JPS6359798A - Water-wheel generator - Google Patents

Water-wheel generator

Info

Publication number
JPS6359798A
JPS6359798A JP61202039A JP20203986A JPS6359798A JP S6359798 A JPS6359798 A JP S6359798A JP 61202039 A JP61202039 A JP 61202039A JP 20203986 A JP20203986 A JP 20203986A JP S6359798 A JPS6359798 A JP S6359798A
Authority
JP
Japan
Prior art keywords
voltage
power
water turbine
reactive power
setter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61202039A
Other languages
Japanese (ja)
Other versions
JPH0736720B2 (en
Inventor
Hiroshi Yokota
浩 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP61202039A priority Critical patent/JPH0736720B2/en
Publication of JPS6359798A publication Critical patent/JPS6359798A/en
Publication of JPH0736720B2 publication Critical patent/JPH0736720B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Control Of Water Turbines (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

PURPOSE:To stabilize the system, by performing the generating operation of an AC exciting synchronous machine directly connected to a water-wheel at the optimum rotation usually in accordance with the head and output, and by having it act as a system stabilization device in case of trouble with system. CONSTITUTION:In normal operation, switching device 43 and 46 are respectively connected to a reactive power setter 41 and a negative load setter 1, by which a cycloconverter 29 connected to the secondary side of an AC exciting synchronous machine 27 is phase-controlled in accordance with the set values of each setter 41 and 1. On the other hand, when the system frequency exceeds the predetermined value, the switching device 46 is change over to an effective power controller 40 to perform motor operation in high frequency response and generating operation in low frequency response. When the system voltage exceeds the predetermined value, the switching device 1 is changed over to a reactive power controller 39 to perform lagging operation of a generator at low voltage and leading operation at high voltage.

Description

【発明の詳細な説明】 〔産業上の利用分舒〕 電力系統の規模拡大に伴いより複雑化、長距離化する現
在、安定した高品質の電力の供給が求められている。そ
のため静止形無動電力補償装置の設置が盛んに行われて
いる。この発明は水車発電機を使」して有効・無効電力
制御を瞬時に行い、コスト的にも低減をはかることがで
きる系統安定化装置に関するものである。
[Detailed Description of the Invention] [Industrial Applications] Nowadays, power systems are becoming more complex and have longer distances due to expansion in scale, and there is a need for a stable supply of high-quality power. Therefore, the installation of static type non-dynamic power compensators is being actively carried out. This invention relates to a system stabilizing device that uses a water turbine generator to instantaneously control active and reactive power, thereby reducing costs.

〔従来の技術〕[Conventional technology]

従来の水車発電機の構成につき第4図により説明する。 The configuration of a conventional water turbine generator will be explained with reference to FIG.

(1)は起動修止および負荷設定器、(2)は調速機、
(3)はガイドベーンサーボモータ、(4)はガイドベ
ーン操作a構、(5)はガイドベーン、(6)はtI−
管、(7)はスパイラルケーシング、(8)は水車ラン
ナ、(9)はドラフトチューブ、OIは初期励磁用バッ
テリー、0υは初期励磁用コンタクタ、鰺は直流励磁間
!IJ!機、aSは励磁用変圧器、Oaはサイリスク励
磁装置、α9は発電機しゃ断器、061は変圧器、0η
は送電線しゃ断器、Qlは送電線、01は計器用変圧器
、り鴫は変流器、(21)は電圧変換器、(22)は無
効電力変換器、(23)はAVI?−AQR切替スイッ
チ、(24)は点弧制御回路、(25)は自動電圧調整
器(AVR) 、(26)自動無効電力調整器(AQR
)である。
(1) is a starting correction and load setting device, (2) is a speed governor,
(3) is a guide vane servo motor, (4) is a guide vane operation mechanism, (5) is a guide vane, (6) is a tI-
Pipe, (7) is spiral casing, (8) is water turbine runner, (9) is draft tube, OI is battery for initial excitation, 0υ is contactor for initial excitation, and mackerel is between DC excitation! IJ! machine, aS is the excitation transformer, Oa is the Cyrisk excitation device, α9 is the generator breaker, 061 is the transformer, 0η
is a transmission line breaker, Ql is a power transmission line, 01 is an instrument transformer, Rishi is a current transformer, (21) is a voltage converter, (22) is a reactive power converter, (23) is an AVI? -AQR changeover switch, (24) is the ignition control circuit, (25) is the automatic voltage regulator (AVR), (26) automatic reactive power regulator (AQR)
).

