JP2008161022A - Hydraulic power generator - Google Patents

Hydraulic power generator Download PDF

Info

Publication number
JP2008161022A
JP2008161022A JP2006349720A JP2006349720A JP2008161022A JP 2008161022 A JP2008161022 A JP 2008161022A JP 2006349720 A JP2006349720 A JP 2006349720A JP 2006349720 A JP2006349720 A JP 2006349720A JP 2008161022 A JP2008161022 A JP 2008161022A
Authority
JP
Japan
Prior art keywords
generator
inverter
turbine
rotational speed
waterwheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006349720A
Other languages
Japanese (ja)
Inventor
Toshinobu Nozaki
俊信 野崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Manufacturing Ltd filed Critical Toyo Electric Manufacturing Ltd
Priority to JP2006349720A priority Critical patent/JP2008161022A/en
Publication of JP2008161022A publication Critical patent/JP2008161022A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydraulic power generator using control for restraining rapid torque fluctuations to a waterwheel and an AC generator by preventing the AC generator from being powered for running when engine speed of the waterwheel is controlled in the power generator. <P>SOLUTION: In the hydraulic power generator having at least the waterwheel, the AC generator jointed with the waterwheel, and an inverter for controlling the AC generator as constitutive elements, the inverter is controlled so that the AC generator is not powered for running, an engine speed command to the AC generator at start is gradually reduced from a high speed side, and the engine speed command to the AC generator at stop is gradually reduced to the high speed side. When the AC generator 3 stops, the engine speed command n* is gradually increased to a non-signal reference side, the water amount is decreased, thus restraining unnecessary torque fluctuations to the waterwheel. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は水力発電装置に関し、特に水車の回転数を制御する場合に水車及び交流発電機の急激なトルク変動を抑制した制御を用いた水力発電装置に関する。 The present invention relates to a hydroelectric generator, and more particularly, to a hydroelectric generator using a control that suppresses sudden torque fluctuations of a turbine and an AC generator when controlling the rotational speed of the turbine.

一般に、ダムなどでは落差が変動しても下流の水利を維持するために予め定められた水量を常に放流する必要がある。以下これを維持放流と言う。また自然エネルギーの有効活用から、この水量と落差を利用して水力発電が行われる。 In general, in a dam or the like, it is necessary to always discharge a predetermined amount of water in order to maintain downstream irrigation even if the head fluctuates. Hereinafter, this is referred to as maintenance discharge. In addition, hydroelectric power generation is performed using this amount of water and the head to effectively use natural energy.

維持放流と水力発電を効率よく両立させるためには落差が変動しても一定水量を維持するため水量を調節する必要がある。これには一般的に水車入り口弁の開度調整と水車翼の角度調整で対応している。しかし機構が複雑なうえ系統周波数の制限から調節範囲を広くできないという制約がある。(たとえば、特許文献1) In order to achieve both maintenance discharge and hydropower generation efficiently, it is necessary to adjust the amount of water in order to maintain a constant amount of water even if the head fluctuates. This is generally dealt with by adjusting the opening of the turbine inlet valve and adjusting the angle of the turbine blade. However, the mechanism is complicated and there is a restriction that the adjustment range cannot be widened due to the limitation of the system frequency. (For example, Patent Document 1)

一方水量を調節する他の方法として水車の回転数を制御する方法もある。つまり水車と水車に連結された交流発電機と該交流発電機を制御するインバータとを、少なくとも構成要素とした水力発電装置において、インバータを用いて交流発電機の回転数制御することでも水量が調節できる。そのうえにこの構成によれば交流発電機が系統に直接接続されないので交流発電機回転数は系統周波数の制約を受けることが無く調節範囲も広く選べるという利点がある。 On the other hand, there is a method of controlling the number of rotations of the water turbine as another method of adjusting the amount of water. In other words, the amount of water can be adjusted by controlling the number of revolutions of the AC generator using an inverter in a hydroelectric power generation system comprising at least the components of the turbine and the AC generator connected to the turbine and the inverter that controls the AC generator. it can. In addition, according to this configuration, since the AC generator is not directly connected to the system, there is an advantage that the AC generator speed is not limited by the system frequency and the adjustment range can be selected widely.

交流発電機のインバータによる回転数制御は、回転数指令と実回転数との偏差を、速度制御器を介してトルク指令とし、これと実トルクとの偏差を無くすように交流発電機電流を制御することで行われる。
回転数制御での発電時の交流発電機のトルクの向きは通常はブレーキトルク(吸収トルク)となる。
The rotation speed control by the inverter of the AC generator uses the deviation between the rotation speed command and the actual rotation speed as a torque command via the speed controller, and controls the AC generator current so that the deviation between this and the actual torque is eliminated. It is done by doing.
The direction of the torque of the AC generator at the time of power generation in the rotational speed control is usually the brake torque (absorption torque).

