JP3879138B2 - Kaplan water turbine speed control system - Google Patents

Kaplan water turbine speed control system Download PDF

Info

Publication number
JP3879138B2
JP3879138B2 JP10898196A JP10898196A JP3879138B2 JP 3879138 B2 JP3879138 B2 JP 3879138B2 JP 10898196 A JP10898196 A JP 10898196A JP 10898196 A JP10898196 A JP 10898196A JP 3879138 B2 JP3879138 B2 JP 3879138B2
Authority
JP
Japan
Prior art keywords
turbine
speed
overspeed
control
speed control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10898196A
Other languages
Japanese (ja)
Other versions
JPH09291875A (en
Inventor
浩一 有阪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP10898196A priority Critical patent/JP3879138B2/en
Publication of JPH09291875A publication Critical patent/JPH09291875A/en
Application granted granted Critical
Publication of JP3879138B2 publication Critical patent/JP3879138B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Hydraulic Turbines (AREA)
  • Control Of Water Turbines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、水力発電所に設置するカプラン水車の調速制御装置に関する。
【0002】
【従来の技術】
従来のカプラン水車用調速制御装置の一例のブロック線図を図4に示す。図中、1は水車及び水理系、2は速度設定部、3は調速制御部、4は開度/開閉指令部、5はGV(ガイドベーン;案内羽根)コンバータ、6はGV配圧弁、7はGVサーボモータ、8はGV復原部であって、前記水車及び水理系1の回転速度検出信号(検出値)を前記速度設定部2の出力信号(速度設定値)と突き合わせ、更にその差と前記復原部8の出力信号を突き合わせて前記調速制御部3の入力としている。
【0003】
9´はGV(案内羽根)−RV(ランナベーン;ランナ羽根)連動制御部、10はRVコンバータ、11はRV配圧弁、12はRVサーボモータ、13はRV復原部であって、このRV復原部13の出力信号を前記調速制御部3の出力信号と突き合わせ、その差を前記GV−RV連動制御部9´の入力としている。
【0004】
従来のカプラン水車用調速制御装置の他の例のブロック線図を図5に示す。この例は、GV、RV制御系列の復原部8、13の出力信号を突き合わせてその差を前記GV−RV連動制御部9´の入力とした点が図4と異なる。
【0005】
両例では、調速制御部3の出力信号を開度/開閉指令部4、GVコンバータ5、GV配圧弁6、GVサーボモータ7のGV制御系列に与えるとともに、GV−RV連動制御部9´を介してRVコンバータ10、RV配圧弁11、RVサーボモータ12のRV制御系列にも与えている。つまり、GVとRVの連動制御により高効率での運転を行うようにしている。GVとRVの連動制御により高効率運転を実現できることは、図6及び図7から理解される。図6はGVサーボモータストローク(GV開度)と水車出力の関係をRV開度をパラメータとして表した特性図、図7はGVサーボモータストローク(GV開度)と水車効率の関係をRV開度をパラメータとして表した特性図である。
【0006】
【発明が解決しようとする課題】
従来例では、常時連動制御を行っているため、負荷遮断などで水車が過速度になった時にもGVの閉動作に追随してRVの閉動作が行われる。この結果、水車の高効率運転状態(実際には、GV閉鎖時間に比べRV閉鎖時間が遅いため、高効率運転状態から若干外れる)が維持されるため、図3に実線で示すように水車・発電機の速度上昇率δnが大きくなる、といった不具合が生じる。
【0007】
そこで本発明は、上記課題を解決し、負荷遮断などによる水車の過速時に水車・発電機の速度上昇率δnを適確に抑制できるカプラン水車用調速制御装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明は、GV制御系列とRV制御系列との間にGV−RV連動制御部を設けたカプラン水車用調速制御装置において、水車の過速を検出する過速検出部を設け、重負荷となるGV開度一定値以上で負荷遮断が行われ、水車が過速となった時のみ、重負荷となるGV開度一定値以上と負荷遮断を連動制御ロック条件として過速検出時に連動制御ロック信号を前記GV−RV連動制御部へ送出するようにしたことを特徴とする。
【0010】
更に本発明は、GV制御系列とRV制御系列との間にGV−RV連動制御部を設けたカプラン水車用調速制御装置において、水車の過速を、水車の回転速度または回転速度上昇時の変化率が一定値以上となったことで検出し、これを単独、または重負荷となるGV開度一定値以上と共に連動制御ロック条件とするようにしたことを特徴とする。
【0011】
【発明の実施の形態】
図1はカプラン水車用調速制御装置を示すブロック線図である。図中、1は水車及び水理系、2は速度設定部、3は調速制御部、4は開度/開閉指令部、5はGV(ガイドベーン;案内羽根)コンバータ、6はGV配圧弁、7はGVサーボモータ、8はGV復原部であって、前記水車及び水理系1の回転速度検出信号(検出値)を前記速度設定部2の出力信号(速度設定値)と突き合わせ、更にその差と前記復原部8の出力信号を突き合わせて前記調速制御部3の入力としている。
【0012】
9はGV(案内羽根)−RV(ランナ羽根)連動制御部、10はRVコンバータ、11はRV配圧弁、12はRVサーボモータ、13はRV復原部であって、このRV復原部13の出力信号を前記調速制御部3の出力信号と突き合わせ、その差を前記GV−RV連動制御部9の入力としている。14は過速検出部で、前記水車及び水理系1の回転速度検出信号を入力とし、過速検出時に連動制御ロック信号を前記GV−RV連動制御部9へ送出するようにしている。
【0013】
次に、動作について述べる。平常の回転速度で水車1が運転されている場合は、GV−RV連動制御部9が機能しており、GV、RVの連動制御が行われている。つまり、高効率運転状態となっている。
【0014】
もし、この状態で負荷遮断が行われると、水車1が過速度となり、これが過速検出部14で検出される。過速検出時に連動制御ロック信号がGV−RV連動制御部9へ送出され、連動制御がロックされる。これにより、水車1は高効率運転状態から外れ、水車1の加速トルクは小さくなる。このため、水車・発電機の速度上昇率δnは図3に2点鎖線で示すように小さな値に抑えられる。
【0015】
図2に本発明の一実施形態のブロック線図を示す。この実施形態では、重負荷をもロック条件とした過速検出部15を用いている。GV開度が一定値以上の時に重負荷と判断するため、GV開度信号、例えばGV復原部8の出力信号を入力としている。水車及び水理系1の回転速度検出信号を入力とすることは、図1と同様である。
【0016】
この場合には、重負荷となるGV開度一定値以上で負荷遮断が行われ水車が過速となった時のみ、連動制御ロック信号が連動制御部9へ送出されて、連動制御がロックされる。この結果、水車・発電機の速度上昇率δnは小さな値に抑えられる。速度上昇率δnの値が問題となるのは重負荷(大出力)時であり、制御性の改善に大いに貢献することになる。
