JP2004245673A - Method and device for predicting residual capacity of storage capacitor, and storage capacitor pack - Google Patents

Method and device for predicting residual capacity of storage capacitor, and storage capacitor pack Download PDF

Info

Publication number
JP2004245673A
JP2004245673A JP2003034967A JP2003034967A JP2004245673A JP 2004245673 A JP2004245673 A JP 2004245673A JP 2003034967 A JP2003034967 A JP 2003034967A JP 2003034967 A JP2003034967 A JP 2003034967A JP 2004245673 A JP2004245673 A JP 2004245673A
Authority
JP
Japan
Prior art keywords
remaining capacity
power storage
value
storage unit
capacity value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003034967A
Other languages
Japanese (ja)
Inventor
Mitsunori Ishii
光徳 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Lamilion Energy Ltd
Original Assignee
NEC Lamilion Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Lamilion Energy Ltd filed Critical NEC Lamilion Energy Ltd
Priority to JP2003034967A priority Critical patent/JP2004245673A/en
Publication of JP2004245673A publication Critical patent/JP2004245673A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To accurately provide the residual capacity of a storage capacitor such as lithium ion secondary battery mounted on a hybrid car at any time interval. <P>SOLUTION: The discharging/charging current of the secondary battery 11 is monitored, and summation calculation is performed based on the discharging/charging current to continuously calculate a first residual capacity value. At the same time, a timing when the charging and discharging of the secondary battery 11 is switched is detected and, at the detected timing, the terminal voltage of the secondary battery 11 at the detected timing is regarded as an open circuit voltage and, based on the open circuit voltage, a second residual capacity value is obtained. Then, the first residual capacity value is updated by the second residual capacity value. The first residual capacity value is outputted to the outside as the residual capacity of the secondary battery 11. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、リチウムイオン二次電池に代表される各種の二次電池や大容量キャパシタなどの蓄電体の残存容量(SOC;state of charge)を推定する方法および装置、ならびにそのような残存容量推定装置を内蔵したバッテリパックなどの蓄電体パックに関する。
【0002】
【従来の技術】
近年、リチウムイオン二次電池やニッケル水素電池などの二次電池を電力用途として電動機駆動の電源などとして用いるようになってきた。さらに、電気二重層キャパシタなどの大容量キャパシタも電動機駆動の電源として用いられるようになってきている。本明細書では、二次電池やキャパシタなど、充電によって電気エネルギーを蓄積し、放電によって電気エネルギーを放出するものを蓄電体と呼ぶ。
【0003】
リチウムイオン二次電池や大容量キャパシタなどの蓄電体のこのような電動機駆動の用途として、例えば、ハイブリッド電気自動車(以下、単にハイブリッド自動車と呼ぶ)における用途がある。ハイブリッド自動車は、一般に、内燃機関であるエンジンと、エンジンによって駆動される発電機と、蓄電体と、電動機とを備えている。ハイブリッド自動車における駆動方式には何種類かのものがあるが、例えば、発電機で得られた電力によって蓄電体を充電し、車両の加速時あるいは登坂時には、発電機からの電力のほかに蓄電体の放電によって得られる電力を電動機に供給するようにしている。このほか、エンジンによって駆動輪を直接駆動するとともに、加速時や登坂時には電動機出力によって駆動輪の駆動を補助するようなものもある。これらのハイブリッド自動車では、さらにエネルギー効率を向上させるため、車両の制動時などには、電動機を発電機として動作させて回生ブレーキとして機能させ、得られたエネルギーによっても蓄電体を充電するようにしている。
【0004】
ハイブリッド自動車の場合、実際には、蓄電体の残存容量が常に所定の範囲内にあるような制御が行われている。具体的には、例えば残存容量が20%以下となった場合には、エンジンを始動して発電機によって発電し、その電力によって蓄電体を充電するようにする。そして、例えば残存容量が80%以上となった場合には、蓄電体がそれ以上充電されないようにする。このように、蓄電体の残存容量に応じて充放電の制御を行う必要があるため、蓄電体の残存容量を常時監視していなくてはならない。具体的には数十ミリ秒から数秒の時間間隔で、残存容量を求めるようにしている。
【0005】
蓄電体の残存容量は、原理的には、充電した電荷量と放電した電荷量との差によって求めることができるから、従来は、一定時間間隔で蓄電体の充放電電流の値を測定し、その測定値を積算することによって、蓄電体の残存容量を求めていた。また、蓄電体がリチウムイオン二次電池や大容量キャパシタである場合、蓄電体の開回路電圧(充放電電流が0であるときの電圧)と残存容量との間には一定の関係があることが知られており、蓄電体の開回路電圧を測定して残存容量を推定することも行われている。しかしながら、蓄電体をハイブリッド自動車に適用するような場合、電動機の突入電流などで短時間で大電流が流れることがあり、また、安価で直線性がよく精度が高い電流センサを入手することが難しい、などの理由により、充放電電流値を積算して残存容量を求めることとした場合には、無視できない累積誤差が生じるおそれがある。一方、蓄電体の開回路電圧に基づいて残存容量を推定する場合には、誤差の累積という問題は生じないものの、ハイブリッド自動車での運用においては、残存容量に基づく充放電の制御を行うために必要な時間間隔では充放電電流をゼロとするタイミングを設定することができないので、この方法では実用的には残存容量値を求めることができない、という問題を生じる。
【0006】
特開平11−206028号公報(特許文献1)には、蓄電体への充放電電流値を積算して残存容量を求めるとともに、充電から放電、あるいは放電から充電に切り替わったときのその切り替わりの前後での端子電圧値と充放電電流値とからその蓄電体の充放電I(電流)−V(電圧)特性曲線を求め、その充放電I−V特性曲線から開回路電圧を推定し、推定した開回路電圧に基づいて残存容量を求めることが開示されている。そして、充放電電流値の積算によって求めた残存容量と推定した開回路電圧から求めた残存容量とを比較し、その差が所定値以上となった場合には、推定した開回路電圧から求めた残存容量によって、充放電電流値の積算による残存容量値を置き換えている。しかしながらこの特許文献1に基づく方法には、充放電I−V特性曲線を求める演算が必要となって演算量が多くなり、また、開回路電圧自体も推定値に過ぎないので求めた残存容量の精度があまりよくない、という問題点がある。
【0007】
なお、リチウムイオン二次電池や大容量キャパシタなどの蓄電体を用いる場合、これらの蓄電体のセルを単独で用いることは少なく、所望の放電電圧、放電電流が得られるように複数の単体セルを直列および/または並列に接続した蓄電体パックとして構成することが一般的である。この蓄電体パックには、蓄電体セル(バッテリセル、キャパシタセル)のほかに、例えば過充電防止回路などの安全回路や、残存容量を測定してその測定値を出力する回路などが備えられることが多い。
【0008】
【特許文献1】
特開平11−206028
【0009】
【発明が解決しようとする課題】
上述したように、蓄電体の残存容量を求める従来の方法では、誤差が大きい、必要な時間間隔で最新の残存容量値を得ることができない、あるいは、演算量などが多くなる、という解決すべき課題が残っている。
【0010】
本発明の目的は、少ない演算量で精度よく、しかも所望の時間間隔で蓄電体の最新の残存容量を推定できる残存容量推定方法および残存容量推定装置を提供することにある。また本発明の別の目的は、そのような推定装置を組み込んだ蓄電体パックを提供することにある。
【0011】
【課題を解決するための手段】
本発明の残存容量推定方法は、蓄電体の充放電電流を監視し、充放電電流に基づく積算演算を実行して第1の残存容量値を継続的に算出し、蓄電体における充電と放電とが切り替わるタイミングを検出し、そのタイミングにおいて、そのタイミングでの蓄電体の端子電圧に基づいて第2の残存容量値を求めて第2の残存容量値でもって第1の残存容量値を置き換え、置き換え後の第1の残存容量値に基づいて積算演算を続行して第1の残存容量値を蓄電体の残存容量とする。
【0012】
本発明の残存容量推定装置は、蓄電体における充放電電流を検出する電流検出手段と、蓄電体の端子電圧を検出する電圧測定手段と、残存容量の値を保持する記憶手段と、検出された充放電電流に基づき、記憶手段に格納された値に対して積算演算を継続的に実行する演算手段と、電流検出手段の出力に基づき、蓄電体における充電と放電とが切り替わるタイミングを検出するタイミング検出手段と、検出されたタイミングにおける端子電圧に基づいて残存容量値を求める残存容量値取得手段と、を有し、その検出されたタイミングにおいて、残存容量値取得手段が求めた残存容量値によって、記憶手段内の値が置き換えられる。
【0013】
本発明の蓄電体パックは、蓄電体と、蓄電体における充放電電流を検出する電流検出手段と、蓄電体の端子電圧を検出する電圧測定手段と、残存容量の値を保持して出力する記憶手段と、検出された充放電電流に基づき、記憶手段に格納された値に対して積算演算を継続的に実行する演算手段と、電流検出手段の出力に基づき、蓄電体における充電と放電とが切り替わるタイミングを検出するタイミング検出手段と、検出されたタイミングにおける端子電圧に基づいて残存容量値を求める残存容量値取得手段と、を有し、その検出されたタイミングにおいて、残存容量値取得手段が求めた残存容量値によって、記憶手段内の値が置き換えられる。
【0014】
本発明は、ハイブリッド自動車などの用途では、蓄電体において放電と充電とが頻繁に切り替わって蓄電体に流れる電流の向きが切り替わり、その切り替わりに際しては瞬間的には充放電電流がゼロとなるからそのタイミングで蓄電体の端子電圧を測定すれば蓄電体の開回路電圧が得られることに着目したものである。蓄電体の開回路電圧が求められれば、上述したように、残存容量を正確に推定することができる。しかしながら、充電と放電との間の切り替わりが起こる間隔は一定せず、ハイブリッド自動車の場合その間隔は短くて1秒程度、最長で数十分程度になる可能性があり、残存容量に基づく充放電の制御を行うためには間隔が長すぎてそのままでは使用することができない。そこで本発明では、充放電電流の積算によって残存容量を継続的に算出し続けることとしてこのようにして得られた第1の残存容量値によって例えば充放電の制御を行い、かつ、充電と放電との切り替わりが発生したするたびに、そのタイミングで測定した開回路電圧に基づく残存容量(第2の残存容量値)によって、充放電電流の積算による第1の残存容量値を書き換えることとしている。その後は、次に充電と放電との切り替わりが発生するまで、その書き換えられた第1の残存容量値に基づいて充放電電流の積算演算が行われる。
【0015】
このように構成することにより本発明では、蓄電体における充電と放電との切り替わりが発生するたびに充放電電流の積算による第1の残存容量値が開回路電圧に基づくより正確な第2の残存容量値によって更新されるので、充放電電流の積算での累積誤差がそのたびにリセットされることになる。したがって、本発明では、累積誤差の影響を受けることが少なくて精度よく、しかも任意のタイミングでの残存容量を取得することができる。ハイブリッド自動車への応用を考えた場合、長くても数十分たてば充電と放電との切り替わりが発生して残存容量値が開回路電圧に基づく正確な値に更新されるので、この間の充放電電流の積算の際の累積誤差は、残存容量による充放電の制御を行う際に悪影響を及ぼすほど大きなものとはならない。また、本発明によれば、充放電電流の検出のために用いられる電流センサとして、直線性の良好な高価なセンサを使用する必要がなくなり、残存容量推定のための構成の全体としてのコストを低減することができる。
