JP2013083496A - State-of-charge estimation device and method for the same - Google Patents

State-of-charge estimation device and method for the same Download PDF

Info

Publication number
JP2013083496A
JP2013083496A JP2011222524A JP2011222524A JP2013083496A JP 2013083496 A JP2013083496 A JP 2013083496A JP 2011222524 A JP2011222524 A JP 2011222524A JP 2011222524 A JP2011222524 A JP 2011222524A JP 2013083496 A JP2013083496 A JP 2013083496A
Authority
JP
Japan
Prior art keywords
charge
charging rate
battery
open
circuit voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011222524A
Other languages
Japanese (ja)
Other versions
JP5389136B2 (en
Inventor
Yoshihiro Edamoto
吉広 枝本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Corp
Original Assignee
Calsonic Kansei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Kansei Corp filed Critical Calsonic Kansei Corp
Priority to JP2011222524A priority Critical patent/JP5389136B2/en
Publication of JP2013083496A publication Critical patent/JP2013083496A/en
Application granted granted Critical
Publication of JP5389136B2 publication Critical patent/JP5389136B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a state-of-charge estimation device capable of reducing an estimated error in state-of-charge of a battery.SOLUTION: A battery state-of-charge estimation device comprises: current integration method-based state-of-charge calculation means 3 for calculating a current integration method-based state-of-charge by integrating charge and discharge currents; open voltage estimation method-based state-of-charge calculation means 4 for calculating an open voltage estimation method-based state-of-charge from an open voltage of a battery estimated from the charge and discharge currents and a terminal voltage; variation limit value calculation means 5 for calculating an upper limit value and a lower limit value from current integration method-based state-of-charge variation calculated from the current integration method-based state-of-charge; and variation limit processing means 6 for calculating a state-of-charge of a battery, by limiting open voltage estimation method-based state-of-charge variation so that a state-of-charge variation calculated using the open voltage estimation method-based state-of-charge is within the range between the upper limit value and the lower limit value and by changing an open voltage estimation method-based state-of-charge.

Description

本発明は、電気自動車等に用いるバッテリの充電率を推定するバッテリの充電率推定装置およびその方法に関する。   The present invention relates to a battery charge rate estimation apparatus and method for estimating a battery charge rate used in an electric vehicle or the like.

たとえば、電気自動車やハイブリッド電気自動車などでは、これらの車両を駆動する電気モータへ電力を供給したり、制動時のエネルギを発電機として機能させる電気モータから、あるいは地上に設置した電源から、充電して電気エネルギを蓄積したりするため、リチャージャブル・バッテリ(二次電池)が用いられる。   For example, in an electric vehicle or a hybrid electric vehicle, charging is performed from an electric motor that supplies electric power to an electric motor that drives these vehicles, an electric motor that functions as a generator during braking, or a power supply installed on the ground. In order to store electrical energy, a rechargeable battery (secondary battery) is used.

この場合、長期にわたってバッテリを最適な状態に保つためには、バッテリの状態、とりわけ充電率(SOC: State of Charge)を常にモニタして、バッテリ・マネージメントを行う必要がある。
従来の充電率検出方法としては、バッテリの電圧や電流などの出入りを時系列データですべて記録し、これらのデータを用いて電流を時間積分して現時点での電荷量を求め、バッテリに充電された電荷の初期値と満充電容量を用いて充電率を求める電流積算法(クーロン・カウント法あるいは逐次状態記録法ともいう)や、バッテリの入力電流値と端子電圧値を入力し、バッテリ等価回路モデルを用いてモデルの状態量である開放電圧値を逐次推定し、この開放電圧値から充電率を推定する開放電圧推定法が知られている。
In this case, in order to keep the battery in an optimal state over a long period of time, it is necessary to constantly monitor the state of the battery, particularly the state of charge (SOC), and perform battery management.
As a conventional charge rate detection method, the battery voltage and current are all recorded in time-series data, and the current is time-integrated using these data to determine the current charge amount and the battery is charged. Current integration method (also called Coulomb count method or sequential state recording method) to obtain the charging rate using the initial charge value and full charge capacity, and the battery input current value and terminal voltage value are input, and the battery equivalent circuit An open-circuit voltage estimation method is known in which an open-circuit voltage value, which is a model state quantity, is sequentially estimated using a model, and a charging rate is estimated from the open-circuit voltage value.

上記各方法には一長一短があり、前者の電流積算法は、短時間での充電率の推定にあっては、開放電圧値を用いて充電率を推測する後者の開放電圧推定法より精度が高いものの、常時観測が必要である上、時間が経つにつれ誤差が集積されて精度が悪くなっていく。これに対し、後者の開放電圧推定法では、常時観測は必要ないものの、充電率の変化に対する開放電圧の変動が小さいため、短時間における充電量の変動量を推定するには、前者の電流積算法に劣っている。
そこで、これらの方法で得られた充電率の推定誤差を小さくするように上記電流積算法で得られた充電率(SOC)と上記開放電圧推定法で得られた充電率(SOC)との両方の充電率を用いて、充電率の推定精度を向上させようとする装置・方法が従来から知られている。
Each of the above methods has advantages and disadvantages, and the former current integration method is higher in accuracy than the latter open-circuit voltage estimation method in which the charge rate is estimated using the open-circuit voltage value in estimating the charge rate in a short time. However, continuous observation is required, and as time goes on, errors accumulate and accuracy decreases. On the other hand, the latter open-circuit voltage estimation method does not require constant observation, but the open-circuit voltage variation with respect to the change in the charging rate is small. It is inferior to the law.
Therefore, the charging rate (SOC C ) obtained by the current integration method and the charging rate (SOC v ) obtained by the open circuit voltage estimation method so as to reduce the estimation error of the charging rate obtained by these methods, and An apparatus and a method for improving the estimation accuracy of the charging rate by using both the charging rates are known.

このような従来のバッテリの充電率推定装置の一つとしては、バッテリの電流、電圧および温度を測定して電流データ、電圧データおよび温度データを得るバッテリ情報獲得部と、電流データを積算して充電率(SOC)を算出する電流積算部と、電流データ、電圧データおよびバッテリを、電気回路を通じて簡単に表現した等価回路モデルを用いて起電力(OCV)を算出する起電力算出部と、算出した起電力(OCV)と温度データを用いて充電率(SOC)を推定するSOC推定部と、一定時間区間でバッテリ電流状態を判断し、SOCおよびSOCの少なくとも一つを用いてバッテリの充電率(SOC)を設定するSOC設定部と、を備えたバッテリ管理システムが知られている(たとえば、特許文献1参照)。
ここで、上記SOC設定部では、一定時間区間を20秒から60秒とし、上記時間区間でバッテリ電流状態が低電流状態であると、充電率(SOC)をバッテリの充電率(SOC)に設定し、その他の場合には充電率(SOC)をバッテリの充電率(SOC)に設定するようにしている。
As one of such conventional battery charge rate estimation devices, a battery information acquisition unit that obtains current data, voltage data, and temperature data by measuring the current, voltage, and temperature of the battery, and integrates the current data. A current integrating unit that calculates a charging rate (SOC C ), an electromotive force calculating unit that calculates an electromotive force (OCV) using an equivalent circuit model that simply represents current data, voltage data, and a battery through an electric circuit; A SOC v estimator that estimates the charging rate (SOC v ) using the calculated electromotive force (OCV) and temperature data, and determines a battery current state in a certain time interval, and uses at least one of SOC C and SOC v There is known a battery management system including an SOC setting unit that sets a battery charge rate (SOC) (see, for example, Patent Document 1).
Here, in the SOC setting unit, if the fixed time interval is 20 seconds to 60 seconds and the battery current state is a low current state in the time interval, the charge rate (SOC v ) is changed to the battery charge rate (SOC). In other cases, the charging rate (SOC C ) is set to the battery charging rate (SOC).

特表2011−515651号公報Special table 2011-515651 gazette

しかしながら、上記従来のバッテリ管理システムでは、起電力(OCV:開放電圧)推定において、低電流状態の場合であっても、推定開始直後や入力信号の状態(周波数成分やノイズなど)に起因して推定充電率が異常な過渡応答したり推定結果がハンチングしたりして真の充電率から大きくずれてしまうことがあるといった問題が生じる。
また、バッテリ電流状態が低電流状態にならない状態が長時間続くと、電流積算法による充電率(SOCi)が長時間継続され、この結果、積算誤差が累積されていき、推定値と正しい値との誤差が大きくなってしまうといった問題も生じる。
However, in the above-described conventional battery management system, in the electromotive force (OCV: open circuit voltage) estimation, even in the case of a low current state, it is caused by the state of the input signal (frequency component, noise, etc.) immediately after the estimation is started. There is a problem that the estimated charging rate may deviate from the true charging rate due to an abnormal transient response or an estimation result hunting.
Also, if the battery current state does not become a low current state for a long time, the charging rate (SOC i ) by the current integration method continues for a long time, and as a result, the integration error is accumulated and the estimated and correct values are accumulated. There is also a problem that the error becomes larger.

本発明は、上記問題に着目してなされたもので、その目的とするところは、バッテリの充電率(SOC)の推定誤差を少なく抑えることができるようにした充電率推定装置およびその方法を提供することにある。   The present invention has been made paying attention to the above problems, and an object of the present invention is to provide a charging rate estimation apparatus and method capable of suppressing an estimation error of a battery charging rate (SOC) to a small extent. There is to do.

この目的のため、請求項1に記載の第1発明によるバッテリの充電率推定装置は、
バッテリの充放電電流を検出する充放電電流検出手段と、
バッテリの端子電圧を検出する端子電圧検出手段と、
充放電電流検出手段で検出した充放電電流を積算して電流積算法充電率を算出する電流積算法充電率算出手段と、
充放電電流検出手段で検出した充放電電流および端子電圧検出手段で検出した端子電圧とからバッテリの開放電圧を推定し、この開放電圧から開放電圧推定法充電率を算出する開放電圧推定法充電率算出手段と、
電流積算法充電率算出手段で求めた電流積算法充電率から電流積算法充電率変化量を求め、この電流積算法充電率変化量から上限制限値および下限制限値を計算する変化量制限値計算手段と、
開放電圧推定法充電率算出手段で求めた開放電圧推定法充電率を用いて充電率変化量を求め、この充電率変化量が上限制限値と下限制限値との範囲内に入るように充電率変化量を制限して開放電圧推定法充電率を変化させることでバッテリの充電率を算出する変化量制限処理手段と、
を備えたことを特徴とする。
For this purpose, the battery charging rate estimation device according to the first aspect of the present invention comprises:
Charge / discharge current detecting means for detecting the charge / discharge current of the battery;
Terminal voltage detecting means for detecting the terminal voltage of the battery;
A current integration method charging rate calculation means for calculating a current integration method charging rate by integrating the charging / discharging current detected by the charging / discharging current detection means;
The open-circuit voltage estimation method charging rate for estimating the open-circuit voltage of the battery from the charging / discharging current detected by the charge-discharge current detection unit and the terminal voltage detected by the terminal voltage detection unit, and calculating the open-circuit voltage estimation method charging rate from this open-circuit voltage A calculation means;
Change amount limit value calculation that calculates the current integration method charge rate change amount from the current integration method charge rate obtained by the current integration method charge rate calculation means, and calculates the upper limit value and the lower limit limit value from this current integration method charge rate change amount Means,
The open-circuit voltage estimation method The charge rate change amount is calculated using the open-circuit voltage estimation method charge rate obtained by the charging rate calculation means, and the charge rate so that the charge rate change amount falls within the range between the upper limit value and the lower limit value. An amount-of-change restriction processing means for calculating the charging rate of the battery by changing the open-circuit voltage estimation method charging rate by limiting the amount of change;
It is provided with.