【0017】
なお、上記説明では水車の過速を回転速度検出値から判断したが、水車の回転速度上昇時にその変化率が一定値以上となったことで過速と判断するようにしてもよい。
【0018】
【発明の効果】
以上のように本発明によれば、水車の過速を検出しGV−RV連動制御をロックするようにしたので、負荷遮断などによる水車の過速時に水車・発電機の速度上昇率δnを適確に抑えることができるようになり、安定制御に寄与し得る。特に、重負荷状態における負荷遮断時に有効である。また、同じ速度上昇率δnを許容する場合には、発電機の慣性モーメントを小さくすることができるため、小形化により経済的な発電機を製作できる。
【図面の簡単な説明】
【図1】 カプラン水車用調速制御装置を示すブロック線図。
【図2】 本発明の一実施形態を示すブロック線図。
【図3】 負荷遮断時におけるカプラン水車・発電機の速度上昇率δnの変化を示す曲線図。
【図4】 従来のカプラン水車用調速制御装置の一例を示すブロック線図。
【図5】 従来のカプラン水車用調速制御装置の他の例を示すブロック線図。
【図6】 GVサーボモータストローク(GV開度)と水車出力の関係をRV開度をパラメータとして表した特性図。
【図7】 GVサーボモータストローク(GV開度)と水車効率の関係をRV開度をパラメータとして表した特性図。
【符号の説明】
1…水車及び水理系
2…速度設定部
3…調速制御部
4…開度/開閉司令部
5…GVコンバータ
6…GV配圧弁
7…GVサーボモータ
8…GV復原部
9…GV−RV連動制御部
10…RVコンバータ
11…RV配圧弁
12…RVサーボモータ
13…・RV復原部
14、15…過速検出部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a speed control device for a Kaplan turbine installed in a hydroelectric power plant.
[0002]
[Prior art]
FIG. 4 shows a block diagram of an example of a conventional Kaplan turbine speed control device. In the figure, 1 is a water wheel and hydraulic system, 2 is a speed setting unit, 3 is a speed control unit, 4 is an opening / opening / closing command unit, 5 is a GV (guide vane; guide vane) converter, 6 is a GV pressure distribution valve, 7 is a GV servo motor, 8 is a GV restoration section, and the rotation speed detection signal (detection value) of the water wheel and hydraulic system 1 is matched with the output signal (speed setting value) of the speed setting section 2, and further the difference And the output signal of the restoring unit 8 are matched and used as the input of the speed control unit 3.
[0003]
9 ′ is a GV (guide vane) -RV (runner vane; runner vane) interlocking control unit, 10 is an RV converter, 11 is an RV pressure distribution valve, 12 is an RV servo motor, 13 is an RV restoring unit, and this RV restoring unit The output signal of 13 is matched with the output signal of the speed control unit 3, and the difference is used as the input of the GV-RV interlocking control unit 9 '.
[0004]
A block diagram of another example of a conventional Kaplan turbine speed control device is shown in FIG. This example is different from FIG. 4 in that the output signals of the restoration units 8 and 13 of the GV and RV control series are matched and the difference is input to the GV-RV interlocking control unit 9 ′.
[0005]
In both examples, the output signal of the speed control unit 3 is given to the GV control series of the opening / opening / closing command unit 4, the GV converter 5, the GV pressure distribution valve 6, and the GV servo motor 7, and the GV-RV interlocking control unit 9 ' To the RV control series of the RV converter 10, the RV pressure distribution valve 11, and the RV servo motor 12. That is, high-efficiency operation is performed by interlocking control between GV and RV. It can be understood from FIGS. 6 and 7 that high-efficiency operation can be realized by interlocking control of GV and RV. 6 is a characteristic diagram showing the relationship between the GV servo motor stroke (GV opening) and the turbine output using the RV opening as a parameter, and FIG. 7 is the RV opening showing the relationship between the GV servo motor stroke (GV opening) and the turbine efficiency. It is the characteristic view which expressed as a parameter.
[0006]
[Problems to be solved by the invention]
In the conventional example, since the interlock control is always performed, the RV closing operation is performed following the GV closing operation even when the turbine is overspeeded due to load interruption or the like. As a result, the high-efficiency operation state of the water turbine (actually, the RV close time is slower than the GV close time and slightly deviates from the high-efficiency operation state) is maintained. There is a problem that the generator speed increase rate δ n increases.
