JPS6299677A - Operation control system for variable speed pumping-up power generating system - Google Patents
Operation control system for variable speed pumping-up power generating systemInfo
- Publication number
- JPS6299677A JPS6299677A JP60237391A JP23739185A JPS6299677A JP S6299677 A JPS6299677 A JP S6299677A JP 60237391 A JP60237391 A JP 60237391A JP 23739185 A JP23739185 A JP 23739185A JP S6299677 A JPS6299677 A JP S6299677A
- Authority
- JP
- Japan
- Prior art keywords
- frequency
- variable speed
- governor
- output
- value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/20—Hydro energy
Landscapes
- Control Of Water Turbines (AREA)
- Supply And Distribution Of Alternating Current (AREA)
- Control Of Velocity Or Acceleration (AREA)
- Control Of Eletrric Generators (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は、2次励磁付の誘導機により任意の回転数で運
転できる可変速発電システムの運転制御方式に係り、特
に揚水のガバナフリー運転時に安定に制御するために好
適な運転制御方式に関する、〔発明の背景〕
従来の揚水発電システムは、揚水時に負荷の調整ができ
ないこと、及び、発電運転及び揚水運転時に、)%aよ
り要求される発電力の変化ならびに揚水時の揚程等の変
化により、システムの効率が変化するという欠点があっ
た。[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to an operation control method for a variable speed power generation system that can be operated at any rotation speed using an induction machine with secondary excitation, and particularly relates to an operation control method for a variable speed power generation system that can be operated at any rotation speed using an induction machine with secondary excitation. [Background of the Invention] Regarding an operation control method suitable for stable control, conventional pumped storage power generation systems cannot adjust the load during pumping, and during power generation operation and pumping operation, There was a drawback that the efficiency of the system changed due to changes in power generation and the head during pumping.
このため1発電力、揚程にかかわらず、上記システムを
最高効率で運転させるための研究が進められている。上
記目的を達成するため、昭和59年電気学会全国大会論
文No553r大容量同期電動機の可変速運転特性」で
知られるように従来の同期機である揚水発電機を2次励
磁付の誘導機で運転する、いわゆる可変速発電システム
とすることにより、発電力、揚程にかかわらず、システ
ムの最高効率で運転が可能であるとの観点より、これを
実現するための研究が進められている。しかし、このよ
さなシステムに関しては、前記のような論文があるが、
具体的な制御方式については、ふれられていない。For this reason, research is underway to operate the above system at maximum efficiency regardless of power generation or lift. In order to achieve the above objectives, we operated a pumped storage generator, which is a conventional synchronous machine, with an induction machine with secondary excitation, as known in the 1981 Institute of Electrical Engineers of Japan National Conference Paper No. 553r Variable Speed Operation Characteristics of Large Capacity Synchronous Motor. From the viewpoint that by creating a so-called variable speed power generation system, the system can be operated at its highest efficiency regardless of power generation or head, research is being conducted to realize this. However, there are papers like the one mentioned above regarding this good system.
There is no mention of specific control methods.
本発明は、上記欠点を補い、揚水時の各種運転状態で、
高効率で運転する可変速揚水発電システムにおいて、ガ
バナフリー運転時に安定に制御する運転制御方式を提供
することにある。The present invention compensates for the above drawbacks and enables
The purpose of the present invention is to provide an operation control method that provides stable control during governor-free operation in a variable speed pumped storage power generation system that operates with high efficiency.
本発明は、可変速揚水発電システムにおける揚水のガバ
ナフリー運転時に安定に制御する方式を提案するもので
ある。任意のポンプ出力をつる運転条件は、揚程、回転
数及びガバナのペン開度との関連より定まる。このうち
、本システムの効率は回転数及びペン開度で定まる。こ
のため、揚程と回転数が定まったとき、最高効率となる
ようにペン開度を制御することになる。一方、上記の回
転数は、ポンプ出力と電動機入力との差で定まる。The present invention proposes a method for stably controlling pumped water during governor-free operation in a variable speed pumped storage power generation system. The operating conditions for obtaining a given pump output are determined by the relationship between the pump head, rotation speed, and governor pen opening. Among these, the efficiency of this system is determined by the rotation speed and pen opening degree. Therefore, when the lift height and rotation speed are determined, the pen opening degree is controlled to achieve the highest efficiency. On the other hand, the above rotation speed is determined by the difference between the pump output and the electric motor input.