また、請求項2に記載のバッテリの充電率推定装置は、
変化量制限値計算手段が、電流積算法充電率変化量にそれぞれ所定値を加算、減算して上限制限値および下限制限値を設定する、
ことを特徴とする
Moreover, the battery charging rate estimation device according to claim 2 is:
The change amount limit value calculating means sets the upper limit limit value and the lower limit limit value by adding and subtracting a predetermined value to the current integration method charging rate change amount, respectively.
It is characterized by

また、請求項3に記載のバッテリの充電率推定装置は、
変化量制限値計算手段が、電流積算法充電率変化量にそれぞれ所定値、所定値の逆数を乗算して上限制限値および下限制限値を設定する、
ことを特徴とする。
The battery charge rate estimation device according to claim 3 is:
The change amount limit value calculating means sets an upper limit limit value and a lower limit limit value by multiplying the current integration method charging rate change amount by a predetermined value and a reciprocal of the predetermined value, respectively.
It is characterized by that.

また、請求項4に記載のバッテリの充電率推定装置は、
電流積算法充電率および開放電圧推定法充電率からこれら間の誤差を推定し、電流積算法充電率および開放電圧推定法充電率の一方から誤差を減算した値を補正充電率として変化量制限処理手段へ入力する誤差補正手段を有し、
変化量制限処理手段が、この変化量制限処理手段で用いる開放電圧推定法充電率として補正充電率を用いてバッテリの充電率を算出する、
ことを特徴とする。
The battery charge rate estimation apparatus according to claim 4 is:
Estimate the error between these from the current integration method charging rate and the open circuit voltage estimation method charging rate, and subtract the error from one of the current integration method charging rate and the open circuit voltage estimation method charging rate to limit the amount of change as the corrected charging rate. Error correction means for inputting to the means,
The change amount restriction processing means calculates the charge rate of the battery using the correction charge rate as the open-circuit voltage estimation method charge rate used in the change amount restriction processing means.
It is characterized by that.

また、請求項5に記載の第2発明によるバッテリの充電率推定方法は、
充放電電流検出手段で検出したバッテリの充放電電流を積算して電流積算法充電率を算出し、
充放電電流および端子電圧検出手段で検出した端子電圧とからバッテリの開放電圧を推定して、この開放電圧から開放電圧推定法充電率を算出し、
電流積算法充電率から電流積算法充電率変化量を求め、この電流積算法充電率変化量から上限制限値および下限制限値を計算し、
開放電圧推定法充電率を用いて充電率変化量を求め、この充電率変化量が上限制限値と下限制限値との範囲内に入るように充電率変化量を制限して開放電圧推定法充電率を変化させることでバッテリの充電率を算出する、
ことを特徴とする。
Further, the battery charging rate estimation method according to the second invention of claim 5 is:
Accumulate the charge / discharge current of the battery detected by the charge / discharge current detection means to calculate the current integration method charging rate,
Estimate the open-circuit voltage of the battery from the charge / discharge current and the terminal voltage detected by the terminal voltage detection means, calculate the open-circuit voltage estimation method charging rate from this open-circuit voltage,
Obtain the current integration method charge rate change amount from the current integration method charge rate, calculate the upper limit value and the lower limit value from this current integration method charge rate change amount,
Open-circuit voltage estimation method Charge rate is calculated using the charge rate, and the open-circuit voltage estimation method is charged by limiting the charge rate change amount so that the charge rate change amount falls within the range between the upper limit value and the lower limit value. Calculate the battery charge rate by changing the rate,
It is characterized by that.

請求項1に記載の第1発明によるバッテリの充電率推定装置にあっては、低電流状態の場合であっても、推定開始直後や入力信号の状態(周波数成分やノイズなど)により、推定充電率が異常な過渡応答したり推定結果がハンチングしたりして真の充電率から大きくずれるのを抑える。これにより、バッテリの充電率の推定誤差を少なく抑えることができる。   In the battery charging rate estimation device according to the first aspect of the present invention, even in the case of a low current state, the estimated charging is performed immediately after the estimation is started or depending on the state of the input signal (frequency component, noise, etc.). Suppresses a large deviation from the true charge rate due to an abnormal transient response of the rate or hunting of the estimation result. Thereby, the estimation error of the charging rate of the battery can be reduced.

請求項2に記載のバッテリの充電率推定装置にあっては、変化量制限値計算手段が、電流積算法充電率算出手段で得た電流積算法充電率変化量を用い、これに所定値を加算して上限制限値を得、また電流積算法充電率変化量から所定値Aを減算して下限制限値を得るようにしたので、簡単な構成で容易に上限制限値と下限制限値とを得ることができる。   In the battery charge rate estimation device according to claim 2, the change amount limit value calculation means uses the current integration method charge rate change amount obtained by the current integration method charge rate calculation means, and sets a predetermined value to this. Since the upper limit value is obtained by adding, and the lower limit value is obtained by subtracting the predetermined value A from the current integration method charging rate change amount, the upper limit value and the lower limit value can be easily obtained with a simple configuration. Can be obtained.

請求項3に記載のバッテリの充電率推定装置にあっては、変化量制限値計算手段が、電流積算法充電率算出手段で得た電流積算法充電率変化量を用い、これに所定値を乗算して上限制限値を得、また電流積算法充電率変化量に所定値の逆数を乗算して下限制限値を得るようにしたので、簡単な構成で容易に上限制限値と下限制限値とを得ることができる。   In the battery charge rate estimation device according to claim 3, the change amount limit value calculation means uses the current integration method charge rate change amount obtained by the current integration method charge rate calculation means, and sets a predetermined value to this. Since the upper limit value is obtained by multiplying, and the lower limit value is obtained by multiplying the current integration method charging rate change amount by the reciprocal of the predetermined value, the upper limit value and the lower limit value can be easily obtained with a simple configuration. Can be obtained.

請求項4に記載のバッテリの充電率推定装置にあっては、変化量制限処理手段で用いる開放電圧推定法充電率に誤差補正手段で補正した補正充電率を用いるようにしたので、バッテリの充電率をより精度よく推定することができるようになる。   In the battery charging rate estimation device according to claim 4, since the corrected charging rate corrected by the error correcting unit is used for the open-circuit voltage estimation method charging rate used by the variation amount limiting processing unit, the charging of the battery is performed. The rate can be estimated more accurately.

請求項5に記載の第2発明によるバッテリの充電率推定方法にあっては、低電流状態の場合であっても、推定開始直後や入力信号の状態(周波数成分やノイズなど)により、推定充電率が異常な過渡応答したり推定結果がハンチングしたりして真の充電率から大きくずれるのを抑える。これにより、バッテリの充電率の推定誤差を少なく抑えることができる。   In the battery charging rate estimation method according to the second aspect of the present invention, even in a low current state, the estimated charging is performed immediately after the estimation is started or depending on the state of the input signal (frequency component, noise, etc.). Suppresses a large deviation from the true charge rate due to an abnormal transient response of the rate or hunting of the estimation result. Thereby, the estimation error of the charging rate of the battery can be reduced.

本発明の実施例1に係る充電率推定装置の全体構成を示すブロック図である。It is a block diagram which shows the whole structure of the charging rate estimation apparatus which concerns on Example 1 of this invention. 図1に示した実施例1の充電率推定装置の開放推定部で用いるバッテリ・モデル回路を示す図である。It is a figure which shows the battery model circuit used with the open | release estimation part of the charging rate estimation apparatus of Example 1 shown in FIG. 実施例1の充電率推定装置において、充電率推定のシミュレーション結果を示す図である。In the charge rate estimation apparatus of Example 1, it is a figure which shows the simulation result of charge rate estimation. 本発明の実施例2に係る充電率推定装置の全体構成を示すブロック図である。It is a block diagram which shows the whole structure of the charging rate estimation apparatus which concerns on Example 2 of this invention. 本発明の実施例3に係る充電率推定装置の全体構成を示すブロック図である。It is a block diagram which shows the whole structure of the charging rate estimation apparatus which concerns on Example 3 of this invention. 本発明の実施例4に係る充電率推定装置の全体構成を示すブロック図である。It is a block diagram which shows the whole structure of the charging rate estimation apparatus which concerns on Example 4 of this invention. 本発明の実施例3、4に係る充電率推定装置の変形例を示す図である。It is a figure which shows the modification of the charging rate estimation apparatus which concerns on Example 3, 4 of this invention.

以下、本発明の実施の形態を、図面に示す実施例に基づき詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail based on examples shown in the drawings.

まず、本発明の実施例1に係る充電率推定装置の全体構成を説明する。
この実施例1の充電率推定装置は、電気自動車に積載された電気モータ等へ電力を供給するバッテリの充電率(SOC: State of Charge)を推定するものである。
図1に示すように、バッテリBTに接続された充電率推定装置は、充放電電流検出部1と、端子電圧検出部2と、電流積算法充電率推定部3と、開放電圧推定法充電率推定部4と、変化量制限値計算部5と、変化量制限処理部6と、を有する。
First, the overall configuration of the charging rate estimation apparatus according to Embodiment 1 of the present invention will be described.
The charging rate estimation apparatus according to the first embodiment estimates a charging rate (SOC: State of Charge) of a battery that supplies electric power to an electric motor or the like mounted on an electric vehicle.
As shown in FIG. 1, the charging rate estimation device connected to the battery BT includes a charging / discharging current detection unit 1, a terminal voltage detection unit 2, a current integration method charging rate estimation unit 3, and an open-circuit voltage estimation method charging rate. An estimation unit 4, a variation amount limit value calculation unit 5, and a variation amount limitation processing unit 6 are included.

バッテリBTは、リチャージャブル・バッテリであり、本実施例にあっては、たとえばリチウム・イオン・バッテリを用いるが、これに限られることはなく、ニッケル・水素バッテリ等、他の種類のバッテリを用いてもよいことは言うまでもない。   The battery BT is a rechargeable battery. In this embodiment, for example, a lithium ion battery is used. However, the battery BT is not limited to this, and other types of batteries such as a nickel hydrogen battery are used. Needless to say.

充放電電流検出部1は、バッテリBTから図示しない電気モータ等へ電力を供給する場合の放電電流の大きさ、および制動時に電気モータを発電機として機能させて制動エネルギの一部を回収したり、あるいは地上の電源設備から充電したりする場合の充電電流の大きさを検出するもので、たとえば、シャント抵抗等を使ってバッテリBTに流れる充放電電流値iを検出する。検出した充放電電流値iは、電流積算法充電率推定部3と開放電圧推定法充電率推定部4との双方へ入力される。
なお、電流検出部1は、上記構成に限られず種々の構造・形式を有するものを適宜採用でき、本発明の充放電電流検出手段に相当する。
The charge / discharge current detection unit 1 collects a part of the braking energy by causing the electric motor to function as a generator during braking when the electric power is supplied from the battery BT to an electric motor (not shown) or the like. Alternatively, it detects the magnitude of the charging current when charging from a power supply facility on the ground. For example, the charging / discharging current value i flowing through the battery BT is detected using a shunt resistor or the like. The detected charge / discharge current value i is input to both the current integration method charging rate estimation unit 3 and the open-circuit voltage estimation method charging rate estimation unit 4.
Note that the current detection unit 1 is not limited to the above-described configuration, and those having various structures and formats can be appropriately employed, and correspond to the charge / discharge current detection means of the present invention.

端子電圧検出部2は、バッテリBTの端子間の電圧を検出するものであり、ここで検出した端子電圧値vは開放電圧推定法充電率推定部4へ入力される。
なお、端子電圧検出部2は、種々の構造・形式を有するものを適宜採用でき、本発明の端子電圧検出手段に相当する。
The terminal voltage detector 2 detects the voltage between the terminals of the battery BT, and the detected terminal voltage value v is input to the open-circuit voltage estimation method charging rate estimator 4.
The terminal voltage detection unit 2 can appropriately adopt ones having various structures and formats, and corresponds to the terminal voltage detection means of the present invention.

電流積算法充電率推定部3は、積分器31と、開放電圧−充電率算出部32と、満充電容量算出部33と、容量比演算部34と、を有している。なお、電流積算法充電率算出部3は、本発明の電流積算法充電率算出手段に相当する。   The current integration method charging rate estimation unit 3 includes an integrator 31, an open circuit voltage-charging rate calculation unit 32, a full charge capacity calculation unit 33, and a capacity ratio calculation unit 34. The current integration method charging rate calculation unit 3 corresponds to the current integration method charging rate calculation means of the present invention.