ところが落差が極端に低い場合や運転時の加速、停止時の減速の場合などの過度時には回転数制御をしているためトルクの向きが反転し交流発電機が力行運転する場合がある。この力行運転はエネルギーが交流系統から水車へ向かい、水車はポンプ動作をすることになる。発電運転はエネルギーが水車から交流系統に送出される。
水車の種類にもよるが力行側への運転の切替わりは、その分トルク変動が大きくなり甚だ具合が悪く、水車にはいかなる場合にも力行運転にならない制御方法が要求される。
特開2000−102295公報
However, when the head is extremely low, or when it is excessive such as acceleration during operation and deceleration during stoppage, the rotational speed is controlled, so the direction of the torque may be reversed and the AC generator may be powered. In this power running operation, energy goes from the AC system to the turbine, and the turbine operates as a pump. In power generation operation, energy is sent from the turbine to the AC system.
Depending on the type of turbine, switching to the power running side causes a large torque fluctuation and a poor condition, and the turbine is required to have a control method that does not cause power running in any case.
JP 2000-102295 A

本発明の目的は、上記のような課題を解決し、前述の構成の発電装置において水車の回転数を制御する場合に交流発電機が力行運転にならないようにすることによって水車及び交流発電機への急激なトルク変動を抑制した制御を用いた水力発電装置を提供することにある。 The object of the present invention is to solve the above-described problems and to prevent the alternator from performing a power running operation when controlling the rotation speed of the turbine in the power generation device having the above-described configuration. An object of the present invention is to provide a hydroelectric generator using control that suppresses sudden torque fluctuations.

上記目的を達成するために、本発明の請求項1によれば、水車と水車に連結された交流発電機とその交流発電機を制御するインバータとを少なくとも構成要素とする水力発電装置において、交流発電機が力行しないようにインバータを制御することを特徴とする。 In order to achieve the above object, according to a first aspect of the present invention, in a hydroelectric generator comprising at least the constituent elements of a water turbine, an AC generator connected to the water turbine, and an inverter for controlling the AC generator, The inverter is controlled so that the generator is not powered.

請求項2によれば、水車と水車に連結された交流発電機とその交流発電機を制御するインバータとを少なくとも構成要素とする水力発電装置において、始動時の交流発電機への回転数指令を高速側から漸減するようにしたことを特徴とする。 According to claim 2, in the hydroelectric generator having at least the constituent elements of the water turbine, the AC generator connected to the water turbine, and the inverter that controls the AC generator, a rotational speed command to the AC generator at the time of starting is issued. It is characterized by gradually decreasing from the high speed side.

請求項3によれば、水車と水車に連結された交流発電機とその交流発電機を制御するインバータとを少なくとも構成要素とする水力発電装置において、停止時の交流発電機への回転数指令を高速側へ漸増するようにしたことを特徴とする。 According to claim 3, in the hydroelectric generator having at least the constituent elements of the water turbine, the AC generator connected to the water turbine, and the inverter that controls the AC generator, the rotational speed command to the AC generator at the time of stop is issued. It is characterized by gradually increasing toward the high speed side.

後述するように、従来は交流発電機3(水車1)の始動時は回転数指令n*を信号基準(0V)側から入り口弁の開路による水量の増加に応じて反信号基準側に漸増し所定の回転数に達したところで運転していた。この方法では回転数指令n*の漸増量と水量の増量との関係によっては水車が無負荷運転と発電運転との切替わりを繰り返し、その都度不用なトルク変動を生じ水車に悪影響を及ぼす可能性があった。 As will be described later, conventionally, when the AC generator 3 (water turbine 1) is started, the rotational speed command n * is gradually increased from the signal reference (0V) side to the counter-signal reference side in accordance with the increase in the amount of water due to the opening of the inlet valve. The car was running when it reached the specified speed. In this method, depending on the relationship between the gradual increase in the rotational speed command n * and the increase in the amount of water, the turbine may repeatedly switch between no-load operation and power generation, which may cause unnecessary torque fluctuations and adversely affect the turbine. was there.

