二次電池100の特性によって定まるものであり、図示省略した記憶部には、その対応関係を定義するデータがSOCテーブルとして予め格納されている。SOCv演算部113は、上述の式(4)を用いて開回路電圧OCVを算出し、これをキーにしてSOCテーブルを参照することにより、二次電池100のSOCvを算出する。   The correspondence relationship between the open circuit voltage OCV and the SOC is determined by the characteristics of the secondary battery 100, and data defining the correspondence relationship is stored in advance as an SOC table in a storage unit (not shown). The SOCv calculation unit 113 calculates the open circuit voltage OCV using the above-described equation (4), and calculates the SOCv of the secondary battery 100 by referring to the SOC table using this as a key.

図3は、SOH演算部110の構成を示す図である。
SOH演算部110は、SOHQ演算部115と同様に、容量劣化率であるSOHQを算出するように構成される例で説明する。SOHQ演算部115は、電池電圧推定部303、SOCv誤差演算部304、SOCv2点選択部300、電流積算部301、QmaxSOCv演算部302、最終的なQmax’演算部305、SOHQ変換部306を有する。
FIG. 3 is a diagram illustrating a configuration of the SOH calculation unit 110.
Similar to the SOHQ calculation unit 115, the SOH calculation unit 110 will be described using an example configured to calculate SOHQ that is a capacity deterioration rate. The SOHQ calculation unit 115 includes a battery voltage estimation unit 303, an SOCv error calculation unit 304, an SOCv 2-point selection unit 300, a current integration unit 301, a Qmax SOCv calculation unit 302, a final Qmax ′ calculation unit 305, and an SOHQ conversion unit 306. .

電池電圧推定部303は、電池の等価回路モデルの情報を元に電池電圧を推定する。推定電池電圧Vcalcの演算例は後述する。SOCv誤差演算部304は、電圧センサ108より入力する電池電圧Vから推定電池電圧Vcalcを引いた値、すなわち電池電圧Vと推定電池電圧Vcalcとの誤差αを演算する。SOCv2点選択部300は、誤差αの絶対値が所定値Vthreshold以下の場合、SOCvの2点、すなわちSOCv1、2を選択する。2点選択の具体例は後述するが、電流センサ106で検出されている電流Iも参照する場合がある。電流積算部301は、電流積算部301は、選択されたSOCv1、2間で流れた電流値を積算し、SOCv1、2間の充放電容量∫Idtを演算する。QmaxSOCv演算部302は、SOCv1、2と∫Idtを用いて満充電容量QmaxSOCvを演算する。最終的なQmax’演算部305は、入力される満充電容量QmaxSOCvとQmax’演算の前回結果Qmax_zとを用いた平均化処理を行うことで最終的なQmax’を演算する。SOHQ変換部306は、最終的なQmax’を新品時の満充電容量Qmaxと比較することでSOHQを演算する。 The battery voltage estimation unit 303 estimates the battery voltage based on the information on the equivalent circuit model of the battery. A calculation example of the estimated battery voltage Vcalc will be described later. The SOCv error calculation unit 304 calculates a value obtained by subtracting the estimated battery voltage Vcalc from the battery voltage V input from the voltage sensor 108, that is, an error α between the battery voltage V and the estimated battery voltage Vcalc . The SOCv 2-point selection unit 300 selects two SOCv points, that is, SOCv1 and 2 when the absolute value of the error α is equal to or smaller than the predetermined value V threshold . Although a specific example of the two-point selection will be described later, the current I detected by the current sensor 106 may also be referred to. The current integration unit 301 integrates the current values that flow between the selected SOCv1 and 2, and calculates the charge / discharge capacity ∫Idt between the SOCv1 and SOCv2. Qmax SOCv computing unit 302 computes full charge capacity Qmax SOCv using SOCv1, 2 and ∫Idt. The final Qmax ′ calculator 305 calculates final Qmax ′ by performing an averaging process using the input full charge capacity Qmax SOCv and the previous result Qmax_z of the Qmax ′ calculation. The SOHQ conversion unit 306 calculates SOHQ by comparing the final Qmax ′ with the full charge capacity Qmax when new.

次に、SOH演算部110の動作について説明する。
SOCv2点選択部300は、SOCv演算部113より逐次出力されるSOCvの中から演算に適切な2点のSOCv1、SOCv2を選択する。前述したようにSOCv演算部113は二次電池100の等価回路モデルを用いてOCVを推定してSOCvを算出している。この電池の等価回路モデルに誤差が少なく、SOC真値とSOCvが近い値を選択し、且つSOCvの適切な2点を選択することが重要になる。
Next, the operation of the SOH calculation unit 110 will be described.
The SOCv2 point selection unit 300 selects two SOCv1 and SOCv2 that are appropriate for calculation from the SOCv sequentially output from the SOCv calculation unit 113. As described above, the SOCv calculation unit 113 calculates the SOCv by estimating the OCV using the equivalent circuit model of the secondary battery 100. It is important that the equivalent circuit model of the battery has little error, selects a value close to the true SOC value and the SOCv, and selects two appropriate SOCv points.

以下では、SOCvを2点選択するための選択条件として、電池の等価回路モデルの演算している電圧値と実測電池電圧の差が小の点を選択する選択条件1について述べる。なお、選択条件2から選択条件7については後述する。   Hereinafter, selection condition 1 for selecting a point where the difference between the voltage value calculated by the equivalent circuit model of the battery and the measured battery voltage is small will be described as a selection condition for selecting two SOCvs. The selection conditions 2 to 7 will be described later.

[選択条件1:電池の等価回路モデルの演算している電圧値と実測電池電圧の差が小の点を選択する]
電池電圧推定部303は、以下の式(5)により電池の等価回路モデルの情報を元に電池電圧を推定する。

Figure 2019020174
[Selection condition 1: Select a point where the difference between the calculated voltage value of the battery equivalent circuit model and the measured battery voltage is small]
The battery voltage estimation unit 303 estimates the battery voltage based on the information of the equivalent circuit model of the battery by the following equation (5).
Figure 2019020174

OCV(SOC)は、予め記憶部に記憶されているSOCとOCVの対応関係(SOCテーブル)に基づいて、SOC演算部109により式(1)に基づいて求めたSOCを参照して求めたOCVである。内部抵抗電圧Vと分極電圧Vpは二次電池100の等価回路モデルで示した値である。電池電圧推定部303は、式(5)で推定した電池電圧VcalcをSOCv誤差演算部304に出力する。
なお、式(5)に記載のOCV(SOC)は、SOCi演算部112により式(2)に基づいて求めたSOCiを元に、予め記憶部に記憶されているSOCとOCVの対応関係(SOCテーブル)から求めたOCVを用いてもよい。本実施形態では、これらのOCVを第2開回路電圧と称する。
The OCV (SOC) is an OCV obtained by referring to the SOC obtained from the SOC calculation unit 109 based on the formula (1) based on the correspondence relationship (SOC table) between the SOC and the OCV stored in the storage unit in advance. It is. The internal resistance voltage V 0 and the polarization voltage Vp are values shown by an equivalent circuit model of the secondary battery 100. Battery voltage estimation unit 303 outputs battery voltage V calc estimated by equation (5) to SOCv error calculation unit 304.
Note that the OCV (SOC) described in Equation (5) is the correspondence between the SOC and OCV stored in advance in the storage unit (SOC) based on the SOCi calculated based on Equation (2) by the SOCi computing unit 112. The OCV obtained from the table may be used. In the present embodiment, these OCVs are referred to as second open circuit voltages.

SOCv誤差演算部304は、電圧センサ108から入力する電池電圧VとVcalcとの差をとり、誤差αを演算する。以下の式(6)が誤差αの演算式である。

Figure 2019020174
The SOCv error calculation unit 304 calculates the error α by taking the difference between the battery voltage V input from the voltage sensor 108 and V calc . The following expression (6) is an arithmetic expression for the error α.
Figure 2019020174

この誤差αの絶対値が所定値Vthreshold以下の場合、SOCv2点選択部300を有効化し、2点のSOCv1、SOCv2を選択して、以降の各演算部に出力する。一方、この誤差αの絶対値が所定値Vthresholdより大きい場合は、2点のSOCvを選択せず以降の各演算部には出力しない。このような構成にすることで誤差の少ないSOCvを選択することができる。 When the absolute value of the error α is equal to or less than the predetermined value V threshold , the SOCv2 point selection unit 300 is validated, and two points of SOCv1 and SOCv2 are selected and output to the subsequent calculation units. On the other hand, when the absolute value of the error α is larger than the predetermined value V threshold , two points of SOCv are not selected and are not output to the subsequent calculation units. With such a configuration, it is possible to select an SOCv with little error.

