JP3877903B2 - 薄膜の形成方法 - Google Patents

薄膜の形成方法 Download PDF

Info

Publication number
JP3877903B2
JP3877903B2 JP12323199A JP12323199A JP3877903B2 JP 3877903 B2 JP3877903 B2 JP 3877903B2 JP 12323199 A JP12323199 A JP 12323199A JP 12323199 A JP12323199 A JP 12323199A JP 3877903 B2 JP3877903 B2 JP 3877903B2
Authority
JP
Japan
Prior art keywords
target
thin film
laser beam
forming
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12323199A
Other languages
English (en)
Other versions
JP2000319096A (ja
Inventor
真理子 木村
康裕 飯島
伸行 定方
隆 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP12323199A priority Critical patent/JP3877903B2/ja
Publication of JP2000319096A publication Critical patent/JP2000319096A/ja
Application granted granted Critical
Publication of JP3877903B2 publication Critical patent/JP3877903B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、レーザ光をターゲットに照射してターゲットの構成粒子を叩き出し若しくは蒸発させ、基材上に該構成粒子を堆積させることにより酸化物超電導体等の薄膜を形成する薄膜の形成方法に係わり、特に、ターゲットの寿命を延ばすことができ、高特性の薄膜を長尺にわたり均一に形成できる薄膜の形成方法に関するものである。
【0002】
【従来の技術】
酸化物超電導体を導電体として使用するためには、テープ状などの長尺の基材上に、結晶配向性の良好な酸化物超電導体の薄膜を形成する必要があるが、一般には、金属テープ自体が多結晶体でその結晶構造も酸化物超電導体と大きく異なるために、結晶配向性の良好な酸化物超電導体の薄膜を形成させることはできなかった。
そこで本発明者らは、ハステロイテープなどの金属テープからなる基材1の上に結晶配向性に優れたイットリウム安定化ジルコニア(YSZ)などの多結晶中間薄膜を形成し、この多結晶中間薄膜上に、酸化物超電導体の中でも臨界温度が約90Kであり、液体窒素(77K)中で用いることができる安定性に優れたY1Ba2Cu3x系の酸化物超電導体の薄膜を形成することで超電導特性の優れた酸化物超電導導体を製造する試みが行なわれており、本発明者らは先に、特願平3ー126836号、特願平3ー126837号、特願平3ー205551号、特願平4ー13443号、特願平4ー293464号などにおいて特許出願を行なっている。
【0003】
これらの特許出願に記載された技術おいては、Y1Ba2Cu3x系の酸化物超電導体の薄膜を形成させるために、レーザ蒸着法による薄膜の形成方法が採用されている。
図12は、従来のレーザ蒸着法により酸化物超電導体の薄膜を形成するためのレーザ蒸着装置の一例を示す。
この例のレーザ蒸着装置11は、処理容器12を有し、この処理容器12の内部の蒸着処理室13に、薄膜積層体14と、ターゲット15とを設置できるようになっている。即ち、蒸着処理室13の底部には基台16が設けられ、この基台16の上面に基材上に多結晶中間薄膜を形成してなる薄膜積層体14を設置できるようになっているとともに、基台16の斜め上方に支持ホルダ17によって支持された酸化物超電導体のターゲット15が設けられている。
また、図中符号18は薄膜積層体14の送出装置、19は薄膜積層体14の巻取装置を示す。
【0004】
また、処理容器12は、排気孔20を介して真空排気装置21に接続されて蒸着処理室13を所定の圧力に減圧できるようになっている。
ターゲット15としては、成膜しようとする酸化物超電導体の組成と同等か近似する組成のものであって、酸化物超電導体の焼結体等が用いられている。また、ターゲット15の形状としては、図13に示すような円形状のものや、あるいは図14に示すような方形状(図面では長方形状)のものが用いられていた。このターゲット15は、後述するレーザ光30が所定の角度で照射されて、このレーザ光30によって叩き出されるターゲット15の構成粒子が薄膜積層体14上に均一に堆積できるように所定の角度で傾斜した状態で設けられている。
基台16は加熱ヒータを内蔵したもので、薄膜積層体14を必要に応じて加熱できるようになっている。
一方、処理容器12の側方には、レーザ発光装置22と第1反射鏡23と集光レンズ24と第2反射鏡25とが設けられ、レーザ発光装置22が発生させたレーザ光30を処理容器12の側壁に取り付けられた透明窓26を介してターゲット15に集光照射できるようになっている。
【0005】
上述のような構成のレーザ蒸着装置11を用いて薄膜積層体14上にY1Ba2Cu3Xの酸化物超電導体の薄膜を成膜するには、薄膜積層体14をこの多結晶中間薄膜側を上にして基台16上に設置し、酸化物超電導体のターゲット15としてY1Ba2Cu3Xのターゲットを設置し、蒸着処理室13を真空排気装置21で減圧する。ついで、送出装置18から薄膜積層体14を送り出しつつ、エキシマレーザ等のレーザ光30の照射位置を酸化物超電導体のターゲット15の表面上で移動させることで走査しながら、ターゲットの構成粒子を叩き出し若しくは蒸発させて、多結晶中間薄膜上に上記構成粒子を堆積させる。多結晶中間薄膜は、その結晶粒が予めc軸配向し、a軸とb軸でも配向するようにイオンビームアシスト法により形成されているので、酸化物超電導体の薄膜の結晶のc軸とa軸とb軸も多結晶中間薄膜の結晶に整合するようにエピタキシャル成長して結晶化する。これにより結晶配向性を制御したY1Ba2Cu3Xの酸化物超電導体の薄膜が得られる。
【0006】
【発明が解決しようとする課題】
ところで、従来のレーザ蒸着法による薄膜の形成方法においては、以下のようにターゲット15表面に照射するレーザ光30の照射位置を移動させている。