[0007]
Accordingly, the present invention has an object to provide a Kaplan turbine speed control device that solves the above-described problems and can appropriately suppress the speed increase rate δ n of the turbine / generator when the turbine is overspeeded due to load interruption or the like. And
[0008]
[Means for Solving the Problems]
The present invention provides a Kaplan turbine for governor control apparatus provided with GV-RV synchronous control unit between the GV control sequence and RV control sequence, provided overspeed detection unit that detects an over-speed of the water wheel, Heavy Duty become GV load shedding in the opening a predetermined value or more is performed, only when the water wheel becomes excessive speed, synchronous control during overrunning detecting load rejection and GV opening certain value or more as a heavy load as synchronous control lock condition A lock signal is sent to the GV-RV interlocking control unit.
[0010]
Furthermore, the present invention provides a Kaplan turbine speed control device in which a GV-RV interlocking control unit is provided between a GV control sequence and an RV control sequence. This is characterized in that it is detected when the rate of change of the value becomes equal to or greater than a certain value, and this is used alone or together with a value greater than the certain value of the GV opening that becomes a heavy load as the interlock control lock condition.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a block diagram showing a speed control device for a Kaplan turbine . In the figure, 1 is a water wheel and hydraulic system, 2 is a speed setting unit, 3 is a speed control unit, 4 is an opening / opening / closing command unit, 5 is a GV (guide vane; guide vane) converter, 6 is a GV pressure distribution valve, 7 is a GV servo motor, 8 is a GV restoration section, and the rotation speed detection signal (detection value) of the water wheel and hydraulic system 1 is matched with the output signal (speed setting value) of the speed setting section 2, and further the difference And the output signal of the restoring unit 8 are matched and used as the input of the speed control unit 3.
[0012]
9 is a GV (guide vane) -RV (runner blade) interlocking control unit, 10 is an RV converter, 11 is an RV pressure distribution valve, 12 is an RV servo motor, 13 is an RV restoring unit, and an output of the RV restoring unit 13 The signal is matched with the output signal of the speed control unit 3, and the difference is input to the GV-RV interlocking control unit 9. Reference numeral 14 denotes an overspeed detection unit which receives the rotational speed detection signal of the water wheel and hydraulic system 1 as an input, and sends an interlock control lock signal to the GV-RV interlock control unit 9 when an overspeed is detected.
[0013]
Next, the operation will be described. When the water turbine 1 is operated at a normal rotation speed, the GV-RV interlocking control unit 9 functions and GV and RV interlocking control is performed. That is, it is in a highly efficient operation state.
[0014]