図4(a)は、電圧センサから入力する実測電池電圧Vとモデル推定電圧Vcalcの推移を示している。図4(b)は、誤差αの推移を示している。図4(b)において、点線は正負側の判定所定値Vthresholdを示している。図4(a)に示すように、Vcalcは大電流が入力されて急激な電圧変動が生じた時刻t1や、電流が長時間の通電した時刻t2で実測電圧から乖離する。誤差αはこのようなタイミングを捉え、精度の悪いSOCvを選択しないようにしている。所定値Vthresholdを小さくすることでSOHQの精度は向上するため、所定値Vthresholdは許容できるSOHQ誤差を元に決定する。 FIG. 4A shows changes in the measured battery voltage V and the model estimated voltage Vcalc input from the voltage sensor. FIG. 4B shows the transition of the error α. In FIG. 4B, the dotted line indicates the positive / negative determination predetermined value V threshold . As shown in FIG. 4A, Vcalc deviates from the measured voltage at time t1 when a large current is input and a sudden voltage fluctuation occurs, or at time t2 when the current is applied for a long time. The error α captures such a timing, so that an SOCv with poor accuracy is not selected. Since the accuracy of SOHQ is improved by reducing the predetermined value V threshold The, the predetermined value V threshold The determining based on an acceptable SOHQ error.

図5(a)、(b)は、誤差αとSOCv演算誤差の関係を示す図である。図5(a)は、SOC真値とSOCvの推移を示している。図5(b)は、誤差αを示している。図中の点線の丸で囲った部分はSOCvが真値から乖離している部分である。同じタイミングにおいて、図5(b)に示すように、誤差αの値も増大し、誤差αが閾値以上となっていることが確認できる。このことから、誤差αを判定することでSOCvの誤差を捉え、誤差の少ないSOCv1、SOCv2を選択する事が可能である。   5A and 5B are diagrams showing the relationship between the error α and the SOCv calculation error. FIG. 5A shows transition of the SOC true value and the SOCv. FIG. 5B shows the error α. A portion surrounded by a dotted circle in the figure is a portion where the SOCv deviates from the true value. At the same timing, as shown in FIG. 5B, the value of the error α also increases, and it can be confirmed that the error α is equal to or greater than the threshold value. From this, it is possible to detect the SOCv error by determining the error α, and to select SOCv1 and SOCv2 with a small error.

電流積算部301は、上記条件で選択されたSOCv1、SOCv2間で流れた電流値を積算し、SOCv1、SOCv2間の充放電容量∫Idtを演算する。QmaxSOCv演算部302は、SOCv1、SOCv2と∫Idtを用いて満充電容量QmaxSOCvを以下の式(7)により演算する。

Figure 2019020174
ここで、ΔSOCv=|SOCv1−SOCv2|である。 Current integration unit 301 integrates the current values that flow between SOCv1 and SOCv2 selected under the above conditions, and calculates charge / discharge capacity ∫Idt between SOCv1 and SOCv2. Qmax SOCv computing unit 302 computes full charge capacity Qmax SOCv by the following equation (7) using SOCv1, SOCv2 and ∫Idt.
Figure 2019020174
Here, ΔSOCv = | SOCv1-SOCv2 |.

このようにして演算されたQmaxSOCvは最終的なQmax’演算部305に出力される。最終的なQmax’演算部305では、Qmax’演算の前回結果Qmax_zと式(8)で示す平均化処理を行うことで最終的なQmax’を演算する。

Figure 2019020174
ここで、Nとは平均化のサンプリング数である。Qmax’は急激に変動しないため、前回値とNを使用し、演算値の平滑化を図っている。 The Qmax SOCv calculated in this way is output to the final Qmax ′ calculator 305. The final Qmax ′ calculation unit 305 calculates the final Qmax ′ by performing the previous result Qmax_z of the Qmax ′ calculation and the averaging process represented by Expression (8).
Figure 2019020174
Here, N is the number of samplings for averaging. Since Qmax ′ does not fluctuate rapidly, the previous value and N are used to smooth the calculation value.

図6は、Qmax’の推移を示す図である。この図において、横軸は時間、縦軸はQmax’であり、図中の点線は本実施形態を適用する前の場合、図中の実線は本実施形態を適用した場合を示す。本実施形態を適用する前はSOCv演算誤差の大きなSOCvを選択することで誤差が大きくなり真値から大きく乖離してしまっていた。本実施形態の適用後は精度の良いSOCvのみを選択したため、Qmax’の演算が高精度化していることが確認できる。   FIG. 6 is a diagram showing the transition of Qmax ′. In this figure, the horizontal axis represents time, the vertical axis represents Qmax ', the dotted line in the figure indicates the case before the present embodiment is applied, and the solid line in the figure indicates the case where the present embodiment is applied. Before applying this embodiment, selecting an SOCv with a large SOCv calculation error increases the error and deviates greatly from the true value. After the application of this embodiment, only accurate SOCv is selected, so it can be confirmed that the calculation of Qmax 'is highly accurate.

SOHQ変換部306は、平滑化されたQmax’が入力され、Qmax’を新品時の満充電容量Qmaxと比較することでSOHQを演算する。演算式は以下の式(9)である。

Figure 2019020174
The SOHQ conversion unit 306 receives the smoothed Qmax ′ and calculates SOHQ by comparing Qmax ′ with the full charge capacity Qmax when new. The arithmetic expression is the following expression (9).
Figure 2019020174

このような構成にすることで、SOCv演算誤差の少ない点を選択しSOHQを演算できるため、高精度なSOHQ演算が可能である。 By adopting such a configuration, it is possible to calculate a SOHQ by selecting a point with a small SOCv calculation error, and thus a highly accurate SOHQ calculation is possible.

以上の説明では、SOCvを2点選択するための選択条件として、電池の等価回路モデルの演算している電圧値と実測電池電圧の差が小の点を選択する選択条件1について述べた。SOCvを2点選択するための条件として、以下に述べる選択条件2から選択条件7のいずれか1つ、もしくは2つ以上を追加して選択しても良い。これにより、満充電容量を精度良く算出することが可能となる。   In the above description, the selection condition 1 for selecting the point where the difference between the voltage value calculated by the equivalent circuit model of the battery and the measured battery voltage is small is selected as the selection condition for selecting two SOCv points. As a condition for selecting two SOCv points, any one or two or more of selection conditions 2 to 7 described below may be selected. As a result, the full charge capacity can be accurately calculated.

[選択条件2:電流の絶対値が小の条件で選択する]
二次電池100に流れる電流が大の場合、SOCv演算部113は電流Iと抵抗201の積を算出するため、算出結果である誤差が拡大してしまう。SOCv1とSOCv2を選択する場合、それぞれ電流が小の条件で選択することで電流Iと抵抗201の積の誤差が小、すなわちSOCv誤差の小さい点を選択することが出来る。よって、SOCv1とSOCv2は電流小となる点をそれぞれ選択する。
[Selection condition 2: Select under the condition that the absolute value of the current is small]
When the current flowing through the secondary battery 100 is large, the SOCv calculation unit 113 calculates the product of the current I and the resistance 201, so that an error as a calculation result is enlarged. When selecting SOCv1 and SOCv2, it is possible to select a point where the error of the product of the current I and the resistance 201 is small, that is, the SOCv error is small, by selecting each under the condition that the current is small. Therefore, SOCv1 and SOCv2 respectively select points where the current is small.

[選択条件3:電池温度が所定値以内の2点を選択する]
電池温度によって抵抗201、分極部抵抗202の値は変化する。特に温度が低い場合には抵抗が大きくなり、電流Iと抵抗201の積の誤差の拡大が懸念される。また、低温領域では、電流に依存して抵抗が変化する挙動が知られており、考慮すべき誤差条件が増える。温度は室温程度の2点を選択するのが良い。また、電池の本来使用すべき温度よりも高い状態で演算すると想定外の誤差が発生し得るので適切ではない。よって、SOCv1とSOCv2は温度が所定値範囲内の点をそれぞれ選択する。
[Selection condition 3: Select two points within the specified battery temperature]
The values of the resistance 201 and the polarization section resistance 202 change depending on the battery temperature. In particular, when the temperature is low, the resistance increases, and there is a concern that the error in the product of the current I and the resistance 201 may increase. Further, it is known that the resistance changes depending on the current in the low temperature region, and the error condition to be considered increases. It is preferable to select two temperatures of about room temperature. In addition, if the calculation is performed at a temperature higher than the temperature at which the battery should be originally used, an unexpected error may occur, which is not appropriate. Therefore, SOCv1 and SOCv2 each select a point whose temperature is within a predetermined value range.

[選択条件4:ΔSOCvが所定値以上である2点を選択する]
SOCv1、SOCv2それぞれの誤差が大きい場合でも、ΔSOCv=|SOCv1−SOCv2|が大きい2点を選択できれば各SOCvの誤差の影響は小さくなり、満充電容量の演算精度が向上する。よって、SOCvの2点はΔSOCvが所定値よりも大きい2点を選択する。
[Selection condition 4: Select two points where ΔSOCv is a predetermined value or more]
Even when the errors of SOCv1 and SOCv2 are large, if two points with large ΔSOCv = | SOCv1-SOCv2 | can be selected, the influence of the error of each SOCv is reduced, and the calculation accuracy of the full charge capacity is improved. Therefore, the two SOCv points are selected so that ΔSOCv is larger than a predetermined value.

[選択条件5:SOCv1とSOCv2の電流の符号が同一である2点を選択する]
二次電池100の等価回路モデルにおいて抵抗201や分極部抵抗202の値は充電と放電で異なる場合がある。そのため、SOCv1の電流符号とSOCv2の電流符号が同一になるように選択することで、この充電抵抗と放電抵抗の差による誤差を除外することができる。よって、SOCvの2点の電流の符号は同一の点を選択する。
[Selection condition 5: Select two points where the current signs of SOCv1 and SOCv2 are the same]
In the equivalent circuit model of the secondary battery 100, the values of the resistance 201 and the polarization section resistance 202 may differ between charging and discharging. Therefore, by selecting the SOCv1 current code and the SOCv2 current code to be the same, an error due to the difference between the charging resistance and the discharging resistance can be excluded. Therefore, the same point is selected for the signs of the two currents of SOCv.

[選択条件6:SOCv1とSOCv2までの時間が所定値以下となる2点を選択する]
SOCv1からSOCv2に至るまでの時間が長い場合、電流センサ106のオフセット誤差等の蓄積により誤差が発散してしまう危険性がある。よって、SOCv1とSOCv2の検出時間が所定時間tthreshold以上離れていない点を選択する。
[Selection condition 6: Select two points at which the time until SOCv1 and SOCv2 is less than or equal to a predetermined value]
If the time from SOCv1 to SOCv2 is long, there is a risk that the error may diverge due to accumulation of offset error or the like of the current sensor 106. Therefore, a point where the detection times of SOCv1 and SOCv2 are not separated by a predetermined time t threshold or more is selected.

[選択条件7:電池の等価回路モデルの演算している電圧値と実測電池電圧の誤差αの符号が同一の2点を選択する]
電池の等価回路モデルの演算している電圧値と実測電池電圧の誤差αの符号が同一のSOCvを2点選択する方が、満充電容量の演算精度が向上する。図7は、充放電時におけるOCV近似曲線を示す図である。この図において、横軸はSOCを、縦軸はOCVを、aは充電分極による誤差を含むOCV近似曲線を、bは放電分極による誤差を含むOCV近似曲線を示す。電池の等価回路モデルが実電池を正しく表現できず、放電側に分極が残った状態や充電側に分極が残った状態でSOCvを選択してしまうことが想定される。放電側同士でSOCvを2点選択すれば、放電分極由来の誤差方向が一致するため2点間で誤差は打ち消しあう。しかし充電と放電で取得してしまうと分極由来の誤差が残ってしまう。このため、誤差方向が揃い誤差を打ち消しあうことが望ましい。二次電池100の等価回路モデルの演算している電圧値と実測電池電圧の誤差αの符号は誤差方向に対応している。よつて、電池の等価回路モデルの演算している電圧値と実測電池電圧の誤差αの符号が同一の2点を選択する。
[Selection condition 7: Select two points with the same sign of the error α between the voltage value calculated by the equivalent circuit model of the battery and the measured battery voltage]
The calculation accuracy of the full charge capacity is improved by selecting two SOCvs having the same sign of the error value α between the voltage value calculated by the battery equivalent circuit model and the measured battery voltage. FIG. 7 is a diagram showing an OCV approximate curve during charging and discharging. In this figure, the horizontal axis represents SOC, the vertical axis represents OCV, a represents an OCV approximate curve including an error due to charge polarization, and b represents an OCV approximate curve including an error due to discharge polarization. It is assumed that the equivalent circuit model of the battery cannot correctly represent the actual battery, and the SOCv is selected in a state where polarization remains on the discharge side or polarization remains on the charge side. If two SOCvs are selected on the discharge sides, the error directions derived from the discharge polarization coincide with each other, so the errors cancel out between the two points. However, if it is obtained by charging and discharging, an error derived from polarization remains. For this reason, it is desirable that the error directions are aligned and the errors are cancelled. The sign of the error α between the voltage value calculated by the equivalent circuit model of the secondary battery 100 and the measured battery voltage corresponds to the error direction. Therefore, two points having the same sign of the error value α between the voltage value calculated by the equivalent circuit model of the battery and the measured battery voltage are selected.

第1の実施形態によれば、電池の等価回路モデルから演算したSOCvの誤差を実測電圧と電池の等価回路モデルの電圧の比較により、判定することが可能である。これにより、SOHQ演算に使用するSOCvとして高精度な2点を選択することが可能になる。   According to the first embodiment, it is possible to determine the SOCv error calculated from the battery equivalent circuit model by comparing the measured voltage with the voltage of the battery equivalent circuit model. This makes it possible to select two highly accurate SOCvs used for the SOHQ calculation.

-第2の実施形態-
図8は、第2の実施形態によるSOH演算部の構成を示す図である。
図3に示した第1の実施形態によるSOH演算部の構成と同一の箇所には同一の符号を付してその説明を省略する。第1の実施形態との差異は重み演算部400と重み付け演算平均化Qmax’演算部401を追加している点である。第1の実施形態ではSOCv選択部300で精度の良いSOCvを2点選択しているが
、SOCvの2点の選択条件によっては期待される精度に差がある。精度が高い条件で選択された演算結果が精度良く満充電容量を演算できるため、最終結果に大きく反映することが望ましい。そのため、SOCv2点選択部300での2点の選択条件を元に、重み演算部400で以下の重みWを演算し、重み付け演算平均化Qmax’演算部401で重み付け平均を行うことで精度の高い結果を最終結果に大きく反映できるようにしている。
-Second Embodiment-
FIG. 8 is a diagram illustrating the configuration of the SOH calculation unit according to the second embodiment.
The same parts as those in the configuration of the SOH calculation unit according to the first embodiment shown in FIG. The difference from the first embodiment is that a weight calculation unit 400 and a weighted calculation averaging Qmax ′ calculation unit 401 are added. In the first embodiment, the SOCv selection unit 300 selects two highly accurate SOCvs, but there are differences in expected accuracy depending on the selection conditions of the two SOCv points. Since the full charge capacity can be calculated with high accuracy by the calculation result selected under a condition with high accuracy, it is desirable that the calculation result be largely reflected in the final result. Therefore, based on the two-point selection condition in the SOCv 2-point selection unit 300, the weight calculation unit 400 calculates the following weight W, and the weighted calculation averaging Qmax ′ calculation unit 401 performs weighted averaging, thereby achieving high accuracy. The results are greatly reflected in the final results.

以下に重みWに関して述べる。
[重み1:電池の等価回路モデルの演算している電圧値と実測電池電圧の差αの大きさに基づいて重みを設定する]
第1の実施形態の選択条件1で述べたように、SOCv誤差演算部304で演算した誤差αが小さいほどSOCvの誤差は小さくなり、満充電容量の精度は向上する。よって、誤差αに基づいて重みを設定する。例えば以下の式(10)式で示す重み1を導入する。

Figure 2019020174
The weight W will be described below.
[Weight 1: A weight is set based on the difference α between the voltage value calculated by the battery equivalent circuit model and the measured battery voltage]
As described in the selection condition 1 of the first embodiment, as the error α calculated by the SOCv error calculation unit 304 is smaller, the SOCv error is smaller and the accuracy of the full charge capacity is improved. Therefore, the weight is set based on the error α. For example, the weight 1 shown by the following formula (10) is introduced.
Figure 2019020174

重み1に代えて以下に示す重み2、重み3のいずれかを選択して用いても良い。以降の重みを追加することで、満充電容量を精度良く算出することが可能となる。これらの重みを用いる際には、例えばこれらの重みの積を最終的な重みWとしてもよい。   Instead of the weight 1, any one of the following weight 2 and weight 3 may be selected and used. By adding subsequent weights, the full charge capacity can be calculated with high accuracy. When using these weights, for example, the product of these weights may be used as the final weight W.

[重み2:ΔSOCvに基づいて重みを設定する]
第1の実施形態の選択条件4で述べたように、ΔSOCv=|SOCv1−SOCv2|が大きいほどSOHQ演算の精度は向上する。よって、ΔSOCvに基づいて重みを設定する。例えば以下の式(11)で示す重みを導入する。

Figure 2019020174
[Weight 2: Set weight based on ΔSOCv]
As described in the selection condition 4 of the first embodiment, the accuracy of the SOHQ calculation improves as ΔSOCv = | SOCv1-SOCv2 | increases. Therefore, the weight is set based on ΔSOCv. For example, the weight shown by the following formula (11) is introduced.
Figure 2019020174

[重み3:SOCv1とSOCv2までの時間に基づいて重みを設定する]
第1の実施形態の選択条件6で述べたように、SOCv1とSOCv2間の時間は短い方が、電流センサ106のオフセット誤差等の影響を受けにくく高精度化が可能である。よって、SOCv1とSOCv2間の時間に基づいて重みを設定する。例えば以下の式(12)で示す重みを導入する。tthresholdは第1の実施形態の選択条件6で示した所定時間を示している。

Figure 2019020174
[Weight 3: Set weight based on time to SOCv1 and SOCv2]
As described in the selection condition 6 of the first embodiment, a shorter time between the SOCv1 and the SOCv2 is less affected by an offset error or the like of the current sensor 106, and can be highly accurate. Therefore, the weight is set based on the time between SOCv1 and SOCv2. For example, the weight shown by the following formula (12) is introduced. t threshold indicates the predetermined time indicated by the selection condition 6 of the first embodiment.
Figure 2019020174

このようにして、重み演算部400で演算された重みWは、重み付け平均化Qmax’演算部401に出力する。重み付け平均化Qmax’演算部401ではQmaxSOCv演算部302でのQmaxSOCv演算結果と、その演算時の条件で演算した重みWにて重み付け平均を行う。重み付け平均は以下の式(13)により行う。

Figure 2019020174
ここで、Qmax’_zは、式(13)の前回の演算結果である。 In this way, the weight W calculated by the weight calculation unit 400 is output to the weighted average Qmax ′ calculation unit 401. The weighted average Qmax ′ calculation unit 401 performs weighted average using the Qmax SOCv calculation result in the Qmax SOCv calculation unit 302 and the weight W calculated under the condition at the time of the calculation. The weighted average is performed by the following equation (13).
Figure 2019020174
Here, Qmax′_z is the previous calculation result of Expression (13).

第2の実施形態によれば、重み付け平均化により、信頼のできるデータが大きく反映されることで高精度化できるとともに、真値への収束を早めることが可能となる。   According to the second embodiment, by weighted averaging, highly reliable data is largely reflected, so that the accuracy can be improved and the convergence to the true value can be accelerated.

-第3の実施形態-
図9は、第3の実施形態による第2のSOC演算部114の構成を示す図である。
第3に実施の形態にあっては、SOC演算部として、第1の実施形態におけるSOC演算部109に代えて第2のSOC演算部114を備えている。その他の構成は図1と同様であり、その説明を省略する。
第2のSOC演算部114は、第1のSOC演算部109Aと、電池電圧推定部303と、SOCv誤差演算部304と、最終的なSOC演算部500とを有する。
-Third embodiment-
FIG. 9 is a diagram illustrating a configuration of the second SOC calculation unit 114 according to the third embodiment.
In the third embodiment, a second SOC calculation unit 114 is provided as an SOC calculation unit in place of the SOC calculation unit 109 in the first embodiment. Other configurations are the same as those in FIG. 1, and the description thereof is omitted.
Second SOC calculation unit 114 includes first SOC calculation unit 109A, battery voltage estimation unit 303, SOCv error calculation unit 304, and final SOC calculation unit 500.

第1のSOC演算部109Aは、第1の実施形態で説明したSOC演算部109と同様であり、SOCi演算部112とSOCv演算部113とを備え、第1の実施形態で説明した式(1)により、SOCを演算する。演算されたSOCは電池電圧推定部303に送信される。   The first SOC calculation unit 109A is the same as the SOC calculation unit 109 described in the first embodiment, and includes the SOCi calculation unit 112 and the SOCv calculation unit 113, and the equation (1) described in the first embodiment. ) To calculate the SOC. The calculated SOC is transmitted to the battery voltage estimation unit 303.

SOCi演算部112は、第1の実施形態で説明した内容と同様であり、二次電池100が充放電する電流Iを式(2)にしたがって積算することにより、二次電池100のSOCiを求め、最終的なSOC演算部500へ出力する。   The SOCi calculation unit 112 is the same as that described in the first embodiment, and obtains the SOCi of the secondary battery 100 by accumulating the current I charged and discharged by the secondary battery 100 according to the equation (2). And output to the final SOC calculation unit 500.

SOCv演算部113は、第1の実施形態で説明した内容と同様であり、二次電池100の等価回路モデルからSOCvを演算し、V0、Vpを電池電圧推定部303に、SOCvを最終的なSOC演算部500へ出力する。   The SOCv calculation unit 113 is the same as the content described in the first embodiment, calculates the SOCv from the equivalent circuit model of the secondary battery 100, V0 and Vp to the battery voltage estimation unit 303, and the final SOCv. The data is output to the SOC calculation unit 500.

電池電圧推定部303は、第1の実施形態で説明した内容と同様であり、式(5)で推定した電池電圧VcalcをSOCv誤差演算部304に出力する。OCV(SOC)は、SOC演算部109により式(1)に基づいて求めたSOCを元に、予め記憶部に記憶されているSOCとOCVの対応関係(SOCテーブル)から求めたOCVである。VとVpは二次電池100の等価回路モデルで示した値である。
なお、式(5)に記載のOCV(SOC)は、SOCi演算部112により式(2)に基づいて求めたSOCiを元に、予め記憶部に記憶されているSOCとOCVの対応関係(SOCテーブル)から求めたOCVを用いてもよい。本実施形態では、これらのOCVを第2開回路電圧と称する。
The battery voltage estimation unit 303 is similar to the content described in the first embodiment, and outputs the battery voltage V calc estimated by the equation (5) to the SOCv error calculation unit 304. OCV (SOC) is an OCV obtained from the correspondence (SOC table) between the SOC and the OCV stored in advance in the storage unit based on the SOC obtained by the SOC calculation unit 109 based on the expression (1). V 0 and Vp are values shown in the equivalent circuit model of the secondary battery 100.
Note that the OCV (SOC) described in Equation (5) is the correspondence between the SOC and OCV stored in advance in the storage unit (SOC) based on the SOCi calculated based on Equation (2) by the SOCi computing unit 112. The OCV obtained from the table may be used. In the present embodiment, these OCVs are referred to as second open circuit voltages.

SOCv誤差演算部304は、電圧センサ108から入力する電池電圧VとVcalcと差をとり誤差αを式(6)に基づいて演算し、最終的なSOC演算部500に誤差αを出力する。 The SOCv error calculation unit 304 calculates the error α based on the equation (6) by taking the difference between the battery voltages V and Vcalc input from the voltage sensor 108, and outputs the error α to the final SOC calculation unit 500.

最終的なSOC演算部500にはSOCvとSOViが入力され、最終的なSOC演算部500は誤差αの値に基づいて、最終的なSOCを演算する。例えば、誤差αが所定値Vthreshold以下であれば、SOCvの誤差が小さいと判断しSOCvを最終的なSOCとして後段に出力する。誤差αが所定値Vthresholdより大きい場合は、充電率SOCiを最終的なSOCとして後段に出力する。
なお、誤差αの値によって重みW1を式(10)により演算し、W1=Wとして式(1)により重み付け平均化しても良い。
SOCv and SOVi are input to the final SOC calculation unit 500, and the final SOC calculation unit 500 calculates the final SOC based on the value of the error α. For example, if the error α is equal to or less than a predetermined value V threshold , it is determined that the SOCv error is small, and the SOCv is output to the subsequent stage as the final SOC. When the error α is larger than the predetermined value V threshold , the charging rate SOCi is output to the subsequent stage as the final SOC.
Note that the weight W1 may be calculated from the value of the error α according to the equation (10), and weighted and averaged according to the equation (1), where W1 = W.

本実施形態によれば、最終的なSOCを誤差αに基づいてSOCvとSOCiから選択して、決定することで、信頼できる演算結果を反映できるため、SOCの演算の高精度化が可能である。   According to this embodiment, since the final SOC is selected from the SOCv and SOCi based on the error α and determined, a reliable calculation result can be reflected, so that the calculation of the SOC can be highly accurate. .

以上説明した実施形態によれば、次の作用効果が得られる。
(1)二次電池制御装置102は、分極抵抗と容量成分との並列接続で表わされる分極成分と、二次電池100の内部抵抗成分Rと、を少なくとも有する等価回路から二次電池100の第1開回路電圧OCVを求め、第1開回路電圧OCV、および、二次電池100の充電率との関係から二次電池100の充電率SOCvを求める。そして、二次電池制御装置102は、二次電池100の実測電圧の値から、第1開回路電圧OCVとは異なる方法で演算された第2開回路電圧の値、二次電池100の電流情報に応じて演算される分極成分の電圧値Vp、および内部抵抗成分Rと二次電池100の電流値Iの積にて表される値RI、を引いた値を演算する。これにより、二次電池100の実測電圧の値とSOCvの演算の値との差を求めることができる。
According to the embodiment described above, the following operational effects can be obtained.
(1) The secondary battery control apparatus 102 includes a polarization component represented by a parallel connection of a polarization resistance and a capacity component, and an equivalent circuit having at least an internal resistance component R of the secondary battery 100. The first open circuit voltage OCV is obtained, and the charging rate SOCv of the secondary battery 100 is obtained from the relationship between the first open circuit voltage OCV and the charging rate of the secondary battery 100. Then, the secondary battery control device 102 calculates the value of the second open circuit voltage calculated from the measured voltage value of the secondary battery 100 by a method different from the first open circuit voltage OCV, and current information of the secondary battery 100. A value obtained by subtracting the voltage value Vp of the polarization component calculated according to the above and the value RI represented by the product of the internal resistance component R and the current value I of the secondary battery 100 is calculated. Thereby, the difference between the measured voltage value of secondary battery 100 and the calculated value of SOCv can be obtained.

(2)二次電池制御装置102は、分極抵抗と容量成分との並列接続で表わされる分極成分と、二次電池100の内部抵抗成分と、を少なくとも有する等価回路から二次電池100の第1開回路電圧OCVを求め、第1開回路電圧OCVと二次電池の充電率SOCとの対応関係から二次電池の充電率SOCvを求めるSOCv演算部113と、第1開回路電圧OCVとは異なる第2開回路電圧OCV、二次電池の電流情報に応じて演算される分極成分の電圧値Vp、および内部抵抗成分Rと二次電池の電流値Iの積で表される値RIを元に電池電圧を推定する電池電圧推定部303と、電池電圧推定部303で推定された電池電圧Vcalcと二次電池の実測電圧との誤差αを求めるSOCv誤差演算部304と、を備える。これにより、SOCvの演算の誤差を演算することができる。 (2) The secondary battery control device 102 includes a first component of the secondary battery 100 from an equivalent circuit having at least a polarization component represented by a parallel connection of a polarization resistance and a capacity component, and an internal resistance component of the secondary battery 100. The SOCv calculation unit 113 that obtains the open circuit voltage OCV and obtains the charge rate SOCv of the secondary battery from the correspondence between the first open circuit voltage OCV and the charge rate SOC of the secondary battery is different from the first open circuit voltage OCV. Based on the second open circuit voltage OCV, the voltage value Vp of the polarization component calculated according to the current information of the secondary battery, and the value RI represented by the product of the internal resistance component R and the current value I of the secondary battery A battery voltage estimation unit 303 that estimates the battery voltage, and an SOCv error calculation unit 304 that calculates an error α between the battery voltage V calc estimated by the battery voltage estimation unit 303 and the measured voltage of the secondary battery are provided. Thereby, the error of the calculation of SOCv can be calculated.

(3)二次電池制御装置102は、二次電池100が充放電する電流を積算して求めた二次電池100の充電率SOCiを演算するSOCi演算部112を備え、電池電圧推定部303は、第2開回路電圧の値を、第1開回路電圧と二次電池の充電率SOCとの対応関係に基づいて、充電率SOCiを参照して求める。これにより、SOCvの演算の誤差を演算することができる。 (3) The secondary battery control device 102 includes an SOCi calculation unit 112 that calculates the charging rate SOCi of the secondary battery 100 obtained by integrating the current charged and discharged by the secondary battery 100, and the battery voltage estimation unit 303 includes The value of the second open circuit voltage is obtained with reference to the charging rate SOCi based on the correspondence relationship between the first open circuit voltage and the charging rate SOC of the secondary battery. Thereby, the error of the calculation of SOCv can be calculated.

(4)二次電池制御装置102は、充電率SOCiと充電率SOCvを重み付け加算して充電率SOCを求め、電池電圧推定部303は、第2開回路電圧の値を、第1開回路電圧と二次電池の充電率SOCとの対応関係に基づいて、重み付け加算した充電率SOCを参照して求める。これにより、SOCvの演算の誤差をより高精度に演算することができる。 (4) The secondary battery control device 102 obtains the charge rate SOC by weighting and adding the charge rate SOCi and the charge rate SOCv, and the battery voltage estimation unit 303 calculates the value of the second open circuit voltage as the first open circuit voltage. The charging rate SOC is calculated with reference to the weighted and added charging rate SOC based on the correspondence relationship between the charging rate SOC and the charging rate SOC of the secondary battery. Thereby, the error of the calculation of SOCv can be calculated with higher accuracy.

(5)二次電池制御装置102は、充電率SOCvの少なくとも2点の充電率SOCv1、充電率SOCv2を示す間で二次電池に流れた電流値を積算して充放電容量を演算する電流積算部301と、少なくとも2点の充電率SOCv1、充電率SOCv2と二次電池の電流積分値を用いて二次電池の容量劣化率SOHQを演算するSOHQ演算部115と、を備え、SOHQ演算部115は、誤差演算部304が演算した誤差が所定値以下の場合に、容量劣化率SOHQを演算する、または、演算した容量劣化率SOHQを有効とする。これにより、SOHQ演算に使用するSOCvとして高精度な2点を選択することが可能になる。 (5) The secondary battery control device 102 integrates the current value that has flowed through the secondary battery between the charging rate SOCv1 and the charging rate SOCv2 at least two points of the charging rate SOCv to calculate the charge / discharge capacity. Unit 301 and a SOHQ calculation unit 115 that calculates the capacity deterioration rate SOHQ of the secondary battery using at least two points of charge rate SOCv1, charge rate SOCv2, and the current integration value of the secondary battery, and SOHQ calculation unit 115 Calculates the capacity deterioration rate SOHQ or makes the calculated capacity deterioration rate SOHQ valid when the error calculated by the error calculation unit 304 is equal to or less than a predetermined value. This makes it possible to select two highly accurate SOCvs used for the SOHQ calculation.

(6)二次電池制御装置102において、SOCv演算部113より出力される充電率SOCvの中から2点の充電率SOCv1、充電率SOCv2を選択する選択部300を備え、選択部300は、誤差が小さい場合に、2点の充電率SOCv1、充電率SOCv2を選択する。これにより、SOCvの演算の誤差をより高精度に演算することができる。 (6) The secondary battery control device 102 includes a selection unit 300 that selects two points of charge rate SOCv1 and charge rate SOCv2 from the charge rate SOCv output from the SOCv calculation unit 113, and the selection unit 300 includes an error. Is small, two-point charge rate SOCv1 and charge rate SOCv2 are selected. Thereby, the error of the calculation of SOCv can be calculated with higher accuracy.

(7)二次電池制御装置102において、SOCv演算部113より出力される充電率SOCvの中から2点の充電率SOCv1、充電率SOCv2を選択する選択部300を備え、選択部300は、二次電池100に流れる電流の絶対値が小さい場合に、前記2点の充電率SOCv1、充電率SOCv2を選択する。これにより、SOCvの演算の誤差をより高精度に演算することができる。 (7) The secondary battery control apparatus 102 includes a selection unit 300 that selects two points of charge rate SOCv1 and charge rate SOCv2 from the charge rate SOCv output from the SOCv calculation unit 113. When the absolute value of the current flowing through the secondary battery 100 is small, the two points of charge rate SOCv1 and charge rate SOCv2 are selected. Thereby, the error of the calculation of SOCv can be calculated with higher accuracy.