次に動作について説明する。起動指令が負荷設定器+1
1に与えられるとガイドベーン(4)、ガバナ(2)、
ガイドヘーンサーボモータ(3)、ガイドヘーン操作機
FvI+41により起動開度まで開けられ、鉄管(6)
、スパイラルケーシング(7)の水が水車ランナ(8)
に供給され、ドラフトチューブ(9)に放流され起動す
る。
Next, the operation will be explained. Start command is load setting device +1
1, the guide vane (4), governor (2),
The guide hone servo motor (3) and the guide hone operating device FvI+41 are used to open the iron pipe (6) to the starting opening position.
, the water in the spiral casing (7) flows into the water wheel runner (8)
and discharged into the draft tube (9) to start up.

水車の回転が上昇し定格速度近くなるとバッテリー Q
QIから初期励磁用コンタクタQ11を通して発電機0
乃に励磁が与えられ電圧が確立すると励磁用変圧器0聾
、サイリスク励Efi装fi 041にて自助運転され
初期励磁用コンタクタ0υは開放される。系統と同期を
とって発電機しゃ断器α9を投入し変圧器01、送電線
しゃ断器01を通って送電線0榎に接続される。
When the rotation of the water turbine increases and approaches the rated speed, the battery Q
Generator 0 from QI through initial excitation contactor Q11
When excitation is applied and voltage is established, the excitation transformer 0 is turned on, self-help operation is performed by the sirisk excitation Efi device 041, and the initial excitation contactor 0υ is opened. The generator breaker α9 is turned on in synchronization with the grid, and the generator is connected to the power transmission line 0 Enoki through the transformer 01 and the power line breaker 01.

サイリスタQ41の制御はAVR運転であれば切替回路
(23)をAVR側にして計器用変圧器側、変換器(2
1)にて発電機電圧を入力しAVR(25)に基準電圧
との偏差によりAVR運転を行う。一方AQI?運転で
あれば切替回路(23)をAQR側にして変流器な田、
計器用変圧器O1より無効電力変換器(22)にて無効
電力を積出し、AQII (26)にて設定無効電力と
の偏差によりAQR運転を行う。
For AVR operation, thyristor Q41 is controlled by switching the switching circuit (23) to the AVR side, the voltage transformer side, and the converter (23) to the AVR side.
In step 1), the generator voltage is input to the AVR (25) to perform AVR operation based on the deviation from the reference voltage. On the other hand, AQI? For operation, set the switching circuit (23) to the AQR side and use a current transformer.
A reactive power converter (22) outputs reactive power from the instrument transformer O1, and AQR operation is performed based on the deviation from the set reactive power at AQII (26).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の水車発電機は以上のように構成されているので、
電力系統の周波数や電圧が変わってもガバナやAVR,
AQRでゆっくりと設定電力、電圧、無効電力になるよ
うに制御するのみであるため、せっかく大きな回転モー
メン1−(ED”)を持ったり、系統の弱い山側の末端
系統にありながら、系統安定度を積極的に向上させるよ
うな運転ができないなどの問題点があった。
A conventional water turbine generator is configured as described above.
Even if the frequency or voltage of the power grid changes, the governor, AVR,
Since the AQR only controls the power, voltage, and reactive power to reach the set value slowly, it is difficult to maintain system stability even though it has a large rotational moment 1-(ED") and is located at the end of the system on the mountain side where the system is weak. There were problems such as the inability to drive in a way that would actively improve the driver's performance.