積分器31には、充放電電流検出部1で検出された充放電電流値iが入力されて、この充放電電流値iを時間積算して電流積算値(充放電された電荷容量に等しい)を算出することにより、バッテリBTに充放電された電荷量を求める。なお、この積分にあたって、積分器31が、初期容量値として、後述の開放電圧値−充電率関係データ算出部32で求めた値(初期充電率SOCO)にバッテリBTの満充電電荷量FCCを掛けることで初期充電容量uを算出する。次いで、積分器31が、この初期充電容量uに上記電流積算値を加算していくことで、バッテリBTに蓄えられた電荷量(残存容量)uを算出し、この残存容量uを容量比演算部34へ出力する。 The integrator 31 receives the charge / discharge current value i detected by the charge / discharge current detection unit 1 and integrates the charge / discharge current value i over time to obtain an integrated current value (equal to the charged / discharged charge capacity). Is calculated to obtain the amount of charge charged / discharged in the battery BT. In this integration, the integrator 31 sets the full charge amount FCC of the battery BT to the value (initial charge rate SOC O ) obtained by the later-described open circuit voltage value-charge rate relationship data calculation unit 32 as the initial capacity value. By multiplying, the initial charge capacity u 0 is calculated. Next, the integrator 31 calculates the charge amount (remaining capacity) u 1 stored in the battery BT by adding the current integrated value to the initial charging capacity u 0 , and calculates the remaining capacity u 1 . Output to the capacity ratio calculation unit 34.

開放電圧値−充電率算出部32は、あらかじめ実験で得た開放電圧値OCVと充電率SOCとの関係データをルックアップ・テーブルとして記憶しており、端子電圧検出部2で充放電開始直前に検出された電圧値vに略等しい開放電圧値OCVが入力され、この開放電圧値OCVに相当する充電率SOCをルックアップ・テーブルから算出し、これを初期充電率SOCOとして積分器31へ入力する。 The open-circuit voltage value-charge rate calculation unit 32 stores relation data between the open-circuit voltage value OCV and the charge rate SOC obtained in advance as a look-up table, and the terminal voltage detection unit 2 immediately before the start of charging / discharging. substantially equal open circuit voltage value OCV on the detected voltage value v is inputted, calculates the charge rate SOC corresponding to the open circuit voltage value OCV from the look-up table, the input to the integrator 31 as an initial charging rate SOC O To do.

一方、満充電容量算出部33は、満充電容量FCCの初期値である設計容量DCが記憶されており、バッテリBTの健全度SOH(State of Health)が入力されて設計容量DCと掛け合わされて、そのときのバッテリBTの満充電容量uが得られる。この満充電容量uは、容量比演算器34へ出力される。なお、健全度SOHの時間的変化は穏やかであるので、車両電源の前回OFF時に記憶した値、あるいは今回車両電源をONした際に算出した値のいずれを用いてもよい。 On the other hand, the full charge capacity calculation unit 33 stores a design capacity DC that is an initial value of the full charge capacity FCC, and a soundness level SOH (State of Health) of the battery BT is input and multiplied by the design capacity DC. The full charge capacity u 2 of the battery BT at that time is obtained. The full charge capacity u 2 is output to the capacity ratio calculator 34. Since the temporal change in the soundness level SOH is moderate, either the value stored when the vehicle power supply was turned off last time or the value calculated when the vehicle power supply was turned on this time may be used.

容量比演算器34は、積分器34から入力された電流積算値(=残存容量)uを、満充電容量算出部33から入力された満充電容量uで除算することで電流積算法充電率SOCCを得、この電流積算法充電率SOCCを変化量制限値計算部5へ出力する。 The capacity ratio calculator 34 divides the current integrated value (= remaining capacity) u 1 input from the integrator 34 by the full charge capacity u 2 input from the full charge capacity calculation unit 33, thereby charging the current integration method. The rate SOC C is obtained, and this current integration method charge rate SOC C is output to the variation limit value calculation unit 5.

一方、開放電圧推定法充電率推定部4は、減算器41と、過電圧算出部42と、開放推定部43と、開放電圧値−充電率算出部44とを有する。なお、開放電圧推定法充電率推定部4は、本発明の開放電圧推定法充電率算出手段に相当する。   On the other hand, the open-circuit voltage estimation method charging rate estimation unit 4 includes a subtractor 41, an overvoltage calculation unit 42, an open-circuit estimation unit 43, and an open-circuit voltage value-charging rate calculation unit 44. The open-circuit voltage estimation method charging rate estimation unit 4 corresponds to the open-circuit voltage estimation method charging rate calculation means of the present invention.

減算器41には、端子電圧部2で検出した端子電圧vと過電圧算出部42で算出した過電圧v1とが入力され、端子電圧vから過電圧v1を減算して得た開放電圧OCV(OCV=v−v1)を開放電圧値−充電率算出部44に出力する。 The subtractor 41 receives the terminal voltage v detected by the terminal voltage unit 2 and the overvoltage v 1 calculated by the overvoltage calculation unit 42, and the open circuit voltage OCV (OCV) obtained by subtracting the overvoltage v 1 from the terminal voltage v. = V−v 1 ) is output to the open circuit voltage value−charge rate calculation unit 44.

過電圧算出部42には、充放電検出部1で検出した充放電電流iと後述の開放推定部43で推定した抵抗値Rが入力され、充放電電流iと抵抗値Rとが掛け合わされて過電圧v(=i×R)が得られる。この過電圧vは、減算器41へ出力される。 The overvoltage calculation unit 42 receives the charge / discharge current i detected by the charge / discharge detection unit 1 and the resistance value R estimated by the open-circuit estimation unit 43, which will be described later, and is multiplied by the charge / discharge current i and the resistance value R. v 1 (= i × R) is obtained. This overvoltage v 1 is output to the subtractor 41.

開放推定部43では、図2に示すバッテリ等価回路モデルに基づき、バッテリBTの抵抗Rを、カルマン・フィルタなどの適応フィルタを用いて推定する。
開放電圧推定法充電率推定部4でカルマン・フィルタを用いる場合には、図2のバッテリ等価回路モデルに、実際のバッテリBTと同じ入力(充放電電流i、バッテリ温度など)を入力してこれらの出力(端子電圧v)を比較し、両者に差があればこの差にカルマン・ゲインを掛けてフィードバックし、誤差が最小となるようにバッテリ等価回路モデルを修正していく。これを逐次繰り返して、真の内部状態量である開放電圧値などを推定する。なお、この詳細については、本出願人による特願2011−007874号に説明してある。
The open estimation unit 43 estimates the resistance R of the battery BT using an adaptive filter such as a Kalman filter based on the battery equivalent circuit model shown in FIG.
When the Kalman filter is used in the open-circuit voltage estimation method charging rate estimation unit 4, the same inputs (charge / discharge current i, battery temperature, etc.) as the actual battery BT are input to the battery equivalent circuit model of FIG. Output (terminal voltage v) is compared, and if there is a difference between them, the difference is multiplied by Kalman gain and fed back, and the battery equivalent circuit model is corrected so that the error is minimized. This is repeated sequentially to estimate an open circuit voltage value that is a true internal state quantity. The details are described in Japanese Patent Application No. 2011-007874 by the present applicant.

バッテリ等価回路モデルは、本実施例では同図に示すように、フォスタ型RC梯子回路(ただし1次の並列回路のみ)を用いる。すなわち、この回路は、バッテリBTの電解液抵抗と結線によるオーム抵抗等の直流成分を設定するバルク抵抗(R)に、抵抗(R:ファラデー・インピーダンスでありバッテリBT中の電荷移動過程における動的振る舞いを表す反応抵抗として設定)とコンデンサ(C:非ファラデー・インピーダンスであり電気二重層を表わすものとして設定)の並列回路を接続したものである。また、同図中には、開放電圧を表わすコンデンサCOCVの開放電圧値をOCV、端子電圧値をvで、また上記並列回路で発生する過電圧値をvでそれぞれ表示してある。端子電圧vは、上述したように、開放電圧値OCVと過電圧値vとの合計に等しくなる。抵抗Rは、バルク抵抗Rとファラデー・インピーダンスRとを合算した値となる。 The battery equivalent circuit model uses a Foster-type RC ladder circuit (however, only a primary parallel circuit) as shown in FIG. That is, in this circuit, the resistance (R 1 : Faraday impedance and the charge transfer process in the battery BT) in the bulk resistance (R 0 ) that sets the direct current component such as the resistance of the electrolyte of the battery BT and the ohmic resistance due to the connection. A parallel circuit of a capacitor (set as a reaction resistance representing dynamic behavior) and a capacitor (C 1 : set as a non-Faraday impedance and representing an electric double layer) is connected. Further, in the figure, OCV open circuit voltage value of the capacitor C OCV representing the open circuit voltage, a terminal voltage value at v, also are respectively displayed overvoltage value generated in the parallel circuit at v 1. Terminal voltage v, as described above, is equal to the sum of the open circuit voltage value OCV and overvoltage value v 1. The resistance R is a value obtained by adding the bulk resistance R 0 and the Faraday impedance R 1 .

開放電圧値−充電率算出部44は、電流積算法充電率推定部3の開放電圧値−充電率算出部32と同様に、あらかじめ実験で得た開放電圧値OCVと充電率SOCとの関係データをルックアップ・テーブルとして記憶しており、減算器41で得られた開放電圧値OCVが入力されて、この開放電圧値OCVに相当する開放電圧推定法充電率SOCを上記ルックアップ・テーブルから算出し、変化量制限処理部6へ出力する。 The open-circuit voltage value-charging rate calculation unit 44 is similar to the open-circuit voltage value-charging rate calculation unit 32 of the current integration method charging rate estimation unit 3, and the relational data between the open-circuit voltage value OCV and the charging rate SOC obtained in advance through experiments. Is stored as a look-up table, and the open-circuit voltage value OCV obtained by the subtractor 41 is input, and the open-circuit voltage estimation method charging rate SOC V corresponding to the open-circuit voltage value OCV is obtained from the look-up table. Calculate and output to the variation restriction processing unit 6.

変化量制限値計算部5は、微分器51と、所定値設定部52と、加算器53と、減算器54と、を有する。   The change amount limit value calculation unit 5 includes a differentiator 51, a predetermined value setting unit 52, an adder 53, and a subtractor 54.

微分器51は、容量比演算部34で得られた電流積算法充電率SOCCが入力されて、これをz変換により離散化し、微分(差分)することで、電流積算法充電率微分値ΔSOCCを得る。すなわち、この電流積算法充電率微分値ΔSOCCは、電流積算法充電率SOCCの変化量(レート)を表すもので、この値は加算器53と減算器54に出力される。 The differentiator 51 receives the current integration method charging rate SOC C obtained by the capacity ratio calculation unit 34, discretizes this by z conversion, and differentiates (differences) to obtain a current integration method charging rate differential value ΔSOC. Get C. That is, this current integration method charging rate differential value ΔSOC C represents the amount of change (rate) of the current integration method charging rate SOC C , and this value is output to the adder 53 and the subtractor 54.

所定値設定部52は、あらかじめ実験やシミュレーションで決定した最適値である所定値Aを設定するものである。この所定値Aは、変化量制限処理部6で開放電圧推定法による充電率変化量の大きさに所定の制限をかけることにより、開放電圧推定法充電率SOCVが異常な過渡応答値となったりハンチングを生じたりすることのない範囲内に制限できる値に設定する。ここで設定された所定値Aは、加算器53および減算器54に入力される。 The predetermined value setting unit 52 sets a predetermined value A which is an optimum value determined in advance through experiments and simulations. The predetermined value A is a transient response value that causes the open-circuit voltage estimation method charge rate SOC V to be an abnormal value by applying a predetermined limit to the magnitude of the charge rate change amount by the open-circuit voltage estimation method in the change amount restriction processing unit 6. Set to a value that can be limited within a range that does not cause hunting. The predetermined value A set here is input to the adder 53 and the subtractor 54.