If the load is interrupted in this state, the water turbine 1 becomes overspeed, and this is detected by the overspeed detection unit 14. When overspeed is detected, the interlock control lock signal is sent to the GV-RV interlock control unit 9, and the interlock control is locked. Thereby, the water turbine 1 is removed from the high-efficiency operation state, and the acceleration torque of the water turbine 1 is reduced. Therefore, the speed increase rate δ n of the water turbine / generator is suppressed to a small value as shown by a two-dot chain line in FIG.
[0015]
FIG. 2 shows a block diagram of an embodiment of the present invention. In this embodiment, the overspeed detection unit 15 that uses a heavy load as a lock condition is used. In order to determine a heavy load when the GV opening is equal to or greater than a certain value, a GV opening signal, for example, an output signal of the GV restoring unit 8 is input. The input of the rotation speed detection signal of the turbine and hydraulic system 1 is the same as in FIG.
[0016]
In this case, the interlock control lock signal is sent to the interlock control unit 9 and the interlock control is locked only when the load is interrupted when the GV opening that is a heavy load exceeds a certain value and the turbine is overspeeded. The As a result, the speed increase rate δ n of the water turbine / generator is suppressed to a small value. The value of the speed increase rate δ n becomes a problem at the time of heavy load (high output), which greatly contributes to improvement of controllability.
[0017]
In the above description, the overspeed of the turbine is determined from the detected rotational speed value. However, when the rotational speed of the turbine is increased, it may be determined that the change rate becomes a certain value or more.
[0018]
【The invention's effect】
As described above, according to the present invention, the overspeed of the water turbine is detected and the GV-RV interlock control is locked. Therefore, the speed increase rate δ n of the water turbine / generator is set at the time of overspeed of the water turbine due to load interruption or the like. It becomes possible to suppress appropriately and can contribute to stable control. This is particularly effective when the load is interrupted in a heavy load state. Further, when the same speed increase rate δ n is allowed, the inertia moment of the generator can be reduced, so that an economical generator can be manufactured by downsizing.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a speed control device for a Kaplan turbine .
FIG. 2 is a block diagram showing an embodiment of the present invention.
FIG. 3 is a curve diagram showing a change in a speed increase rate δ n of a Kaplan turbine / generator when a load is interrupted.
FIG. 4 is a block diagram showing an example of a conventional Kaplan turbine speed control device.
FIG. 5 is a block diagram showing another example of a conventional Kaplan turbine speed control device.
FIG. 6 is a characteristic diagram showing the relationship between the GV servo motor stroke (GV opening) and the turbine output using the RV opening as a parameter.
FIG. 7 is a characteristic diagram showing the relationship between the GV servo motor stroke (GV opening) and the turbine efficiency with the RV opening as a parameter.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Water wheel and hydraulic system 2 ... Speed setting part 3 ... Speed control part 4 ... Opening / opening / closing command part 5 ... GV converter 6 ... GV pressure distribution valve 7 ... GV servo motor 8 ... GV restoring part 9 ... GV-RV interlocking Control unit 10 ... RV converter 11 ... RV pressure distribution valve 12 ... RV servo motor 13 ... RV restoration unit 14, 15 ... Overspeed detection unit