本発明によれば、後述の交流発電機3(水車1)の始動時は、予め回転数指令n*を反信号基準側に移動しておいてから始動し、入り口弁の開路による水量の増加に応じて回転数指令n*を信号基準(0V)側に漸減することにより水車は無負荷運転と発電運転との不用な切替わりを繰り返すことなく、滑らかに無負荷運転から発電運転へと切替わり不用なトルク変動を回避できる。 According to the present invention, when the AC generator 3 (water turbine 1), which will be described later, is started, the rotational speed command n * is moved to the counter signal reference side in advance, and the water amount is increased by opening the inlet valve. As a result, the turbine speed is reduced from the no-load operation to the power generation operation smoothly without repeating unnecessary switching between the no-load operation and the power generation operation by gradually decreasing the rotational speed command n * to the signal reference (0V) side. Instead, unnecessary torque fluctuations can be avoided.

また本発明によれば、後述の交流発電機3(水車1)の停止時は、回転数指令n*を反信号基準側に漸増しながら、水量を減じるようにすることによって水車への不要なトルク変動を抑制することができる。 Further, according to the present invention, when an alternator 3 (water turbine 1), which will be described later, is stopped, the amount of water is reduced while gradually increasing the rotational speed command n * to the counter signal reference side, thereby eliminating unnecessary water turbines. Torque fluctuation can be suppressed.

以下図面により本発明の詳細を説明する。
第1図は本発明の構成例を示す。1は水車、2はギア、3は交流発電機、4はインバータ、5は連系インバータ、6は交流系統である。
The details of the present invention will be described below with reference to the drawings.
FIG. 1 shows a configuration example of the present invention. 1 is a water wheel, 2 is a gear, 3 is an AC generator, 4 is an inverter, 5 is an interconnection inverter, and 6 is an AC system.

水車1は水力エネルギーを回転エネルギーに変換し、交流発電機3はそれをさらに電気エネルギーに変換する。インバータ4は交流発電機3が発生するトルクを適切に制御するためのものでこれにより交流発電機3(水車1)の回転数が適切に制御され、交流発電機3が変換した電気エネルギーを連系インバータ5へ送出する。連系インバータ5は送出されたエネルギーを交流系統6へ送り出す。 The water turbine 1 converts hydraulic energy into rotational energy, and the alternator 3 further converts it into electrical energy. The inverter 4 is for appropriately controlling the torque generated by the AC generator 3, whereby the rotational speed of the AC generator 3 (water turbine 1) is appropriately controlled, and the electric energy converted by the AC generator 3 is connected. Send to system inverter 5. The interconnection inverter 5 sends the sent energy to the AC system 6.

ギア2は水車1と交流発電機3の回転数の整合を取るための機構で不用なこともある。
インバータ4と連系インバータ5間は直流で接続されるので交流発電機3の回転数と交流系統6の周波数とは無関係になり相互に干渉することが無いことは明らかである。また水車1の型式や種類、ギア2の有無、交流発電機3は誘導発電機でも同期発電機でも本発明での有効性に変わりは無い。
なおインバータ4と連系インバータ5間及び連系インバータ5と交流系統6との相互間の制御は本発明では関係が無いので説明を省略する。
The gear 2 may be unnecessary as a mechanism for matching the rotational speeds of the water turbine 1 and the AC generator 3.
Since the inverter 4 and the interconnected inverter 5 are connected by direct current, it is clear that the rotational speed of the AC generator 3 and the frequency of the AC system 6 are irrelevant and do not interfere with each other. Further, the type and type of the water wheel 1, the presence or absence of the gear 2, and whether the AC generator 3 is an induction generator or a synchronous generator does not change the effectiveness of the present invention.
Note that control between the inverter 4 and the interconnected inverter 5 and between the interconnected inverter 5 and the AC system 6 is not related in the present invention, and thus the description thereof is omitted.

第2図は第1図の構成のインバータ4の制御ブロックの従来例を示す。第2図においてn*は回転数指令、nは図示していない回転数ピックアップからの回転数フィードバック、7は回転数制御器、τ*はトルク指令、τはトルクのフィードバックで図示していないトルク演算部で求められる。8はトルク制御器でこの出力は電流指令i*となり図示していない電流制御器へ送出される。回転数制御器7の出力であるトルク指令τ*は回転数指令n*と回転数フィードバックnとの大小関係により正または負の極性となる。 FIG. 2 shows a conventional example of a control block of the inverter 4 having the configuration shown in FIG. In FIG. 2, n * is a rotational speed command, n is a rotational speed feedback from a rotational speed pickup (not shown), 7 is a rotational speed controller, τ * is a torque command, and τ is a torque feedback, not shown. It is calculated by the calculation unit. 8 is a torque controller, and this output becomes a current command i * and is sent to a current controller (not shown). The torque command τ *, which is the output of the rotational speed controller 7, has a positive or negative polarity depending on the magnitude relationship between the rotational speed command n * and the rotational speed feedback n.