このため、電動機入力を指令値にあわせるように2次励
磁電圧の位相角を制御する必要がある。2次励磁付の誘
導機である本システムでは、このように、2次励磁電圧
の位相角を制御すると共に、ガバナ弁開度を制御するこ
とになる。Therefore, it is necessary to control the phase angle of the secondary excitation voltage so that the motor input matches the command value. In this system, which is an induction machine with secondary excitation, the phase angle of the secondary excitation voltage is controlled in this way, and the governor valve opening degree is also controlled.
具体的には、ガバナフリー運転時には、電力の指令値と
実際の値との差及び周波数の目標値と実際の値との差を
電力に変換した値を用いて、前記位相角を制御すると共
に、実際の回転数を積極的に弁開度の制御に用い、回転
数の実際の値と揚程をもとに、あらかじめ定めである最
適弁開度となるように、弁開度を制御し、電力制御指令
値より定まる入力、回転数及び弁開度で運転しようとす
るものである。Specifically, during governor free operation, the phase angle is controlled using values obtained by converting the difference between the command value and the actual value of electric power and the difference between the target value and the actual value of frequency into electric power. , the actual rotational speed is actively used to control the valve opening, and the valve opening is controlled to a predetermined optimum valve opening based on the actual rotational speed and lift height. It attempts to operate with the input, rotation speed, and valve opening determined by the power control command value.
第1図は、可変速発電システムの概要を示すものであり
、−次、二次側共、3相巻線からなる。FIG. 1 shows an outline of a variable speed power generation system, and both the negative and secondary sides are composed of three-phase windings.
同図で、1が固定子を、2が回転子を示す。In the figure, 1 indicates a stator and 2 indicates a rotor.
5a〜5cは固定子のa、b、Q相巻線を、6a〜6c
は回転子のa、b、Q相巻線を示す。更に。5a to 5c are the stator a, b, and Q phase windings; 6a to 6c are the stator a, b, and Q phase windings;
indicates the a, b, and Q phase windings of the rotor. Furthermore.
定格周波数をf、すべりをSとすると1回転子の速度は
f (1−3)であり、回転子の励磁巻線をすベリSの
周、波数で励磁することにより1回転子の回転磁界はす
べり零(同期速度)で回転し、固定子の回転磁界の速度
と同一になる。7は回転子の回転数を測定する測定部を
示し、この出力により、3ですべり周波数を検出し、4
ですべり周波数に応じた電圧を発生させ、2次巻線を励
磁することを示している。このようにすることにより、
任意の回転数で運転を行っても、常に電機子巻線には、
系統周波数の電圧を発生させることができる。すなわち
、第1図の例では、回転子の回転磁界は、
J・(1−8)+f −S=f ・・・・・・
・・・(1)となり、すベリにかかわらず、定格周波数
の出力が得られることになる。この方式において、揚水
のガバナフリー運転時に任意の回転数で安定に目標値に
制御できる方式を立案しようとするのが本発明の主旨で
ある。If the rated frequency is f and the slip is S, the speed of one rotor is f (1-3), and by exciting the excitation winding of the rotor at a frequency and wave number of S, the rotating magnetic field of one rotor is rotates with zero slip (synchronous speed), which is the same as the speed of the rotating magnetic field of the stator. 7 indicates a measurement unit that measures the rotation speed of the rotor, and from this output, 3 detects the slip frequency, and 4
This shows that a voltage corresponding to the slip frequency is generated to excite the secondary winding. By doing this,
Even when operating at any rotation speed, the armature winding always has
It is possible to generate voltage at the grid frequency. That is, in the example of Fig. 1, the rotating magnetic field of the rotor is J・(1-8)+f −S=f .
...(1), and the output at the rated frequency can be obtained regardless of the slippage. In this system, the gist of the present invention is to devise a system that can stably control the pumping water to a target value at any rotation speed during governor-free operation.
第2図は、従来システムの具体例を示すものであり、可
変速機が系統に接続、運転している場合を示しである。FIG. 2 shows a specific example of a conventional system, and shows a case where a variable speed machine is connected to a power grid and is in operation.
10は電力系統を、1,2は第1図と同一の固定子及び
回転子を示している。揚程H及び出力指令Poが与えら
れると、出力指令P。Reference numeral 10 indicates an electric power system, and 1 and 2 indicate the same stator and rotor as in FIG. When the lift head H and the output command Po are given, the output command P.
は遅ザ回路15を介して、位相角算出部16へ与えられ
る。is given to the phase angle calculation section 16 via the slow dither circuit 15.
一方、揚程I(及び回転数Nよりあらかじめ与えられて
いる関数に従って、ブロック25で最適弁開度が求めら
れ、この出力がサーボ系14に与えられ、時間遅れをも
って調速機の弁開度となる。On the other hand, the optimal valve opening is determined in block 25 according to a predetermined function based on the head I (and rotational speed N), and this output is given to the servo system 14, and the valve opening of the governor is determined with a time delay. Become.
13は水車部であり、14のサーボ系の遅れを持った調
速機の弁開度及び回転数Nで特性が定まる。Reference numeral 13 denotes a water wheel whose characteristics are determined by the valve opening degree and rotational speed N of the governor with a delay of the servo system 14.
この水車特性により、可変速機の回転子2は回転する。Due to this water wheel characteristic, the rotor 2 of the variable speed machine rotates.
11は速度発電機を示し、この出力により。11 indicates a speed generator, and by this output.
速度が検出される。19は電流変成器を、20は電圧変
成器を示し、21で電流変成器19及び電圧変成器2o
の出力をもとに、有効電力を算出する。16は2次巻線
の位相角算出部であり、21の出力及び遅延回路15の
時間遅れを持った出力指令Poにより位相角が算出され
る。17は、2次回路の励磁量を設定する設定部であり
、18は励磁量の電圧値を制御する電圧調整部を示す。Speed is detected. 19 indicates a current transformer, 20 indicates a voltage transformer, and 21 indicates a current transformer 19 and a voltage transformer 2o.
Calculate the active power based on the output. 16 is a phase angle calculation unit of the secondary winding, and the phase angle is calculated based on the output of 21 and the delayed output command Po of the delay circuit 15. 17 is a setting section that sets the amount of excitation of the secondary circuit, and 18 is a voltage adjustment section that controls the voltage value of the amount of excitation.
23a、23b、23cは、17で設定した励磁量をa
、b、c相に用いるために移相する移相部である。22
a、22b、22cは移相部23a〜23cで移相した
励磁量でa、b、c相を励磁する励磁巻線である。この
ように、電力制御指令値と実際の出力との差により、2
次巻線の位相角を算出して制御を行う。一方、揚程及び
回転数より最適値となるように弁開度を制御する。23a, 23b, and 23c are the excitation amount set in 17.
, b, and c phases. 22
A, 22b, and 22c are excitation windings that excite phases a, b, and c with excitation amounts phase-shifted by phase shifters 23a to 23c. In this way, due to the difference between the power control command value and the actual output, 2
Control is performed by calculating the phase angle of the next winding. On the other hand, the valve opening degree is controlled to be the optimum value based on the lift head and rotation speed.
従来のシステムでは、この図より明らかなように、系統
周波数の変動に対して応動する、いわゆる、ガバナフリ
ーの機能を有していなかった。このため、系統の発電力
と負荷のアンバランスにより、系統周波数が大幅に変化
していた。これに対し、本システムでは、第3図に示す
ように、周波数の目標値と実際の周波数の差をもとに、
電力の制御量を算出し、この値を電力指令値に加算し、
系統周波数を目標値に制御する。As is clear from this figure, conventional systems do not have a so-called governor-free function that responds to fluctuations in system frequency. As a result, the grid frequency was changing significantly due to an imbalance between the grid's power generation capacity and load. In contrast, in this system, as shown in Figure 3, based on the difference between the target frequency value and the actual frequency,
Calculate the power control amount, add this value to the power command value,
Control the grid frequency to the target value.