【0016】
本発明において蓄電体としては、例えば、リチウムイオン二次電池などの二次電池や、電気二重層キャパシタなどの大容量キャパシタなどを使用することができる。
【0017】
【発明の実施の形態】
次に、本発明の好ましい実施形態について、図面を参照して説明する。図1は、本発明の実施の一形態の蓄電体の残存容量推定装置の構成を示すブロック図であり、蓄電体パック内に残存容量推定装置10が組み込まれたものとして描かれている。ここでは蓄電体として、例えばリチウムイオン二次電池である二次電池11を使用しており、したがって、蓄電体パックはバッテリパック12として構成されていることになる。
【0018】
残存容量推定装置10は、二次電池11に対する充電電流及び放電電流を検出する電流検出器21と、二次電池11の端子電圧を測定して出力する電圧測定部22と、電流検出器21の出力をサンプリングしてアナログ/デジタル変換するA/D変換器23と、電流検出器21の出力波形を整形し充放電電流の極性(充電であるか放電であるかの別)を検出する極性検出部24と、極性検出部24の出力におけるエッジを検出してトリガ信号を出力するエッジ検出部25と、二次電池11(ここではリチウムイオン二次電池)の開回路電圧に基づいて残存容量値を取得する残存容量値取得部26と、残存容量の現在値を保持する残存容量記憶部27と、A/D変換器21からの出力に基づいて残存容量記憶部27に保持された残存容量値に対して積算演算を行う積算演算部28と、を備えている。
【0019】
具体的には、電流検出器21としては、ホールセンサを用いたオープンループのものや、シャント抵抗を有しその両端の電圧を計測するものを用いることができる。電流検出器21は、充放電電流の大きさに比例するとともに、例えば充電であれば負であり放電であれば正である電圧を発生する。充電電流と放電電流との違いは二次電池11に対する電流の向きで区別されるものである。極性検出部24は、例えば、図2の右側に示すように、電流検出器21の出力が正か負かによって放電か充電かを識別し、放電である期間中には論理レベルで“1”を出力し、充電である期間中には“0”を出力するように構成されている。このような極性検出部24としては、図2に示すように、コンパレータ31を有するものを使用することができる。コンパレータ31の(+)端子には電流検出器21からの波形が入力し、(−)端子には基準電位として0Vが供給されている。エッジ検出部25は、極性検出部24の出力の立ち上がりエッジ(“0”から“1”に遷移するエッジ)および立ち下がりエッジ(“1”から“0”に遷移するエッジ)においてトリガ信号を出力する。
【0020】
残存容量値取得部26は、二次電池11の開回路電圧が入力したときに、その開回路電圧に対応する残存容量値を求めて出力するものであるが、ここでは、電圧測定部22で測定した電圧値(デジタル値とする)と、エッジ検出部25で発生したトリガ信号とが入力している。そして、トリガ信号が入力したタイミングで電圧値を取り込み、その取り込んだ電圧値に対応する残存容量値を出力する。実際には、リチウムイオン二次電池の開回路電圧値と残存容量との関係を示したルックアップテーブルを備え、取り込んだ電圧値を開回路電圧値としてこのルックアップテーブルを参照し、残存容量値を出力する。残存容量推定の対象である蓄電体がリチウムイオン二次電池以外の蓄電体である場合には、その蓄電体の特性に対応したルックアップテーブルを備えるようにする。もちろん、蓄電体が大容量キャパシタである場合などのように開回路電圧値と残存容量との関係が簡単な関数式で表わせるような場合には、その関数式に基づく計算によって残存容量を求めるようにしてもよい。
【0021】
二次電池11の現在の残存容量を保持する残存容量記憶部27は、積算演算部28による充放電電流の積算による残存容量演算に際しての演算用メモリとしても機能し、この残存容量記憶部27からは現在の残存容量(SOC)がリアルタイムで外部に出力される。さらに残存容量記憶部27内の残存容量の値は、トリガ信号が出力されて残存容量値取得部26から残存容量値が出力された場合に、その出力された値に置き換わるようになっている。積算演算部28は、A/D変換器23のサンプリングごとに、A/D変換器23の出力に応じて残存容量記憶部27に格納されている残存容量値に対して積算演算を行う。ここで、残存容量記憶部27に記憶されている残存容量の値を[SOC]とおくと、放電時には、
[SOC]←[SOC]−(放電電流の大きさ) …(1)
によって[SOC]を更新し、充電時には、
[SOC]←[SOC]+(充電電流の大きさ)×充電効率 …(2)
によって[SOC]を更新するようになっている。ここで充電時において充電効率を乗じているのは、充電電流に対応する電荷量の全てが二次電池11内に蓄えられるわけではないことによる。充電効率は一般に温度の関数である。したがって温度に応じて充電効率の値を変化させて積算演算を行うようにしてもよい。
【0022】
図3は、この残存容量推定装置10の動作を模式的に示したものである。
【0023】
電流検出器21は、蓄電体である二次電池11に対する充放電電流を常時監視しており、検出された電流に対応する電圧信号をA/D変換器23および極性検出部24に供給する。A/D変換器23および積算演算部28は、A/D変換器23でのサンプリングごとに、残存容量記憶部27内に格納されている残存容量値[SOC]に対して上記の式(1),(2)にしたがって充放電電流の加算または減算を行うことによる積算演算を実行する。その結果、残存容量記憶部27には、A/D変換器23でのサンプリングごとに最新の残存容量値が格納されることになる。
【0024】
電流検出器21からの電圧信号は極性検出部24にも入力してここで波形整形され、放電期間には論理レベルが“1”、充電期間には論理レベルが“0”である信号とされ、エッジ検出部25により立ち上がりと立ち下がりの両方のエッジが検出される。そして、残存容量値取得部26は、エッジ検出器25からトリガ信号が入力したタイミングで、すなわちエッジトリガがかかったタイミングで、そのときの二次電池11の端子電圧に対応した残存容量値を取得し、その残存容量値によって、残存容量記憶部27内に格納されている残存容量値[SOC]を置き換える。エッジトリガがかかるタイミングは、二次電池11が充電から放電にあるいは放電から充電に切り替わるタイミングであって、このときは二次電池11の充放電電流が実質的に0となっているから、二次電池11の端子電圧はその二次電池11のその時点での開回路電圧とみなすことができる。結局、残存容量値取得部26は、充電から放電にあるいは放電から充電に切り替わるタイミングで、開回路電圧に基づく正確な残存容量値を出力することとなる。したがってこの残存容量推定装置10によれば、充放電電流の積算演算によって継続的に二次電池11の残存容量を算出し続けるとともに、充電と放電とが切り替わるタイミングにおいて、積算演算で使用される残存容量値を正確な残存容量値で更新することとなる。これにより、積算演算における誤差の蓄積が排除されて、任意の時点においてその時点での正確な残存容量を知ることができるようになる。
【0025】
上述した本実施形態の残存容量推定装置10は、マイクロコンピュータを用いて実装されるのが一般的である。その場合、エッジ検出部25、残存容量値取得部26、残存容量記憶部27および積算演算部28の各機能が、マイクロコンピュータによって実現される。具体的には、マイクロコンピュータが充放電電流による積算演算を継続して実行するようにするとともに、波形整形部24の出力信号がマイクロコンピュータのインプットキャプチャ端子に入力して立ち上がりエッジおよび立ち下がりエッジが検出されるようにし、エッジを検出した場合には割り込みタスクを生成して残存容量値のルックアップテーブルを参照しに行くようにすればよい。
【0026】
図4は、このようなマイクロコンピュータの動作の一例を示すフローチャートである。まず、初期設定として、残存容量記憶部27における残存容量値[SOC]に初期値を代入し(ステップ101)、充放電の切り替わりのタイミングであるかどうか、すなわちエッジを検出したかどうかを判別する(ステップ102)。切り替わりのタイミングでない場合には、A/D変換器23から電流値Iを読み込み(ステップ103)、充放電電流の積算演算によって[SOC]を更新し(ステップ104)、ステップ102に戻る。また、ステップ102において切り替わりのタイミングであるときには、上述したように割り込みタスクが生成することとなるので、開回路電圧を取り込み(ステップ105)、ルックアップテーブルから残存容量値を取得し(ステップ106)、取得した残存容量値を[SOC]に代入して(ステップ107)、ステップ102に戻る。
【0027】
図1に示した残存容量推定装置では、二次電池11における充電と放電との切り替わりタイミングを検出するために極性検出部24とエッジ検出部25とを用いているが、本発明はこれに限定されるものではない。A/D変換器23のサンプリングレートが十分に速い場合などには、A/D変換器23の出力から、充電と放電との切り替わりタイミングを検出することができる。図5はそのような残存容量推定装置の構成を示している。この残存容量推定装置10Aは、図1に示した残存容量推定装置10において、極性検出部24とエッジ検出部25とを設ける代わりに、ゼロクロス検出部29を設けたものである。ゼロクロス検出部29は、A/D変換器23の出力を監視し、A/D変換器23の出力値が正から負あるいは負から正に切り替わったタイミングで、トリガ信号を残存容量値取得部26に出力する。通常の場合、A/D変換器23が出力するデジタル値のうちの最上位ビット(MSB)は符号ビットであるから、この符号ビットにおける“0”と“1”との切り替わりを検出することによって、A/D変換器23の出力における正と負との切り替わりを検出することができる。
【0028】
【発明の効果】
以上説明したように本発明は、蓄電体の充放電電流を監視してその充放電電流に基づく積算演算を実行して第1の残存容量値を継続的に算出し、同時に、蓄電体における充電と放電とが切り替わるタイミングを検出し、その検出されたタイミングにおいて、その検出されたタイミングでの蓄電体の端子電圧に基づいて第2の残存容量値を求めてその第2の残存容量値で第1の残存容量値を更新することにより、積算演算における誤差の蓄積が排除されて、任意の時点においてその時点での蓄電体の正確な残存容量を知ることができるようになる、という効果がある。
【図面の簡単な説明】
【図1】本発明の実施の一形態の残存容量推定装置の構成を示すブロック図である。
【図2】極性検出部の構成の一例と動作とを示す図である。
【図3】残存容量推定の動作を模式的に示す図である。
【図4】残存容量推定の動作を説明するフローチャートである。
【図5】本発明の別の実施形態の残存容量推定装置の構成を示すブロック図である。
【符号の説明】
10,10A 残存容量推定装置
11 二次電池
12 バッテリパック
21 電流検出器
22 電圧測定部
23 A/D変換器
24 極性検出部
25 エッジ検出部
26 残存容量値取得部
27 残存容量記憶部
28 積算演算部
29 ゼロクロス検出部
31 コンパレータ
101〜107 ステップ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method and an apparatus for estimating a state of charge (SOC) of a power storage unit such as various secondary batteries typified by a lithium ion secondary battery and a large capacity capacitor, and an estimation of such a state of charge. The present invention relates to a power storage pack such as a battery pack incorporating a device.
[0002]
[Prior art]
2. Description of the Related Art In recent years, secondary batteries such as lithium ion secondary batteries and nickel-metal hydride batteries have come to be used as power sources for electric motors for power applications. Further, large-capacity capacitors such as electric double-layer capacitors have also been used as power sources for driving motors. In this specification, a device that accumulates electric energy by charging and discharges electric energy by discharging, such as a secondary battery or a capacitor, is referred to as a power storage unit.
[0003]