言い換えれば正と負の両極性になることにより回転数制御を行う。いま仮にトルク指令τ*の正側をブレーキトルクに対応させると負側は力行トルクとなる。したがってトルク指令τ*が負になると交流発電機3(水車1)は力行運転することになり、その分トルク変動が大きくなり水車にとって望ましくない運転形態になる。 In other words, the rotational speed is controlled by having both positive and negative polarities. If the positive side of the torque command τ * is made to correspond to the brake torque, the negative side becomes the power running torque. Therefore, when the torque command τ * becomes negative, the AC generator 3 (water turbine 1) is operated in a power mode, and the torque fluctuation increases correspondingly, resulting in an undesired operation mode for the water turbine.

第3図は前述の不具合を解決した本発明の一実施例を示す。第2図と同じ機能を示すものは同じ番号又は同じ記号で示す。9と10はダイオードであり、ダイオード10のアノードは信号基準(0V)に接続する。 FIG. 3 shows an embodiment of the present invention in which the above-mentioned problems are solved. Those having the same functions as those in FIG. 2 are denoted by the same numbers or the same symbols. Reference numerals 9 and 10 denote diodes, and the anode of the diode 10 is connected to a signal reference (0 V).

またダイオード9とダイオード10は各々のカソードを共通に接続することで正極側の大きい信号が優先されるので結局トルク指令τ*は負にならないようにできる。
実際の構成ではダイオード9とダイオード10の優先回路及び各制御器などの制御構成は演算増幅器やディジタル演算器で構成されることになるが本発明による効果には実現手段による差はない。
Further, the diode 9 and the diode 10 have their cathodes connected in common, so that a large signal on the positive side is given priority, so that the torque command τ * can be prevented from becoming negative after all.
In the actual configuration, the priority configuration of the diode 9 and the diode 10, and the control configuration of each controller, etc. are configured by an operational amplifier or a digital arithmetic unit, but the effect of the present invention is not different by the realization means.

トルク指令τ*が負にならないので交流発電機3(水車1)は力行運転することはなく、その分トルク変動も小さくなり水車にとって好ましい運転形態になる。 Since the torque command τ * does not become negative, the AC generator 3 (water turbine 1) does not perform power running, and the torque fluctuation is reduced accordingly, which is a preferable operation mode for the water turbine.

第4図は本発明の回転数指令の一実施例を示す。第2図、第3図と同じ機能を示すものは同じ番号又は同じ記号で示す。11は電動機構を持った設定器で両端はそれぞれ信号基準(0V)と適当な電位に接続される。摺動子は電動機の回転でその電位がかわり回転数指令n*となる。設定器11の摺動子が信号基準(0V)のとき回転数指令は零にまた反信号基準側のとき最高回転数指令に対応付ける。 FIG. 4 shows an embodiment of the rotational speed command of the present invention. Those having the same functions as those in FIGS. 2 and 3 are denoted by the same reference numerals or symbols. Reference numeral 11 denotes a setting device having an electric mechanism, and both ends thereof are connected to a signal reference (0 V) and an appropriate potential. The electric potential of the slider is changed by the rotation of the electric motor, and the rotation speed command n * is obtained. When the slider of the setting device 11 is the signal reference (0 V), the rotation speed command is set to zero, and when the slider is on the counter signal reference side, the rotation speed command is associated with the maximum rotation speed command.

設定器11は本発明の実施例では電動機構付で説明したがソフトウエアでも構成できることは言うまでもなく、本発明の効果は実現の手段によらず達成できる。 Although the setting device 11 has been described with an electric mechanism in the embodiment of the present invention, it goes without saying that the setting device 11 can also be configured by software, and the effect of the present invention can be achieved regardless of the means of realization.

第1図は本発明の構成例を示す。FIG. 1 shows a configuration example of the present invention. 第2図は第1図の構成のインバータ4の制御ブロックの従来例を示す。FIG. 2 shows a conventional example of a control block of the inverter 4 having the configuration shown in FIG. 第3図は前述の不具合を解決した本発明の一実施例を示す。FIG. 3 shows an embodiment of the present invention in which the above-mentioned problems are solved. 第4図は本発明の回転数指令の一実施例を示す。FIG. 4 shows an embodiment of the rotational speed command of the present invention.