この発明は上記のような問題点を解消するためになされ
たもので、系統の周波数が規定値以上変化した場合は過
渡的に水車発電機の比較的大きなGO”に貯えられた回
転エネルギーを有効電力として放出(水車発電機の回転
は一時的に減速)またはGDtに貯えて有効電力を吸収
(水車発電機の回転は一時的に増速)し系統安定化を計
ると共に系統電圧が規定値以上変化した場合は過渡的に
遅相または進相運転をして系統電圧を維持させるよ・う
にできる瞬時電力調整能力を持った水車発電機を得るこ
とを目的とする。
This invention was made to solve the above problems, and when the frequency of the system changes beyond a specified value, the rotational energy stored in the relatively large GO" of the water turbine generator is temporarily utilized. It is released as electric power (the rotation of the water turbine generator is temporarily slowed down) or stored in GDt to absorb active power (the rotation of the water turbine generator is temporarily increased) to stabilize the system and ensure that the system voltage is above the specified value. The purpose of the present invention is to obtain a water turbine generator that has an instantaneous power adjustment ability that can maintain the grid voltage by transiently slowing or advancing phase operation when the voltage changes.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に関する水車発電機は、発電機として^ESM
を使い、その2次をサイクロコンバータにより制御する
ようにして平常時は規定負荷に対する最適回転数制御を
行い、制御を工夫して系統異常時は瞬間電力調整装置と
したものである。
The water turbine generator related to this invention is ^ESM as a generator.
The secondary system is controlled by a cycloconverter to achieve optimal rotational speed control for a specified load during normal times, and the control is devised to provide an instantaneous power adjustment device in the event of a system abnormality.

〔作用〕[Effect]

この発明におけるサイクロコンバータは平常時は通常の
負荷に応じた最適回転数による発電運転を行う為の位相
制御を行い、系統異常時は切替えて系統安定化装置とし
て位相制御をする。
The cycloconverter according to the present invention performs phase control during normal times to perform power generation operation at an optimum rotation speed according to the normal load, and when a system abnormality occurs, it switches and performs phase control as a system stabilizing device.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。第1
図において、第4図と同一符号は同一または相当品であ
る。(27)は^εS1で(27−1)はAESMの固
定子、(27−2)は回転子、(27−3)は交流励磁
用のスリップリング、(28)は位相検出器、(29)
はサイクロコンバータ、(30)は変圧器、(31)は
位相検出器、(32)は座標変換器、(33)は計器用
変圧器、(34)は位相検出器、(35)は電圧変換器
、(36)は周波数変換器、(37)は基準電圧設定器
、(38)は基準周波数設定器、(39)は無効電力制
御器、(40)は有効電力制御器、(41)は無効電力
設定器、(42)は系統電圧異常検出器、(43)は切
替器、(44)はdt!th電流制御器、(45)は系
統周波数異常検出器、(46)は切替器、(47)はq
軸電流制御器、(48)は座標変換器(49)は位相差
検出器、(50)はサイクロコンバータの位相制御器で
ある。
An embodiment of the present invention will be described below with reference to the drawings. 1st
In the figure, the same reference numerals as in FIG. 4 indicate the same or equivalent parts. (27) is ^εS1, (27-1) is the stator of AESM, (27-2) is the rotor, (27-3) is the slip ring for AC excitation, (28) is the phase detector, (29 )
is a cycloconverter, (30) is a transformer, (31) is a phase detector, (32) is a coordinate converter, (33) is an instrument transformer, (34) is a phase detector, and (35) is a voltage converter. (36) is a frequency converter, (37) is a reference voltage setter, (38) is a reference frequency setter, (39) is a reactive power controller, (40) is an active power controller, (41) is a Reactive power setting device, (42) is system voltage abnormality detector, (43) is switching device, (44) is dt! th current controller, (45) is a system frequency abnormality detector, (46) is a switch, (47) is a q
(48) is a coordinate converter; (49) is a phase difference detector; (50) is a cycloconverter phase controller.

次に本発明の動作について説明する。Next, the operation of the present invention will be explained.

第2図の上図は系統周波数の変動を示しており、平常時
は一点鎖線の範囲内で変動している。第3図の上図は系
統電圧の変動を示しており、やはり平常時は一点鎖線内
の範囲内で変動している。系統の周波数及び電圧が正常
であれば各々(42) 、 (45)にて正常であるこ
とを検出し、切替器(43) 、 (46)は各々無効
電力設定器(41)、負荷設定器(1)側に接続されて
いる。まず平常時の動作について説明する。ΔESM(
27)は回転速度が変わっても、系統周波数と一致する
ように2次励磁の周波数を調整してやれば、系統との並
列運転が可能である。従来の水車発電機は回転数が一定
であるため、負荷が小さくなると効率が大巾に低下して
いたが、負荷の大小により回転数を可変にすることによ
り効率の低下を少なくすることが可能であることは周知
の通りである。そこで水車発電機の起動は従来機と同様
に行い系統に並列後は設定負荷と設定無効電力になるよ
うに+11と(41)の指令値になるように位相制御機
(50)でサイクロコンバータ(29)を制御し調速機
(2)でガイドベーン(5)を制御して最通回転数で運
転される。
The upper diagram in Figure 2 shows fluctuations in the system frequency, and under normal conditions it fluctuates within the range indicated by the dashed line. The upper diagram in FIG. 3 shows fluctuations in the system voltage, which also fluctuates within the range within the dashed-dotted line during normal times. If the frequency and voltage of the grid are normal, they are detected to be normal at (42) and (45), respectively, and the switching devices (43) and (46) are activated by the reactive power setting device (41) and the load setting device, respectively. (1) side is connected. First, normal operation will be explained. ΔESM(
27) allows parallel operation with the grid even if the rotational speed changes by adjusting the secondary excitation frequency to match the grid frequency. Conventional water turbine generators have a constant rotation speed, so efficiency drops significantly when the load decreases, but by making the rotation speed variable depending on the load size, it is possible to reduce the drop in efficiency. As is well known, Therefore, the water turbine generator is started in the same way as the conventional model, and after being paralleled to the grid, the phase controller (50) is used to set the command values of +11 and (41) to the set load and set reactive power. 29), and the guide vane (5) is controlled by the speed governor (2) to operate at the maximum rotational speed.

方向の成分をIq、これより90″遅れた成分をIdと
すれば、有効電力P、無効電力Qは P=3Re(VXI”)=3Re (V(Iq+jld
)) =3VIq (l]Q=31m(Vxl”)=3
1s (V(Iq+jld)) =3VId (2)と
なり、Iqを制御すればP即ち電力が制御され、Idを
制御すればQ即ち無効電力が制御できることも周知の通
りである。
If the component in the direction is Iq, and the component delayed by 90" is Id, then the active power P and the reactive power Q are P=3Re(VXI")=3Re (V(Iq+jld
)) =3VIq (l]Q=31m(Vxl”)=3
1s (V(Iq+jld)) = 3VId (2), and it is well known that if Iq is controlled, P, that is, the power, can be controlled, and if Id is controlled, Q, that is, the reactive power can be controlled.

次に系統異常発生時の動作について説明する。Next, the operation when a system abnormality occurs will be explained.

まず、第2図の上図は系統周波数で一点鎖線の規定値を
超えると異常であることを検出器(45)が検出しく4
6)を負荷設定器(1)側から有効′1a力制御器(4
0)側に切替える。周波数が高い時は水車発電機で電力
を吸収(エネルギーを蓄積するため回転は上昇するがサ
イクロコンバータの位相制御で並列運転継続できる)、
即ち電動機運転を行い周波数上昇を抑制して点線のごと
く引きもどす。逆に周波数が下降した場合は水車発電機
で電力を放出(水車発電機は減速する)即ち発電運転を
行い周波数降下を抑制して点線のごとく周波数を安定化
する。この様子を図示したのが第2図の下図である。放
置しておくと実線のごとく脱調して系統がつぶれてしま
う。
First, the upper part of Figure 2 shows that the detector (45) does not detect an abnormality when the system frequency exceeds the specified value indicated by the dashed line.
6) from the load setting device (1) side to the effective '1a force controller (4).
0) side. When the frequency is high, the water turbine generator absorbs power (the rotation increases to store energy, but parallel operation can be continued by controlling the phase of the cycloconverter),
That is, the electric motor is operated to suppress the frequency increase and return the frequency as shown by the dotted line. Conversely, when the frequency drops, the water turbine generator releases power (the water turbine generator decelerates), that is, performs power generation operation to suppress the frequency drop and stabilize the frequency as shown by the dotted line. The lower diagram in Figure 2 illustrates this situation. If left unattended, the system will go out of step as shown by the solid line and the system will collapse.

次に第3図の上図は系統電圧で一点鎖線の規定値を超え
ると異常であることを異常検出器(42)が検出しく4
3)を無効電力設定器(41)側から無効電力制御器(
39)側に切替える。電圧が低い時は水車発電機を遅れ
運転、即ち強め励磁運転を行い系統電圧降下を抑制して
点線のごとく引きもどし、逆に電圧が上昇した場合は水
車発電機を進み運転、即ち弱め励磁運転を行い電圧上昇
を抑制して点線のごとく電圧を安定化する。この様子を
図示したのが第3図の下図である。放置しておくと実線
のごとく異常電圧でやはり系統がつぶれてしまう。
Next, the upper part of Figure 3 shows that the abnormality detector (42) detects an abnormality when the system voltage exceeds the specified value indicated by the dashed line.
3) from the reactive power setting device (41) side to the reactive power controller (
39) side. When the voltage is low, the water turbine generator is operated in a delayed manner, i.e., in strong excitation mode, to suppress the system voltage drop and pulled back as shown by the dotted line.On the other hand, when the voltage increases, the water turbine generator is operated in advance, in other words, in weak excitation mode. This suppresses the voltage rise and stabilizes the voltage as shown by the dotted line. The lower diagram in FIG. 3 illustrates this situation. If left as is, the system will collapse due to abnormal voltage as shown by the solid line.