ターゲット15が図13に示したような円形状である場合には、レーザ光30をターゲット15の円周15aに沿って、徐々にターゲット15aの中心に向けて回転するように移動させる。このようにするとレーザ光30の往路の軌跡は図13の一点鎖線で示されるような軌跡31となる。そして、レーザ光30がターゲット15の中心に到達したならば、上記往路と同じ経路を逆方向に移動させると、レーザ光30は徐々にターゲット15の外方に向けて回転するように移動する。さらに、上述のようにレーザ光30をターゲット15の円周15a側から中心、中心から円周15側に向けて回転するように移動させる動作を複数回繰り返す。従って、ターゲット15が円形状である場合には、レーザ光30は、ターゲット15上の軌跡31で示されるような同一のスパイラル状の経路に沿って複数回往復移動していることになる。
【0007】
ターゲット15が図14に示したような方形状である場合には、レーザ光30をターゲット15のコーナA近傍からスタートさせ、短辺15bに沿って移動(X移動)させ、次にターゲット15の長辺15cに沿ってわずかに移動(Y移動)させる動作を繰り返す移動方法(X−Y移動方法)によりコーナAに隣接するコーナD近傍まで到達させる。このようにするとレーザ光30の往路の軌跡は、図14の一点鎖線で示されるような軌跡32となる。そして、レーザ光30がコーナD近傍まで到達したならば、上記往路と同じ経路を逆方向に移動させる。さらに、上述のようにレーザ光30をターゲット15の一つのコーナA近傍からこれと隣接するコーナD近傍までと、コーナD近傍からこれと隣接するコーナAまでXY移動させる動作を複数回繰り返す。従って、ターゲット15が方形状である場合には、レーザ光30は、ターゲット15上の軌跡32で示されるような同一のミアンダ状の経路に沿って複数回往復移動していることになる。
【0008】
しかしながら従来の薄膜の形成方法においては、上述のようにレーザ光30をターゲット15の表面上の同一経路に沿って往復移動させることにより走査するため、長時間成膜を行うと、ターゲット15から叩き出された構成粒子の飛行する方向が偏ってしまい構成粒子を薄膜積層体14上に均一に堆積させることができず、得られる薄膜の厚みや膜質や結晶配向性にバラツキが生じてしまい、臨界電流密度等の超電導特性が低下してしまう。それは、ターゲット15に対して斜め方向からレーザ光30を照射しているため、レーザ光30を繰り返し照射すると、ターゲット15表面が一方向だけ深く削られてしまい、図15に示すような底部に凹凸を有する溝33ができてしまう。このように一方向だけ深く削られたターゲット15にレーザ光30を照射すると、先に述べたようにターゲット15が所定の角度で傾斜して配置されていても、レーザ光30は溝33内の凹凸部分にあたって偏心してしまうため、偏心したレーザ光30により叩き出された構成粒子は薄膜積層体14上に均一に堆積しない。
従って、従来のレーザ蒸着法による薄膜の形成方法では、上述のようなレーザ光の偏心が起こることにより、超電導特性が優れた酸化物超電導体の薄膜を長尺にわたり均一に形成できないという問題があった。また、レーザ光の偏心が起こると、未だ酸化物超電導体の焼結体が残存していても、ターゲットは寿命となり、ターゲットを有効に利用できないという課題があった。
【0009】
本発明は、上記の課題を解決するためになされたものであって、ターゲットが一方向だけ深く削られることを防止して、ターゲットの寿命を延ばすことができ、高特性の薄膜を長尺にわたり均一に形成できる薄膜の形成方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
上記の目的を達成するために、以下の構成を採用した。請求項1記載の薄膜の形成方法は、レーザ光をターゲットに照射し、前記ターゲットに沿ってレーザ光を複数回走査して、ターゲットの構成粒子を叩き出し若しくは蒸発させて、基材上に前記構成粒子を堆積させることにより薄膜を形成する薄膜の形成方法であって、レーザ光の照射位置を上記ターゲットの表面上で移動させるレーザ光の走査を行いながらレーザ光をターゲットに対して斜め方向から照射してレーザ蒸着するにあたり、前記ターゲットを前面側に支持する支持ホルダを用い、該支持ホルダの裏面側に立設したシャフトを利用して前記シャフトの軸周りに前記シャフトともに前記ターゲットを回転させて前回のレーザ光の走査と今回のレーザ光の走査において前記レーザ光により前記ターゲットを彫り込む方向を変更して前記ターゲットの彫り込み方向の異なるターゲットの構成粒子が叩き出されるか蒸発されるようにることを特徴とする。
【0011】
また、請求項2記載の薄膜の形成方法は、レーザ光をターゲットに照射し、前記ターゲットに沿ってレーザ光を複数回走査して、ターゲットの構成粒子を叩き出し若しくは蒸発させて、基材上に前記構成粒子を堆積させることにより薄膜を形成する薄膜の形成方法であって、レーザ光の照射位置を上記ターゲットの表面上で移動させるレーザ光の走査を行いながらレーザ光をターゲットに対して斜め方向から照射してレーザ蒸着するにあたり、前記ターゲットを前面側に支持する支持ホルダを用い、該支持ホルダの裏面側に立設したシャフトを利用して前記シャフトの軸周りに前記シャフトとともに前記ターゲットを回転させる操作を前記ターゲットの一方の端部から他方の端部まで前記レーザ光を一端走査した後に行い、前回の前記ターゲットの一方の端部から他方の端部まで一端走査する際の前記ターゲットの彫り込み方向と、今回の前記ターゲットの他方の端部から一方の端部まで一端走査する際の前記ターゲットの彫り込み方向とを変更し、前記ターゲットの彫り込み方向の異なるターゲットの構成粒子が叩き出されるか蒸発されるようにすることを特徴とする。
【0012】
また、請求項3記載の薄膜の形成方法は、請求項1又は2記載の薄膜の形成方法において、上記ターゲットとして方形板状のものを用いることを特徴とする。
また、請求項4記載の薄膜の形成方法は、請求項1乃至3のいずれかに記載の薄膜の形成方法において、上記ターゲットの回転角度が180゜であることを特徴とする。
また 請求項5記載の薄膜の形成方法は、請求項1乃至3のいずれかに記載の薄膜の形成方法において、ターゲットの回転角度が90゜であることを特徴とする。
また、請求項6記載の薄膜の形成方法は、請求項1乃至5のいずれかに記載の薄膜の形成方法において、上記ターゲットとして、複数枚のターゲットが並べられてなるものを用いることを特徴とする。
【0013】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照して説明する。なお、以下に述べる実施の形態では、本発明を酸化物超電導体の薄膜の形成方法に適用した場合について説明する。
図1は、本実施形態の酸化物超電導体の薄膜の形成方法により得られた酸化物超電導導体を示す斜視断面図である。
この酸化物超電導導体4は、薄膜積層体14上に酸化物超電導体の薄膜3を形成してなるものである。薄膜積層体14は、ハステロイ等の金属テープ状の基材1上にイオンビームアシストスパッタリング法等によってYSZの多結晶中間薄膜2を形成してなるものである。