符号の説明Explanation of symbols

1 水車
2 ギア
3 交流発電機
4 インバータ
5 連系インバータ
6 交流系統
7 回転数制御器
8 トルク制御器
9 ダイオード
10 ダイオード
11 設定器
DESCRIPTION OF SYMBOLS 1 Waterwheel 2 Gear 3 Alternator 4 Inverter 5 Interconnected inverter 6 AC system 7 Speed controller 8 Torque controller 9 Diode 10 Diode 11 Setting device

Claims (3)

水車と該水車に連結された交流発電機と該交流発電機を制御するインバータとを少なくとも構成要素とする水力発電装置において、前記交流発電機が力行しないようにインバータを制御することを特徴とする水力発電装置。 In a hydroelectric generator having at least constituent elements, a water turbine, an AC generator connected to the water turbine, and an inverter for controlling the AC generator, the inverter is controlled so that the AC generator does not power. Hydroelectric generator. 始動時の前記交流発電機への回転数指令を高速側から漸減するようにしたことを特徴とする請求項1記載の水力発電装置。 2. The hydroelectric generator according to claim 1, wherein a rotational speed command to the AC generator at the time of starting is gradually reduced from a high speed side. 停止時の前記交流発電機への回転数指令を高速側へ漸増するようにしたことを特徴とする請求項1記載の水力発電装置。






2. The hydroelectric generator according to claim 1, wherein a rotational speed command to the AC generator at the time of stop is gradually increased toward a high speed side.






JP2006349720A 2006-12-26 2006-12-26 Hydraulic power generator Pending JP2008161022A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006349720A JP2008161022A (en) 2006-12-26 2006-12-26 Hydraulic power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006349720A JP2008161022A (en) 2006-12-26 2006-12-26 Hydraulic power generator

Publications (1)

Publication Number Publication Date
JP2008161022A true JP2008161022A (en) 2008-07-10

Family

ID=39661280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006349720A Pending JP2008161022A (en) 2006-12-26 2006-12-26 Hydraulic power generator

Country Status (1)

Country Link
JP (1) JP2008161022A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014214710A (en) * 2013-04-26 2014-11-17 ダイキン工業株式会社 Fluid device
JP2015202008A (en) * 2014-04-10 2015-11-12 株式会社明電舎 Operation stop method for generator and generator system
WO2020196197A1 (en) * 2019-03-28 2020-10-01 ダイキン工業株式会社 Hydroelectric power generation system
US20230086575A1 (en) * 2021-09-23 2023-03-23 Paccar Inc Automated dynamic throttle request filtering

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014214710A (en) * 2013-04-26 2014-11-17 ダイキン工業株式会社 Fluid device
JP2015202008A (en) * 2014-04-10 2015-11-12 株式会社明電舎 Operation stop method for generator and generator system
WO2020196197A1 (en) * 2019-03-28 2020-10-01 ダイキン工業株式会社 Hydroelectric power generation system
US20230086575A1 (en) * 2021-09-23 2023-03-23 Paccar Inc Automated dynamic throttle request filtering

Similar Documents

Publication Publication Date Title
EP3596334B1 (en) Method for operating a hydraulic machine and corresponding installation for converting hydraulic energy into electrical energy
JP4898230B2 (en) Wind power generation system operation control method and apparatus
JP2008161022A (en) Hydraulic power generator
JPH07184400A (en) Pumped storage power generator with variable speed
EP3580448B1 (en) Improvements to the stabilization of hydraulic machines with s-zone characteristics
JP2008062722A (en) Series hybrid type electric vehicle
KR20130012750A (en) Power generation system for ships
JP2003120504A (en) Wind power generation device
JP2017055468A (en) Water turbine acceleration suppression method and device therefor
JP2008253065A (en) Power generating apparatus
KR101506530B1 (en) The device and the method for ramp-up of generator output voltage
JP2006112114A (en) Swing control device for construction machine
JP2006271199A (en) Wind-power generator
JP6133550B2 (en) Engine-driven inverter generator control method and engine-driven inverter generator
WO2007018537A1 (en) System and method for starting a wound rotor motor
JPH0634625B2 (en) Variable speed turbine generator
JP5476327B2 (en) Diesel vehicle drive system control system
JP3915085B2 (en) Variable speed pumped storage power generation controller
JP4387676B2 (en) Power converter for wind power generation
JP4501104B2 (en) Generator starting method and generator
JPS6359798A (en) Water-wheel generator
TW201938455A (en) Electric ship propulsion system including an engine, a generator, a motor, and a propeller
JP4864124B2 (en) Power converter for wind power generation
JPH09289786A (en) Motor drive circuit
JPH06241158A (en) Variable velocity power generator, variable velocity pumped storage power generator and drive control of them