Claims (2)

GV制御系列とRV制御系列との間にGV−RV連動制御部を設けたカプラン水車用調速制御装置において、
水車の過速を検出する過速検出部を設け、重負荷となるGV開度一定値以上で負荷遮断が行われ、水車が過速となった時のみ、重負荷となるGV開度一定値以上と負荷遮断を連動制御ロック条件として過速検出時に連動制御ロック信号を前記GV−RV連動制御部へ送出するようにしたことを特徴とするカプラン水車用調速制御装置。
In the Kaplan turbine speed control device provided with the GV-RV interlocking control unit between the GV control sequence and the RV control sequence,
An overspeed detection unit that detects overspeed of the water turbine is provided, and the load is cut off when the GV opening becomes a heavy load over a certain value , and only when the water wheel becomes overspeed, the constant GV opening becomes a heavy load. The Kaplan turbine speed control device is characterized in that an interlock control lock signal is sent to the GV-RV interlock control unit when overspeed is detected using the above-described load cutoff as the interlock control lock condition.
水車の過速を、水車の回転速度または回転速度上昇時の変化率が一定値以上となったことで検出するようにしたことを特徴とする請求項1に記載のカプラン水車用調速制御装置。  The speed control for a Kaplan turbine according to claim 1, wherein the overspeed of the turbine is detected when the rotational speed of the turbine or the rate of change when the rotational speed increases exceeds a certain value. apparatus.
JP10898196A 1996-04-30 1996-04-30 Kaplan water turbine speed control system Expired - Fee Related JP3879138B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10898196A JP3879138B2 (en) 1996-04-30 1996-04-30 Kaplan water turbine speed control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10898196A JP3879138B2 (en) 1996-04-30 1996-04-30 Kaplan water turbine speed control system

Publications (2)

Publication Number Publication Date
JPH09291875A JPH09291875A (en) 1997-11-11
JP3879138B2 true JP3879138B2 (en) 2007-02-07

Family

ID=14498563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10898196A Expired - Fee Related JP3879138B2 (en) 1996-04-30 1996-04-30 Kaplan water turbine speed control system

Country Status (1)

Country Link
JP (1) JP3879138B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4607492B2 (en) * 2004-05-18 2011-01-05 株式会社日立製作所 Control method and control device for turbine runner vane
CN107939577B (en) * 2017-11-28 2019-04-23 南瑞集团有限公司 A kind of hydrogovernor proportional servo valve on-line fault diagnosis method

Also Published As

Publication number Publication date
JPH09291875A (en) 1997-11-11

Similar Documents

Publication Publication Date Title
EP2434138B1 (en) Power control methods
JP3879138B2 (en) Kaplan water turbine speed control system
JPS607169B2 (en) Turbine control device for driving water pump
JP2008161022A (en) Hydraulic power generator
JP2006274805A (en) Control system of furnace gas recovery turbine
JPH1182279A (en) Speed governing controller for kaplan turbine
US4474528A (en) Water wheel operation control method and apparatus therefor
JP3783838B2 (en) Control device for variable speed pumped storage power generation system
JPS5946373A (en) Controller for speed of water wheel
JP2558671B2 (en) Turbine speed limit method for governorless variable speed turbine generator
JP2735328B2 (en) Control method of water turbine
JPH0732945Y2 (en) Turbine governor controller
JPH0326804A (en) Steam turbine controller
JP2537671Y2 (en) Control device for movable wing turbine
SU1726784A1 (en) Turbine control system
JP4006149B2 (en) Pump turbine
JPH06241158A (en) Variable velocity power generator, variable velocity pumped storage power generator and drive control of them
JPS6323389B2 (en)
JP2755816B2 (en) Operation control method of hydroelectric power plant
JP4269449B2 (en) Pump turbine
JPH0749012Y2 (en) Turbine operation controller for hydroelectric power plant
JPH07116922B2 (en) Turbine controller
JPH09203372A (en) Pump turbine guide vane controlling method for branch channel
JP2001295746A (en) Method for controlling guide vane of hydraulic turbine
JPH05180138A (en) Controller for pelton turbine

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060411

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060627

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061030

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060823

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131117

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees