JPS6198200A - Excitation control system - Google Patents

Excitation control system

Info

Publication number
JPS6198200A
JPS6198200A JP59219884A JP21988484A JPS6198200A JP S6198200 A JPS6198200 A JP S6198200A JP 59219884 A JP59219884 A JP 59219884A JP 21988484 A JP21988484 A JP 21988484A JP S6198200 A JPS6198200 A JP S6198200A
Authority
JP
Japan
Prior art keywords
excitation
phase
output
voltage
defect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59219884A
Other languages
Japanese (ja)
Other versions
JPH0326038B2 (en
Inventor
Tadaatsu Kato
加藤 忠厚
Hiroto Nakagawa
博人 中川
Goo Nohara
野原 哈夫
Masuo Goto
益雄 後藤
Shusuke Sawa
沢 秀典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Hitachi Ltd
Original Assignee
Kansai Electric Power Co Inc
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Hitachi Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP59219884A priority Critical patent/JPS6198200A/en
Publication of JPS6198200A publication Critical patent/JPS6198200A/en
Publication of JPH0326038B2 publication Critical patent/JPH0326038B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/14Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field

Abstract

PURPOSE:To suppress the variation in the terminal voltage of a variable speed regulator at system defect time by providing means for calculating the time of applying the strengthened amount of an excitation on the basis of a defect phase, a slip and a machine constant when a defect occurs at a system side. CONSTITUTION:A defect state discriminator 24 judges the phase and the degree of a defect from the voltage and the current of a generator. An exciting phase controller 25 calculates the phase to be strengthened in the excitation from the machine constant, operating state and the defect state on the basis of the signal from the discriminator 24. A calculator 27 takes the difference between a terminal voltage Et and a reference voltage EtO, and a converter 28 converts the output to a slip frequency. A switch 29 is closed when the output of the converter 28 is applied to the excitor. The closing time of the switch 29 is controlled by the output of the controller 25. A calculator 30 adds the exciting amount before strengthening the excitation from the converter 26 and the strengthened amount of the excitation from the switch 29, and supplies it to an excitation amount setter 17.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、2次励磁付の誘導機によシ任意の回転数で運
転できる可変速発電システムの励磁制御方式に係シ、特
に系統事故時に可変速機の端子電圧の変動を抑制する励
磁制御方式に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to an excitation control method for a variable speed power generation system that can be operated at any rotation speed using an induction machine with secondary excitation, and is particularly applicable to the This invention relates to an excitation control method for suppressing fluctuations in terminal voltage of a variable speed machine.

〔、発明の背景〕[, Background of the invention]

従来の可変速発電システムは、揚水時に負荷の調整がで
きないこと、発電運転時に系統から要求される発電力の
変化によシシステムの効率が変化すること、揚水運転時
に揚程等の変化によシシステムの効率が変化することと
いう不都合があった。
Conventional variable speed power generation systems have the following problems: the load cannot be adjusted during pumping, the efficiency of the system changes due to changes in the generated power required from the grid during power generation operation, and the efficiency of the system changes due to changes in head etc. during pumping operation. The disadvantage was that the efficiency of the system varied.

このような不都合を解消するため、発電力や揚程にかか
わ、らず、上記システムを最高効率で運転させるための
研究が進められている。この研究は従来の同期機である
揚水発電機を2次励磁付の誘導機で運転する、いわゆる
可変速発電システムとするという方向に進んでいる。こ
のように可変速発電システムとすることによシ発電力、
揚程にかかわらず、そのシステムを最高効率で運転する
ことが可能となるとされている。そこで、かかる可変速
発電システムを実現するための研究が進められている。
In order to eliminate these inconveniences, research is underway to operate the above system at maximum efficiency, regardless of power generation or lift. This research is progressing in the direction of creating a so-called variable speed power generation system in which a conventional synchronous pumped storage generator is operated by an induction machine with secondary excitation. In this way, by using a variable speed power generation system, the generated power can be
It is said that it will be possible to operate the system at maximum efficiency regardless of the lift height. Therefore, research is underway to realize such a variable speed power generation system.

このような可変速発電システムについては、例えば昭和
59年電気学会全国大金論文、4553、「大容量同期
電動機の可変速運転特性」において発表されているもの
の、事故時に生ずる端子電圧の変動を小さくするための
具体的な励磁制御方式については、何らふれられていな
い。
Regarding such a variable speed power generation system, for example, it was announced in the 1981 National Institute of Electrical Engineers of Japan paper, 4553, "Variable speed operation characteristics of large capacity synchronous motor", There is no mention of a specific excitation control method for this purpose.

〔発明の目的〕[Purpose of the invention]

本発明は上述した点に鑑みてなされたものであシ、その
目的は発電及び揚水の各種運転状態で、可変速発電シス
テムを高効率で運転すると共に、系統事故時に可変速機
の端子電圧の変動を抑制する励磁制御方式を提供するこ
とにある。
The present invention has been made in view of the above points, and its purpose is to operate a variable speed power generation system with high efficiency under various operating conditions of power generation and pumping, and to reduce the terminal voltage of the variable speed machine in the event of a system fault. An object of the present invention is to provide an excitation control method that suppresses fluctuations.

〔発明の概要〕[Summary of the invention]

本発明は2次励磁付の訪導機を任意の回転数で運転し、
2次励磁をすペシ周波数で行う可変速発電システムにお
いて、系統側の事故発生時に、事故相、すペシおよび該
機械定数をもとに励磁の強化量を印加する時点を算出す
る手段を設け、この手段の出力をもとに励磁の強化量を
印加する開閉器を閉成することによシ、各相銀に励磁を
与える時点を制御できるようにしたものである。
The present invention operates a visiting machine with secondary excitation at an arbitrary rotation speed,
In a variable speed power generation system in which secondary excitation is performed at a frequency of 1000 Hz, when an accident occurs on the grid side, a means is provided for calculating the point at which an enhanced amount of excitation is applied based on the fault phase, 500 Hz and the mechanical constant, By closing a switch that applies an enhanced amount of excitation based on the output of this means, it is possible to control the timing at which excitation is applied to each phase of silver.

〔発明の実施例〕[Embodiments of the invention]

以下、本拠明の実施例を説明子るが、その前に本発明の
基礎となった事□項を□説明する。 □゛。
Hereinafter, we will explain the embodiments of the present invention, but first we will explain the matters that formed the basis of the present invention. □゛.

第2図は可変速発電システムの概要を示すものである。Figure 2 shows an overview of the variable speed power generation system.

同図において、1は固定子、2は回転子である。  。In the figure, 1 is a stator and 2 is a rotor.  .

また、5a〜5Cは固定子のa、b、C相巻線を、6a
〜6Cは回転子のal b、 C相巻線をそれぞれ示す
ものである。さらに、定格周波数をflすベシをSとす
ると、回転子2の速度はf(1−8)であるので、回転
子2の励磁巻線6a〜6Cをすべbsの周波数で励磁す
れば、回転子20回転磁界は、すベシ零(同期速度)で
回転することになシ、これに伴って固定子1の回転磁界
速度と同一の速度となる。7は回転子2の回転数を測定
する測定部であり、この測定部7からの出力を壬ベシ検
出部3に供給する。このすペシ検出部3ですベシ周波数
を検出し、その検出した値を電圧発生部   4に与え
る。電圧発生部4はすベシ周波数に応じた電圧を発生さ
せ、2次巻線6a〜6Cを励磁する。このようにするこ
とによシ、任意の回転数で回転を行っても、単に2次巻
線6a〜6Cに、系統周波数の電圧を発生させることが
できる。すなわち、第一回あ例では回転子2の回転磁界
は、f (1−8)+fS=f    ・・・・・・(
1)となシ、すベシにかかわらず、定格周□波数の出力
が固定子lから得られることになる。
In addition, 5a to 5C are the a, b, and C phase windings of the stator, and 6a
~6C shows the ALB and C phase windings of the rotor, respectively. Furthermore, if the rated frequency fl is S, the speed of the rotor 2 is f(1-8), so if the excitation windings 6a to 6C of the rotor 2 are all excited at the frequency bs, the rotation The rotary magnetic field of the child 20 does not rotate at zero (synchronous speed), and accordingly has the same speed as the rotating magnetic field speed of the stator 1. Reference numeral 7 denotes a measuring section that measures the number of rotations of the rotor 2, and supplies the output from this measuring section 7 to the rotational speed detecting section 3. This speed detection section 3 detects the frequency and gives the detected value to the voltage generation section 4. The voltage generating section 4 generates a voltage according to the frequency, and excites the secondary windings 6a to 6C. By doing so, even if the rotation is performed at an arbitrary number of rotations, a voltage at the system frequency can be simply generated in the secondary windings 6a to 6C. That is, in the first example, the rotating magnetic field of rotor 2 is f (1-8) + fS = f ...... (
1) Regardless of whether it is wide or wide, an output of the rated frequency □ wave number will be obtained from the stator l.