【0014】
基材1の構成材料としては、ステンレス鋼、銅、または、ハステロイなどのニッケル合金などの合金各種金属材料から適宜選択される長尺の金属テープを用いることができる。この基材1の厚みは、0.01〜0.5mm、好ましくは0.02〜0.15mmとされる。基材1の厚みが0.5mm以上では、後述する酸化物超電導体の薄膜3の膜厚に比べて厚く、オーバーオール(酸化物超電導導体全断面積)あたりの臨界電流密度としては低下してしまう。一方、基材1の厚みが0.01mm未満では、著しく基材1の強度が低下し、酸化物超電導導体4の補強効果を消失してしまう。
【0015】
多結晶中間薄膜2は、立方晶系の結晶構造を有する結晶の集合した微細な結晶粒が多数相互に結晶粒界を介して接合一体化されてなるものであり、各結晶粒の結晶軸のc軸は基材1の上面(成膜面)に対してほぼ直角に向けられ、各結晶粒の結晶軸のa軸どうしおよびb軸どうしは、互いに同一方向に向けられて面内配向されている。多結晶中間薄膜2の厚みは、0.1〜1.0μmとされる。多結晶中間薄膜2の厚みを1.0μmを超えて厚くしてももはや効果の増大は期待できず、経済的にも不利となる。一方、多結晶中間薄膜2の厚みが0.1μm未満であると、薄すぎて酸化物超電導体の薄膜3を十分支持できない恐れがある。この多結晶中間薄膜2の構成材料としてはYSZの他に、MgO、SrTiO3等を用いることができる。
【0016】
酸化物超電導体の薄膜3は、Y1Ba2Cu3x、Y2Ba4Cu8x、Y3Ba3Cu6xなる組成、(Bi,Pb)2Ca2Sr2Cu3x、(Bi,Pb)2Ca2Sr3Cu4xなる組成、あるいはTl2Ba2Ca2Cu3x、Tl1Ba2Ca2Cu3x、Tl1Ba2Ca3Cu4xなる組成などに代表される臨界温度の高い酸化物超電導体からなるものである。
この薄膜3の厚みは、0.5〜5μm程度で、かつ均一な厚みとなっている。
また、薄膜3の膜質は均一となっており、薄膜3の結晶のc軸とa軸とb軸も多結晶中間薄膜2の結晶に整合するようにエピタキシャル成長して結晶化しており、結晶配向性が優れたものとなっている。
【0017】
図2は、図1に示した酸化物超電導体の薄膜3を形成するためのレーザ蒸着装置の一例を示す図である。
この例のレーザ蒸着装置41が、図12に示した従来の酸化物超電導体の薄膜3の形成方法に用いられるレーザ蒸着装置11と異なるところは、酸化物超電導体のターゲット15を支持する支持ホルダとして図2に示すような支持ホルダ37が備えられた点である。
【0018】
支持ホルダ37に取り付けられるターゲット15としては、形成しようとする酸化物超電導体の薄膜3と同等または近似した組成、あるいは、成膜中に逃避しやすい成分を多く含有させた複合酸化物の焼結体あるいは酸化物超電導体などの板体からなっている。従って、酸化物超電導体のターゲット15は、
1Ba2Cu3x、Y2Ba4Cu8x、Y3Ba3Cu6xなる組成、
(Bi,Pb)2Ca2Sr2Cu3x、(Bi,Pb)2Ca2Sr3Cu4xなる組成、あるいはTl2Ba2Ca2Cu3x、Tl1Ba2Ca2Cu3x
Tl1Ba2Ca3Cu4xなる組成などに代表される臨界温度の高い酸化物超電 導体の薄膜3を形成するために使用するので、これと同一の組成か近似した組成のものを用いることが好ましい。
また、ターゲット15の形状としては、長方形板状や正方形板状などの方形板状のものが用いられる。
レーザ発光装置22としては、ターゲット15から構成粒子を叩き出すことができるレーザ光30を発生するものであれば、YAGレーザ、CO2レーザ、エキシマレーザなどのいずれのものを用いても良い。
【0019】
レーザの照射出力の調整は、レーザ発光装置22に電力を供給する増幅装置(図示せず)の出力を調整することにより行うことができる。
また、レーザの照射周波数は、1秒間当たりに間欠的に発振されるレーザのパルスの数を示すものであり、この調整は、レーザ発光装置22に電力を一定の周波数をもって間欠的に供給するか、レーザ光が通過する経路のどこかに、回転セクタ等の機械的シャッタを設け、この機械的シャッタを一定の周波数をもって作動させることにより、調整することができる。
【0020】
支持ホルダ37は、ターゲット15を支持する支持部38と、該支持部38の底部に取り付けられたホルダ回転用シャフト39と、該ホルダ回転用シャフト39の端部に設けられたシャフト駆動源(図示略)から概略構成されてなるものである。この支持ホルダ37は、上記シャフト駆動源の作動により、シャフト39が回転して支持部38が回転するようになっているので、この支持部38に支持されたターゲット15も支持部38の回転と共に回転するようになっている。従って、このような構成の支持ホルダ37によれば、レーザ光30の照射位置をターゲット1の表面上で移動させるレーザ光の走査を行いながらレーザ光をターゲットに照射してレーザ蒸着する際に、上記シャフト駆動源によりホルダ回転用シャフト39の回転角度を調整することにより、ターゲット15の回転角度を調整し、異なる方向のターゲット15の構成粒子が叩き出されるようにすることが可能である。
【0021】
次に、図2に示したレーザ蒸着装置41を用いて薄膜積層体14の上にY1Ba2Cu3Xの酸化物超電導体の薄膜3を形成する方法の第一の実施形態について説明する。
YSZの多結晶中間薄膜2が形成された薄膜積層体14をこの多結晶中間薄膜2側を上にして基台16上に設置し、酸化物超電導体のターゲット15としてY1Ba2Cu3Xからなる長方形板状のターゲットを支持ホルダ37の支持部38に取り付け、蒸着処理室13を真空排気装置21で減圧する。ここで必要に応じて蒸着処理室13に酸素ガスを導入して蒸着処理室13を酸素雰囲気としても良い。また、基台16の加熱ヒータを作動させて薄膜積層体14を所望の温度に加熱しても良い。
【0022】
送出装置18から薄膜積層体14を送り出しつつ、レーザ発光装置22からレーザ光30を発生させ、レーザ光30の照射位置をターゲット15の表面上で移動させるレーザ光の走査を複数回行う際、各回の走査が終了する毎に、上記シャフト駆動源によりホルダ回転用シャフト39を180゜ずつ回転させることによりターゲット15を180゜ずつ回転させて、異なる方向のターゲット15の構成粒子が叩き出されるか蒸発されるようにして、多結晶中間薄膜2の表面にターゲット15の構成粒子を堆積させる。
【0023】
ここでのレーザ光の走査について以下に詳説する。
第一回目のレーザ光の走査は、図3に示すようにレーザ光30をターゲット15のコーナA近傍からスタートさせ、短辺15bに沿って移動(X移動)させ、次にターゲット15の長辺15cに沿ってわずかに移動(Y移動)させる動作を繰り返す移動方法(X−Y移動方法)によりコーナAに隣接するコーナD近傍まで到達させると、第一回目のレーザ光の走査が終了する。このようにするとレーザ光30の往路の軌跡は、図3の一点鎖線で示されるような軌跡42となる。第一回目のレーザ光の走査の終了後のターゲット15の表面は、一方向だけ削られた状態となっている。
【0024】
第一回目のレーザ光の走査が終了したならば、シャフト駆動源によりホルダ回転用シャフト39を180゜回転させることによりターゲット15を180゜回転させる。この後、図4に示すようにレーザ光30をターゲット15のコーナB近傍からスタートさせ、短辺15bに沿って移動(X移動)させ、次にターゲット15の長辺15cに沿ってわずかに移動(Y移動)させる動作を繰り返す移動方法(X−Y移動方法)によりコーナBに隣接するコーナC近傍まで到達させると、第二回目のレーザ光の走査が終了する。このようにするとレーザ光30の復路の軌跡は、図4の一点鎖線で示されるような軌跡43となる。第二回目のレーザ光の走査により削られるターゲット15の表面の方向は、上記第一回目のレーザ光の走査により削られる方向と異なる方向である。
【0025】
ターゲット15にレーザ光を照射する際の走査速度は2〜20mm/秒の範囲であることが好ましい。走査速度が2mm/秒以下であると、ターゲットが受けるレーザ光の熱エネルギーが大きくなり、ターゲットの局部的な温度上昇による割れが発生するので好ましくない。走査速度が20mm/秒以上であると、ターゲットからの構成粒子の叩き出し若しくは蒸発を充分に行えず、酸化物超電導体の薄膜の形成速度が低下してしまうので効率的でない。
【0026】
また、上述の走査速度の範囲でターゲットにレーザ光を照射する場合には、レーザ光の照射エネルギーが200〜400mJの範囲であることが必要である。
レーザ光の照射エネルギーが200mJ以下であると、走査速度を2mm/秒としても、ターゲットに与える熱エネルギーが小さすぎて、ターゲットの構成粒子を十分に叩き出し若しくは蒸発させることができないので、酸化物超電導体の薄膜の形成速度が低下してしまい効率的でない。
レーザ光の出力が400mJ以上であると、走査速度を20mm/秒としても、ターゲットに与えるエネルギーが大きすぎて、ターゲットに割れが生じてしまうので好ましくない。
【0027】
更に、レーザ光の照射周波数が10〜200Hzの範囲であることが必要である。
レーザ光の照射周波数が10Hz以下であると、照射出力を400mJとし、走査速度を2mm/秒としても、ターゲットに与えるエネルギーが小さすぎて、ターゲットの構成粒子を十分に叩き出すことができないので、酸化物超電導体の薄膜の形成速度が低下してしまい効率的でない。
レーザ光の照射周波数が200Hzより大きいと、照射出力を200mJとし、走査速度を20mm/秒としても、ターゲットに与えるエネルギーが大きすぎて、ターゲットに割れが生じてしまうので好ましくない。
【0028】
上述のようにレーザ光30の走査を行う毎にターゲットを180゜ずつ回転させることにより、ターゲット15の表面が一方向だけ深く削られるのを防止でき、レーザ光30の偏心を防止でき、ターゲット15から叩き出された構成粒子の飛行する方向が偏ることがなく、上記構成粒子を薄膜積層体14上に均一に堆積させることができる。
【0029】
多結晶中間薄膜2は、その結晶粒が予めc軸配向し、a軸とb軸でも配向するようにイオンビームアシスト法により形成されているので、上記のようにターゲット15から叩き出された構成粒子が飛行方向が偏ることなく飛行して、多結晶中間薄膜2上に均一に堆積すると、酸化物超電導体の薄膜3の結晶のc軸とa軸とb軸も多結晶中間薄膜2の結晶に整合するようにエピタキシャル成長して結晶化する。これにより膜厚が均一で、かつ結晶配向性の優れたY1Ba2Cu3Xの酸化物超電導体の薄膜3が得られる。なお、成膜後に必要に応じて酸化物超電導体の薄膜3の結晶構造を整えるための熱処理を施しても良い。
【0030】
第一の実施形態の酸化物超電導体の薄膜の形成方法は、レーザ光30の照射位置をターゲット15の表面上で移動させるレーザ光の走査を複数回行うことによりレーザ光30をターゲット15に照射してレーザ蒸着する際に、異なる方向のターゲット15の構成粒子が叩き出されるか蒸発されるようにレーザ光30の走査を行う毎にターゲットを180゜ずつ回転させることにより、長時間成膜しても、ターゲット15の表面が一方向だけ深く削られることがなく、レーザ光を同一経路を往復させる従来の薄膜の形成方法に比べてターゲット15の表面が平滑で、レーザ光30の偏心を防止でき、ターゲット15から叩き出された構成粒子の飛行する方向が偏ることがなく、上記構成粒子を薄膜積層体14上に均一に堆積させることができる。このような第一の実施形態の酸化物超電導体の薄膜の形成方法によれば、ターゲット15の構成粒子を薄膜積層体14上に均一に堆積させることができるので、膜厚および膜質が均一で、結晶配向性が優れた酸化物超電導体の薄膜3を長尺に亘って均一に形成でき、従って、臨界電流密度等の超電導特性にバラツキがない長尺の酸化物超電導導体4を提供できる。
【0031】
また、第一の実施形態の酸化物超電導体の薄膜の形成方法によれば、長時間成膜しても、ターゲット15の表面が一方向だけ深く削れられることがなく、表面が平滑であるので、レーザ光の偏心を防止できるので、レーザ光を同一経路を往復させる従来の薄膜の形成方法に比べてターゲット15の寿命を約10倍以上延ばすことができ、ターゲットを有効に利用できる。
【0032】
次に、図2に示したレーザ蒸着装置41を用いて薄膜積層体14の上にY1Ba2Cu3Xの酸化物超電導体の薄膜3を形成する方法の第二の実施形態について説明する。
第二の実施形態の酸化物超電導体の薄膜の形成方法が、第一の実施形態の酸化物超電導導体の薄膜の形成方法と異なるところは、ターゲット15として正方形板状のものを用いることと、レーザ光の走査を複数回行う際、各回の走査が終了する毎に、上記シャフト駆動源によりホルダ回転用シャフト39を90゜ずつ回転させることによりターゲット15を90゜ずつ回転させて、異なる方向のターゲット15の構成粒子が叩き出されるか蒸発されるようにして、多結晶中間薄膜2の表面にターゲット15の構成粒子を堆積させる点である。
【0033】
ここでのレーザ光の走査について以下に詳説する。
第一回目のレーザ光の走査は、図5に示すようにレーザ光30をターゲット15のコーナA近傍からスタートさせ、辺15dに沿って移動(X移動)させ、次にターゲット15の辺15eに沿ってわずかに移動(Y移動)させる動作を繰り返す移動方法(X−Y移動方法)によりコーナAに隣接するコーナD近傍まで到達させると、第一回目のレーザ光の走査が終了する。このようにするとレーザ光30の軌跡は、図5の一点鎖線で示されるような軌跡52となる。第一回目のレーザ光の走査の終了後のターゲット15の表面は、一方向だけ削られた状態となっている。
【0034】
第一回目のレーザ光の走査が終了したならば、シャフト駆動源によりホルダ回転用シャフト39を時計回りに90゜回転させることによりターゲット15を時計回りに90゜回転させる。この後、図6に示すようにレーザ光30をターゲット15のコーナD近傍からスタートさせ、辺15eに沿って移動(X移動)させ、次にターゲット15の辺15dに沿ってわずかに移動(Y移動)させる動作を繰り返す移動方法(X−Y移動方法)によりコーナDに隣接するコーナC近傍まで到達させると、第二回目のレーザ光の走査が終了する。このようにするとレーザ光30の軌跡は、図6の一点鎖線で示されるような軌跡53となる。第二回目のレーザ光の走査により削られるターゲット15の表面の方向は、上記第一回目のレーザ光の走査により削られる方向と異なる方向である。
【0035】
第二回目のレーザ光の走査が終了したならば、シャフト駆動源によりホルダ回転用シャフト39を時計回りに90゜回転させることによりターゲット15を時計回りに90゜回転させる。この後、図7に示すようにレーザ光30をターゲット15のコーナC近傍からスタートさせ、辺15dに沿って移動(X移動)させ、次にターゲット15の辺15eに沿ってわずかに移動(Y移動)させる動作を繰り返す移動方法(X−Y移動方法)によりコーナCに隣接するコーナB近傍まで到達させると、第三回目のレーザ光の走査が終了する。このようにするとレーザ光30の軌跡は、図7の一点鎖線で示されるような軌跡54となる。第三回目のレーザ光の走査により削られるターゲット15の表面の方向は、上記第一回目及び第二回目のレーザ光の走査により削られる方向と異なる方向である。
【0036】
第三回目のレーザ光の走査が終了したならば、シャフト駆動源によりホルダ回転用シャフト39を時計回りに90゜回転させることによりターゲット15を時計回りに90゜回転させる。この後、図8に示すようにレーザ光30をターゲット15のコーナB近傍からスタートさせ、辺15eに沿って移動(X移動)させ、次にターゲット15の辺15dに沿ってわずかに移動(Y移動)させる動作を繰り返す移動方法(X−Y移動方法)によりコーナBに隣接するコーナA近傍まで到達させると、第四回目のレーザ光の走査が終了する。このようにするとレーザ光30の軌跡は、図8の一点鎖線で示されるような軌跡55となる。第四回目のレーザ光の走査により削られるターゲット15の表面の方向は、上記第一回目乃至第三回目のレーザ光の走査により削られる方向と異なる方向である。
【0037】
第四回目のレーザ光の走査が終了したならば、シャフト駆動源によりホルダ回転用シャフト39を時計回りに90゜回転させることによりターゲット15を時計回りに90゜回転させると、ターゲット15のコーナAは、図5に示したような基の位置に戻るので、第一回目のレーザ光の走査と同様に走査すると、第五回目のレーザ光の走査によるレーザ光の軌跡は、図5に示した軌跡52と同様の軌跡となる。第五回目のレーザ光の走査により削られるターゲット15の表面の方向は、上記第一回目のレーザ光の走査により削られる方向と同じ方向である。
【0038】
第二の実施形態の酸化物超電導体の薄膜の形成方法は、レーザ光30の照射位置をターゲット15の表面上で移動させるレーザ光の走査を複数回行うことによりレーザ光30をターゲット15に照射してレーザ蒸着する際に、異なる方向のターゲット15の構成粒子が叩き出されるか蒸発されるようにレーザ光30の走査を行う毎にターゲットを90゜ずつ回転させることにより、ターゲット15が一方向だけ深く削られることを防止でき、レーザ光を同一経路を往復させる従来の薄膜の形成方法に比べてターゲット15の寿命を約10倍以上延ばすことができ、高特性の酸化物超電導体の薄膜3を長尺にわたり均一に形成できる。
【0039】
次に、図2に示したレーザ蒸着装置41を用いて薄膜積層体14の上にY1Ba2Cu3Xの酸化物超電導体の薄膜3を形成する方法の第三の実施形態について説明する。
第三の実施形態の酸化物超電導体の薄膜の形成方法が、第二の実施形態の酸化物超電導導体の薄膜の形成方法と異なるところは、ターゲットとして図9に示すように正方形板状のターゲット15を複数枚並べたターゲット65を用い、このようなターゲット65全体を一つの支持ホルダ37の支持部38に固定し、レーザ光30の走査を行う毎にターゲット65を90゜ずつ回転させる点である。図9中、符号75は、ターゲット65に第一回目のレーザ光の走査を行ったときのレーザ光の軌跡である。
第三の実施形態の酸化物超電導導体の薄膜3の形成方法によれば、正方形板状のターゲット15を用いているので、円板状のターゲットを用いる場合と異なり、複数枚並べて成膜することができる。正方形板状のターゲット15を複数枚並べたターゲット65を用い、異なる方向のターゲット65の構成粒子が叩き出されるか蒸発されるようにレーザ光30の走査を行う毎にターゲット65を90゜ずつ回転させることにより、第二の実施形態の薄膜3と同様の作用効果を奏するうえ、より長時間の成膜を行うことができる。
【0040】
なお、上記の実施の形態では、本発明を酸化物超電導体の薄膜の形成方法に適用した場合について説明したが、必ずしもこれに限られず、ターゲットにレーザ光を照射して、ターゲットの構成粒子を叩き出し若しくは蒸発させて、基材上に上記構成粒子を堆積させて薄膜を形成する方法であれば適用可能である。
【0041】
【実施例】
(実施例)
図2に示すレーザ蒸着装置を用い、ハステロイテープの表面に厚さ0.7μmのYSZ多結晶中間薄膜を形成した薄膜積層体をこの多結晶中間薄膜側を上にして基台上に設置し、ターゲットとしてY1Ba2Cu3X系の長方形板状のターゲットを支持ホルダの支持部に取り付け、蒸着処理室を真空排気装置で減圧した。送出装置から上記薄膜積層体を送り出しつつ、レーザ発光装置からレーザ光を発生させ、レーザ光の照射位置をターゲットの表面上でX−Y移動させるレーザ光の走査を2回行う際、各回の走査が終了する毎に、上記シャフト駆動源によりホルダ回転用シャフトを180゜ずつ回転させることにより上記ターゲットを180゜ずつ回転させて、異なる方向のターゲットの構成粒子が叩き出されるか蒸発されるようにして、上記多結晶中間薄膜の表面にターゲットの構成粒子を堆積させて、厚さ1μmのY1Ba2Cu3Xの薄膜を形成し、酸化物超電導導体を得た。なお、レーザ光をターゲットに照射する際のレーザ光の走査速度を2mm/秒、レーザ光の照射エネルギーを200mJ、照射周波数を100Hzとした。
【0042】
(比較例)
レーザ光の照射位置をターゲットの表面上で移動させるレーザ光の走査を2回行う際、ターゲットを回転させることなく、同一の経路に沿ってレーザ光を往復移動させた以外は上記実施例と同様にして多結晶中間薄膜の表面にターゲットの構成粒子を堆積させて、厚さ1μmのY1Ba2Cu3Xの薄膜を形成し、酸化物超電導導体を得た。
【0043】
上記実施例と比較例で使用後のターゲットの表面の組織の状態をマイクロスコープにより観察した。その結果を図10〜図11に示す。図10は、実施例で使用後のターゲット材料の表面の組織の状態を示すマイクロスコープ写真である。図11は、比較例で使用後のターゲット材料の表面の組織の状態を示すマイクロスコープ写真である。
図10〜図11から明らかなように比較例で使用後のターゲットは、一方向だけ深く削れて表面が鱗状になっているが、実施例で使用後のターゲットの表面は、一方向だけでなく、異なる方向も削られており、比較例で使用後のターゲットと比べて平滑であることがわかる。
また、実施例と比較例において薄膜の成膜時間と、各成膜時間で得られる酸化物超電導導体の超電導特性との関係について調べた。ここでの超電導特性は、得られた酸化物超電導導体を液体窒素で冷却しつつ、77K、0Tの条件での臨界電流密度を測定した。結果を表1に示す。
【0044】
【表1】
Figure 0003877903
【0045】
表1に示した結果から比較例の薄膜の形成方法では、成膜時間が長くなると、得られる酸化物超電導導体の臨界電流密度の低下の割合が大きくなっている。これに対して実施例の薄膜の形成方法では、成膜時間が長くなっても得られる酸化物超電導導体の臨界電流密度は殆ど低下しておらず、しかも、比較例で得られたものに比べて優れた臨界電流密度が得られていることがわかる。
【0046】
【発明の効果】
以上、詳細に説明したように本発明の薄膜の形成方法によれば、レーザ光の照射位置を上記ターゲットの表面上で移動させるレーザ光の走査を行いながらレーザ光をターゲットに対して斜め方向に照射してレーザ蒸着する際に、ターゲットを前面側に支持する支持ホルダを用い、該支持ホルダの裏面側に立設したシャフトを利用して前記シャフトの軸周りに前記シャフトともに前記ターゲットを回転させて前回のレーザ光の走査と今回のレーザ光の走査において前記レーザ光により前記ターゲットを彫り込む方向を変更して前記ターゲットの彫り込み方向の異なるターゲットの構成粒子が叩き出されるか蒸発されるようにることにより、ターゲットが一方向だけ深く削られることを防止して、ターゲットの寿命を延ばすことができ、高特性の薄膜を長尺にわたり均一に形成できる。
また、本発明の薄膜の形成方法によれば、レーザ光の照射位置を上記ターゲットの表面上で移動させるレーザ光の走査を複数回行うことによりレーザ光をターゲットに照射してレーザ蒸着する際に、前記ターゲットを前面側に支持する支持ホルダを用い、該支持ホルダの裏面側に立設したシャフトを利用して前記シャフトの軸周りに前記シャフトとともに前記ターゲットを回転させる操作を前記ターゲットの一方の端部から他方の端部まで前記レーザ光を一端走査した後に行い、前回の前記ターゲットの一方の端部から他方の端部まで一端走査する際の前記ターゲットの彫り込み方向と、今回の前記ターゲットの他方の端部から一方の端部まで一端走査する際の前記ターゲットの彫り込み方向とを変更し、前記ターゲットの彫り込み方向の異なるターゲットの構成粒子が叩き出されるか蒸発されるようにするので、ターゲットが一方向だけ深く削られることを防止して、ターゲットの寿命を延ばすことができ、高特性の薄膜を長尺にわたり均一に形成できる。
【0047】
さらに、本発明の薄膜の形成方法において、ターゲットとして方形板状のものを用いることにより、円板状のターゲットを用いる場合と異なり、複数枚並べて成膜することができる。そして、正方形板状のターゲットを複数枚並べた構成したターゲットを用い、異なる方向のターゲットの構成粒子が叩き出されるか蒸発されるようにレーザ光の走査を行う毎にターゲットを回転させることにより、ターゲットが一方向だけ深く削られることを防止して、ターゲットの寿命を延ばすことができ、高特性の薄膜を長尺にわたり均一に形成できるうえ、より長時間の成膜を行うことができる。
【図面の簡単な説明】
【図1】 本発明の実施形態の酸化物超電導体の薄膜の形成方法により得られた酸化物超電導導体を示す斜視断面図である。
【図2】 本発明の薄膜の形成方法の実施に好適に用いられるレーザ蒸着装置の概略構成を示す図である。
【図3】 本発明の第一の実施形態の酸化物超電導体の薄膜の形成方法において用いられるターゲットと、該ターゲットに第一回目のレーザ光の走査を行ったときのレーザ光の軌跡を示す平面図である。
【図4】 本発明の第一の実施形態の酸化物超電導体の薄膜の形成方法において、第一回目のレーザ光の走査後に180゜回転させたターゲットと、該ターゲットに第二回目のレーザ光の走査を行ったときのレーザ光の軌跡を示す平面図である。
【図5】 本発明の第二の実施形態の酸化物超電導体の薄膜の形成方法において用いられるターゲットと、該ターゲットに第一回目のレーザ光の走査を行ったときのレーザ光の軌跡を示す平面図である。
【図6】 本発明の第二の実施形態の酸化物超電導体の薄膜の形成方法において、第一回目のレーザ光の走査後に90゜回転させたターゲットと、該ターゲットに第二回目のレーザ光の走査を行ったときのレーザ光の軌跡を示す平面図である。
【図7】 本発明の第二の実施形態の酸化物超電導体の薄膜の形成方法において、第二回目のレーザ光の走査後に90゜回転させたターゲットと、該ターゲットに第三回目のレーザ光の走査を行ったときのレーザ光の軌跡を示す平面図である。
【図8】 本発明の第二の実施形態の酸化物超電導体の薄膜の形成方法において、第三回目のレーザ光の走査後に90゜回転させたターゲットと、該ターゲットに第四回目のレーザ光の走査を行ったときのレーザ光の軌跡を示す平面図である。
【図9】 本発明の第三の実施形態の酸化物超電導体の薄膜の形成方法において用いられるターゲットと、該ターゲットに第一回目のレーザ光の走査を行ったときのレーザ光の軌跡を示す平面図である。
【図10】 実施例で使用後のターゲット材料の表面の組織の状態を示すマイクロスコープ写真である。
【図11】 比較例で使用後のターゲット材料の表面の組織の状態を示すマイクロスコープ写真である。
【図12】 従来の薄膜の形成方法により酸化物超電導体の薄膜を形成するためのレーザ蒸着装置の概略構成を示す図である。
【図13】 図12に示したレーザ蒸着装置に備えられた円形のターゲットと、該ターゲットにレーザ光を照射したときのレーザ光の軌跡を示す平面図である。
【図14】 図12に示したレーザ蒸着装置に備えられた方形のターゲットと、該ターゲットにレーザ光を照射したときのレーザ光の軌跡を示す平面図である。
【図15】 従来の薄膜の形成方法によりレーザ光をターゲットに繰り返し照射したときのターゲット表面が一方向だけ深く削られた状態を示す断面図である。
【符号の説明】
1・・・基材、3・・・薄膜、15・・・ターゲット、30・・・レーザ光、37・・・支持ホルダ、38・・・支持部、39・・・ホルダ回転用シャフト、65・・・ターゲット。