加算器53は、微分器51で得られた電流積算法充電率微分値ΔSOCCに所定値Aを加算し、この加算値を上限制限値vr1として変化量制限処理部6へ出力する。
減算器54は、微分器51で得られた電流積算法充電率微分値ΔSOCCから所定値Aを減算し、この減算値を下限制限値vr2として変化量制限処理部6へ出力する。
The adder 53 adds the predetermined value A to the current integration method charging rate differential value [Delta] SOC C obtained by the differentiator 51, and outputs the sum value to the variation restriction processing section 6 as the upper limit value vr 1.
Subtractor 54, the predetermined value A is subtracted from the current integration method charging rate differential value [Delta] SOC C obtained by the differentiator 51, and outputs the subtracted value to the variation restriction processing section 6 as the lower limit value vr 2.

これら上限制限値vr1と下限制限値vr2とは、開放電圧推定法充電率SOCVの変化量ΔSOCVの大きさを制限するのに利用される。なお、このように電流積算法充電率の変化量(微分値ΔSOCC)を用いて変化量制限処理部6で開放電圧推定法充電率SOCVの変化量を制限するのは、短時間の充電率SOC変動量の推定にあっては電流積算法の方が開放電圧推定法より原理的に優れていることによる。 The upper limit value vr 1 and the lower limit value vr 2 are used to limit the amount of change ΔSOC V of the open circuit voltage estimation method charging rate SOC V. It should be noted that the amount of change in the open circuit voltage estimation method charging rate SOC V is limited by the change amount limiting processing unit 6 using the amount of change in the current integration method charging rate (differential value ΔSOC C ) in this way. This is because the current integration method is superior in principle to the open-circuit voltage estimation method in estimating the rate SOC fluctuation amount.

変化量制限処理部6は、変化量制限値計算部5の微分器51と同様の微分器61と、変化量制限部62と、を備えている。微分器61では、入力された開放電圧推定法充電率SOCVの変化量(微分値)ΔSOCVを計算し、変化量制限部62へ出力する。 The change amount restriction processing unit 6 includes a differentiator 61 similar to the differentiator 51 of the change amount restriction value calculation unit 5 and a change amount restriction unit 62. The differentiator 61 calculates a change amount (differential value) ΔSOC V of the input open-circuit voltage estimation method charging rate SOC V and outputs it to the change amount limiting unit 62.

変化量制限部62には、微分器61から開放電圧推定法充電率SOCVの変化量ΔSOCVが、また開放電圧−充電率算出部44から開放電圧推定法充電率SOCVがそれぞれ入力され、開放電圧推定法充電率変化量ΔSOCVが上限制限値vr1と下限制限値vr2との範囲内にあるように開放電圧推定法充電率変化量ΔSOCVの大きさを制限した値を用いて、開放電圧推定法充電率SOCVを変化させる。 The change amount limiting unit 62, the change amount [Delta] SOC V open circuit voltage estimation charging rate SOC V from the differentiator 61 is also open voltage - open circuit voltage estimation charging rate SOC V from the charging rate calculating unit 44 are inputted respectively, using the open-circuit voltage estimation SOC variation [Delta] SOC V has limited the size of the upper limit value vr 1 and the lower limit value release voltage estimation SOC change amount [Delta] SOC V to be within the scope of the vr 2 value , Opening voltage estimation method Charging rate SOC V is changed.

すなわち、図1の変化量制限部62に示すように、開放電圧推定法充電率変化量ΔSOCVが上限制限値vr1(=電流積算法充電率微分値ΔSOCC+所定値A) より大きい(同図中、右上がりの破線矢印で示した状態)ときは、開放電圧推定法充電率変化量ΔSOCVを上限制限値vr1としてその上限を制限する。
一方、開放電圧推定法充電率変化量ΔSOCVが下限制限値vr2(=電流積算法充電率微分値ΔSOCC−所定値A)より小さい(同図中、右下がりの破線矢印で示した状態)ときは、開放電圧推定法充電率変化量ΔSOCVを下限制限値vr2としてその下限を制限する。
また、開放電圧推定法充電率変化量ΔSOCVが上限制限値vr1と下限制限値vr2との間にあるときは、その値を制限することなく、そのままの値を用いる。
That is, as shown in the change amount limiting unit 62 of FIG. 1, the open circuit voltage estimation method charge rate change amount ΔSOC V is larger than the upper limit value vr 1 (= current integration method charge rate differential value ΔSOC C + predetermined value A) ( In the same figure, the state indicated by the arrow pointing upward to the right), the upper limit is limited with the open circuit voltage estimation method charging rate change amount ΔSOC V as the upper limit value vr 1 .
On the other hand, the open-circuit voltage estimation method charging rate change amount ΔSOC V is smaller than the lower limit value vr 2 (= current integration method charging rate differential value ΔSOC C −predetermined value A) (in the state shown by the lower right broken arrow in the figure) ) When the open circuit voltage estimation method charging rate change amount ΔSOC V is set as a lower limit value vr 2 , the lower limit is limited.
Further, when the open-circuit voltage estimation method charging rate change amount ΔSOC V is between the upper limit value vr 1 and the lower limit value vr 2 , the value is used without being limited.

このようにして変化量制限処理部6は、開放電圧推定法充電率SOCVを、上限制限値vr1および下限制限値vr2の範囲内となるように制限された開放電圧推定法充電率変化量ΔSOCVに応じて変化させ、開放電圧推定法制限充電率SOCvrとして出力する。この開放電圧推定法制限充電率SOCvrは、バッテリBTの充電率SOCであると推定する(SOCvr=SOC)。 In this way, the change amount restriction processing unit 6 changes the open-circuit voltage estimation method charging rate SOC V so that the open-circuit voltage estimation method charging rate SOC V is limited to the range between the upper limit value vr 1 and the lower limit value vr 2. It is changed according to the amount ΔSOC V and is output as the open circuit voltage estimation method limited charging rate SOC vr . This open-circuit voltage estimation method limited charging rate SOC vr is estimated to be the charging rate SOC of battery BT (SOC vr = SOC).

次に、以上のように構成した実施例1のバッテリBTの充電率推定装置の作用につき説明する。   Next, the operation of the charging rate estimation device for the battery BT according to the first embodiment configured as described above will be described.

まず、車両のイグニッション・キーを回してバッテリBTからの放電を可能にすると、充放電電流検出部1がバッテリBTの充放電電流iを検出して電流積算法充電率算出部3の積分器31および開放電圧推定法充電率算出部4の過電圧算出部42へとそれぞれ出力する。
また、これと同時に、端子電圧検出部2がバッテリBTの端子電圧vを検出し、電流積算法充電率算出部3の開放電圧−充電率算出部32および開放電圧推定法充電率算出部4の減算器41へとそれぞれ出力する。
First, when the ignition key of the vehicle is turned to enable discharge from the battery BT, the charge / discharge current detection unit 1 detects the charge / discharge current i of the battery BT and the integrator 31 of the current integration method charge rate calculation unit 3. And output to the overvoltage calculation unit 42 of the open-circuit voltage estimation method charging rate calculation unit 4.
At the same time, the terminal voltage detection unit 2 detects the terminal voltage v of the battery BT, and the open voltage-charge rate calculation unit 32 of the current integration method charge rate calculation unit 3 and the open voltage estimation method charge rate calculation unit 4 Each is output to the subtracter 41.

電流積算法充電率算出部3では、放電開始当初に端子電圧検出部2で検出した端子電圧vがほぼ開放電圧OCVに近いことから、その検出値に基づいて開放電圧−充電率算出部32で初期充電率SOCOを得、この初期充電率SOCOに記憶してあった満充電容量FCCを掛けて初期充電容量SOC0を算出し、これを積分器31へ出力し、ここで実行する積分の初期値とする。積分器31では、充放電電流検出部1から入力されてくる充放電電流iを時間積分して上記初期値に加算していくことで、バッテリBTのそのときどきの残存容量uを算出する。 In the current integration method charging rate calculation unit 3, the terminal voltage v detected by the terminal voltage detection unit 2 at the beginning of discharge is substantially close to the open circuit voltage OCV. The initial charge rate SOC O is obtained, and the initial charge rate SOC 0 is calculated by multiplying the full charge capacity FCC stored in the initial charge rate SOC O, and the initial charge rate SOC 0 is output to the integrator 31. The initial value of. The integrator 31 calculates the remaining capacity u 1 of the battery BT at that time by integrating the charge / discharge current i input from the charge / discharge current detection unit 1 with time and adding it to the initial value.

一方、満充電容量算出部33では、健全度SOHとあらかじめ記憶しておいた設計容量DCとを掛け合わせて、そのときの満充電容量u2を算出する。
容量比演算部34では、積分器31で得られた残存容量uを満充電容量算出部33で得られた満充電容量uで除算することで、電流積算法充電率SOCを算出し、この値を変化量制限値計算部5の微分器51へと出力する。
On the other hand, the full charge capacity calculation unit 33 multiplies the soundness level SOH and the design capacity DC stored in advance to calculate the full charge capacity u 2 at that time.
The capacity ratio calculation unit 34 calculates the current integration method SOC C SOC by dividing the remaining capacity u 1 obtained by the integrator 31 by the full charge capacity u 2 obtained by the full charge capacity calculation unit 33. This value is output to the differentiator 51 of the variation limit value calculation unit 5.

変化量制限値計算部5では、微分器51が容量比演算部34で得られた電流積算法充電率SOCをz変換して離散化し、微分によりその変化量を求める。この変化量である充電率微分値ΔSOCは、加算器53で所定値設定部52にて設置された所定値Aが加算されて変化量上限限定値vr1が設定され、また減算器54で所定値Aが減算されて変化量下限限定値vr2が設定される。これらの変化量上限限定値vr1と変化量下限限定値vr2とは、変化量制限処理部6へ出力される。 In the change amount limit value calculation unit 5, the differentiator 51 z-converts and discretizes the current integration method charging rate SOC C obtained by the capacity ratio calculation unit 34, and obtains the change amount by differentiation. The charging rate differential value ΔSOC C which is the amount of change is added with a predetermined value A set by a predetermined value setting unit 52 by an adder 53 to set a change amount upper limit value vr 1 , and a subtractor 54 variation lower limit value vr 2 predetermined value A is subtracted is set. These change amount upper limit value vr 1 and change amount lower limit value vr 2 are output to the change amount restriction processing unit 6.

一方、開放電圧推定法充電率算出部4では、過電圧算出部42が、開放推定部43にてバッテリ等価回路モデルにより推定したバッテリBTの抵抗Rと充放電電流検出部1で検出した充放電電流iとを掛け合わせて過電圧vを算出し、減算器41へ出力する。 On the other hand, in the open circuit voltage estimation method charging rate calculation unit 4, the overvoltage calculation unit 42 detects the resistance R of the battery BT estimated by the open circuit estimation unit 43 using the battery equivalent circuit model and the charge / discharge current detected by the charge / discharge current detection unit 1. Multiply i to calculate the overvoltage v 1 and output to the subtractor 41.

減算器41では、端子電圧検出部2で検出した端子電圧vから過電圧vを減算して、バッテリBTの開放電圧OCVを得る。この開放電圧OCVは、開放電圧−充電率算出部44で、記憶した開放電圧OCVと充電率SOCの関係データのルックアップ・テーブルを参照して開放電圧推定法充電率SOCが算出され、変化量制限処理部6へ出力される。 The subtracter 41 subtracts the overvoltage v 1 from the terminal voltage v detected by the terminal voltage detection unit 2, to obtain the open circuit voltage OCV of the battery BT. The open-circuit voltage OCV is calculated by the open-circuit voltage-charge rate calculation unit 44 by referring to a lookup table of stored relational data between the open-circuit voltage OCV and the charge rate SOC and calculating the open-circuit voltage estimation method charge rate SOC v. The data is output to the amount restriction processing unit 6.

変化量制限処理部6では、入力された開放電圧推定法充電率SOCが微分器61で微分されて、開放電圧推定法充電率変化量ΔSOCを得る。この開放電圧推定法充電率変化量ΔSOCは、変化量制限部62で、変化量制限値計算部5にて設定された上限制限値vrと下限制限値vrとの範囲内に収まるようにその上限と下限の大きさが制限され、過大となることが抑えられる。 In the change amount restriction processing unit 6, the input open circuit voltage estimation method charging rate SOC v is differentiated by the differentiator 61 to obtain an open circuit voltage estimation method charging rate change amount ΔSOC v . This open-circuit voltage estimation method charging rate change amount ΔSOC v falls within the range between the upper limit value vr 1 and the lower limit value vr 2 set by the change amount limit value calculation unit 5 in the change amount limit unit 62. The upper limit and the lower limit are limited to an excessively large size.