このようにすることにより、電力のアンバランス分を可
変速機で吸収又は補償できるため、系統周波数の低下又
は上昇を防止でき、安定な電力の供給を確保できる。By doing so, the unbalanced power can be absorbed or compensated for by the variable speed machine, so it is possible to prevent the system frequency from decreasing or increasing, and it is possible to ensure a stable supply of electric power.
第3図は、基準周波数と実際の回転数の差を検出し、こ
の値をもとに電力の制御指令値を制御する場合の一例を
示したものである。FIG. 3 shows an example of detecting the difference between the reference frequency and the actual rotational speed and controlling the electric power control command value based on this value.
ブロック40は検出部の伝達関数を示すものであり、実
際の周波数fLはブロック40の伝達関数を介して得ら
れ、この出力と基準周波数foの差が演算部41で求め
られる。この出力に演算部42で係数が乗ぜられる。こ
の演算部42の出力にリミッタ43を設け、この出力と
制御指令値45を演算部44で加算する。このようにし
て得た演算部44の出力を第2図の出力指令値Poとし
て使用する。Block 40 indicates the transfer function of the detection section, and the actual frequency fL is obtained via the transfer function of block 40, and the difference between this output and the reference frequency fo is determined by calculation section 41. This output is multiplied by a coefficient in the calculation section 42. A limiter 43 is provided to the output of this calculation section 42, and this output and the control command value 45 are added together in a calculation section 44. The output of the arithmetic unit 44 obtained in this way is used as the output command value Po in FIG.
以下、本発明の一実施例を第4図により具体的に説明す
る。第4図は、2次励磁付の誘導機により任意の回転数
で運転できる。いわゆる可変速揚水発電システムG1が
、送電MLを介して、系統10に接続運転している例を
示すものである。送電線りには、電圧変成器PTt、P
Tz、電流変成器CT l、 CT 2が設置されてい
る。Hereinafter, one embodiment of the present invention will be explained in detail with reference to FIG. In FIG. 4, the induction machine with secondary excitation can be operated at any rotation speed. This shows an example in which a so-called variable speed pumped storage power generation system G1 is connected and operated to the grid 10 via the power transmission ML. Voltage transformers PTt, P are installed on the power transmission line.
Tz, current transformers CT l, CT 2 are installed.
一般に、揚水発電機には、フランシス水車が使用され、
水車出力と効率との関係は、第5図のように示される。Generally, Francis turbines are used for pumped storage generators.
The relationship between water turbine output and efficiency is shown in Figure 5.
同図は、横軸に水車出力、縦軸に効率をとり、回転数を
パラメータとして示したものである。Pi、P2は水車
出力を、η工、η2を効率を、N1.NZは回転数を、
Yl、Y2は弁開度を示す。出力P1では、回転数Nl
、弁開度Y1で、出力P2では回転数Nz、弁開度Y
2で、それぞれの出力における最高効率η1.η2とな
ることを示している。このように、出力によって、効率
が最高となる回転数は異なっており、ガバナフリー運転
時においても、これらの最高効率の点で運転しようとす
ることが本発明の主旨である。In this figure, the horizontal axis represents the water turbine output, the vertical axis represents the efficiency, and the rotation speed is shown as a parameter. Pi and P2 are the water turbine output, η and η2 are the efficiency, and N1. NZ is the rotation speed,
Yl and Y2 indicate the valve opening degree. At output P1, rotation speed Nl
, valve opening degree Y1, output P2, rotation speed Nz, valve opening degree Y
2, the maximum efficiency η1 at each output. This shows that η2. As described above, the rotational speed at which the efficiency is the highest varies depending on the output, and the gist of the present invention is to operate at these points of maximum efficiency even during governor-free operation.