Claims (6)

  1. レーザ光をターゲットに照射し、前記ターゲットに沿ってレーザ光を複数回走査して、ターゲットの構成粒子を叩き出し若しくは蒸発させて、基材上に前記構成粒子を堆積させることにより薄膜を形成する薄膜の形成方法であって、レーザ光の照射位置を上記ターゲットの表面上で移動させるレーザ光の走査を行いながらレーザ光をターゲットに対して斜め方向から照射してレーザ蒸着するにあたり、前記ターゲットを前面側に支持する支持ホルダを用い、該支持ホルダの裏面側に立設したシャフトを利用して前記シャフトの軸周りに前記シャフトともに前記ターゲットを回転させて前回のレーザ光の走査と今回のレーザ光の走査において前記レーザ光により前記ターゲットを彫り込む方向を変更して前記ターゲットの彫り込み方向の異なるターゲットの構成粒子が叩き出されるか蒸発されるようにることを特徴とする薄膜の形成方法。
  2. レーザ光をターゲットに照射し、前記ターゲットに沿ってレーザ光を複数回走査して、ターゲットの構成粒子を叩き出し若しくは蒸発させて、基材上に前記構成粒子を堆積させることにより薄膜を形成する薄膜の形成方法であって、レーザ光の照射位置を上記ターゲットの表面上で移動させるレーザ光の走査を行いながらレーザ光をターゲットに対して斜め方向から照射してレーザ蒸着するにあたり、前記ターゲットを前面側に支持する支持ホルダを用い、該支持ホルダの裏面側に立設したシャフトを利用して前記シャフトの軸周りに前記シャフトとともに前記ターゲットを回転させる操作を前記ターゲットの一方の端部から他方の端部まで前記レーザ光を一端走査した後に行い、前回の前記ターゲットの一方の端部から他方の端部まで一端走査する際の前記ターゲットの彫り込み方向と、今回の前記ターゲットの他方の端部から一方の端部まで一端走査する際の前記ターゲットの彫り込み方向とを変更し、前記ターゲットの彫り込み方向の異なるターゲットの構成粒子が叩き出されるか蒸発されるようにすることを特徴とする薄膜の形成方法。
  3. 前記ターゲットとして方形板状のものを用いることを特徴とする請求項1又は2記載の薄膜の形成方法。
  4. 前記ターゲットの回転角度が180゜であることを特徴とする請求項1乃至3のいずれかに記載の薄膜の形成方法。
  5. 前記ターゲットの回転角度が90゜であることを特徴とする請求項1乃至3のいずれかに記載の薄膜の形成方法。
  6. 前記ターゲットとして、複数枚のターゲットが並べられてなるものを用いることを特徴とする請求項1乃至5のいずれかに記載の薄膜の形成方法。
JP12323199A 1999-04-28 1999-04-28 薄膜の形成方法 Expired - Lifetime JP3877903B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12323199A JP3877903B2 (ja) 1999-04-28 1999-04-28 薄膜の形成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12323199A JP3877903B2 (ja) 1999-04-28 1999-04-28 薄膜の形成方法