第3図は本実施例の基礎となった可変速発電システムの
具体例を示すブロック図であって可変速機1.2が系統
に接続され、運転されている場合が示されている。10
は電力系統を、1及び2は第2図と同一の固定子及び回
転子をそれぞれ示している。静落差H及び出力′指令P
aが指令値算出回路15に与えられると、この指令値算
出回路15は、効率を考慮したガバナ弁の開度指令値H
v及び速度指令値N、を算出する。14は調速機の弁開
度設定器であり、この弁開度設定機14は指令値算出回
路15よりの開度指令値Hvを取シ込み、この弁開度指
令値Hvを基に時間遅れをもって弁開度が設定され、こ
れによシ調速機の弁開度が定まる。13は水車特性部で
あシ、この水車特性部13は静落差H1弁開度設定器1
4からの調速機の弁開度及び速度発電機からの回転数N
で定まる。この水車特性部13に応じて、可変速機の回
転子2は回転する、速度発電機11は回転子2の回転を
検出できるようになっておシ、これの、出力によシ、速
度が検出される。19は電流変成器、20は電圧変成器
であシ、これらの出力は有効電力算出部21に供給され
る。この有効電力算出部21は、゛電流変成器19及び
電圧変成器20からの出力をもとに、有効電力Pを算出
し出力する。16は2次巻線の相差角算出部であシ、こ
の相差角算出部16は、有効電力算出部21からの出力
、出力指令PO1指令値算出回路15からの速度指令値
N0、速度奪電機11からの速度Nをもとに位相差を算
出して算出部17に出力する。算出部17は上記出力か
ら2次回路(223〜22C)の励磁量を設定する。1
8は電圧調整部であシ、該電圧調整部18は電圧変成器
20からの電圧信号□をもとに励磁量の電圧値を制御す
る。移相部23a、23b、23Cは設定部17で設定
した励磁量を取シ込み、これをもってa、b、C相に励
磁量を与えるものである。22a、 22b 。
FIG. 3 is a block diagram showing a specific example of the variable speed power generation system that is the basis of this embodiment, and shows a case where the variable speed machine 1.2 is connected to the grid and is in operation. 10
1 and 2 show the same stator and rotor as in FIG. 2, respectively. Static head H and output' command P
When a is given to the command value calculation circuit 15, this command value calculation circuit 15 calculates the governor valve opening command value H in consideration of efficiency.
v and speed command value N, are calculated. Reference numeral 14 denotes a valve opening setting device of the speed governor. This valve opening setting device 14 receives the opening command value Hv from the command value calculation circuit 15, and calculates the time based on this valve opening command value Hv. The valve opening degree is set with a delay, and this determines the valve opening degree of the speed governor. 13 is a water turbine characteristic section, and this water turbine characteristic section 13 is a static head H1 valve opening setting device 1.
The valve opening degree of the speed governor from 4 and the rotation speed N from the speed generator
It is determined by The rotor 2 of the variable speed machine rotates according to the water turbine characteristic section 13. The speed generator 11 can detect the rotation of the rotor 2, and the speed changes depending on the output. Detected. 19 is a current transformer, 20 is a voltage transformer, and the outputs of these are supplied to an active power calculation section 21. The active power calculating section 21 calculates and outputs the active power P based on the outputs from the current transformer 19 and the voltage transformer 20. Reference numeral 16 denotes a phase difference angle calculation unit of the secondary winding, and this phase difference angle calculation unit 16 calculates the output from the active power calculation unit 21, the output command PO1, the speed command value N0 from the command value calculation circuit 15, and the speed deprivation machine. The phase difference is calculated based on the speed N from 11 and output to the calculation unit 17. The calculation unit 17 sets the amount of excitation of the secondary circuit (223 to 22C) from the above output. 1
Reference numeral 8 denotes a voltage adjustment section, and the voltage adjustment section 18 controls the voltage value of the excitation amount based on the voltage signal □ from the voltage transformer 20. The phase shifting parts 23a, 23b, and 23C take in the amount of excitation set by the setting part 17, and apply the amount of excitation to the a, b, and C phases using this. 22a, 22b.

22Cは移相部23a〜23cで移相された励磁量によ
、9a、b、c相が励磁される励磁巻線であ置した場合
には、第6図の実線Aに示すように系統事故時に端子電
圧がすベシ周波数で変動する。
If 22C is an excitation winding in which phases 9a, b, and c are excited by the amount of excitation phase shifted by the phase shifters 23a to 23c, the system will be as shown by the solid line A in FIG. In the event of an accident, the terminal voltage fluctuates at a constant frequency.

このため系統事故時であっても端子電圧がすべυ周波数
で変動しないような励磁方式を確立する必要があるので
あるう 本発明は第3図における励磁量の電圧値を制御する電圧
調整部18の最適システムを確立しようとするものであ
る。
For this reason, it is necessary to establish an excitation method that prevents the terminal voltage from fluctuating at all υ frequencies even in the event of a system fault. The aim is to establish an optimal system for

次に、本発明の一実施例を第・4図によシ具体的に説明
する。
Next, one embodiment of the present invention will be specifically explained with reference to FIG.

第4図は、2次励磁付の訪導機によシ任意の回転数で運
転できるいわゆる可変速発電システムを示す系統図であ
る。可変速発電機0貫は、送電線りを介して系統10に
接続されている。送電線りには、電圧変成器20及び電
流変成器19が設置されている。
FIG. 4 is a system diagram showing a so-called variable speed power generation system that can be operated at any rotation speed using a visiting machine with secondary excitation. The variable speed generator 0 is connected to the grid 10 via a power transmission line. A voltage transformer 20 and a current transformer 19 are installed on the power transmission line.

また、揚水発電機には、フランシス水車が使用されてい
るのが一般的である。かかる水車の水車出力とそれの効
率との関係は第5図に示すような関係となっている。第
5図は、横軸に水車出力が縦軸に効率がとられており、
回転数をパラメータとして示されたものである。P l
 e P 2は水車出力を、η区、η2は効率を、N、
、Nsは回転数を示している。この図は出力P1では回
転数N、で、出力P2では回転数Nzで、それぞれの出
力にお′ける最高効率η1.η雪となることを示してい
るのである。このように、出力Pに応じて、効率ηが最
高となる回転数Nは異っており、本発明はまずこれらの
最高効率の点で運転しようとするものであムかつ系統事
故時にも可変速機の端子電圧の変動をなくしたものであ
る。
Additionally, a Francis turbine is commonly used for pumped storage power generators. The relationship between the output of the water turbine and its efficiency is as shown in FIG. In Figure 5, the horizontal axis shows the water turbine output and the vertical axis shows the efficiency.
This is shown using the rotation speed as a parameter. P l
e P2 is the water turbine output, η section, η2 is the efficiency, N,
, Ns indicates the number of rotations. This figure shows the maximum efficiency η1 at the output P1 at the rotation speed N, and the rotation speed Nz at the output P2 at each output. This indicates that it will snow. As described above, the rotational speed N at which the efficiency η is the highest varies depending on the output P, and the present invention aims to operate at the point of maximum efficiency, and is also possible in the event of a system accident. This eliminates fluctuations in the terminal voltage of the transmission.

第4図において、可変速発電システムGK (第3゛図
では固定子1で回転子2)は、操作端Tから発電機に要
求される発電力の指令Poが与えられると発電機の特性
、水の落差を考慮した上で、高効率な運転ができるよ□
う、発電機の回転数No、水車のガバナ弁Vの開度Hv
が制御指令部Cにおいて求められ、これらの値にあうよ
うな運転ができるよう制御されている。尚、制御指令部
Cは、第3図における要素13〜18.23a 〜23
cによシ構成される。また、21は有効電力算出部、1
1は速度発電機、Exは励磁回路である。このような状
態で、発電機出力の低下指令が与えられると、あらかじ
め与えられている手法によシ、発電機出力、水の落差を
もとに、発電機の効率が最高となるよう、回転数、弁開
度を制御し、効率のよい運転を行うことになる。
In FIG. 4, the variable speed power generation system GK (stator 1 and rotor 2 in FIG. 3) changes the characteristics of the generator when a command Po for the generated power required for the generator is given from the operating end T. Highly efficient operation is possible by considering the head of water□
U, rotation speed No of the generator, opening degree Hv of the governor valve V of the water turbine
are determined by the control command unit C, and control is performed so that the operation can meet these values. Note that the control command unit C includes elements 13 to 18, 23a to 23 in FIG.
It is composed of c. Further, 21 is an active power calculation unit; 1
1 is a speed generator, and Ex is an excitation circuit. In such a situation, when a command to reduce the generator output is given, the rotation is adjusted to maximize the efficiency of the generator based on the generator output and water head using a pre-specified method. By controlling the number and valve opening degree, efficient operation can be achieved.

一方、発電機回転数の定格よシのずれは、励磁回路Ex
の情報として、すベシ周波数を用いることにより、前述
のように、定格周波数の出力の得られることになる。
On the other hand, the deviation of the generator rotation speed from the rated value is caused by the excitation circuit Ex
As described above, by using the sub-frequency as information on the rated frequency, an output at the rated frequency can be obtained.

次に2次励磁の具体例について説明する。第3図に示す
ように、3相の2次励磁巻線は、次のようにあられされ
る。すなわち、第4図の操作端Tよシ与えられた指令に
よp、a、b、c相の励磁量をうるための関数のうちの
位相角Δδを求める。
Next, a specific example of secondary excitation will be explained. As shown in FIG. 3, the three-phase secondary excitation winding is constructed as follows. That is, the phase angle Δδ of the functions for obtaining the excitation amounts of the p, a, b, and c phases is determined based on the command given from the operating end T in FIG.

a、b、c相の励磁電圧を、Vla、V、b。The excitation voltages of phases a, b, and c are Vla, V, and b.

vt、とすると、 Vf a=Esin(7r f s t+δ。+Δδ)
v t b =Esla (2πfst+δG+Δδ−
120’)Vl 、=Esia(2πfst+δ0+Δ
a−240°)・・・・・・(2) と表わされる。ここで、Eはすペシ及び可変速機°の運
転状態で定まる電圧値、δGは可変速機の運転状態で定
まる位相角、Δδは制御指令部の出力で制御される位相
角とする。上式を用いて、制御を行う場合に、無効電力
の制御指令に対しては、電圧Eで、有効電力の制御指令
に対しては、位相角Δδで制御すればよい。
vt, then Vf a=Esin(7r f s t+δ.+Δδ)
v t b =Esla (2πfst+δG+Δδ−
120') Vl ,=Esia(2πfst+δ0+Δ
a-240°)...(2) Here, E is a voltage value determined by the speed and the operating state of the variable speed machine, δG is a phase angle determined by the operating state of the variable speed machine, and Δδ is a phase angle controlled by the output of the control command section. When performing control using the above equation, control may be performed using voltage E for a reactive power control command, and control using a phase angle Δδ for an active power control command.

第4図において、送電線りの地点Fで事故が起き、70
m5で2回線で構成されている送電線の1回線を開放し
た場合″の端子電圧の変化を第6図に示す。同図に示さ
れる波形Aよシ明らかなように端子電圧には、振動があ
られれ、この周波数はすベシ周波数となっている。これ
は、励磁の位相には無関係にAVRによυ励磁を強めて
いるためである。
In Figure 4, an accident occurred at point F on the power transmission line, and the
Figure 6 shows the change in terminal voltage when one line of a transmission line consisting of two lines is opened at m5.As is clear from waveform A shown in the figure, the terminal voltage has vibration Unfortunately, this frequency is the highest frequency.This is because the AVR strengthens υ excitation regardless of the phase of excitation.

この理由は次のように考えられる。すなわち、AVRに
より励磁が強められた時の励磁部の一相の等何回路は第
7図のように示される。ここでEs1n(2πfs’t
+θ)は、励磁強化後の*、’ Eosim(+rfa
t+θ)は励磁強化前の値、ΔEs1a (2rfst
+0)は励磁の強化量、L、R,をそれぞれ2次回路の
インダクタンス及び抵抗、2πf”sはすべり角周波数
、fは電源周波数、θは励磁強化証印加持の位相角とす
る。
The reason for this is thought to be as follows. That is, when the excitation is strengthened by the AVR, a one-phase equal number circuit of the excitation section is shown as shown in FIG. Here Es1n(2πfs't
+θ) is *, 'Eosim(+rfa) after excitation reinforcement
t+θ) is the value before excitation reinforcement, ΔEs1a (2rfst
+0) is the amount of excitation reinforcement, L and R are the inductance and resistance of the secondary circuit, respectively, 2πf''s is the slip angle frequency, f is the power supply frequency, and θ is the phase angle of the excitation reinforcement application.

この時の励磁強化による電流Δiは、 このように、励磁回路のすペシ周波数におけるイン(−
ダンス、励磁強化時の、位相(のによシ定まる過度直流
分が生ずる。この励磁電流で励磁さ、れ不ため、端子電
圧にはすべり周波数の変動分が蛋する。上記(3)式の
(θ−ψ)を零とすることによシ励磁電流の過渡直流谷
を零とすることができる。
The current Δi due to excitation reinforcement at this time is as follows:
During dance and excitation reinforcement, a transient DC component determined by the phase (phase) is generated. As the excitation current is not excited or not, the terminal voltage is affected by the fluctuation of the slip frequency. By setting (θ−ψ) to zero, the transient DC valley of the excitation current can be made zero.

効果が生じるようにAVRを制御すればよい。対強化量
が印加されるように制御すればよく、a。
The AVR may be controlled to produce the effect. What is necessary is to control so that the amount of reinforcement is applied, and a.

b、c相に関しては、120度の位相差を持゛たせれば
よい。
Regarding the b and c phases, a phase difference of 120 degrees may be provided.

次に、具体的にその位相を制御する方式についてのべる
Next, a method for specifically controlling the phase will be described.

可変速機の励磁電圧は、第8図の波形Aに示すようにす
べり周波数(f3)で変動しているが、事故発生後は第
8図破線の波形Bで示すような大きさで変化させる必要
がある。この時、同図ψで□示すように、前述の通シθ
と等しい角度おくれ死時点tPで励磁を与えればθ−ψ
=0となるので、過渡直流分が生じない。具体的には、
第3図の移相部23a、23b、23cのうち、AVR
によシ強化される址を活す時点を制御すればよいことが
理解できる。そこで本発明は、第1図に示すように構成
したものである。
The excitation voltage of the variable speed machine fluctuates at the slip frequency (f3) as shown in waveform A in Figure 8, but after the accident occurs, it changes as shown in waveform B in the broken line in Figure 8. There is a need. At this time, as shown by ψ in the same figure, the above-mentioned through θ
If excitation is given at the dead point tP with an angle delay equal to , θ−ψ
= 0, so no transient DC component occurs. in particular,
Among the phase shifters 23a, 23b, and 23c in FIG.
You can understand that all you have to do is control the point in time when you can take advantage of the power that will be strengthened. Therefore, the present invention is constructed as shown in FIG.

第1図は、本発明に係る励磁制御方式の実施例を示すも
のであって、AVRによシ強化される励磁量を制御する
ための具体例について示したものである。
FIG. 1 shows an embodiment of the excitation control method according to the present invention, and shows a specific example for controlling the amount of excitation enhanced by AVR.

同図において、ブロック1,2.・11〜21は、第3
図と同一の機能を示す。ブロック24は事故状況判定部
であり、この事故状況判定部24は発電機の電圧、電流
より事故の相及びその度合を判定する。この事故状況判
定部24は、実際には、従来・よシ用いちれている低電
圧継電器あるいは過電流継電器の機能を各相に設けるこ
とで足シる。
In the figure, blocks 1, 2 .・11 to 21 are the third
Shows the same functionality as in the figure. Block 24 is an accident situation determination section, and this accident situation determination section 24 determines the phase of the accident and its degree from the voltage and current of the generator. In reality, this accident situation determining section 24 is implemented by providing each phase with the function of a low voltage relay or an overcurrent relay, which have been conventionally used frequently.

25は励磁位相制御部であシ、この励磁位相制御部25
は、事故状況判定部24で事故検出した場合に与えられ
る信号により作動し、この信号が与えられたときのみ、
励磁を強めるだめ、前述のように機械定数、運転状態及
び事故様相よシ励磁を強化する位相を算出し、この位相
に従って制御する。実際には、第7図(C)に示す開閉
器SWを閉じる時点゛を制御する。
25 is an excitation phase control section, and this excitation phase control section 25
is activated by a signal given when an accident is detected by the accident situation determination unit 24, and only when this signal is given,
In order to strengthen the excitation, the phase at which the excitation is to be strengthened is calculated based on the mechanical constants, operating conditions, and accident type as described above, and control is performed according to this phase. In reality, the timing at which the switch SW shown in FIG. 7(C) is closed is controlled.

・ここで図中符号、26〜30は第3図に示す電圧調整
部18の構成について詳細に記したものであシ1.変換
部26は基準電圧Ftoをすペシ周波数に変換する部分
であシ、第7図Φ)に示す励磁強化前の励磁電圧E6 
sin (2πf’st+θ)の算出部に相当する。2
7は演算部であ夛、演算部27は端子電圧B1と基準電
圧Etaの差を取る。28は変換部であシ、変換部28
は、この出力をすべり周波数に変換する。変換部28は
第7図(C)に示すΔEs1n(Zrfst十〇)に相
当する信号を作成する。
・Here, reference numerals 26 to 30 in the figure indicate details of the configuration of the voltage regulator 18 shown in FIG. The converter 26 is a part that converts the reference voltage Fto into a frequency, and the excitation voltage E6 before excitation reinforcement is shown in FIG. 7 Φ).
This corresponds to a calculation unit for sin (2πf'st+θ). 2
7 is a calculation section, and the calculation section 27 calculates the difference between the terminal voltage B1 and the reference voltage Eta. 28 is a conversion unit, conversion unit 28
converts this output to slip frequency. The converter 28 creates a signal corresponding to ΔEs1n (Zrfst 10) shown in FIG. 7(C).

29は開閉器であシ、開閉器29は、変換部28の出力
を励磁に印加する場合に閉路する。この開閉器29の閉
路時点は、励磁位相制御部25の出力によシ制御される
。30は演算部であシ、演算部30は変換部29からの
励磁強化前の励磁量と、開閉器29からの励磁の強化量
を加算する。この演算部30からの出力をもとに、励磁
量設定部17の励磁量を算出する。
29 is a switch, and the switch 29 closes when the output of the converter 28 is applied to excitation. The closing point of this switch 29 is controlled by the output of the excitation phase control section 25. 30 is an arithmetic unit, and the arithmetic unit 30 adds the excitation amount from the conversion unit 29 before excitation reinforcement and the amount of excitation reinforcement from the switch 29. Based on the output from the calculation section 30, the excitation amount of the excitation amount setting section 17 is calculated.

このようにすることによシ本実施例は第6図の成形Bに
示す状態にすることかで趣るのである。
By doing this, the present embodiment is improved by creating the state shown in molding B in FIG. 6.

〔発明の効呆〕[Efficacy of invention]

本発明によれば、可変速発電システムにおいて、系統事
故時の端子電圧の変動を抑制できるため、安定度が著し
く向上する。
According to the present invention, in a variable speed power generation system, fluctuations in terminal voltage at the time of a system fault can be suppressed, so stability is significantly improved.

また、本発明によれば、変動分をまかなうために、昼間
は発電、夜間は揚水として運転する揚水発電システムに
おいて、系統よシ要求される種々の′シカに対して、効
率よく運転できる利点がある。
In addition, according to the present invention, in a pumped storage power generation system that operates to generate electricity during the day and pump water at night in order to cover fluctuations, there is an advantage that it can be operated efficiently against various types of deer that are required by the system. be.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を実現する制御装置の概要を示
すブロック図、第2図は可変速揚水発電システムの原理
概要を示すブロック図、第3図は可変速揚水発電システ
ムの制御装置の概要を示すブロック図、第4図は本願の
概要を示すブロック図、第5図は出力と効率の関係を示
す波形図、第6図は事故時の端子電圧変動曲線を示す波
形図、第7図は端子電圧の変動を説明するために示す等
価回路図、第8図は端子電圧の変動を抑制すること全説
明するために示す波形図である。 Ex・・・励磁回路、GI・・・可変速発電システム、
L・・・送電線、C・・・制御指令部、T・・・操作端
、l・・・固定子、2・・・回転子、3・・・すベシ検
出部、4・・・電圧発生部、5a〜5C・・・固定子の
a、b、c相巻線、6a〜6C・・・回転子のa、b、
C相巻線、7・・・回転数測定部、10・・・系統、1
1・・・速度発電機、 13・・・水車特性部、14・
・・調速機の弁開度設定部、15・・・指令値算出回路
、16・・・2次巻線相差角算出部、17・・・2次巻
線励磁量設定部、18・・・電圧y4整部、19・・・
電流変成器、20、・・・電圧変成器、21・・・有効
電力算出部、22a〜22C・・・2励磁磁のa、b、
c相巻線、Po・・・出力指令値、N。 ・・・速度指令値、N・・・速度、23a〜23C・・
・移相部、24・・・事故状況判定部、25・・・励磁
位相制御部。
Fig. 1 is a block diagram showing an overview of a control device that implements an embodiment of the present invention, Fig. 2 is a block diagram showing an overview of the principle of a variable speed pumped storage power generation system, and Fig. 3 is a control device of a variable speed pumped storage power generation system. 4 is a block diagram showing an overview of the present application, FIG. 5 is a waveform diagram showing the relationship between output and efficiency, FIG. 6 is a waveform diagram showing the terminal voltage fluctuation curve at the time of an accident, FIG. 7 is an equivalent circuit diagram shown to explain fluctuations in terminal voltage, and FIG. 8 is a waveform diagram shown to fully explain suppressing fluctuations in terminal voltage. Ex...excitation circuit, GI...variable speed power generation system,
L...Power transmission line, C...Control command unit, T...Operation end, l...Stator, 2...Rotor, 3...Surface detection unit, 4...Voltage Generation part, 5a to 5C... stator a, b, c phase windings, 6a to 6C... rotor a, b,
C phase winding, 7... Rotation speed measuring section, 10... System, 1
DESCRIPTION OF SYMBOLS 1... Speed generator, 13... Water turbine characteristic part, 14...
... Governor valve opening setting section, 15... Command value calculation circuit, 16... Secondary winding phase difference angle calculation section, 17... Secondary winding excitation amount setting section, 18...・Voltage y4 regular part, 19...
Current transformer, 20, Voltage transformer, 21, Active power calculation unit, 22a to 22C, 2 excitation magnets a, b,
c-phase winding, Po...output command value, N. ...Speed command value, N...Speed, 23a to 23C...
- Phase shift section, 24... Accident situation determination section, 25... Excitation phase control section.

Claims (1)

【特許請求の範囲】[Claims] 1、2次励磁付の誘導機を任意の回転数で運転し2次励
磁をすべり周波数で行う可変速発電システムにおいて、
系統側の事故発生時に、事故発生した相に関する情報と
、すべりおよび該機械定数とをもとに、励磁の強化量の
印加する時点を算出する手段を設け、この手段の出力を
もとに励磁の強化量を印加するための開閉器を閉じるこ
とにより、各相毎に励磁を与える時点を制御できること
を特徴とした励磁制御方式。
1. In a variable speed power generation system that operates an induction machine with secondary excitation at an arbitrary rotation speed and performs secondary excitation at a slip frequency,
When an accident occurs on the grid side, a means is provided to calculate the point in time to apply the excitation reinforcement amount based on information about the phase where the accident occurred, slippage, and the mechanical constant, and excitation is applied based on the output of this means. An excitation control method characterized by being able to control the point in time when excitation is applied to each phase by closing a switch for applying an amount of reinforcement.
JP59219884A 1984-10-19 1984-10-19 Excitation control system Granted JPS6198200A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59219884A JPS6198200A (en) 1984-10-19 1984-10-19 Excitation control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59219884A JPS6198200A (en) 1984-10-19 1984-10-19 Excitation control system

Publications (2)

Publication Number Publication Date
JPS6198200A true JPS6198200A (en) 1986-05-16
JPH0326038B2 JPH0326038B2 (en) 1991-04-09

Family

ID=16742559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59219884A Granted JPS6198200A (en) 1984-10-19 1984-10-19 Excitation control system

Country Status (1)

Country Link
JP (1) JPS6198200A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6359798A (en) * 1986-08-27 1988-03-15 Mitsubishi Electric Corp Water-wheel generator
JPS63114599A (en) * 1986-10-30 1988-05-19 Hitachi Ltd Variable speed power generator
JPS63137000A (en) * 1986-11-28 1988-06-09 Hitachi Ltd Operation controlling method for variable speed pumping-up generator system
JPS63136999A (en) * 1986-11-28 1988-06-09 Hitachi Ltd Command value calculation method for variable speed pumping-up generator system
JPS63140698A (en) * 1986-12-01 1988-06-13 Hitachi Ltd Operation controller for variable speed pumped-storage power generating system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6359798A (en) * 1986-08-27 1988-03-15 Mitsubishi Electric Corp Water-wheel generator
JPS63114599A (en) * 1986-10-30 1988-05-19 Hitachi Ltd Variable speed power generator
JPS63137000A (en) * 1986-11-28 1988-06-09 Hitachi Ltd Operation controlling method for variable speed pumping-up generator system
JPS63136999A (en) * 1986-11-28 1988-06-09 Hitachi Ltd Command value calculation method for variable speed pumping-up generator system
JPH0634632B2 (en) * 1986-11-28 1994-05-02 株式会社日立製作所 Variable speed pumped storage system
JPH0650959B2 (en) * 1986-11-28 1994-06-29 株式会社日立製作所 Variable speed pumped storage system
JPS63140698A (en) * 1986-12-01 1988-06-13 Hitachi Ltd Operation controller for variable speed pumped-storage power generating system

Also Published As

Publication number Publication date
JPH0326038B2 (en) 1991-04-09

Similar Documents

Publication Publication Date Title
Jovanovic et al. Encoderless direct torque controller for limited speed range applications of brushless doubly fed reluctance motors
US8253393B2 (en) Method and a controlling arrangement for controlling an AC generator
Chaal et al. Practical implementation of sensorless torque and reactive power control of doubly fed machines
US8686695B2 (en) Direct power and stator flux vector control of a generator for wind energy conversion system
JP2006522578A (en) Synchronous electric machine having one stator and at least one rotor and related control device
Poddar et al. Sensorless double-inverter-fed wound-rotor induction-machine drive
Kaukonen Salient pole synchronous machine modelling in an industrial direct torque controlled drive application
CN104753279A (en) Single-armature synchronous motor with AC frequency-conversion inductive brushless excitation
JPS62110499A (en) Operation control for variable speed pumping-up power generation system
CN104967384A (en) Doubly-fed wind generator stator and rotor magnetic linkage synchronous flux-weakening control method under power grid failure
Chaal et al. Direct power control of brushless doubly-fed reluctance machines
JPS6198200A (en) Excitation control system
Mbukani et al. Performance analysis of a PLL-based sensor-less control of rotor-tied DFIG systems
Gidwani A comparative power quality study of DFIG and PMSG based wind energy conversion system
JPH10313598A (en) Pumped storage power generation facility
CN113659629B (en) Synchronous computerized power electronic grid-connected device and control method thereof
JPS61247299A (en) Operation controlling method for variable speed generator system
GÜNDOĞDU et al. Performance analysis of open loop v/f control technique for six-phase induction motor fed by A multiphase inverter
JP3515275B2 (en) Variable speed generator motor
Fujita et al. Occurrence and suppression of DC-flux deviations in a doubly-fed flywheel generator system
JPS60219983A (en) Drive controller of induction motor
JPS6299677A (en) Operation control system for variable speed pumping-up power generating system
JPH0576278B2 (en)
JPH0634628B2 (en) Variable speed pumped storage system operation controller
JPS6198197A (en) Operation control system

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term