As an application of such a motor drive of a power storage unit such as a lithium ion secondary battery or a large capacity capacitor, there is, for example, an application in a hybrid electric vehicle (hereinafter, simply referred to as a hybrid vehicle). A hybrid vehicle generally includes an engine that is an internal combustion engine, a generator driven by the engine, a power storage unit, and an electric motor. There are several types of driving methods for hybrid vehicles.For example, when a power storage unit is charged with electric power obtained by a generator, and when the vehicle is accelerating or climbing a slope, the power storage unit is used in addition to the power from the generator. Is supplied to the electric motor. In addition, there is an engine in which the driving wheels are directly driven by an engine, and the driving of the driving wheels is assisted by an electric motor output during acceleration or climbing a hill. In these hybrid vehicles, in order to further improve the energy efficiency, when braking the vehicle, the electric motor is operated as a generator to function as a regenerative brake, and the energy storage device is also charged with the obtained energy. I have.
[0004]
In the case of a hybrid vehicle, in practice, control is performed such that the remaining capacity of the power storage unit is always within a predetermined range. Specifically, for example, when the remaining capacity becomes 20% or less, the engine is started, power is generated by the generator, and the power is charged by the power. Then, for example, when the remaining capacity becomes 80% or more, the power storage unit is prevented from being charged any more. As described above, since it is necessary to control charging and discharging according to the remaining capacity of the power storage unit, the remaining capacity of the power storage unit must be constantly monitored. Specifically, the remaining capacity is obtained at time intervals of several tens of milliseconds to several seconds.
[0005]
In principle, the remaining capacity of a power storage unit can be obtained by the difference between the charged amount and the discharged amount of charge.Conventionally, the value of the charge / discharge current of the power storage unit is measured at regular time intervals, By integrating the measured values, the remaining capacity of the power storage unit has been obtained. Further, when the power storage unit is a lithium ion secondary battery or a large capacity capacitor, there is a certain relationship between the open circuit voltage of the power storage unit (voltage when the charge / discharge current is 0) and the remaining capacity. It is also known to measure the open circuit voltage of the power storage unit to estimate the remaining capacity. However, when the power storage device is applied to a hybrid vehicle, a large current may flow in a short time due to an inrush current of an electric motor or the like, and it is difficult to obtain a current sensor that is inexpensive, has high linearity, and has high accuracy. If the charge and discharge current values are integrated to determine the remaining capacity for reasons such as, the accumulated error that cannot be ignored may occur. On the other hand, when estimating the remaining capacity based on the open circuit voltage of the power storage unit, the problem of accumulation of errors does not occur, but in operation in a hybrid vehicle, charging and discharging are controlled based on the remaining capacity. Since the timing at which the charge / discharge current becomes zero cannot be set at the required time intervals, there is a problem that this method cannot practically determine the remaining capacity value.
[0006]
Japanese Patent Application Laid-Open No. 11-206028 (Patent Document 1) discloses that a charge / discharge current value for a power storage device is integrated to obtain a remaining capacity, and before and after switching from charging to discharging or from discharging to charging. , A charge / discharge I (current) -V (voltage) characteristic curve of the power storage body was obtained from the terminal voltage value and the charge / discharge current value, and an open circuit voltage was estimated from the charge / discharge IV characteristic curve. It is disclosed that the remaining capacity is determined based on the open circuit voltage. Then, the remaining capacity obtained by integrating the charge / discharge current value is compared with the remaining capacity obtained from the estimated open circuit voltage, and when the difference becomes a predetermined value or more, the remaining capacity is obtained from the estimated open circuit voltage. The remaining capacity value is replaced by the remaining capacity value obtained by integrating the charging and discharging current values. However, the method based on Patent Document 1 requires an operation for calculating a charge / discharge IV characteristic curve, which increases the amount of operation, and the open circuit voltage itself is only an estimated value. There is a problem that accuracy is not very good.
[0007]
In the case where a power storage unit such as a lithium ion secondary battery or a large capacity capacitor is used, the cells of these power storage units are rarely used alone, and a plurality of single cells are used so that a desired discharge voltage and discharge current can be obtained. It is common to configure them as power storage packs connected in series and / or in parallel. The power storage pack includes, in addition to the power storage cells (battery cells and capacitor cells), a safety circuit such as an overcharge prevention circuit, a circuit that measures the remaining capacity and outputs the measured value, and the like. There are many.
[0008]
[Patent Document 1]
JP-A-11-206028
[0009]
[Problems to be solved by the invention]
As described above, in the conventional method for obtaining the remaining capacity of the power storage unit, it is necessary to solve the problem that the error is large, the latest remaining capacity value cannot be obtained at a required time interval, or the amount of calculation increases. Challenges remain.
[0010]
An object of the present invention is to provide a remaining capacity estimating method and a remaining capacity estimating apparatus capable of estimating the latest remaining capacity of a power storage unit at a desired time interval with high accuracy and with a small amount of calculation. It is another object of the present invention to provide a power storage pack incorporating such an estimation device.
[0011]
[Means for Solving the Problems]
The remaining capacity estimating method of the present invention monitors a charge / discharge current of a power storage unit, performs an integration operation based on the charge / discharge current, continuously calculates a first remaining capacity value, and performs charging and discharging of the power storage unit. Is switched, and at that timing, a second remaining capacity value is obtained based on the terminal voltage of the power storage unit at that timing, and the first remaining capacity value is replaced with the second remaining capacity value, and replaced. The integration operation is continued based on the subsequent first remaining capacity value, and the first remaining capacity value is set as the remaining capacity of the power storage unit.
[0012]
The remaining capacity estimating device of the present invention includes a current detecting means for detecting a charging / discharging current in the power storage device, a voltage measuring means for detecting a terminal voltage of the power storage device, a storage means for holding a value of the remaining capacity, A calculating means for continuously executing an integration calculation on the value stored in the storage means based on the charging / discharging current; and a timing for detecting a timing of switching between charging and discharging in the power storage unit based on an output of the current detecting means. Detecting means, having a remaining capacity value obtaining means for obtaining a remaining capacity value based on the terminal voltage at the detected timing, and at the detected timing, by the remaining capacity value obtained by the remaining capacity value obtaining means, The value in the storage means is replaced.
[0013]
The power storage pack of the present invention includes a power storage unit, a current detection unit that detects a charge / discharge current in the power storage unit, a voltage measurement unit that detects a terminal voltage of the power storage unit, and a storage that holds and outputs a value of a remaining capacity. Means, an arithmetic means for continuously performing an integration operation on the value stored in the storage means based on the detected charging / discharging current, and charging and discharging of the power storage unit based on an output of the current detecting means. A timing detecting means for detecting a switching timing; and a remaining capacity value obtaining means for obtaining a remaining capacity value based on a terminal voltage at the detected timing, wherein the remaining capacity value obtaining means obtains the remaining capacity value at the detected timing. The value in the storage means is replaced by the remaining capacity value.
[0014]
In applications such as hybrid vehicles, the present invention frequently switches between discharging and charging in a power storage unit, and switches the direction of current flowing in the power storage unit.When the switching is performed, the charging / discharging current instantaneously becomes zero. It is noted that an open circuit voltage of the power storage unit can be obtained by measuring the terminal voltage of the power storage unit at a timing. If the open circuit voltage of the power storage unit is obtained, the remaining capacity can be accurately estimated as described above. However, the interval at which switching between charging and discharging occurs is not constant. In the case of a hybrid vehicle, the interval may be as short as about 1 second, and as long as about several tens of minutes. , The interval is too long to be used as it is. Therefore, in the present invention, for example, charge / discharge control is performed by the first remaining capacity value obtained assuming that the remaining capacity is continuously calculated by integrating the charging / discharging current, and charging and discharging are performed. Every time the switching occurs, the first remaining capacity value by integrating the charge / discharge current is rewritten by the remaining capacity (second remaining capacity value) based on the open circuit voltage measured at that timing. Thereafter, until the next switching between charge and discharge occurs, the integration calculation of the charge / discharge current is performed based on the rewritten first remaining capacity value.
[0015]
With this configuration, in the present invention, the first remaining capacity value based on the integration of the charging / discharging current is more accurately calculated based on the open circuit voltage every time the switching between the charging and discharging of the power storage unit occurs. Since it is updated by the capacity value, the accumulated error in the integration of the charge / discharge current is reset each time. Therefore, according to the present invention, it is possible to acquire the remaining capacity at an arbitrary timing with high accuracy and little influence of the accumulated error. When considering the application to hybrid vehicles, switching between charging and discharging occurs after a few tens of minutes at the longest, and the remaining capacity value is updated to an accurate value based on the open circuit voltage. The accumulated error in the integration of the discharge current is not so great as to have a bad effect when performing charge / discharge control based on the remaining capacity. Further, according to the present invention, it is not necessary to use an expensive sensor having good linearity as a current sensor used for detecting the charging / discharging current, and the overall cost of the configuration for estimating the remaining capacity is reduced. Can be reduced.
[0016]
In the present invention, for example, a secondary battery such as a lithium ion secondary battery or a large capacity capacitor such as an electric double layer capacitor can be used as the power storage unit.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, a preferred embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing a configuration of a power storage device remaining capacity estimating apparatus according to one embodiment of the present invention, and is illustrated as a power storage pack in which a remaining capacity estimating device 10 is incorporated. Here, a secondary battery 11 that is, for example, a lithium ion secondary battery is used as a power storage unit. Therefore, the power storage unit pack is configured as a battery pack 12.
[0018]
The remaining capacity estimating device 10 includes a current detector 21 that detects a charging current and a discharging current for the secondary battery 11, a voltage measuring unit 22 that measures and outputs a terminal voltage of the secondary battery 11, A / D converter 23 which samples the output and performs analog / digital conversion, and polarity detection which shapes the output waveform of current detector 21 and detects the polarity of charge / discharge current (whether charge or discharge). Unit 24, an edge detection unit 25 that detects an edge in the output of the polarity detection unit 24 and outputs a trigger signal, and a remaining capacity value based on an open circuit voltage of the secondary battery 11 (here, a lithium ion secondary battery). , A remaining capacity storage unit 27 that stores the current value of the remaining capacity, and a remaining capacity value that is stored in the remaining capacity storage unit 27 based on the output from the A / D converter 21. To A totalizing section 28 for totalizing Te, and a.
[0019]
Specifically, the current detector 21 may be an open loop type using a Hall sensor, or a type having a shunt resistance and measuring the voltage between both ends. The current detector 21 generates a voltage that is proportional to the magnitude of the charge / discharge current and that is negative for charging and positive for discharging, for example. The difference between the charging current and the discharging current is distinguished by the direction of the current with respect to the secondary battery 11. For example, as shown on the right side of FIG. 2, the polarity detection unit 24 determines whether the output of the current detector 21 is positive or negative, whether discharging or charging. During the discharging period, the logical level is “1”. And outputs “0” during the charging period. As such a polarity detector 24, one having a comparator 31 can be used as shown in FIG. The waveform from the current detector 21 is input to the (+) terminal of the comparator 31, and 0 V is supplied to the (-) terminal as a reference potential. The edge detection unit 25 outputs a trigger signal at the rising edge (the edge that transitions from “0” to “1”) and the falling edge (the edge that transitions from “1” to “0”) of the output of the polarity detection unit 24. I do.
[0020]
When the open circuit voltage of the secondary battery 11 is input, the remaining capacity value acquiring unit 26 obtains and outputs the remaining capacity value corresponding to the open circuit voltage. The measured voltage value (digital value) and a trigger signal generated by the edge detection unit 25 are input. Then, a voltage value is fetched at the timing when the trigger signal is input, and a remaining capacity value corresponding to the fetched voltage value is output. Actually, a look-up table showing the relationship between the open circuit voltage value and the remaining capacity of the lithium ion secondary battery is provided, and the obtained voltage value is referred to as the open circuit voltage value, and the remaining capacity value is referred to. Is output. When the power storage object whose remaining capacity is to be estimated is a power storage element other than the lithium ion secondary battery, a look-up table corresponding to the characteristics of the power storage element is provided. Of course, when the relationship between the open-circuit voltage value and the remaining capacity can be expressed by a simple function formula such as when the power storage unit is a large-capacity capacitor, the remaining capacity is obtained by calculation based on the function formula. You may do so.
[0021]
The remaining capacity storage unit 27 that holds the current remaining capacity of the secondary battery 11 also functions as a calculation memory when calculating the remaining capacity by integrating the charge / discharge current by the integration calculation unit 28. The current remaining capacity (SOC) is output to the outside in real time. Further, the value of the remaining capacity in the remaining capacity storage unit 27 is replaced with the output value when the trigger signal is output and the remaining capacity value is output from the remaining capacity value acquiring unit 26. The integration operation unit 28 performs an integration operation on the remaining capacity value stored in the remaining capacity storage unit 27 according to the output of the A / D converter 23 for each sampling of the A / D converter 23. Here, if the value of the remaining capacity stored in the remaining capacity storage unit 27 is [SOC], at the time of discharging,
[SOC] ← [SOC]-(discharge current) (1)
[SOC] is updated by
[SOC] ← [SOC] + (magnitude of charging current) × charging efficiency (2)
[SOC] is updated. Here, the reason why the charging efficiency is multiplied at the time of charging is that not all the charge amount corresponding to the charging current is stored in the secondary battery 11. Charging efficiency is generally a function of temperature. Therefore, the integration operation may be performed by changing the value of the charging efficiency according to the temperature.
[0022]
FIG. 3 schematically shows the operation of the remaining capacity estimating apparatus 10.
[0023]
The current detector 21 constantly monitors the charge / discharge current for the secondary battery 11 serving as a power storage unit, and supplies a voltage signal corresponding to the detected current to the A / D converter 23 and the polarity detection unit 24. The A / D converter 23 and the multiplying operation unit 28 calculate the remaining capacity value [SOC] stored in the remaining capacity storage unit 27 by the above equation (1) for each sampling in the A / D converter 23. ) And (2), an integration operation is performed by adding or subtracting the charge / discharge current. As a result, the latest remaining capacity value is stored in the remaining capacity storage unit 27 every time sampling is performed by the A / D converter 23.
[0024]