すなわち、短時間では相対精度が優れた電流積算法で得た電流積算法充電率SOCCの変化量ΔSOCCに応じて、開放電圧推定法充電率SOCVの変化量ΔSOCVが制限されるので、推定開始直後や入力信号の状態(周波数成分やノイズなど)により、低電流状態の場合であっても、推定充電率が異常な過渡応答したり推定結果がハンチングしたりして真の充電率から大きくずれるのを抑える。
また、この場合、上下限定値vr、vrが電流積算法充電率変化量ΔSOCCに応じて変化するので、開放電圧推定法により推定した充電率SOCVの絶対値が過大になるのを防止される結果、違和感ない値に収束する。
That is, a short time in response to the variation [Delta] SOC C current integration method charging rate SOC C relative accuracy is obtained with excellent current integration method, the change amount [Delta] SOC V open circuit voltage estimation charging rate SOC V is restricted Even if the current state of the input signal (frequency component, noise, etc.) is low and the current state is low, the estimated charging rate may cause an abnormal transient response or the estimation result will hunt, resulting in a true charging rate. Suppresses large deviation from
In this case, since the upper and lower limit values vr 1 and vr 2 change according to the current integration method charging rate change amount ΔSOC C , the absolute value of the charging rate SOC V estimated by the open circuit voltage estimation method is excessive. As a result, it converges to a value that does not feel strange.

実施例1の充電率推定装置は、上記のようにして電流積算法充電率算出部3で得た電流積算法充電率SOCCと、開放電圧推定法充電率算出部4で得た開放電圧推定法充電率SOCと、を組み合わせたいわゆるセンサ・フージョン技術をもとに、変化量制限値計算部6で得た上下限定値vr、vrを用いて開放電圧推定法充電率SOCの変化量ΔSOCを変化量制限処理部6で制限することで、開放電圧推定法制限充電率SOCvr、すなわちバッテリBTの充電率SOCを算出する。 The charging rate estimation apparatus according to the first embodiment includes the current integration method charging rate SOC C obtained by the current integration method charging rate calculation unit 3 as described above and the open circuit voltage estimation obtained by the open circuit voltage estimation method charging rate calculation unit 4. Based on the so-called sensor fusion technology that combines the method charge rate SOC v and the upper and lower limit values vr 1 and vr 2 obtained by the change amount limit value calculation unit 6, the open-circuit voltage estimation method charge rate SOC v By limiting the change amount ΔSOC v by the change amount restriction processing unit 6, the open-circuit voltage estimation method limit charge rate SOC vr , that is, the charge rate SOC of the battery BT is calculated.

図3に、実施例1のバッテリの充電率推定装置を用いて充電率を推定したシミュレーション結果を示す。
同図において、最上段には、充放電の電流値iの感度(ゲイン=0.9)に誤差を与えた場合の電流値iを示し、中段には、上記電流値iを与えた際の各充電率、すなわち充電率SOCの真値を実線で、電流積算法充電率SOCCを2点鎖線で、開放電圧推定法充電率SOCVを1点鎖線で、また開放電圧推定法制限充電率SOCvrを点線で示し、最下段には、これら各充電率と真値との推定誤差(絶対値)を示す。なお、開始から200秒は、電流積算法にて充電率を算出している。
推定開始から1.2×10秒までの時間は開放電圧推定法充電率SOCVの推定誤差が、大きくかつ安定しないが、開放電圧推定法制限充電率SOCvrの推定誤差は小さく安定しており、推定誤差のずれが抑えられていることが分かる。
In FIG. 3, the simulation result which estimated the charging rate using the charging rate estimation apparatus of the battery of Example 1 is shown.
In the figure, the uppermost row shows the current value i when an error is given to the sensitivity (gain = 0.9) of the charge / discharge current value i, and the middle row shows each charge when the current value i is given. Rate, that is, the true value of the charging rate SOC is a solid line, the current integration method charging rate SOC C is a two-dot chain line, the open-circuit voltage estimation method charging rate SOC V is a one-dot chain line, and the open-circuit voltage estimation method limited charging rate SOC vr Is indicated by a dotted line, and the lowermost row shows an estimation error (absolute value) between each of the charging rates and the true value. In addition, the charging rate is calculated by the current integration method for 200 seconds from the start.
The estimation error of the open circuit voltage estimation method charging rate SOC V is large and unstable during the period from the start of estimation to 1.2 × 10 4 seconds, but the estimation error of the open circuit voltage estimation method limited charging rate SOC vr is small and stable. It can be seen that the deviation of the estimation error is suppressed.

以上の説明から分かるように、実施例1のバッテリの充電率推定装置は、以下の効果を有する。   As can be seen from the above description, the battery charge rate estimation apparatus of Embodiment 1 has the following effects.

すなわち、実施例1のバッテリの充電率推定装置では、バッテリBTの充電率SOCの推定にあっては、開放電圧推定法で推定した開放電圧法充電率SOCVをそのままバッテリBTの充電率SOCの推定に用いるのではなく、この開放電圧法充電率SOCVの変化量ΔSOCVが、変化量制限値計算部5で設定した上限制限値vr1と下限制限値vr2との範囲内に収まるように制限して得た開放電圧法制限充電率SOCvrを用いるようにした。 That is, in the battery charging rate estimation device of the first embodiment, in estimating the charging rate SOC of the battery BT, the open-circuit voltage method charging rate SOC V estimated by the open-circuit voltage estimation method is used as it is for the charging rate SOC of the battery BT. Instead of being used for estimation, the change amount ΔSOC V of the open circuit voltage method SOC V so that it falls within the range between the upper limit value vr 1 and the lower limit value vr 2 set by the change amount limit value calculation unit 5. The open-circuit voltage method limited charging rate SOC vr obtained by limiting to the above is used.

この場合、電流積算法充電率SOCの変化量ΔSOCCは、短期間にあっては開放電圧法充電率SOCVの変化量ΔSOCVより推定精度が高い。したがって、電流積算法充電率変化量ΔSOCCに応じて設定された上限制限値vr1と下限制限値vr2とによりこれらの値の範囲を外れる、推定信頼性が低い開放電圧法充電率変化量ΔSOCVは、上記上限値あるいは下限値に制限されることで、低電流状態の場合であっても、推定開始直後や入力信号の状態(周波数成分やノイズなど)に起因して推定充電率が異常な過渡応答したり推定結果がハンチングしたりして真の充電率から大きくずれるのを抑える。この結果、実施例1のバッテリの充電率推定装置では、電流積算法充電率SOCと開放電圧法充電率SOCVを用いたセンサ・フージョン技術を用いてバッテリBTの充電率SOCの推定精度を向上させながら、この際発生する推定誤差を小さく抑えることができる。 In this case, the amount of change ΔSOC C of the current integration method charging rate SOC c has a higher estimation accuracy than the amount of change ΔSOC V of the open circuit voltage method charging rate SOC V in a short period of time. Therefore, the upper limit limit value vr 1 and the lower limit limit value vr 2 set according to the current integration method charge rate change amount ΔSOC C are outside the range of these values, and the open-circuit voltage method charge rate change amount with low estimated reliability ΔSOC V is limited to the above upper limit value or lower limit value, so that even in the case of a low current state, the estimated charging rate is increased immediately after the start of estimation or due to the state of the input signal (frequency component, noise, etc.). Suppresses a large deviation from the true charge rate due to abnormal transient response or hunting of estimation results. As a result, in the battery charging rate estimation device of the first embodiment, the estimation accuracy of the charging rate SOC of the battery BT is improved by using the sensor fusion technology using the current integration method charging rate SOC c and the open-circuit voltage method charging rate SOC V. While improving, the estimation error which occurs at this time can be suppressed small.

また、変化量制限値計算部5では、上限制限値vr1と下限制限値vr2とは、電流積算法充電率算出部3で得た電流積算法充電率変化量ΔSOCCを用い、これに所定値設定部52で設定する所定値Aを加算器53で加算して上限制限値vr1を得、また電流積算法充電率変化量ΔSOCCから所定値Aを減算器54で減算して下限制限値vr2を得るので、簡単な構成で容易に上限制限値vr1と下限制限値vr2とを得ることができる。 Further, in the change amount limit value calculation unit 5, the upper limit value vr 1 and the lower limit value vr 2 use the current integration method charge rate change amount ΔSOC C obtained by the current integration method charge rate calculation unit 3. The predetermined value A set by the predetermined value setting unit 52 is added by the adder 53 to obtain the upper limit value vr 1, and the predetermined value A is subtracted from the current integration method charging rate change amount ΔSOC C by the subtractor 54. Since the limit value vr 2 is obtained, the upper limit value vr 1 and the lower limit value vr 2 can be easily obtained with a simple configuration.

次に、本発明の実施例2に係るバッテリの充電率推定装置を添付の図面に基づき説明する。
なお、本実施例の説明にあたっては、実施例2の構成のうち、実施例1と実質的の同じものについては実施例1と同じ番号を付してそれらの説明は省略し、相違点につき説明する。
Next, a battery charge rate estimation apparatus according to Embodiment 2 of the present invention will be described with reference to the accompanying drawings.
In the description of the present embodiment, among the configurations of the second embodiment, the same components as those of the first embodiment are denoted by the same reference numerals as those of the first embodiment, and the description thereof is omitted, and the differences are described. To do.

実施例2のバッテリの充電率推定装置にあっては、変化量制限計算部7の構成が実施例1の変化量制限計算部5の構成と異なる。
すなわち、変化量制限計算部7は、微分器71と、第1乗算器72と、第2乗算器73と、を備えている。
In the battery charge rate estimation apparatus of the second embodiment, the configuration of the variation limit calculation unit 7 is different from the configuration of the variation limit calculation unit 5 of the first embodiment.
That is, the variation limit calculation unit 7 includes a differentiator 71, a first multiplier 72, and a second multiplier 73.

微分器71は、実施例1の微分器51と同じ構成であり、電流積算法充電率算出部3から入力された電流積算法充電率SOCCを離散化して微分し、その変化量ΔSOCCを得、この値を第1乗算器72と第2乗算器73へ出力する。 The differentiator 71 has the same configuration as the differentiator 51 of the first embodiment, discretizes and differentiates the current integration method charging rate SOC C input from the current integration method charging rate calculation unit 3, and the change amount ΔSOC C is obtained. The obtained value is output to the first multiplier 72 and the second multiplier 73.

第1乗算器72は、微分器71から入力された電流積算法充電率SOCCに所定値Bを掛けて上限制限値vr1'を得る。所定値Bとしては、本実施例ではたとえば1.2に設定する。
第2乗算器73は、微分器71から入力された電流積算法充電率SOCCに所定値1/Bを掛けて下限制限値vr'を得る。
第1乗算器72で設定された上限制限値vr1'と第2乗算器73で設定された下限制限値vr'は、変化量制限処理部6へそれぞれ出力される。
The first multiplier 72 multiplies the current integration method charging rate SOC C input from the differentiator 71 by a predetermined value B to obtain an upper limit value vr 1 ′. For example, the predetermined value B is set to 1.2 in this embodiment.
The second multiplier 73 multiplies the current integration method charging rate SOC C input from the differentiator 71 by a predetermined value 1 / B to obtain a lower limit value vr 2 ′.
The upper limit value vr 1 ′ set by the first multiplier 72 and the lower limit value vr 2 ′ set by the second multiplier 73 are each output to the variation limit processing unit 6.

変化量制限処理部6では、実施例1と同様に、微分器61で得た開放電圧推定法充電率SOCVの変化量ΔSOCVを、図4に示すように、この値が上限制限値vr1'と下限制限値vr'との範囲を超えないように制限する。
その他の構成は、実施例1のものと同様である。
As in the first embodiment, the change amount restriction processing unit 6 uses the change amount ΔSOC V of the open circuit voltage estimation method SOC V obtained by the differentiator 61 as shown in FIG. 1 'and the lower limit value vr 2' to limit so as not to exceed the scope of the.
Other configurations are the same as those of the first embodiment.