(8)二次電池制御装置102において、SOCv演算部113より出力される充電率SOCvの中から2点の充電率SOCv1、充電率SOCv2を選択する選択部300を備え、選択部300は、二次電池100の温度が所定値以内の場合に、2点の充電率SOCv1、充電率SOCv2を選択する。これにより、SOCvの演算の誤差をより高精度に演算することができる。 (8) The secondary battery control device 102 includes a selection unit 300 that selects two points of charge rate SOCv1 and charge rate SOCv2 from the charge rate SOCv output from the SOCv calculation unit 113. When the temperature of the secondary battery 100 is within a predetermined value, two points of charge rate SOCv1 and charge rate SOCv2 are selected. Thereby, the error of the calculation of SOCv can be calculated with higher accuracy.

(9)二次電池制御装置102において、SOCv演算部113より出力される充電率SOCvの中から2点の充電率SOCv1、充電率SOCv2を選択する選択部300を備え、選択部300は、充電率SOCv1と充電率SOCv2の差が大きい2点の充電率SOCv1、充電率SOCv2を選択する。これにより、SOCvの演算の誤差をより高精度に演算することができる。 (9) The secondary battery control apparatus 102 includes a selection unit 300 that selects two points of charge rate SOCv1 and charge rate SOCv2 from the charge rate SOCv output from the SOCv calculation unit 113. The selection unit 300 is charged Two points of charge rate SOCv1 and charge rate SOCv2 having a large difference between rate SOCv1 and charge rate SOCv2 are selected. Thereby, the error of the calculation of SOCv can be calculated with higher accuracy.

(10)二次電池制御装置102において、SOCv演算部113より出力される充電率SOCvの中から2点の充電率SOCv1、充電率SOCv2を選択する選択部300を備え、選択部300は、二次電池100の放電時における充電率SOCv1及び充電率SOCv2、もしくは二次電池100の充電時における充電率SOCv1及び充電率SOCv2の2点を選択する。これにより、SOCvの演算の誤差をより高精度に演算することができる。 (10) The secondary battery control apparatus 102 includes a selection unit 300 that selects two charging rate SOCv1 and charging rate SOCv2 from the charging rate SOCv output from the SOCv calculation unit 113. The charging rate SOCv1 and the charging rate SOCv2 when the secondary battery 100 is discharged, or the charging rate SOCv1 and the charging rate SOCv2 when the secondary battery 100 is charged are selected. Thereby, the error of the calculation of SOCv can be calculated with higher accuracy.

(11)二次電池制御装置102において、SOCv演算部113より出力される充電率SOCvの中から2点の充電率SOCv1、充電率SOCv2を選択する選択部300を備え、選択部300は、充電率SOCv1と充電率SOCv2の検出時間が所定時間以上離れていない2点の充電率SOCv1、充電率SOCv2を選択する。これにより、SOCvの演算の誤差をより高精度に演算することができる。 (11) The secondary battery control apparatus 102 includes a selection unit 300 that selects two points of charge rate SOCv1 and charge rate SOCv2 from the charge rate SOCv output from the SOCv calculation unit 113. The selection unit 300 is charged The charging rate SOCv1 and the charging rate SOCv2 at two points where the detection times of the rate SOCv1 and the charging rate SOCv2 are not separated by a predetermined time or longer are selected. Thereby, the error of the calculation of SOCv can be calculated with higher accuracy.

(12)二次電池制御装置102において、SOCv演算部113より出力される充電率SOCvの中から2点の充電率SOCv1、充電率SOCv2を選択する選択部300を備え、選択部300は、誤差の符号が同一である場合に2点の充電率SOCv1、充電率SOCv2を選択する。これにより、SOCvの演算の誤差をより高精度に演算することができる。 (12) The secondary battery control apparatus 102 includes a selection unit 300 that selects two points of charge rate SOCv1 and charge rate SOCv2 from the charge rate SOCv output from the SOCv calculation unit 113. Are the same, two points of charge rate SOCv1 and charge rate SOCv2 are selected. Thereby, the error of the calculation of SOCv can be calculated with higher accuracy.

(13)二次電池制御装置102は、容量劣化率SOHQの重み付け平均化を行う重み付け平均化Qmax’演算部401を備え、重み付け平均化Qmax’演算部401は、誤差に基づく重み付けにより容量劣化率SOHQを演算する。これにより、信頼のできるデータが大きく反映されることで高精度化できるとともに、真値への収束を早めることが可能となる。 (13) The secondary battery control apparatus 102 includes a weighted average Qmax ′ calculating unit 401 that performs weighted averaging of the capacity deterioration rate SOHQ. The weighted average Qmax ′ calculating unit 401 performs capacity deterioration rate by weighting based on an error. SOHQ is calculated. As a result, highly reliable data is greatly reflected, so that the accuracy can be improved and the convergence to the true value can be accelerated.

(14)二次電池制御装置102は、二次電池100が充放電する電流を積算して求めた二次電池100の充電率SOCiを演算するSOCi演算部112と、充電率SOCiと充電率SOCvを重み付け加算して充電率SOCを求める第1のSOC演算部109Aと、電池電圧推定部303は、第2開回路電圧の値を、二次電池100の開回路電圧OCVと二次電池の充電率SOCとの対応関係より、充電率SOCを参照して求め、第2のSOC演算部114は、誤差が所定値以下の場合は、充電率SOCvを適正値として出力し、誤差が所定値より大きい場合は、充電率SOCiを適正値として出力する。これにより、信頼できる演算結果を反映できるため、SOCの演算の高精度化が可能である。 (14) The secondary battery control apparatus 102 calculates the charging rate SOCi of the secondary battery 100 obtained by integrating the charging / discharging current of the secondary battery 100, the charging rate SOCi, and the charging rate SOCv. The first SOC calculation unit 109A that obtains the charging rate SOC by weighting and the battery voltage estimation unit 303 calculates the value of the second open circuit voltage, the open circuit voltage OCV of the secondary battery 100, and the charging of the secondary battery. The second SOC calculation unit 114 outputs the charge rate SOCv as an appropriate value when the error is equal to or less than a predetermined value, and the error is determined from the predetermined value based on the correspondence with the rate SOC. If larger, the charging rate SOCi is output as an appropriate value. Thereby, since a reliable calculation result can be reflected, it is possible to increase the accuracy of the calculation of the SOC.

本発明は、上記の実施形態に限定されるものではなく、本発明の特徴を損なわない限り、本発明の技術思想の範囲内で考えられるその他の形態についても、本発明の範囲内に含まれる。   The present invention is not limited to the above-described embodiment, and other forms conceivable within the scope of the technical idea of the present invention are also included in the scope of the present invention as long as the characteristics of the present invention are not impaired. .

1 :電池システム
100:二次電池
101:電池情報取得部
102:二次電池制御装置
103:上位コントローラ
104:インバータ
105:負荷
106:電流センサ
107:温度センサ
108:電圧センサ
109:SOC演算部
109A:第1のSOC演算部
110:SOH演算部
111:許容電流演算部
112:SOCi演算部
113:SOCv演算部
114:第2のSOC演算部
115:SOHQ演算部
200:OCV
201:直流抵抗
202:分極抵抗
203:分極キャパシタ
300:SOCv2点選択部
301:電流積算部
302:QmaxSOCv演算部
303:電池電圧推定部
304:SOCv誤差演算部
305:最終的なQmax’演算部
306:SOHQ変換部
400:重み演算部
401:重み付け平均化Qmax’演算部
500:最終的なSOC演算部
1: battery system 100: secondary battery 101: battery information acquisition unit 102: secondary battery control device 103: host controller 104: inverter 105: load 106: current sensor 107: temperature sensor 108: voltage sensor 109: SOC calculation unit 109A : First SOC calculation unit 110: SOH calculation unit 111: allowable current calculation unit 112: SOCi calculation unit 113: SOCv calculation unit 114: second SOC calculation unit 115: SOHQ calculation unit 200: OCV
201: DC resistance 202: Polarization resistance 203: Polarization capacitor 300: SOCv2 point selection unit 301: Current integration unit 302: Qmax SOCv calculation unit 303: Battery voltage estimation unit 304: SOCv error calculation unit 305: Final Qmax ′ calculation unit 306: SOHQ converter 400: weight calculator
401: Weighted average Qmax 'calculation unit 500: Final SOC calculation unit

Claims (14)