The voltage signal from the current detector 21 is also input to the polarity detector 24, where the waveform is shaped, and is a signal whose logic level is "1" during the discharge period and "0" during the charge period. , Both the rising edge and the falling edge are detected by the edge detecting unit 25. The remaining capacity value acquiring unit 26 acquires the remaining capacity value corresponding to the terminal voltage of the secondary battery 11 at the timing when the trigger signal is input from the edge detector 25, that is, at the timing when the edge trigger is applied. Then, the remaining capacity value [SOC] stored in the remaining capacity storage unit 27 is replaced with the remaining capacity value. The timing at which the edge trigger is applied is the timing at which the secondary battery 11 switches from charging to discharging or from discharging to charging. At this time, the charging / discharging current of the secondary battery 11 is substantially zero. The terminal voltage of the secondary battery 11 can be regarded as the open circuit voltage of the secondary battery 11 at that time. As a result, the remaining capacity value acquisition unit 26 outputs an accurate remaining capacity value based on the open circuit voltage at the timing of switching from charging to discharging or from discharging to charging. Therefore, according to the remaining capacity estimating apparatus 10, the remaining capacity of the secondary battery 11 is continuously calculated by the integration calculation of the charge / discharge current, and the remaining capacity used in the integration calculation is changed at the timing when the charge and the discharge are switched. The capacity value is updated with the correct remaining capacity value. As a result, accumulation of errors in the integration operation is eliminated, and it is possible to know an accurate remaining capacity at any time.
[0025]
The above-described remaining capacity estimation device 10 of the present embodiment is generally implemented using a microcomputer. In this case, the functions of the edge detection unit 25, the remaining capacity value acquisition unit 26, the remaining capacity storage unit 27, and the integration calculation unit 28 are realized by a microcomputer. Specifically, the microcomputer continuously performs the integration operation based on the charging / discharging current, and the output signal of the waveform shaping unit 24 is input to the input capture terminal of the microcomputer, and the rising edge and the falling edge are detected. Then, if an edge is detected, an interrupt task may be generated to refer to the look-up table of the remaining capacity value.
[0026]
FIG. 4 is a flowchart showing an example of the operation of such a microcomputer. First, as an initial setting, an initial value is substituted for the remaining capacity value [SOC] in the remaining capacity storage unit 27 (step 101), and it is determined whether or not the timing of switching between charging and discharging, that is, whether or not an edge has been detected. (Step 102). If it is not the switching timing, the current value I is read from the A / D converter 23 (step 103), [SOC] is updated by integrating the charging / discharging current (step 104), and the process returns to step 102. Further, when it is the switching timing in step 102, since the interrupt task is generated as described above, the open circuit voltage is fetched (step 105), and the remaining capacity value is obtained from the lookup table (step 106). Then, the obtained remaining capacity value is substituted for [SOC] (step 107), and the process returns to step 102.
[0027]
1 uses the polarity detection unit 24 and the edge detection unit 25 to detect the timing of switching between charging and discharging in the secondary battery 11, but the present invention is not limited to this. It is not done. For example, when the sampling rate of the A / D converter 23 is sufficiently high, the switching timing between charging and discharging can be detected from the output of the A / D converter 23. FIG. 5 shows the configuration of such a remaining capacity estimation device. The remaining capacity estimating apparatus 10A is different from the remaining capacity estimating apparatus 10 shown in FIG. 1 in that a zero-cross detector 29 is provided instead of the polarity detector 24 and the edge detector 25. The zero-cross detector 29 monitors the output of the A / D converter 23, and outputs the trigger signal at the timing when the output value of the A / D converter 23 switches from positive to negative or from negative to positive. Output to In the normal case, the most significant bit (MSB) of the digital value output by the A / D converter 23 is a sign bit. Therefore, by detecting the switching between “0” and “1” in the sign bit, , The switching between positive and negative in the output of the A / D converter 23 can be detected.
[0028]
【The invention's effect】
As described above, the present invention monitors the charge / discharge current of the power storage unit, performs an integration operation based on the charge / discharge current, continuously calculates the first remaining capacity value, and simultaneously performs the charge in the power storage unit. And a discharge switching timing. At the detected timing, a second remaining capacity value is obtained based on the terminal voltage of the power storage unit at the detected timing, and the second remaining capacity value is calculated based on the second remaining capacity value. By updating the remaining capacity value of 1, there is an effect that accumulation of errors in the integration operation is eliminated, and it becomes possible to know an accurate remaining capacity of the power storage unit at any time. .
[Brief description of the drawings]
FIG. 1 is a block diagram illustrating a configuration of a remaining capacity estimation device according to an embodiment of the present invention.
FIG. 2 is a diagram illustrating an example of the configuration and operation of a polarity detection unit.
FIG. 3 is a diagram schematically showing an operation of remaining capacity estimation.
FIG. 4 is a flowchart illustrating an operation of remaining capacity estimation.
FIG. 5 is a block diagram illustrating a configuration of a remaining capacity estimation device according to another embodiment of the present invention.
[Explanation of symbols]
10, 10A Remaining capacity estimating device 11 Secondary battery 12 Battery pack 21 Current detector 22 Voltage measuring unit 23 A / D converter 24 Polarity detecting unit 25 Edge detecting unit 26 Remaining capacity value acquiring unit 27 Remaining capacity storage unit 28 Integration calculation Section 29 zero cross detection section 31 comparators 101 to 107 step