〔発明の効果〕〔Effect of the invention〕

本発明による水車発電機は以上のように構成されている
ので、通常は落差と出力に応じた最適回転での発電運転
ができるため高効率であり、系統事故時には比較的GO
”が大きいことを利用して系統安定化装置として作用す
るため、通常水力発電所は山側の系統の弱い末端に設置
されているが系統全体の安定化に役立つ水車発′r!!
、機を促供できる利点がある。
Since the water turbine generator according to the present invention is configured as described above, it is highly efficient because it can normally generate power at the optimum rotation according to the head and output, and is relatively efficient in the event of a system accident.
Hydroelectric power plants are usually installed at the weak end of the system on the mountain side because they act as a system stabilizer by taking advantage of the large size of the water wheel, which helps stabilize the system as a whole.
, it has the advantage of facilitating opportunities.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による水車発電機の運転接
続図、第2図、第3図はこの発明の動作を示す系統特性
図、第4図は従来の水車発電機の運転接続図である。 図において、+11は起動、修止および負荷設定器、(
5)はガイドベーン、(6)は鉄管、(7)はスパイラ
ルケーシング、(8)は水車ランナ、(9)はドラフト
チューブ、aつは発電機しゃ断器、0槌は変圧器、αη
は送電線しゃ断器、Olは送電線、α匂は計器用変圧器
、Qlは変流器、(27)はAS門Eで(27−1)は
ASMHの固定子、(27−2)は回転子、(27−3
)は交流励磁用のスリップリング、(28)は位相検出
器、(29)はサイクロコンバータ、(30)は変圧器
、(31)は位相検出器、(32)は座標変換器、(3
3)は計器用変圧器、(34)は位相検出器、(35)
は電圧変換器、(36)は周波数変換器、(37)は基
準電圧設定器、(38)は基準周波数設定器、(39)
は無効電力制御器、(40)は有効電力制御器、(41
)は無効電力設定器、(42)は系統電圧異常検出器、
(43)は切替器、(44)はd軸電流制御器、(45
)は系統周波数異常検出器、(46)は切替器、(47
)はqthb電流制御器、(4日)は座標変換器、(4
9)は位相差検出器、(50)はサイクロコンバータの
位相制御器である。 各図中、同一符号は同−又は相当部分を示す。 代理人    大  岩  増  雄 手続補正書(自発)
Fig. 1 is an operational connection diagram of a water turbine generator according to an embodiment of the present invention, Figs. 2 and 3 are system characteristic diagrams showing the operation of this invention, and Fig. 4 is an operational connection diagram of a conventional water turbine generator. It is. In the figure, +11 is the start, repair and load setting device, (
5) is a guide vane, (6) is an iron pipe, (7) is a spiral casing, (8) is a water turbine runner, (9) is a draft tube, a is a generator breaker, 0 is a transformer, αη
is the transmission line breaker, Ol is the transmission line, α is the instrument transformer, Ql is the current transformer, (27) is AS gate E, (27-1) is the ASMH stator, (27-2) is Rotor, (27-3
) is a slip ring for AC excitation, (28) is a phase detector, (29) is a cycloconverter, (30) is a transformer, (31) is a phase detector, (32) is a coordinate converter, (3
3) is an instrument transformer, (34) is a phase detector, (35)
is a voltage converter, (36) is a frequency converter, (37) is a reference voltage setter, (38) is a reference frequency setter, (39)
is a reactive power controller, (40) is an active power controller, (41
) is a reactive power setting device, (42) is a grid voltage abnormality detector,
(43) is a switch, (44) is a d-axis current controller, (45)
) is the grid frequency abnormality detector, (46) is the switch, (47
) is the qthb current controller, (4th) is the coordinate converter, (4th
9) is a phase difference detector, and (50) is a cycloconverter phase controller. In each figure, the same reference numerals indicate the same or corresponding parts. Agent Masuo Oiwa Procedural amendment (voluntary)

Claims (1)

【特許請求の範囲】[Claims] 水車に交流励磁同期機(以下AESMと称す)を直結し
常時は指令電力と指令無効電力に従ってAESMの2次
側に設けられたサイクロコンバータの位相と水車のガイ
ドベーンを制御して最適回転数で発電運転を行い、系統
事故で系統側周波数または電圧が規定のデッドバンドを
超えて変動した場合は通常の発電運転を停止し電力系統
安定化のための瞬時電力・無効電力制御装置として機能
させるべく構成したことを特徴とした水車発電機。
An AC excitation synchronous machine (hereinafter referred to as AESM) is directly connected to the water turbine, and the phase of the cycloconverter installed on the secondary side of the AESM and the guide vanes of the water turbine are always controlled according to the commanded power and commanded reactive power to maintain the optimal rotation speed. During power generation operation, if the frequency or voltage on the grid side fluctuates beyond the specified dead band due to a grid fault, normal power generation operation is stopped and the device functions as an instantaneous power/reactive power control device to stabilize the power system. A water turbine generator characterized by the following configuration.
JP61202039A 1986-08-27 1986-08-27 Turbine generator Expired - Lifetime JPH0736720B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61202039A JPH0736720B2 (en) 1986-08-27 1986-08-27 Turbine generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61202039A JPH0736720B2 (en) 1986-08-27 1986-08-27 Turbine generator

Publications (2)

Publication Number Publication Date
JPS6359798A true JPS6359798A (en) 1988-03-15
JPH0736720B2 JPH0736720B2 (en) 1995-04-19

Family

ID=16450920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61202039A Expired - Lifetime JPH0736720B2 (en) 1986-08-27 1986-08-27 Turbine generator

Country Status (1)

Country Link
JP (1) JPH0736720B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63114599A (en) * 1986-10-30 1988-05-19 Hitachi Ltd Variable speed power generator
JPS6447297A (en) * 1987-08-14 1989-02-21 Hitachi Ltd Generator-motor
EP1830447A1 (en) * 2006-03-02 2007-09-05 ABB Research Ltd Converter control unit using time-stamped voltage or current phasors

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101039544B1 (en) 2008-08-14 2011-06-09 미츠비시 쥬고교 가부시키가이샤 Wind turbine generator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS537628A (en) * 1976-07-08 1978-01-24 Rorer Inc William H Amidinourea
JPS6198200A (en) * 1984-10-19 1986-05-16 Kansai Electric Power Co Inc:The Excitation control system
JPS6299677A (en) * 1985-10-25 1987-05-09 Kansai Electric Power Co Inc:The Operation control system for variable speed pumping-up power generating system
JPS6352699A (en) * 1986-08-19 1988-03-05 Hitachi Ltd Controller for variable speed generator-motor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS537628A (en) * 1976-07-08 1978-01-24 Rorer Inc William H Amidinourea
JPS6198200A (en) * 1984-10-19 1986-05-16 Kansai Electric Power Co Inc:The Excitation control system
JPS6299677A (en) * 1985-10-25 1987-05-09 Kansai Electric Power Co Inc:The Operation control system for variable speed pumping-up power generating system
JPS6352699A (en) * 1986-08-19 1988-03-05 Hitachi Ltd Controller for variable speed generator-motor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63114599A (en) * 1986-10-30 1988-05-19 Hitachi Ltd Variable speed power generator
JPS6447297A (en) * 1987-08-14 1989-02-21 Hitachi Ltd Generator-motor
EP1830447A1 (en) * 2006-03-02 2007-09-05 ABB Research Ltd Converter control unit using time-stamped voltage or current phasors
WO2007098632A2 (en) * 2006-03-02 2007-09-07 Abb Research Ltd Converter control unit using time-stamped voltage or current phasors
WO2007098632A3 (en) * 2006-03-02 2007-11-08 Abb Research Ltd Converter control unit using time-stamped voltage or current phasors
US7973427B2 (en) 2006-03-02 2011-07-05 Abb Research Ltd Converter control unit

Also Published As

Publication number Publication date
JPH0736720B2 (en) 1995-04-19

Similar Documents

Publication Publication Date Title
CN112003310B (en) Coordinated control method for speed regulator and converter of variable-speed pumped storage unit in working condition conversion process
JP5470091B2 (en) Wind power generation system and control method thereof
WO2012176771A1 (en) Control method and control system for parallel operation of different types of power generation apparatuses
CA2895270A1 (en) Control method and control system for parallel operation between different types of power generator
JPS5972998A (en) Operating method for variable speed water wheel generator
CN113013902A (en) Coordinated control method for speed regulator and converter of variable-speed pumped storage unit in working condition conversion process
JP2555407B2 (en) AC excitation power generator
JP2614242B2 (en) Pumping operation stop control method of AC excitation synchronous machine
US5148093A (en) System for controlling AC excited synchronous machine
JPS6359798A (en) Water-wheel generator
JP2660126B2 (en) Frequency fluctuation suppression device
CN108105024B (en) SFC starting control method
JP3915085B2 (en) Variable speed pumped storage power generation controller
JP3911598B2 (en) AC excitation type generator motor
JP7475048B2 (en) Method and apparatus for paralleling induction generators
JP3130192B2 (en) Secondary excitation control method for AC excitation synchronous machine
JP6967995B2 (en) Engine generator system and its control method as well as cogeneration system
JP2889254B2 (en) Variable speed pumped storage power generation control device
JP2858139B2 (en) Variable speed generator
JP2521646Y2 (en) Voltage control device for main shaft drive generator
JP2513277B2 (en) Operating method of AC excitation synchronous machine
JP2009047087A (en) Pumping power generation device and its control method
JPH06241158A (en) Variable velocity power generator, variable velocity pumped storage power generator and drive control of them
JPS596573B2 (en) Transient stabilization method for power transmission lines
JP2003339196A (en) Excitation controller of variable speed pumped storage power generation motor