分極抵抗と容量成分との並列接続で表わされる分極成分と、二次電池の内部抵抗成分Rと、を少なくとも有する等価回路から前記二次電池の第1開回路電圧OCVを求め、前記第1開回路電圧OCV、および、前記二次電池の充電率との関係から前記二次電池の充電率SOCvを求める二次電池制御装置であって、
前記二次電池制御装置は、前記二次電池の実測電圧の値から、前記第1開回路電圧OCVとは異なる方法で演算された第2開回路電圧の値、前記二次電池の電流情報に応じて演算される前記分極成分の電圧値Vp、および前記内部抵抗成分Rと前記二次電池の電流値Iの積にて表される値RI、を引いた値を演算する二次電池制御装置。
A first open circuit voltage OCV of the secondary battery is obtained from an equivalent circuit having at least a polarization component represented by a parallel connection of a polarization resistance and a capacitance component, and an internal resistance component R of the secondary battery, and the first open circuit voltage OCV is obtained. A secondary battery control device for obtaining a charging rate SOCv of the secondary battery from a relationship between a circuit voltage OCV and a charging rate of the secondary battery,
The secondary battery control device uses a measured voltage value of the secondary battery as a second open circuit voltage value calculated by a method different from the first open circuit voltage OCV, and current information of the secondary battery. A secondary battery control device for calculating a value obtained by subtracting the voltage value Vp of the polarization component calculated in response to the value RI and the value RI represented by the product of the internal resistance component R and the current value I of the secondary battery .
分極抵抗と容量成分との並列接続で表わされる分極成分と、二次電池の内部抵抗成分と、を少なくとも有する等価回路から前記二次電池の第1開回路電圧を求め、前記第1開回路電圧と前記二次電池の充電率SOCとの対応関係から前記二次電池の充電率SOCvを求めるSOCv演算部と、
前記第1開回路電圧とは異なる第2開回路電圧、前記二次電池の電流情報に応じて演算される前記分極成分の電圧値、および前記内部抵抗成分と前記二次電池の電流値の積で表される値を元に電池電圧を推定する電池電圧推定部と、
前記電池電圧推定部で推定された電池電圧と前記二次電池の実測電圧との誤差を演算する誤差演算部と、
を備える二次電池制御装置。
A first open circuit voltage of the secondary battery is obtained from an equivalent circuit having at least a polarization component represented by parallel connection of a polarization resistance and a capacity component and an internal resistance component of the secondary battery, and the first open circuit voltage And a SOCv calculation unit for obtaining a charge rate SOCv of the secondary battery from a correspondence relationship between the charge rate SOC of the secondary battery and SOC
A product of a second open circuit voltage different from the first open circuit voltage, a voltage value of the polarization component calculated according to current information of the secondary battery, and a current value of the internal resistance component and the secondary battery A battery voltage estimator that estimates the battery voltage based on the value represented by
An error calculator that calculates an error between the battery voltage estimated by the battery voltage estimator and the measured voltage of the secondary battery;
A secondary battery control device comprising:
請求項2に記載の二次電池制御装置において、
前記二次電池が充放電する電流を積算して求めた前記二次電池の充電率SOCiを演算するSOCi演算部を備え、
前記電池電圧推定部は、前記第2開回路電圧の値を、前記第1開回路電圧と前記二次電池の充電率SOCとの対応関係に基づいて、前記充電率SOCiを参照して求める二次電池制御装置。
The secondary battery control device according to claim 2,
A SOCi calculating unit for calculating a charging rate SOCi of the secondary battery obtained by integrating currents charged and discharged by the secondary battery;
The battery voltage estimation unit obtains a value of the second open circuit voltage with reference to the charge rate SOCi based on a correspondence relationship between the first open circuit voltage and the charge rate SOC of the secondary battery. Secondary battery control device.
請求項3に記載の二次電池制御装置において、
前記充電率SOCiと前記充電率SOCvを重み付け加算して充電率SOCを求め、
前記電池電圧推定部は、前記第2開回路電圧の値を、前記第1開回路電圧と前記二次電池の充電率SOCとの対応関係に基づいて、前記重み付け加算した充電率SOCを参照して求める二次電池制御装置。
The secondary battery control device according to claim 3,
The charging rate SOC is obtained by weighted addition of the charging rate SOCi and the charging rate SOCv,
The battery voltage estimation unit refers to the charge rate SOC obtained by weighting and adding the value of the second open circuit voltage based on a correspondence relationship between the first open circuit voltage and the charge rate SOC of the secondary battery. Secondary battery control device.
請求項2から請求項4までのいずれか一項に記載の二次電池制御装置において、
前記充電率SOCvの少なくとも2点の充電率SOCv1、充電率SOCv2を示す間で前記二次電池に流れた電流値を積算して充放電容量を演算する電流積算部と、
前記少なくとも2点の充電率SOCv1、充電率SOCv2と前記二次電池の電流積分値を用いて前記二次電池の容量劣化率SOHQを演算するSOHQ演算部と、
を備え、
前記SOHQ演算部は、
前記誤差演算部が演算した誤差が所定値以下の場合に、容量劣化率SOHQを演算する、または、演算した容量劣化率SOHQを有効とする二次電池制御装置。
In the secondary battery control device according to any one of claims 2 to 4,
A current integrating unit that calculates the charge / discharge capacity by integrating the current value that has flowed through the secondary battery while indicating the charging rate SOCv1 and the charging rate SOCv2 of at least two points of the charging rate SOCv;
A SOHQ calculator that calculates a capacity deterioration rate SOHQ of the secondary battery using the charge rate SOCv1, the charge rate SOCv2 of the at least two points, and a current integral value of the secondary battery;
With
The SOHQ operation unit
A secondary battery control device that calculates a capacity deterioration rate SOHQ or makes the calculated capacity deterioration rate SOHQ valid when an error calculated by the error calculation unit is a predetermined value or less.
請求項5に記載の二次電池制御装置において、
前記SOCv演算部より出力される充電率SOCvの中から2点の充電率SOCv1、充電率SOCv2を選択する選択部を備え、
前記選択部は、前記誤差が小さい場合に、前記2点の充電率SOCv1、充電率SOCv2を選択する二次電池制御装置。
The secondary battery control device according to claim 5,
A selection unit that selects a charging rate SOCv1 and a charging rate SOCv2 at two points from the charging rate SOCv output from the SOCv calculation unit;
The selection unit is a secondary battery control device that selects the charging rate SOCv1 and the charging rate SOCv2 of the two points when the error is small.
請求項5に記載の二次電池制御装置において、
前記SOCv演算部より出力される充電率SOCvの中から2点の充電率SOCv1、充電率SOCv2を選択する選択部を備え、
前記選択部は、前記二次電池に流れる電流の絶対値が小さい場合に、前記2点の充電率SOCv1、充電率SOCv2を選択する二次電池制御装置。
The secondary battery control device according to claim 5,
A selection unit that selects a charging rate SOCv1 and a charging rate SOCv2 at two points from the charging rate SOCv output from the SOCv calculation unit;
The selection unit is a secondary battery control device that selects the charging rate SOCv1 and the charging rate SOCv2 at the two points when the absolute value of the current flowing through the secondary battery is small.
請求項5に記載の二次電池制御装置において、
前記SOCv演算部より出力される充電率SOCvの中から2点の充電率SOCv1、充電率SOCv2を選択する選択部を備え、
前記選択部は、前記二次電池の温度が所定値以内の場合に、前記2点の充電率SOCv1、充電率SOCv2を選択する二次電池制御装置。
The secondary battery control device according to claim 5,
A selection unit that selects a charging rate SOCv1 and a charging rate SOCv2 at two points from the charging rate SOCv output from the SOCv calculation unit;
The selection unit is a secondary battery control device that selects the charging rate SOCv1 and the charging rate SOCv2 of the two points when the temperature of the secondary battery is within a predetermined value.
請求項5に記載の二次電池制御装置において、
前記SOCv演算部より出力される充電率SOCvの中から2点の充電率SOCv1、充電率SOCv2を選択する選択部を備え、
前記選択部は、前記充電率SOCv1と前記充電率SOCv2の差が大きい前記2点の充電率SOCv1、充電率SOCv2を選択する二次電池制御装置。
The secondary battery control device according to claim 5,
A selection unit that selects a charging rate SOCv1 and a charging rate SOCv2 at two points from the charging rate SOCv output from the SOCv calculation unit;
The selection unit is a secondary battery control device that selects the charging rate SOCv1 and the charging rate SOCv2 at the two points where the difference between the charging rate SOCv1 and the charging rate SOCv2 is large.
請求項5に記載の二次電池制御装置において、
前記SOCv演算部より出力される充電率SOCvの中から2点の充電率SOCv1、充電率SOCv2を選択する選択部を備え、
前記選択部は、前記二次電池の放電時における前記充電率SOCv1及び前記充電率SOCv2、もしくは前記二次電池の充電時における前記充電率SOCv1及び前記充電率SOCv2の2点を選択する二次電池制御装置。
The secondary battery control device according to claim 5,
A selection unit that selects a charging rate SOCv1 and a charging rate SOCv2 at two points from the charging rate SOCv output from the SOCv calculation unit;
The selection unit selects two points of the charge rate SOCv1 and the charge rate SOCv2 when the secondary battery is discharged, or the charge rate SOCv1 and the charge rate SOCv2 when the secondary battery is charged. Control device.
請求項5に記載の二次電池制御装置において、
前記SOCv演算部より出力される充電率SOCvの中から2点の充電率SOCv1、充電率SOCv2を選択する選択部を備え、
前記選択部は、前記充電率SOCv1と前記充電率SOCv2の検出時間が所定時間以上離れていない前記2点の充電率SOCv1、充電率SOCv2を選択する二次電池制御装置。
The secondary battery control device according to claim 5,
A selection unit that selects a charging rate SOCv1 and a charging rate SOCv2 at two points from the charging rate SOCv output from the SOCv calculation unit;
The selection unit is a secondary battery control device that selects the two points of charge rate SOCv1 and charge rate SOCv2 whose detection times of the charge rate SOCv1 and the charge rate SOCv2 are not separated by a predetermined time or more.
請求項5に記載の二次電池制御装置において、
前記SOCv演算部より出力される充電率SOCvの中から2点の充電率SOCv1、充電率SOCv2を選択する選択部を備え、
前記選択部は、前記誤差の符号が同一である場合に前記2点の充電率SOCv1、充電率SOCv2を選択する二次電池制御装置。
The secondary battery control device according to claim 5,
A selection unit that selects a charging rate SOCv1 and a charging rate SOCv2 at two points from the charging rate SOCv output from the SOCv calculation unit;
The selection unit is a secondary battery control device that selects the charging rate SOCv1 and the charging rate SOCv2 of the two points when the sign of the error is the same.
請求項5に記載の二次電池制御装置において、
前記容量劣化率SOHQの重み付け平均化を行う重み付け平均化演算部を備え、
前記重み付け平均化演算部は、前記誤差に基づく重み付けにより前記容量劣化率SOHQを演算する二次電池制御装置。
The secondary battery control device according to claim 5,
A weighted averaging operation unit for performing weighted averaging of the capacity deterioration rate SOHQ;
The weighted averaging calculation unit is a secondary battery control device that calculates the capacity deterioration rate SOHQ by weighting based on the error.
請求項2に記載の二次電池制御装置において、
前記二次電池が充放電する電流を積算して求めた前記二次電池の充電率SOCiを演算するSOCi演算部と、
前記充電率SOCiと前記充電率SOCvを重み付け加算して充電率SOCを求めるSOC演算部と、をさらに備え、
前記電池電圧推定部は、前記第2開回路電圧の値を、前記二次電池の開回路電圧OCVと前記二次電池の充電率SOCとの対応関係より、前記重み付け加算した充電率SOCを参照して求め、
前記SOC演算部は、前記誤差が所定値以下の場合は、前記充電率SOCvを適正値として出力し、前記誤差が所定値より大きい場合は、前記充電率SOCiを適正値として出力する二次電池制御装置。
The secondary battery control device according to claim 2,
A SOCi calculating unit for calculating a charging rate SOCi of the secondary battery obtained by integrating currents charged and discharged by the secondary battery;
An SOC calculation unit that obtains a charge rate SOC by weighting and adding the charge rate SOCi and the charge rate SOCv;
The battery voltage estimation unit refers to the charge rate SOC obtained by weighting and adding the value of the second open circuit voltage based on the correspondence between the open circuit voltage OCV of the secondary battery and the charge rate SOC of the secondary battery. Ask
The SOC calculation unit outputs the charging rate SOCv as an appropriate value when the error is less than or equal to a predetermined value, and outputs the charging rate SOCi as an appropriate value when the error is greater than a predetermined value. Control device.
JP2017136614A 2017-07-12 2017-07-12 Secondary battery controller Active JP6821525B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017136614A JP6821525B2 (en) 2017-07-12 2017-07-12 Secondary battery controller
PCT/JP2018/023396 WO2019012930A1 (en) 2017-07-12 2018-06-20 Secondary battery control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017136614A JP6821525B2 (en) 2017-07-12 2017-07-12 Secondary battery controller