第4図において、可変速揚水発電システムG1は、操作
端Tより、電動機に要求される電力の指令値Paが与え
られると、電動機の特性、揚程Hを考慮した上で、高効
率の運転ができるよう、速度発電機11より求まる電動
機の回転数N、揚程I(より、水車のガバナ弁の開度が
制御指令部Cにおいて求められ、これらの値にあうよう
な運転ができるよう制御する必要がある。このような状
態で、電動機出力の変更指令が与えられると、あらかじ
め与えられている手法により、揚程H1回転数Nより、
電動機の効率が最高となるよう、ガバナの弁開度を求め
、これらの値となるよう回転数を制御し、効率のよい運
転を行うことになる。In FIG. 4, the variable speed pumped storage power generation system G1 performs highly efficient operation when a command value Pa of the electric power required for the electric motor is given from the operating end T, taking into consideration the characteristics of the electric motor and the head H. The rotational speed N and head I of the electric motor determined from the speed generator 11 and the head I (from which the opening degree of the governor valve of the water turbine are determined in the control command section C, and it is necessary to control the operation so as to meet these values). In such a state, when a command to change the motor output is given, the lift height H1 rotation speed N is determined by the method given in advance.
In order to maximize the efficiency of the electric motor, the valve opening degree of the governor is determined, and the rotation speed is controlled to achieve these values to achieve efficient operation.
ガバナフリー運転時には、操作端Tよりガバナフリー運
転の指令と目標周波数JOが与えられ、前記の通り、電
力の過不足骨を可変速機で補い、系統周波数になるよう
に制御し、運転を行うことになる。During governor free operation, the governor free operation command and target frequency JO are given from the operating terminal T, and as mentioned above, the variable speed machine compensates for the excess or deficiency of electric power and controls the system frequency to operate. It turns out.
第6図は、回転数N及び揚程Hより最高効率となる弁開
度を求める場合の一例として、各運転点において、シス
テムの効率が最高となる点を、横軸に回転数N、縦軸に
弁開度Yをとり、揚程をパラメータとして示しである。Figure 6 shows, as an example of determining the valve opening that gives the highest efficiency from the rotational speed N and head H, the points at which the efficiency of the system is the highest at each operating point, with the horizontal axis representing the rotational speed N and the vertical axis. The valve opening degree Y is taken as , and the head is shown as a parameter.
この図は揚程H1>揚程H2の場合である。この図で、
揚程H+で運転中に回転数がN+からN2に変化した場
合には、弁開度はYlからY2に制御する必要のあるこ
とを示している。This figure shows the case where lift height H1>lift head H2. In this diagram,
If the rotational speed changes from N+ to N2 during operation with the head H+, this indicates that the valve opening degree needs to be controlled from Yl to Y2.
一方、電動機回転数の定格よりのずれは、励磁回路Ex
の情報として、すべり周波数を用いることにより、前述
のように、定格周波数の出力の得られることになる。On the other hand, the deviation of the motor rotation speed from the rated value is caused by the excitation circuit Ex
By using the slip frequency as the information, an output at the rated frequency can be obtained as described above.
次に2次励磁の具体例について説明する。第2図に示す
ように、3相の2次励磁巻線は、次のようにあられされ
る。Next, a specific example of secondary excitation will be explained. As shown in FIG. 2, the three-phase secondary excitation winding is constructed as follows.
すなわち、第4図の操作端Tより与えられた指令により
、a、b、c相の励磁量をうるための関数のうち、位相
角Δδを制御する。2次励磁回路のa、b、c′MI電
圧をVffia+ V1b+ ”ICとすると、と与え
られる。ここで、E:すべり及び可変速機の運転状態で
定まる電圧値、δ0 :可変速機の運転状態で定まる位
相角、Δδ:制御指令部の出力で制御される位相角とす
る。That is, the phase angle Δδ of the functions for obtaining the excitation amounts of the a, b, and c phases is controlled by a command given from the operating end T in FIG. If the a, b, c'MI voltages of the secondary excitation circuit are Vffia+V1b+''IC, then it is given as follows.Here, E: Voltage value determined by the slip and operating conditions of the variable speed machine, δ0: Operation of the variable speed machine Phase angle determined by the state, Δδ: phase angle controlled by the output of the control command section.
上式を用いて制御を行う場合に、無効電力の制御指令に
対しては、電圧Eで、有効電力の制御指令に対しては、
位相角Δδで制御すればよい。When performing control using the above formula, voltage E is used for reactive power control commands, and voltage E is used for active power control commands.
It may be controlled by the phase angle Δδ.
本発明は、上記システムにおいて、揚水のガバナフリー
運転時に安定に制御することを目的とする。 このため
、上記の構成において、励磁回路の位相角(Δδ)を制
御して、回転数及び電力を目標値にあわせると共に最適
効率となるように弁開度を制御することが必要となる。An object of the present invention is to stably control pumped water during governor-free operation in the above system. Therefore, in the above configuration, it is necessary to control the phase angle (Δδ) of the excitation circuit to adjust the rotation speed and electric power to the target values, and to control the valve opening so as to achieve optimum efficiency.
このために、位相角を制御するための情報として、有効
電力を用いる。すなわち、位相角Δδは、
Δδ=ブに工(P−Pa)dt+kxp(P−Po)
・=(3)とする。ここで、Po :系統周波数の
基準周波数よりの偏差を考慮した有効電力の目標値、P
:有効電力の実際の値、k’+ kIP :定数とす
る。For this purpose, active power is used as information for controlling the phase angle. In other words, the phase angle Δδ is: Δδ=P-Pa)dt+kxp(P-Po)
・=(3). Here, Po: Target value of active power considering deviation of grid frequency from reference frequency, P
: Actual value of active power, k'+ kIP : Constant.
一方、ポンプ入力はガバナの弁開度を調整することによ
り制御する。すなわち、第2図に示すように、揚程及び
回転数の実際の値をもとに、あらかじめ与えである最適
弁開度となるように、ガバナの弁開度を制御する。On the other hand, pump input is controlled by adjusting the valve opening of the governor. That is, as shown in FIG. 2, the valve opening of the governor is controlled based on the actual values of the lift head and rotational speed so that the valve opening is a predetermined optimum valve opening.
第7〜9図は、本発明の詳細な説明するための図であり
、第7図のG1は可変速機を、02〜0番は同期機を、
Trt〜Tr4は変圧器を、α1.G2は送電線を、L
+、L2は負荷を示す。この図で遮断器SWの投入によ
り、負荷を増加させた場合の結果を第8,9図に示す。7 to 9 are diagrams for explaining the present invention in detail, G1 in FIG. 7 represents a variable speed machine, numbers 02 to 0 represent a synchronous machine,
Trt to Tr4 are transformers, α1. G2 is the power transmission line, L
+, L2 indicates load. The results when the load is increased by closing the circuit breaker SW in this figure are shown in FIGS. 8 and 9.
これらの図は横軸に時間、縦軸には曲線aでは可変速機
のすベリ周波数、曲線すでは、可変速機以外の同期機の
基準周波数がらの偏差で示しである。In these figures, the horizontal axis shows time, and the vertical axis shows the deviation from the reference frequency of the variable speed machine in curve a and the reference frequency of the synchronous machine other than the variable speed machine in curve a.
第8図はガバナフリー機能を設けない場合の結果であり
、可変速機のすべり周波数を示す曲線aは一定の値とな
り、これに対し、可変速機以外の周波数の基準値からの
偏差は、負荷増加のため、減少の一途を辿っている。Figure 8 shows the results when the governor free function is not provided, and the curve a showing the slip frequency of the variable speed machine has a constant value, whereas the deviation from the reference value of the frequency of other than the variable speed machine is Due to the increase in load, the number continues to decrease.
第9図は、本発明の方式を採用した場合の結果であり、
負荷の増加分を可変速機で補うため、可変速機のすべり
周波数曲線は低下する。この効果のため、可変速機以外
の同期機の周波数はわずかに低下するが一定値におちつ
いており、顕著に本発明の効果があられれている。FIG. 9 shows the results when the method of the present invention is adopted,
Since the variable speed machine compensates for the increased load, the slip frequency curve of the variable speed machine decreases. Due to this effect, the frequency of the synchronous machines other than the variable speed machine slightly decreases, but remains at a constant value, and the effect of the present invention is clearly demonstrated.
本発明によれば、系統周波数と目標周波数をもとに、周
波数偏差を算出し、この値を電力制御量変換して、電力
制御量を周波数偏差に応じて制御するガバナフリー機能
を備えることにより、揚水時のガバナフリー運転におい
て、負荷の増大又は減少に対し、系統周波数を一定に維
持できるため、安定度上の効果は極めて大きい。According to the present invention, by providing a governor-free function that calculates a frequency deviation based on the grid frequency and a target frequency, converts this value into a power control amount, and controls the power control amount according to the frequency deviation. In governor-free operation during pumping, the system frequency can be maintained constant even when the load increases or decreases, so the effect on stability is extremely large.