実施例2のバッテリの充電率推定装置の作用も、上限制限値vr1'と下限制限値vr'との設定の仕方が実施例1での加減演算が実施例2では乗算・割り算に代わるだけで、実質的には実施例1の作用と同じとなる。 The operation of the battery charge rate estimation apparatus of the second embodiment is also the same as the setting of the upper limit value vr 1 ′ and the lower limit value vr 2 ′, but the addition / subtraction operation in the first embodiment is replaced with multiplication / division in the second embodiment. As a result, the operation is substantially the same as that of the first embodiment.

以上の説明から分かるように、実施例2のバッテリの充電率推定装置にあっては、以下の効果を得ることができる。   As can be seen from the above description, the battery charging rate estimation apparatus according to the second embodiment can obtain the following effects.

すなわち、実施例2のバッテリの充電率推定装置でも、バッテリBTの充電率SOCの推定にあっては、開放電圧推定法で推定した開放電圧法充電率SOCVをそのままバッテリBTの充電率SOCの推定に用いるのではなく、この開放電圧法充電率SOCVの変化量ΔSOCVが、変化量制限値計算部5で設定した上限制限値vr1'と下限制限値vr2'との範囲内に収まるように制限して得た開放電圧法制限充電率SOCvrを用いるようにした。 That is, even in the battery charge rate estimation apparatus of the second embodiment, when estimating the charge rate SOC of the battery BT, the open-circuit voltage method charge rate SOC V estimated by the open-circuit voltage estimation method is directly used as the charge rate SOC of the battery BT. Rather than being used for estimation, the change amount ΔSOC V of the open circuit voltage method charging rate SOC V is within the range between the upper limit value vr 1 ′ and the lower limit value vr 2 ′ set by the change amount limit value calculation unit 5. The open-circuit voltage method limited charging rate SOC vr obtained by limiting to be within the range was used.

この結果、低電流状態の場合であっても、推定開始直後や入力信号の状態(周波数成分やノイズなど)に起因して推定充電率が異常な過渡応答したり推定結果がハンチングしたりして真の充電率から大きくずれるのを抑える。この結果、実施例2のバッテリの充電率推定装置でも、電流積算法充電率SOCと開放電圧法充電率SOCVを用いたセンサ・フージョン技術を用いてバッテリBTの充電率SOCの推定精度を向上させながら、この際発生する推定誤差を小さく抑えることができる。 As a result, even in the case of a low current state, the estimated charging rate may cause an abnormal transient response or the estimation result may be hunted immediately after the estimation starts or due to the state of the input signal (frequency component, noise, etc.) Suppresses large deviation from the true charge rate. As a result, in the battery charge rate estimation apparatus of the second embodiment, the estimation accuracy of the charge rate SOC of the battery BT is improved by using the sensor fusion technology using the current integration method charge rate SOC c and the open-circuit voltage method charge rate SOC V. While improving, the estimation error which occurs at this time can be suppressed small.

また、変化量制限値計算部7では、上限制限値vr1'と下限制限値vr2'とは、電流積算法充電率算出部3で得た電流積算法充電率変化量ΔSOCCを用い、これに第1乗算器72で所定値Bを乗算して上限制限値vr1'を得、また電流積算法充電率変化量ΔSOCCに所定値1/Bを乗算して下限制限値vr2'を得るので、簡単な構成で容易に上限制限値vr1'と下限制限値vr2'とを得ることができる。 Further, in the change amount limit value calculation unit 7, the upper limit value vr 1 ′ and the lower limit value vr 2 ′ use the current integration method charge rate change amount ΔSOC C obtained by the current integration method charge rate calculation unit 3, This is multiplied by a predetermined value B by a first multiplier 72 to obtain an upper limit value vr 1 ′, and the current integration method charging rate change amount ΔSOC C is multiplied by a predetermined value 1 / B to obtain a lower limit value vr 2 ′. Therefore, the upper limit value vr 1 ′ and the lower limit value vr 2 ′ can be easily obtained with a simple configuration.

次に、本発明の実施例3に係るバッテリの充電率推定装置を添付の図面に基づき説明する。
なお、本実施例の説明にあたっては、実施例3の構成のうち、実施例1と実質的の同じものについては実施例1と同じ番号を付してそれらの説明は省略し、相違点につき説明する。
Next, a battery charge rate estimation apparatus according to Embodiment 3 of the present invention will be described with reference to the accompanying drawings.
In the description of the present embodiment, among the configurations of the third embodiment, the same reference numerals as those in the first embodiment are assigned to the substantially same components as those in the first embodiment, and the description thereof is omitted, and differences are described. To do.

実施例3の充電率推定装置を、図5に示す。本実施例にあっては、実施例1と以下の点が異なる。
すなわち、電流積算法充電率算出部3が電流積算法分散算出部35を有し、開放電圧推定法充電率推定部4が開放電圧推定法分散算出部45を有し、さらに誤差補正部8が新たに追加されている点である。
The charging rate estimation apparatus of Example 3 is shown in FIG. The present embodiment is different from the first embodiment in the following points.
That is, the current integration method charging rate calculation unit 3 has a current integration method variance calculation unit 35, the open-circuit voltage estimation method charge rate estimation unit 4 has an open-circuit voltage estimation method variance calculation unit 45, and the error correction unit 8 further has an error correction unit 8. This is a newly added point.

電流積算法分散算出部35は、あらかじめ得られている充放電電流検出部1の検出精度に関する情報に基づき、再帰的行列演算を行い、電流積算法分散Qを求め、誤差補正部8へ出力する。
同様に、あらかじめ得ている充放電電流検出部1と端子電圧検出部2の検出精度に関する情報に基づき、開放電圧の分散POCVを算出し、この値の基づき開放電圧推定法充電率SOCの分散(開放電圧推定法分散:PSOCV=Q)を算出し、これを誤差推定部8へ出力する。
The current integration method variance calculation unit 35 performs a recursive matrix operation based on the information on the detection accuracy of the charge / discharge current detection unit 1 obtained in advance to obtain the current integration method variance Q i and outputs it to the error correction unit 8. To do.
Similarly, based on the information regarding the detection accuracy of the charge / discharge current detection unit 1 and the terminal voltage detection unit 2 obtained in advance, the variance P OCV of the open-circuit voltage is calculated, and the open-circuit voltage estimation method charge rate SOC v is calculated based on this value. The variance (open-circuit voltage estimation method variance: P SOCV = Q v ) is calculated and output to the error estimator 8.

誤差補正部8は、第1減算器81と、誤差推定部82と、第2減算器83と、を備えており、電流積算法充電率SOCの誤差nを算出して、電流積算法充電率算出部3で算出した電流積算法充電率SOCから推定誤差nを除去した補正充電率SOCCVを得るものである。なお、誤差補正部8は、本発明の充電率補正手段に相当する。 Error correction unit 8, a first subtractor 81, an error estimator 82, a second subtracter 83 has a calculates an error n i of the current integration method charging rate SOC C, current integration method it is intended to obtain a corrected charge rate SOC CV removing the estimated error n i from the current integration method charging rate SOC C calculated by the charging rate calculating unit 3. The error correction unit 8 corresponds to a charging rate correction unit of the present invention.

第1減算器81は、開放電圧推定法充電率推定部4から入力された開放電圧推定法充電率SOCから電流積算法充電率算出部31から入力された電流積算法充電率SOCを減算し、この減算値yを誤差推定部82へ出力する。 The first subtracter 81 subtracts the current integration method charging rate SOC C input from the current integration method charging rate calculation unit 31 from the open circuit voltage estimation method charging rate SOC v input from the open circuit voltage estimation method charging rate estimation unit 4. The subtraction value y is output to the error estimation unit 82.

誤差推定部82は、電流積算法充電率算出部3の電流積算法分散算出部35から入力された電流積算法分散Qと、開放電圧推定法推定部4から入力された開放電圧推定法分散Qと、第1減算器81から入力された減算値yと、に基づき、カルマン・フィルタを用いて電流積算法充電率SOCの推定誤差nを推定し、第2減算器83へ出力する。 The error estimation unit 82 includes the current integration method variance Q i input from the current integration method variance calculation unit 35 of the current integration method charging rate calculation unit 3 and the open-circuit voltage estimation method variance input from the open-circuit voltage estimation method estimation unit 4. and Q v, the subtraction value y received from the first subtracter 81, based on estimates the estimation error n i of the current integration method charging rate SOC C using a Kalman filter, the output to the second subtractor 83 To do.

誤差補正部8でのカルマン・フィルタは、誤差モデルで推定した誤差を、第1減算器81で算出した減算値yと比較し、両者に差があればこの差にカルマン・ゲインを掛けてフィードバックし、誤差が最小となるように誤差モデルを修正していく。これを逐次繰り返して、真の充電率推定誤差を推定する。
なお、この詳細については、上記同様、本出願人による特願2011−007874号に説明してある。
The Kalman filter in the error correction unit 8 compares the error estimated by the error model with the subtraction value y calculated by the first subtractor 81, and if there is a difference between them, this difference is multiplied by the Kalman gain and fed back. Then, the error model is corrected so that the error is minimized. This is repeated sequentially to estimate a true charging rate estimation error.
The details are described in Japanese Patent Application No. 2011-007874 by the present applicant as described above.

第2減算器83では、電流積算法充電率算出部3から得た電流積算法充電率SOCから誤差推定部82で得た誤差nを減算して補正電流積算法充電率SOCCVを得、変化量制限処理部6へ出力する。なお、補正電流積算法充電率SOCCVは、本発明の補正充電率に相当する。 In the second subtractor 83, to obtain a corrected current integration method charging rate SOC CV by subtracting the error n i obtained by the error estimating section 82 from the current integration method charging rate SOC C obtained from the current integration method charging rate calculating unit 3 , And output to the variation limit processing unit 6. The corrected current integration method SOC CV corresponds to the corrected charge rate of the present invention.

変化量制限処理部6では、誤差補正部8で開放電圧推定法充電率SOCを用いて得た補正電流積算法充電率SOCCVおよび変化量制限値計算部5で得た上限制限値vr1、下限制限値vr2から、実施例1の場合と同様な演算で、電流積算法制限充電率SOCcrすなわちバッテリBTの充電率SOCを算出する。
その他の構成は、実施例1と同様である。
In the variation limit processing unit 6, the correction current integration method charging rate SOC CV obtained by the error correction unit 8 using the open-circuit voltage estimation method charging rate SOC v and the upper limit limiting value vr 1 obtained by the variation amount limiting value calculation unit 5. From the lower limit value vr 2 , the current integration method limited charging rate SOC cr, that is, the charging rate SOC of the battery BT is calculated by the same calculation as in the first embodiment.
Other configurations are the same as those of the first embodiment.

実施例3のバッテリBTの充電率推定装置にあっては、実施例1と同様の効果に加え、以下の効果を得ることができる。
すなわち、実施例3のバッテリBTの充電率推定装置では、誤差補正部8にて、開放電圧推定法充電率SOCおよび電流積算法充電率SOCを用いて補正電流積算法充電率SOCCVを求め、変化量制限処理部6に入力するようにしたので、その分、バッテリBTの充電率SOCの推定精度を上げることが可能となる。
In the charging rate estimation device for battery BT of the third embodiment, in addition to the same effects as those of the first embodiment, the following effects can be obtained.
That is, in the charging rate estimation device for battery BT of the third embodiment, error correction unit 8 calculates corrected current integration method charging rate SOC CV using open-circuit voltage estimation method charging rate SOC v and current integration method charging rate SOC c. Since it is obtained and input to the change amount restriction processing unit 6, it is possible to increase the estimation accuracy of the charging rate SOC of the battery BT accordingly.

次に、本発明の実施例4に係るバッテリの充電率推定装置を添付の図面に基づき説明する。
なお、本実施例の説明にあたっては、実施例4の構成のうち、実施例2と実質的の同じものについては実施例2と同じ番号を付してそれらの説明は省略し、相違点につき説明する。
Next, a battery charge rate estimation apparatus according to Embodiment 4 of the present invention will be described with reference to the accompanying drawings.
In the description of the present embodiment, among the configurations of the fourth embodiment, those substantially the same as those of the second embodiment are denoted by the same reference numerals as those of the second embodiment, and the description thereof is omitted, and differences are described. To do.