Publications (2)

Publication Number Publication Date
JP2019020174A true JP2019020174A (en) 2019-02-07
JP6821525B2 JP6821525B2 (en) 2021-01-27

Family

ID=65002579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017136614A Active JP6821525B2 (en) 2017-07-12 2017-07-12 Secondary battery controller

Country Status (2)

Country Link
JP (1) JP6821525B2 (en)
WO (1) WO2019012930A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111239634A (en) * 2020-03-20 2020-06-05 中航锂电(洛阳)有限公司 Method and device for detecting branch state of battery system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111077387B (en) * 2019-11-28 2021-12-07 深圳市元征科技股份有限公司 Voltage detection system, method, control device and storage medium
CN112034366B (en) * 2020-08-25 2023-07-14 惠州市蓝微电子有限公司 SOC dynamic compensation method and electronic system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011106953A (en) * 2009-11-17 2011-06-02 Honda Motor Co Ltd Method for detecting battery capacity
JP2011106952A (en) * 2009-11-17 2011-06-02 Honda Motor Co Ltd Method for estimating residual capacity of battery
JP2012063244A (en) * 2010-09-16 2012-03-29 Calsonic Kansei Corp Charging rate estimation device of battery
US20150316618A1 (en) * 2014-05-05 2015-11-05 Apple Inc. Methods and apparatus for battery power and energy availability prediction
JP2017067788A (en) * 2015-02-19 2017-04-06 三菱電機株式会社 Battery state estimation device
US20170146608A1 (en) * 2015-11-20 2017-05-25 Korea Advanced Institute Of Science And Technology Method of dynamically extracting entropy of battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014122721A1 (en) * 2013-02-05 2014-08-14 日立ビークルエナジー株式会社 Cell control device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011106953A (en) * 2009-11-17 2011-06-02 Honda Motor Co Ltd Method for detecting battery capacity
JP2011106952A (en) * 2009-11-17 2011-06-02 Honda Motor Co Ltd Method for estimating residual capacity of battery
JP2012063244A (en) * 2010-09-16 2012-03-29 Calsonic Kansei Corp Charging rate estimation device of battery
US20150316618A1 (en) * 2014-05-05 2015-11-05 Apple Inc. Methods and apparatus for battery power and energy availability prediction
JP2017067788A (en) * 2015-02-19 2017-04-06 三菱電機株式会社 Battery state estimation device
US20170146608A1 (en) * 2015-11-20 2017-05-25 Korea Advanced Institute Of Science And Technology Method of dynamically extracting entropy of battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111239634A (en) * 2020-03-20 2020-06-05 中航锂电(洛阳)有限公司 Method and device for detecting branch state of battery system
CN111239634B (en) * 2020-03-20 2022-10-14 中创新航科技股份有限公司 Method and device for detecting branch state of battery system

Also Published As

Publication number Publication date
JP6821525B2 (en) 2021-01-27
WO2019012930A1 (en) 2019-01-17

Similar Documents

Publication Publication Date Title
US10725111B2 (en) Battery state detection device, secondary battery system, program product, and battery state detection method
US8046181B2 (en) Apparatus and method for estimating state of health of battery based on battery voltage variation pattern
JP6657967B2 (en) State estimation device and state estimation method
US9537325B2 (en) Battery state estimation system, battery control system, battery system, and battery state estimation method
JP6101714B2 (en) Battery control device, battery system
US10686229B2 (en) Battery state detection device, secondary battery system, program product, and battery state detection method
CN110998344B (en) Degraded state calculating method and degraded state calculating device
JP6371415B2 (en) Method for determining the reliability of degradation state parameters
JP6534746B2 (en) Battery control device and battery system
CN102822690A (en) Charge state estimation apparatus
JPWO2011121692A1 (en) Secondary battery deterioration diagnosis method and deterioration diagnosis device
US10444296B2 (en) Control device, control method, and recording medium
JP2013508674A (en) Accurate power prediction method for battery pack
JP2024026232A (en) Storage battery control device and control method
JP6821525B2 (en) Secondary battery controller
JP5886225B2 (en) Battery control device and battery control method
US10422824B1 (en) System and method for efficient adaptive joint estimation of battery cell state-of-charge, resistance, and available energy
Kustiman et al. Battery state of charge estimation based on coulomb counting combined with recursive least square and pi controller
JP2018146565A (en) Battery state estimation device and power supply device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191120

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20200227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210106

R150 Certificate of patent or registration of utility model

Ref document number: 6821525

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250