Claims (7)

蓄電体の残存容量を推定する残存容量推定方法であって、
前記蓄電体の充放電電流を監視し、該充放電電流に基づく積算演算を実行して第1の残存容量値を継続的に算出し、
前記蓄電体における充電と放電とが切り替わるタイミングを検出し、該タイミングにおいて、該タイミングでの前記蓄電体の端子電圧に基づいて第2の残存容量値を求めて該第2の残存容量値でもって前記第1の残存容量値を置き換え、
置き換え後の前記第1の残存容量値に基づいて前記積算演算を続行して前記第1の残存容量値を前記蓄電体の残存容量とする、残存容量推定方法。
A remaining capacity estimation method for estimating a remaining capacity of a power storage unit,
The charge / discharge current of the power storage unit is monitored, and an integration operation based on the charge / discharge current is executed to continuously calculate a first remaining capacity value,
Detecting a timing at which the power storage device switches between charging and discharging, and at this timing, obtaining a second remaining capacity value based on the terminal voltage of the power storage device at the timing and obtaining the second remaining capacity value; Replacing the first remaining capacity value;
A remaining capacity estimation method, wherein the integration operation is continued based on the first remaining capacity value after replacement, and the first remaining capacity value is used as the remaining capacity of the power storage unit.
前記蓄電体における開回路電圧と残存容量との関係を記述するルックアップテーブルを参照して前記第2の残存容量値を求める、請求項1に記載の残存容量推定方法。The remaining capacity estimation method according to claim 1, wherein the second remaining capacity value is obtained by referring to a look-up table describing a relationship between an open circuit voltage and a remaining capacity in the power storage unit. 前記蓄電体がリチウムイオン二次電池である請求項1または2に記載の残存容量推定方法。The remaining capacity estimating method according to claim 1, wherein the power storage unit is a lithium ion secondary battery. 蓄電体の残存容量を推定する残存容量推定装置であって、
前記蓄電体における充放電電流を検出する電流検出手段と、
前記蓄電体の端子電圧を検出する電圧測定手段と、
前記残存容量の値を保持する記憶手段と、
検出された前記充放電電流に基づき、前記記憶手段に格納された値に対して積算演算を継続的に実行する演算手段と、
前記電流検出手段の出力に基づき、前記蓄電体における充電と放電とが切り替わるタイミングを検出するタイミング検出手段と、
検出された前記タイミングにおける前記端子電圧に基づいて残存容量値を求める残存容量値取得手段と、を有し、
前記検出されたタイミングにおいて、前記残存容量値取得手段が求めた残存容量値によって、前記記憶手段内の前記値が置き換えられる、残存容量推定装置。
A remaining capacity estimating device for estimating a remaining capacity of a power storage unit,
Current detection means for detecting a charge / discharge current in the power storage unit,
Voltage measuring means for detecting a terminal voltage of the power storage unit,
Storage means for holding a value of the remaining capacity;
Calculating means for continuously performing an integration calculation on the value stored in the storage means, based on the detected charging / discharging current;
Based on the output of the current detection means, timing detection means for detecting the timing of switching between charging and discharging in the power storage,
Having a remaining capacity value obtaining means for obtaining a remaining capacity value based on the terminal voltage at the detected timing,
At the detected timing, the remaining capacity value obtained by the remaining capacity value obtaining means replaces the value in the storage means with the remaining capacity value.
前記残存容量値取得手段は、前記蓄電体の開回路電圧と残存容量値の関係を記述するルックアップテーブルを有し、前記端子電圧に基づいて前記ルックアップテーブルを参照して前記残存容量値を求める、請求項4に記載の残存容量推定装置。The remaining capacity value acquiring means has a look-up table describing a relationship between an open circuit voltage and a remaining capacity value of the power storage unit, and refers to the look-up table based on the terminal voltage to obtain the remaining capacity value. The remaining capacity estimating device according to claim 4, which obtains the remaining capacity. 前記蓄電体がリチウムイオン二次電池である請求項4または5に記載の残存容量推定装置。The remaining capacity estimating device according to claim 4 or 5, wherein the power storage unit is a lithium ion secondary battery. 蓄電体と、
前記蓄電体における充放電電流を検出する電流検出手段と、
前記蓄電体の端子電圧を検出する電圧測定手段と、
前記残存容量の値を保持して出力する記憶手段と、
検出された前記充放電電流に基づき、前記記憶手段に格納された値に対して積算演算を継続的に実行する演算手段と、
前記電流検出手段の出力に基づき、前記蓄電体における充電と放電とが切り替わるタイミングを検出するタイミング検出手段と、
検出された前記タイミングにおける前記端子電圧に基づいて残存容量値を求める残存容量値取得手段と、を有し、
前記検出されたタイミングにおいて、前記残存容量値取得手段が求めた残存容量値によって、前記記憶手段内の前記値が置き換えられる、蓄電体パック。
Power storage,
Current detection means for detecting a charge / discharge current in the power storage unit,
Voltage measuring means for detecting a terminal voltage of the power storage unit,
Storage means for holding and outputting the value of the remaining capacity;
Calculating means for continuously performing an integration calculation on the value stored in the storage means, based on the detected charging / discharging current;
Based on the output of the current detection means, timing detection means for detecting the timing of switching between charging and discharging in the power storage,
Having a remaining capacity value obtaining means for obtaining a remaining capacity value based on the terminal voltage at the detected timing,
The power storage pack, wherein at the detected timing, the value in the storage means is replaced with the remaining capacity value obtained by the remaining capacity value obtaining means.
JP2003034967A 2003-02-13 2003-02-13 Method and device for predicting residual capacity of storage capacitor, and storage capacitor pack Pending JP2004245673A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003034967A JP2004245673A (en) 2003-02-13 2003-02-13 Method and device for predicting residual capacity of storage capacitor, and storage capacitor pack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003034967A JP2004245673A (en) 2003-02-13 2003-02-13 Method and device for predicting residual capacity of storage capacitor, and storage capacitor pack