Publications (2)

Publication Number Publication Date
JP2000319096A JP2000319096A (ja) 2000-11-21
JP3877903B2 true JP3877903B2 (ja) 2007-02-07

Family

ID=14855455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12323199A Expired - Lifetime JP3877903B2 (ja) 1999-04-28 1999-04-28 薄膜の形成方法

Country Status (1)

Country Link
JP (1) JP3877903B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002235168A (ja) * 2001-02-08 2002-08-23 Sumitomo Electric Ind Ltd 成膜方法および成膜装置
US7608307B2 (en) 2002-11-08 2009-10-27 National Institute Of Advanced Industrial Science And Technology Method of forming film upon a substrate
JP4574380B2 (ja) * 2005-02-15 2010-11-04 株式会社フジクラ 酸化物超電導線材の製造方法及び製造装置
US8702913B2 (en) 2007-10-04 2014-04-22 Ulvac, Inc. Film forming apparatus and film forming method
JP2010121204A (ja) * 2008-10-22 2010-06-03 Fujikura Ltd 成膜方法及び成膜装置
JP5452141B2 (ja) * 2008-10-23 2014-03-26 株式会社フジクラ 成膜方法および成膜装置
US20130092528A1 (en) * 2010-06-30 2013-04-18 Ulvac, Inc. Film-forming device and film-forming method
CN114703455B (zh) * 2022-02-21 2023-11-28 松山湖材料实验室 组合薄膜制备方法及装置

Also Published As

Publication number Publication date
JP2000319096A (ja) 2000-11-21

Similar Documents

Publication Publication Date Title
US6090207A (en) Translational target assembly for thin film deposition system
JPH07291626A (ja) 単結晶性薄膜の形成方法
US5411772A (en) Method of laser ablation for uniform thin film deposition
JP3877903B2 (ja) 薄膜の形成方法
US6037313A (en) Method and apparatus for depositing superconducting layer onto the substrate surface via off-axis laser ablation
JP2011060668A (ja) レーザー蒸着法による長尺酸化物超電導導体の製造方法
JP5452141B2 (ja) 成膜方法および成膜装置
JP2006233266A (ja) 薄膜形成装置
JP2004263227A (ja) 薄膜の形成方法及び形成装置
JP3874965B2 (ja) 薄膜の形成方法
JP2003055095A (ja) 薄膜形成方法
JP4574380B2 (ja) 酸化物超電導線材の製造方法及び製造装置
JP4004598B2 (ja) 酸化物超電導体の薄膜の形成方法
JP3415888B2 (ja) 多結晶薄膜の製造装置と製造方法および酸化物超電導導体の製造方法
JP2001114594A (ja) 多結晶薄膜とその製造方法および酸化物超電導導体とその製造方法
JP2013079437A (ja) レーザーアブレーションを用いた成膜方法および成膜装置
JP3251034B2 (ja) 酸化物超電導導体およびその製造方法
JP2006233246A (ja) 薄膜形成装置
EP0591588A1 (en) Method of making polycrystalline thin film and superconducting oxide body
JP2004262695A (ja) 薄膜の形成方法及び形成装置
JP2004018974A (ja) 酸化物超電導膜の成膜方法
JP4593300B2 (ja) 酸化物超電導線材の製造方法及び製造装置
JP2004263226A (ja) 薄膜の形成方法及び形成装置
JPH0885865A (ja) レーザ蒸着法による薄膜の作製方法
JPH0741946A (ja) レーザ蒸着装置及びそれを用いた多結晶薄膜の形成方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061101

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091110

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101110

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111110

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121110

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121110

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131110

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term