更に、系統の変動負荷をまかなうために昼間は発電、夜
間は揚水として運転する揚水発電システムにおいて、揚
水運転時に系統より定まる電力に対しても、効率よく運
転できるため、経済的効果は極めて大きい。Furthermore, in a pumped storage power generation system that operates as power generation during the day and as pumped storage at night to cover the fluctuating load of the grid, it can operate efficiently with respect to the electricity determined by the grid during pumped storage operation, so the economic effect is extremely large.
第1図は可変速揚水発電システムの原理概要、第2図は
可変速揚水発電システムの制御概要、第3図は本発明の
一実施例を示す図、第4図は本発明の実施例を示す図、
第5図は可変速機の出力と効率の関係例を示す図、第6
図は最適弁開度を求める場合の一例を示す図、第7図は
本発明の効果を求めたモデル系統、第8図は本発明を採
用しない場合の結果、第9図は本発明の効果を示す図。
Ex・・・励磁回路、Gl・・・可変速発電システム、
L・・・送電線、■・・・ガバナ弁、C・・・制御指令
部、T・・・操作端、1・・・固定子、2・・回転子、
3・・・すべり検出部、4・・・電圧発生部、5a〜5
c・・・固定子のa。
b、c相巻線、6 a 〜6 c−回転子のa、b、c
相巻線、7・・・回転数測定部、10・・・系統、11
・・・速度発電機、13・・・水車特性部、14・・サ
ーボ系、15・・・遅延回路、16・・2次巻線位相角
算出部、]7・・・2次巻線励磁量設定部、18・・・
電圧調整部。
19・・電流変成器、20・・・電圧変成器、21・・
・有効電力導出部、22 a 、 22 b 、 22
c −2次励磁のa、b、c相巻線、Po・・・出力
指令値、N・・・速度、23 a 、 23 b 、
23 c ・・・移相部、25 ・・・最適弁開度算出
部、40・・・検出部伝達関数、41゜42.44・・
・演算部、43・・・リミッタ、45・・・制御指令値
。Figure 1 is an overview of the principle of a variable speed pumped storage power generation system, Figure 2 is an overview of the control of the variable speed pumped storage power generation system, Figure 3 is a diagram showing an embodiment of the present invention, and Figure 4 is a diagram showing an embodiment of the present invention. The figure shown,
Figure 5 is a diagram showing an example of the relationship between output and efficiency of a variable speed machine, Figure 6
The figure shows an example of determining the optimum valve opening, Figure 7 is a model system for determining the effects of the present invention, Figure 8 is the result when the present invention is not adopted, and Figure 9 is the effect of the present invention. Diagram showing. Ex...excitation circuit, Gl...variable speed power generation system,
L...Power transmission line, ■...Governor valve, C...Control command unit, T...Operation end, 1...Stator, 2...Rotor,
3... Slip detection section, 4... Voltage generation section, 5a-5
c...Stator a. b, c phase winding, 6 a ~ 6 c - rotor a, b, c
Phase winding, 7... Rotation speed measuring section, 10... System, 11
... Speed generator, 13... Water turbine characteristics section, 14... Servo system, 15... Delay circuit, 16... Secondary winding phase angle calculation section,] 7... Secondary winding excitation Amount setting section, 18...
Voltage adjustment section. 19...Current transformer, 20...Voltage transformer, 21...
・Active power derivation unit, 22 a , 22 b , 22
c - secondary excitation a, b, c phase windings, Po... output command value, N... speed, 23 a, 23 b,
23 c...Phase shift unit, 25...Optimum valve opening calculation unit, 40...Detection unit transfer function, 41°42.44...
- Arithmetic unit, 43...Limiter, 45...Control command value.