Publications (1)

Publication Number Publication Date
JP2004245673A true JP2004245673A (en) 2004-09-02

Family

ID=33020517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003034967A Pending JP2004245673A (en) 2003-02-13 2003-02-13 Method and device for predicting residual capacity of storage capacitor, and storage capacitor pack

Country Status (1)

Country Link
JP (1) JP2004245673A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006267014A (en) * 2005-03-25 2006-10-05 Nec Lamilion Energy Ltd Remaining capacity estimating technique of secondary cell, device, and battery pack
WO2008026477A1 (en) * 2006-08-29 2008-03-06 Nec Corporation Method and device for estimating soc value of secondary battery and degradation judging method and device
WO2008082010A1 (en) * 2007-01-04 2008-07-10 Toyota Jidosha Kabushiki Kaisha Accumulator control device and vehicle
JP2014117000A (en) * 2012-12-06 2014-06-26 Denso Corp Charge control apparatus
JP5637339B1 (en) * 2012-12-26 2014-12-10 三菱自動車工業株式会社 Electric power supply device using electric vehicle
JP2016109653A (en) * 2014-12-10 2016-06-20 日立化成株式会社 Storage battery system
CN111257763A (en) * 2018-11-30 2020-06-09 凹凸电子(武汉)有限公司 Method and system for calculating remaining capacity of battery

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006267014A (en) * 2005-03-25 2006-10-05 Nec Lamilion Energy Ltd Remaining capacity estimating technique of secondary cell, device, and battery pack
WO2008026477A1 (en) * 2006-08-29 2008-03-06 Nec Corporation Method and device for estimating soc value of secondary battery and degradation judging method and device
JP5273794B2 (en) * 2006-08-29 2013-08-28 日本電気株式会社 Method and apparatus for estimating SOC value of secondary battery, and degradation determination method and apparatus
WO2008082010A1 (en) * 2007-01-04 2008-07-10 Toyota Jidosha Kabushiki Kaisha Accumulator control device and vehicle
US8036787B2 (en) 2007-01-04 2011-10-11 Toyota Jidosha Kabushiki Kaisha Control device for power storage device and vehicle
JP2014117000A (en) * 2012-12-06 2014-06-26 Denso Corp Charge control apparatus
JP5637339B1 (en) * 2012-12-26 2014-12-10 三菱自動車工業株式会社 Electric power supply device using electric vehicle
JP2015019575A (en) * 2012-12-26 2015-01-29 三菱自動車工業株式会社 Power supply apparatus using electric vehicle
US9669782B2 (en) 2012-12-26 2017-06-06 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Electric power supply device using electric vehicle
JP2016109653A (en) * 2014-12-10 2016-06-20 日立化成株式会社 Storage battery system
CN111257763A (en) * 2018-11-30 2020-06-09 凹凸电子(武汉)有限公司 Method and system for calculating remaining capacity of battery
CN111257763B (en) * 2018-11-30 2022-04-22 凹凸电子(武汉)有限公司 Method and system for calculating remaining capacity of battery

Similar Documents

Publication Publication Date Title
JP4872226B2 (en) Secondary battery remaining capacity estimation method, apparatus and battery pack
US11124072B2 (en) Battery control device and electric motor vehicle system
JP5419832B2 (en) Battery capacity calculation device and battery capacity calculation method
US7355411B2 (en) Method and apparatus for estimating state of charge of secondary battery
JP5051661B2 (en) Method and apparatus for estimating SOC value of secondary battery, and degradation determination method and apparatus
US20110109273A1 (en) Available charging / discharging current calculation method and power supply device
JP5419831B2 (en) Battery degradation degree estimation device
US20100017155A1 (en) Battery management system
WO2003061054A1 (en) Method for estimating polarization voltage of secondary cell, method and device for estimating remaining capacity of secondary cell, battery pack system, and electric vehicle
WO2007074614A1 (en) Charged state estimation device and charged state estimation method of secondary battery
WO2005093446A1 (en) Method and equipment for estimating residual capacity of storage battery
JP2005083970A (en) State sensing device and state detection method of secondary battery
JP2004014205A (en) Detection system of battery abnormality and degradation
JP3669202B2 (en) Battery status monitoring device
JP2010217070A (en) Capacity estimation device and vehicle
JP4880451B2 (en) Secondary battery remaining capacity estimation method and apparatus
JP2011137681A (en) Impedance detection circuit, battery power supply apparatus, and battery utilization system
JP2004301780A (en) Battery state monitoring device, its method, and dischargeable capacity detecting method
JP2004245673A (en) Method and device for predicting residual capacity of storage capacitor, and storage capacitor pack
JP5904916B2 (en) Battery soundness calculation device and soundness calculation method
JP2003068370A (en) Detector of charged state of battery
JP2002303658A (en) Method and apparatus for calculating correction coefficient for charged capacity state in battery
JP3692192B2 (en) Battery remaining capacity detector
JP2004301779A (en) Battery state monitoring device and its method
JP3744833B2 (en) Method for determining the life of secondary batteries for electric vehicles

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20050106

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050106

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060117

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060117

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060612

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080528

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081015