実施例4の充電率推定装置を、図6に示す。本実施例にあっては、実施例2と以下の点が異なる。
すなわち、実施例4の充電率推定装置にあっては、実施例3の誤差補正部8およびこれに関係する電流積算法分散算出部35および開放電圧指定法分散算出部45を実施例2に追加したものである。
したがって、本実施例にあっても、実施例1と同様の効果に加え、以下の効果を得ることができる。
実施例4のバッテリBTの充電率推定装置では、誤差補正部8にて、開放電圧推定法充電率SOCおよび電流積算法充電率SOCを用いて補正電流積算法充電率SOCCVを求め、変化量制限処理部6に入力するようにしたので、その分、バッテリBTの充電率SOCの推定精度を上げることが可能となる。
FIG. 6 shows a charging rate estimation apparatus according to the fourth embodiment. The present embodiment is different from the second embodiment in the following points.
That is, in the charging rate estimation device of the fourth embodiment, the error correction unit 8 of the third embodiment, the current integration method variance calculation unit 35 and the open circuit voltage designation method variance calculation unit 45 related thereto are added to the second embodiment. It is a thing.
Therefore, in the present embodiment, in addition to the same effects as those of the first embodiment, the following effects can be obtained.
In the battery BT charging rate estimation apparatus of the fourth embodiment, the error correction unit 8 obtains the corrected current integrating method charging rate SOC CV using the open circuit voltage estimating method charging rate SOC v and the current integrating method charging rate SOC c , Since the change amount limit processing unit 6 is input, it is possible to increase the estimation accuracy of the charge rate SOC of the battery BT accordingly.

以上、本発明を上記各実施例に基づき説明してきたが、本発明はこれらの実施例に限られず、本発明の要旨を逸脱しない範囲で設計変更等があった場合でも、本発明に含まれる。   The present invention has been described based on the above embodiments. However, the present invention is not limited to these embodiments, and is included in the present invention even when there is a design change or the like without departing from the gist of the present invention. .

たとえば、電流積算法充電率算出部3での初期値の求め方や、開放電圧推定法充電率算出部4での開放電圧の求め方は、上記実施例と異なるようにしてもよい。   For example, the method for obtaining the initial value in the current integration method charging rate calculation unit 3 and the method for obtaining the open circuit voltage in the open circuit voltage estimation method charging rate calculation unit 4 may be different from those in the above embodiment.

また、変化量制限値計算部5、7で用いる所定値A、Bは、それぞれ加算器53には所定値A1、減算器54には所定値A2(A2≠A1)を、また第1乗算器72には所定値B1、第2乗算器73には所定値1/B2(B2≠B1)を、用いるようにしてもよい。なお、所定値を1/B、その逆数をBと設定することができることはいうまでもない。   The predetermined values A and B used in the change amount limit value calculation units 5 and 7 are the predetermined value A1 for the adder 53, the predetermined value A2 (A2 ≠ A1) for the subtractor 54, and the first multiplier. A predetermined value B1 may be used for 72, and a predetermined value 1 / B2 (B2 ≠ B1) may be used for the second multiplier 73. Needless to say, the predetermined value can be set to 1 / B and the inverse thereof can be set to B.

また、実施例3および実施例4では、誤差補正部8で電流積算法充電率SOCおよび開放電圧推定法充電率を用いて誤差を推定して補正電流積算法充電率SOCCVを求め、変化量制限処理部6で利用するようにしたが、誤差補正部8の代わりに図7に示す誤差補正部9を用い補正開放電圧推定法充電率SOCvvを求め、この値を変化量制限処理部6に入力するようにしてもよい。 Further, in the third and fourth embodiments, the error correction unit 8 estimates the error using the current integration method charging rate SOC c and the open-circuit voltage estimation method charging rate to obtain the corrected current integration method charging rate SOC CV , and changes The amount limit processing unit 6 uses the error correction unit 9 shown in FIG. 7 instead of the error correction unit 8 to obtain the corrected open-circuit voltage estimation method SOC vv , and this value is used as the change amount limit processing unit. 6 may be input.

すなわち、誤差補正部9は、第1減算器91と、誤差推定部92と、第2減算器93と、を備えており、開放電圧推定法充電率SOCの誤差nを算出して、開放電圧推定法充電率算出部4で算出した開放電圧推定法充電率SOCから推定誤差nを除去した補正充電率SOCvvを得るものである。なお、誤差補正部9は、本発明の充電率補正手段に相当する。 That is, the error correction unit 9 includes a first subtracter 91, an error estimation unit 92, and a second subtractor 93, and calculates an error n V of the open circuit voltage estimation method charging rate SOC V , it is intended to obtain the open-circuit voltage estimation method open circuit voltage estimation method to calculate the charging rate calculating unit 4 to remove the estimated error n V from the charge rate SOC V corrected charge rate SOC vv. The error correction unit 9 corresponds to a charging rate correction unit of the present invention.

第1減算器91は、電流積算法充電率算出部31から入力された電流積算法充電率SOCから開放電圧推定法充電率推定部4から入力された開放電圧推定法充電率SOCを減算し、この減算値yを誤差推定部92へ出力する。 The first subtracter 91 subtracts the open-circuit voltage estimation method charging rate SOC v input from the open-circuit voltage estimation method charging rate estimation unit 4 from the current integration method charging rate SOC C input from the current integration method charging rate calculation unit 31. The subtraction value y is output to the error estimation unit 92.

誤差推定部92は、電流積算法充電率算出部3の電流積算法分散算出部35から入力された電流積算法分散Qと、開放電圧推定法推定部4から入力された開放電圧推定法分散Qと、第1減算器91から入力された減算値yと、に基づき、カルマン・フィルタを用いて開放電圧推定法充電率SOCの推定誤差nを推定し、第2減算器93へ出力する。 The error estimation unit 92 includes the current integration method variance Q i input from the current integration method variance calculation unit 35 of the current integration method charging rate calculation unit 3 and the open-circuit voltage estimation method variance input from the open-circuit voltage estimation method estimation unit 4. Based on Q v and the subtraction value y input from the first subtractor 91, the estimation error n v of the open-circuit voltage estimation method charging rate SOC v is estimated using the Kalman filter, and the second subtracter 93 is estimated. Output.

第2減算器93では、海保電圧推定法充電率算出部4から得た開放電圧推定法充電率SOCから誤差推定部92で得た誤差nを減算して補正開放電圧推定法充電率SOCvvを得、変化量制限処理部6へ出力する。変化量制限処理部6では、補正開放電圧推定法充電率SOCvvを用いて開放電圧法制限充電率SOCvrを算出し、この値をバッテリBTの充電率SOCとする。なお、補正開放電圧推定法充電率SOCvvは、本発明の補正充電率に相当する。 In the second subtractor 93, the correction open circuit voltage estimation charging rate SOC by subtracting the error n v obtained by the error estimating section 92 from the open circuit voltage estimation charging rate SOC v obtained from Kaiho voltage estimation SOC calculator 4 vv is obtained and output to the variation restriction processing unit 6. The variation restriction processing unit 6 calculates the open-circuit voltage method limited charge rate SOC vr using the corrected open-circuit voltage estimation method charge rate SOC vv, and sets this value as the charge rate SOC of the battery BT. The corrected open-circuit voltage estimation method charging rate SOC vv corresponds to the corrected charging rate of the present invention.

このように、誤差補正部では、補正開放電圧推定法充電率SOCvvあるいは補正電流積算法充電率SOCCVのいずれを求めるようにしてもよい。この理由は、誤差補正部8、9では、開放電圧推定法充電率SOCおよび電流積算法充電率SOCの両方を用いて得た推定誤差を除去するようにしているので、補正開放電圧推定法充電率SOCvv、補正電流積算法充電率SOCCVのいずれの値も実質的に同じであるとみなせるからである。 As described above, the error correction unit may obtain either the corrected open-circuit voltage estimation method charging rate SOC vv or the corrected current integration method charging rate SOC CV . This is because the error correction units 8 and 9 remove the estimation error obtained by using both the open circuit voltage estimation method charging rate SOC v and the current integration method charging rate SOC C. This is because it can be considered that both the method charging rate SOC vv and the corrected current integration method charging rate SOC CV are substantially the same.

BT バッテリ
1 充放電検出部(充放電検出手段)
2 端子電圧検出部(端子電圧検出手段)
3 電流積算法充電率算出部(電流積算法充電率算出手段)
31 積分器
32 開放電圧−充電率算出部
33 満充電容量算出部
34 容量比演算部
35 電流積算法分散算出部
4 開放電圧推定法充電率算出部(開放電圧推定法充電率算出手段)
41 減算器
42 過電圧算出部
43 開放推定部
44 開放電圧−充電率算出部
45 開放電圧推定法分散算出部
5 変化量制限値計算部(変化量制限値計算手段)
51 微分器
52 所定値設定部
53 加算器
54 減算器
6 変化量制限処理部(変化量制限処理手段)
61 微分器
62 変化量制限部
7 変化量制限値計算部(変化量制限値計算手段)
71 微分器
72 第1乗算器
73 第2乗算器
8 誤差補正部
81 第1減算部
82 誤差推定部
83 第2減算部
9 誤差補正部
91 第1減算部
92 誤差推定部
93 第2減算部
BT battery 1 charge / discharge detection unit (charge / discharge detection means)
2 Terminal voltage detector (terminal voltage detector)
3 Current integration method charging rate calculation unit (current integration method charging rate calculation means)
31 integrator 32 open-circuit voltage-charge rate calculation unit 33 full-charge capacity calculation unit 34 capacity ratio calculation unit 35 current integration method variance calculation unit 4 open-circuit voltage estimation method charge rate calculation unit (open-circuit voltage estimation method charge rate calculation means)
41 Subtractor 42 Overvoltage Calculation Unit 43 Opening Estimation Unit 44 Opening Voltage-Charge Rate Calculation Unit 45 Opening Voltage Estimation Method Variance Calculation Unit 5 Change Limit Value Calculation Unit (Change Limit Value Calculation Means)
51 Differentiator 52 Predetermined Value Setting Unit 53 Adder 54 Subtractor 6 Change Amount Limiting Processing Unit (Change Amount Limiting Processing Unit)
61 Differentiator 62 Change Limiting Unit 7 Change Limit Limit Calculation Unit (Change Limit Limit Calculation Unit)
71 differentiator 72 first multiplier 73 second multiplier 8 error correction unit 81 first subtraction unit 82 error estimation unit 83 second subtraction unit 9 error correction unit 91 first subtraction unit 92 error estimation unit 93 second subtraction unit

Claims (5)

バッテリの充放電電流を検出する充放電電流検出手段と、
前記バッテリの端子電圧を検出する端子電圧検出手段と、
前記充放電電流検出手段で検出した充放電電流を積算して電流積算法充電率を算出する電流積算法充電率算出手段と、
前記充放電電流検出手段で検出した充放電電流および前記端子電圧検出手段で検出した端子電圧とから前記バッテリの開放電圧を推定し、該開放電圧から開放電圧推定法充電率を算出する開放電圧推定法充電率算出手段と、
前記電流積算法充電率算出手段で求めた電流積算法充電率から電流積算法充電率変化量を求め、該電流積算法充電率変化量から上限制限値および下限制限値を計算する変化量制限値計算手段と、
前記開放電圧推定法充電率算出手段で求めた開放電圧推定法充電率を用いて充電率変化量を求め、該充電率変化量が前記上限制限値と前記下限制限値との範囲内に入るように前記充電率変化量を制限して開放電圧推定法充電率を変化させることで前記バッテリの充電率を算出する変化量制限処理手段と、
を備えたことを特徴とするバッテリの充電率推定装置。
Charge / discharge current detecting means for detecting the charge / discharge current of the battery;
Terminal voltage detecting means for detecting the terminal voltage of the battery;
A current integration method charge rate calculation means for calculating a current integration method charge rate by integrating the charge / discharge current detected by the charge / discharge current detection means;
An open-circuit voltage estimation that estimates the open-circuit voltage of the battery from the charge-discharge current detected by the charge-discharge current detection unit and the terminal voltage detected by the terminal voltage detection unit, and calculates the open-circuit voltage estimation method charging rate from the open-circuit voltage Legal charging rate calculation means,
Change amount limit value for obtaining a current integration method charge rate change amount from the current integration method charge rate obtained by the current integration method charge rate calculation means, and calculating an upper limit value and a lower limit limit value from the current integration method charge rate change amount Calculation means;
Using the open-circuit voltage estimation method charging rate obtained by the open-circuit voltage estimation method charging rate, a charging rate change amount is obtained so that the charging rate change amount falls within the range between the upper limit value and the lower limit value. Change amount restriction processing means for calculating the charge rate of the battery by changing the open-circuit voltage estimation method charge rate by limiting the charge rate change amount to
A battery charge rate estimation device comprising:
請求項1に記載のバッテリの充電率推定装置において、
前記変化量制限値計算手段は、前記電流積算法充電率変化量にそれぞれ所定値を加算、減算して前記上限制限値および下限制限値を設定する、
ことを特徴とするバッテリの充電率推定装置。
The battery charge rate estimation apparatus according to claim 1,
The change amount limit value calculating means sets the upper limit value and the lower limit value by adding and subtracting a predetermined value to the current integration method charging rate change amount, respectively.
An apparatus for estimating a charging rate of a battery.
請求項1に記載のバッテリの充電率推定装置において、
前記変化量制限値計算手段は、前記電流積算法充電率変化量にそれぞれ所定値、所定値の逆数を乗算して前記上限制限値および下限制限値を設定する、
ことを特徴とするバッテリの充電率推定装置。
The battery charge rate estimation apparatus according to claim 1,
The change amount limit value calculating means sets the upper limit value and the lower limit value by multiplying the current integration method charging rate change amount by a predetermined value and a reciprocal of the predetermined value, respectively.
An apparatus for estimating a charging rate of a battery.
請求項1乃至3のいずれか1項に記載のバッテリの充電率推定装置において、
前記電流積算法充電率および前記開放電圧推定法充電率からこれら間の誤差を推定し、前記電流積算法充電率および前記開放電圧推定法充電率の一方から前記誤差を減算した値を補正充電率として前記変化量制限処理手段へ入力する誤差補正手段を有し、
前記変化量制限処理手段は、該変化量制限処理手段で用いる開放電圧推定法充電率として前記補正充電率を用いて前記バッテリの充電率を算出する、
ことを特徴とするバッテリの充電率推定装置。
The battery charge rate estimation apparatus according to any one of claims 1 to 3,
An error between them is estimated from the current integration method charging rate and the open-circuit voltage estimation method charging rate, and a value obtained by subtracting the error from one of the current integration method charging rate and the open-circuit voltage estimation method charging rate is a corrected charging rate. As an error correction means for inputting to the change amount restriction processing means as
The change amount restriction processing means calculates the charge rate of the battery using the corrected charge rate as the open-circuit voltage estimation method charge rate used in the change amount restriction processing means.
An apparatus for estimating a charging rate of a battery.
充放電電流検出手段で検出したバッテリの充放電電流を積算して電流積算法充電率を算出し、
前記充放電電流および端子電圧検出手段で検出した端子電圧とから前記バッテリの開放電圧を推定して、該開放電圧から開放電圧推定法充電率を算出し、
前記電流積算法充電率から電流積算法充電率変化量を求め、該電流積算法充電率変化量から上限制限値および下限制限値を計算し、
前記開放電圧推定法充電率を用いて充電率変化量を求め、該充電率変化量が前記上限制限値と前記下限制限値との範囲内に入るように前記充電率変化量を制限して開放電圧推定法充電率を変化させることでバッテリの充電率を算出する、
ことを特徴とするバッテリの充電率推定方法。
Accumulate the charge / discharge current of the battery detected by the charge / discharge current detection means to calculate the current integration method charging rate,
Estimating the open-circuit voltage of the battery from the charge / discharge current and the terminal voltage detected by the terminal voltage detection means, calculating the open-circuit voltage estimation method charging rate from the open-circuit voltage,
Obtain the current integration method charge rate change amount from the current integration method charge rate, calculate the upper limit value and the lower limit value from the current integration method charge rate change amount,
Using the open-circuit voltage estimation method, the charge rate change amount is obtained, and the charge rate change amount is limited and opened so that the charge rate change amount falls within the range between the upper limit value and the lower limit value. Calculate the battery charge rate by changing the voltage estimation method charge rate,
A method for estimating a charging rate of a battery.
JP2011222524A 2011-10-07 2011-10-07 Charging rate estimation apparatus and method Active JP5389136B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011222524A JP5389136B2 (en) 2011-10-07 2011-10-07 Charging rate estimation apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011222524A JP5389136B2 (en) 2011-10-07 2011-10-07 Charging rate estimation apparatus and method

Publications (2)

Publication Number Publication Date
JP2013083496A true JP2013083496A (en) 2013-05-09
JP5389136B2 JP5389136B2 (en) 2014-01-15

Family

ID=48528842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011222524A Active JP5389136B2 (en) 2011-10-07 2011-10-07 Charging rate estimation apparatus and method

Country Status (1)

Country Link
JP (1) JP5389136B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015204131A (en) * 2014-04-10 2015-11-16 カルソニックカンセイ株式会社 Specific gravity estimation device and specific gravity estimation method
WO2016038880A1 (en) * 2014-09-11 2016-03-17 日本電気株式会社 Device and method for computing residual capacity of cell, and recording medium
JPWO2015133103A1 (en) * 2014-03-03 2017-04-06 パナソニックIpマネジメント株式会社 Battery state estimation device and battery state estimation method
JP2017227631A (en) * 2016-06-15 2017-12-28 株式会社豊田自動織機 Charging rate estimation device and charging rate estimation method
CN108701872A (en) * 2016-03-09 2018-10-23 日立汽车系统株式会社 battery management system, battery system and hybrid vehicle control system
US10712393B2 (en) 2016-01-15 2020-07-14 Gs Yuasa International Ltd. Energy storage device management apparatus, energy storage device module, vehicle, and energy storage device management method
JP2020161422A (en) * 2019-03-27 2020-10-01 本田技研工業株式会社 Secondary battery, secondary battery control method, program, and control device
JP2020174473A (en) * 2019-04-11 2020-10-22 本田技研工業株式会社 Setting device, setting method, program, and control device
JP2022526572A (en) * 2019-06-24 2022-05-25 寧徳時代新能源科技股▲分▼有限公司 Battery SOC determination method, device, management system and storage medium
WO2022255480A1 (en) * 2021-06-04 2022-12-08 ヌヴォトンテクノロジージャパン株式会社 Battery state estimation device, battery state estimation system, and battery state estimation method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005345254A (en) * 2004-06-02 2005-12-15 Fuji Heavy Ind Ltd Residual capacity arithmetic unit for charge accumulating device
JP2009204314A (en) * 2008-02-26 2009-09-10 Nissan Motor Co Ltd Charge rate estimating device and charge rate estimating method for secondary cell
WO2011118039A1 (en) * 2010-03-26 2011-09-29 三菱電機株式会社 Charge state estimation apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005345254A (en) * 2004-06-02 2005-12-15 Fuji Heavy Ind Ltd Residual capacity arithmetic unit for charge accumulating device
JP2009204314A (en) * 2008-02-26 2009-09-10 Nissan Motor Co Ltd Charge rate estimating device and charge rate estimating method for secondary cell
WO2011118039A1 (en) * 2010-03-26 2011-09-29 三菱電機株式会社 Charge state estimation apparatus

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015133103A1 (en) * 2014-03-03 2017-04-06 パナソニックIpマネジメント株式会社 Battery state estimation device and battery state estimation method
JP2015204131A (en) * 2014-04-10 2015-11-16 カルソニックカンセイ株式会社 Specific gravity estimation device and specific gravity estimation method
WO2016038880A1 (en) * 2014-09-11 2016-03-17 日本電気株式会社 Device and method for computing residual capacity of cell, and recording medium
JPWO2016038880A1 (en) * 2014-09-11 2017-07-06 日本電気株式会社 Battery remaining capacity calculation device, method and program
US10712393B2 (en) 2016-01-15 2020-07-14 Gs Yuasa International Ltd. Energy storage device management apparatus, energy storage device module, vehicle, and energy storage device management method
CN108701872B (en) * 2016-03-09 2021-06-04 日本汽车能源株式会社 Battery management system, battery system, and hybrid vehicle control system
CN108701872A (en) * 2016-03-09 2018-10-23 日立汽车系统株式会社 battery management system, battery system and hybrid vehicle control system
EP3429021A4 (en) * 2016-03-09 2020-03-18 Hitachi Automotive Systems, Ltd. Battery management system, battery system and hybrid vehicle control system
JP2017227631A (en) * 2016-06-15 2017-12-28 株式会社豊田自動織機 Charging rate estimation device and charging rate estimation method
JP2020161422A (en) * 2019-03-27 2020-10-01 本田技研工業株式会社 Secondary battery, secondary battery control method, program, and control device
JP7072534B2 (en) 2019-03-27 2022-05-20 本田技研工業株式会社 Secondary battery, secondary battery control method, program and control device
JP2020174473A (en) * 2019-04-11 2020-10-22 本田技研工業株式会社 Setting device, setting method, program, and control device
JP7072539B2 (en) 2019-04-11 2022-05-20 本田技研工業株式会社 Setting device, setting method, program and control device
JP2022526572A (en) * 2019-06-24 2022-05-25 寧徳時代新能源科技股▲分▼有限公司 Battery SOC determination method, device, management system and storage medium
JP7194887B2 (en) 2019-06-24 2022-12-23 寧徳時代新能源科技股▲分▼有限公司 BATTERY SOC DETERMINATION METHOD, APPARATUS, MANAGEMENT SYSTEM AND STORAGE MEDIUM
US11899071B2 (en) 2019-06-24 2024-02-13 Contemporary Amperex Technology Co., Limited Method and apparatus for determining state of charge of battery, management system and storage medium
WO2022255480A1 (en) * 2021-06-04 2022-12-08 ヌヴォトンテクノロジージャパン株式会社 Battery state estimation device, battery state estimation system, and battery state estimation method

Also Published As

Publication number Publication date
JP5389136B2 (en) 2014-01-15

Similar Documents

Publication Publication Date Title
JP5389136B2 (en) Charging rate estimation apparatus and method
JP5404964B2 (en) Battery charging rate estimation device and charging rate estimation method
JP5393619B2 (en) Battery charge rate estimation device
JP5393837B2 (en) Battery charge rate estimation device
JP6403746B2 (en) Battery state estimation device
JP5318128B2 (en) Battery charge rate estimation device
JP6182025B2 (en) Battery health estimation device and health estimation method
CN110506216B (en) Battery state estimating device
JP5389137B2 (en) Charging rate estimation apparatus and method
JP5329500B2 (en) Battery charge rate estimation device
US20100017155A1 (en) Battery management system
US20140055100A1 (en) Battery state estimation system, battery control system, battery system, and battery state estimation method
JP5292375B2 (en) Battery charge rate estimation device
JP5606933B2 (en) Battery charge rate estimation device
JP5307908B2 (en) Battery state estimation device
JP2012149948A (en) Device for estimating state of charge of batteries
JP6895537B2 (en) Battery state estimator
JP6472163B2 (en) CHARGE RATE ESTIMATION DEVICE AND CHARGE RATE ESTIMATION METHOD

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131008

R150 Certificate of patent or registration of utility model

Ref document number: 5389136

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S343 Written request for registration of root pledge or change of root pledge

Free format text: JAPANESE INTERMEDIATE CODE: R316354

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

SZ02 Written request for trust registration

Free format text: JAPANESE INTERMEDIATE CODE: R316Z02

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S803 Written request for registration of cancellation of provisional registration

Free format text: JAPANESE INTERMEDIATE CODE: R316803

SZ02 Written request for trust registration

Free format text: JAPANESE INTERMEDIATE CODE: R316Z02

SZ03 Written request for cancellation of trust registration

Free format text: JAPANESE INTERMEDIATE CODE: R316Z03

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250