Claims (1)
速発電システムにおいて、揚水のガバナフリー運転時に
、系統周波数の目標値よりの偏差に定数を乗じて、電力
制御指令値に変換し、この値をもとに、前記可変速シス
テムのガバナ弁開度を制御することを特徴とした可変速
揚水発電システムの運転制御方式。1. In a variable speed power generation system that operates an induction machine with secondary excitation at any rotation speed, during governor-free operation of pumped water, the deviation of the system frequency from the target value is multiplied by a constant and converted into a power control command value. An operation control method for a variable speed pumped storage power generation system, characterized in that the governor valve opening degree of the variable speed system is controlled based on this value.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60237391A JPS6299677A (en) | 1985-10-25 | 1985-10-25 | Operation control system for variable speed pumping-up power generating system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60237391A JPS6299677A (en) | 1985-10-25 | 1985-10-25 | Operation control system for variable speed pumping-up power generating system |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6299677A true JPS6299677A (en) | 1987-05-09 |
JPH0225033B2 JPH0225033B2 (en) | 1990-05-31 |
Family
ID=17014693
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60237391A Granted JPS6299677A (en) | 1985-10-25 | 1985-10-25 | Operation control system for variable speed pumping-up power generating system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6299677A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6359798A (en) * | 1986-08-27 | 1988-03-15 | Mitsubishi Electric Corp | Water-wheel generator |
JPS6412810A (en) * | 1987-07-03 | 1989-01-17 | Fuji Electric Co Ltd | Monitoring, controlling & protective device for power system |
US4856965A (en) * | 1987-10-23 | 1989-08-15 | The Tokyo Electric Power Co. Inc. | Control system of pumping operation using AC exciting generator-motor |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS492447A (en) * | 1972-04-19 | 1974-01-10 | ||
JPS6090991A (en) * | 1983-10-26 | 1985-05-22 | Hitachi Ltd | Method and device for control of variable speed hydraulic machine |
-
1985
- 1985-10-25 JP JP60237391A patent/JPS6299677A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS492447A (en) * | 1972-04-19 | 1974-01-10 | ||
JPS6090991A (en) * | 1983-10-26 | 1985-05-22 | Hitachi Ltd | Method and device for control of variable speed hydraulic machine |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6359798A (en) * | 1986-08-27 | 1988-03-15 | Mitsubishi Electric Corp | Water-wheel generator |
JPS6412810A (en) * | 1987-07-03 | 1989-01-17 | Fuji Electric Co Ltd | Monitoring, controlling & protective device for power system |
US4856965A (en) * | 1987-10-23 | 1989-08-15 | The Tokyo Electric Power Co. Inc. | Control system of pumping operation using AC exciting generator-motor |
Also Published As
Publication number | Publication date |
---|---|
JPH0225033B2 (en) | 1990-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7554302B2 (en) | Slip-controlled, wound-rotor induction machine for wind turbine and other applications | |
JPS62110499A (en) | Operation control for variable speed pumping-up power generation system | |
JPS6299677A (en) | Operation control system for variable speed pumping-up power generating system | |
JPS61247299A (en) | Operation controlling method for variable speed generator system | |
JP2631373B2 (en) | Operation control device of variable speed pumped storage power generation system | |
JP2538859B2 (en) | Variable speed pumped storage system control device | |
JPH0326038B2 (en) | ||
JPH0576278B2 (en) | ||
JPS6343598A (en) | Operation controller for variable-speed pump-storage generating system | |
JPS61170299A (en) | Operation controller of variable speed power generation system | |
JPH0634627B2 (en) | Variable speed pumped storage system operation controller | |
JP3495140B2 (en) | Voltage control device for wound induction machine | |
JP2652033B2 (en) | Operation control method of variable speed pumped storage power generation system | |
JPS62236395A (en) | Operation control system for variable speed pumpingup generator plant | |
JPH0632596B2 (en) | Variable speed pumped storage system | |
JP2644748B2 (en) | Variable speed pumped storage power generation system | |
JPH0570370B2 (en) | ||
JPS63213499A (en) | Operation control system for variable speed pumping-up generator system | |
JPH0326039B2 (en) | ||
JPH0576279B2 (en) | ||
JPH0576277B2 (en) | ||
JPH0634632B2 (en) | Variable speed pumped storage system | |
JPS62255581A (en) | Variable speed water pumping system | |
JPS6282000A (en) | Excitation control system | |
JPH0572198B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |