JP3872841B2 - 測距装置 - Google Patents

測距装置 Download PDF

Info

Publication number
JP3872841B2
JP3872841B2 JP14175396A JP14175396A JP3872841B2 JP 3872841 B2 JP3872841 B2 JP 3872841B2 JP 14175396 A JP14175396 A JP 14175396A JP 14175396 A JP14175396 A JP 14175396A JP 3872841 B2 JP3872841 B2 JP 3872841B2
Authority
JP
Japan
Prior art keywords
light
distance
distance measuring
light receiving
subject
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14175396A
Other languages
English (en)
Other versions
JPH09325262A (ja
Inventor
修 野中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP14175396A priority Critical patent/JP3872841B2/ja
Priority to US08/865,205 priority patent/US5915233A/en
Publication of JPH09325262A publication Critical patent/JPH09325262A/ja
Application granted granted Critical
Publication of JP3872841B2 publication Critical patent/JP3872841B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/30Systems for automatic generation of focusing signals using parallactic triangle with a base line
    • G02B7/32Systems for automatic generation of focusing signals using parallactic triangle with a base line using active means, e.g. light emitter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication
    • G01C3/08Use of electric radiation detectors
    • G01C3/085Use of electric radiation detectors with electronic parallax measurement

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Measurement Of Optical Distance (AREA)
  • Focusing (AREA)
  • Details Of Cameras Including Film Mechanisms (AREA)
  • Automatic Focus Adjustment (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、主としてカメラのオートフォーカス手段などに用いられ、対象物(被写体)までの距離を測定する測距装置に関するものである。
【0002】
【従来の技術】
従来、上述した測距装置には一般的に三角測距の原理が用いられており、このような測距装置は測距用光を投光してこの反射光を利用するアクティブ方式と、二点から見た対象物の輝度分布の相関を利用するパッシブ方式の二方式に分類することができ、二方式とも多くのカメラに採用されている。
【0003】
しかし、上記アクティブ方式を採用した測距装置は、対象物が投光した測距用光が届かない程遠距離にある場合に、信頼性の高い測距が困難であるという弱点を有している。また、パッシブ方式を採用した測距装置は、対象物の輝度分布において輝度差が小さい、すなわち、コントラストが低い場合や、人物が夜景をバックにしたときのように主要対象物以外の対象物のコントラストが高い場合にピントが合わず信頼性の高い測距が困難であるという弱点を有している。
そこで、このような二方式の弱点を補い合うように、これら二方式を組み合わせたハイブリット型の測距装置が提案され公知となっている。
【0004】
【発明が解決しようとする課題】
しかしながら、上述したアクティブ方式とパッシブ方式の二方式を組み合わせたハイブリット型は、単純に二つの方式を併用した構成にすると、製造コストが高価となるばかりでなく、さらに装置の大型化を招いてしまう。また、回路の工夫によりセンサを共用しこれらの方式を切り換えられるようにしても、回路が特殊化して複雑になるため、装置は小型化できても高価なものとなってしまう。
【0005】
また、暗い状況下にある場合や対象物の輝度分布において輝度差が小さくコントラストが低い場合には、補助光を投光してパッシブ方式の弱点を補う手法も公知であるが、対象物が遠方に存在する場合やまわりが明るくて低コントラスト時には十分な光量が補えず、対象物が近距離に存在する場合でなければ効果がなかった。そこでさらに、対象物からの反射光の光量が小さい場合には、長時間補助光を投光して反射光による光電流を積分するという手法があるが、いたずらな補助光の投光はエネルギの浪費になってしまう。
【0006】
そこで本発明は、上記課題に鑑みてなされたものであり、低輝度もしくは低コントラストの被写体に対しても信頼性の高い測距を行うことができる測距装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成するために、本発明の第1の態様では、被写体に対し、測距用光を投射する投光手段と、上記被写体からの上記測距用光の反射信号光量を定常光から分離して検出可能な第1受光手段と、上記被写体を定常的に照射する光による輝度分布をモニタする一対のセンサアレイからなる第2受光手段と、記第1受光手段による上記反射信号光量が所定値以下の場合に、上記被写体の距離を無限遠とし、上記第1受光手段による上記反射信号光量が所定値以上の場合に、上記第2受光手段によって出力される上記輝度分布に基づいて上記被写体の距離を演算する距離演算制御手段とを有し、上記距離演算制御手段は、さらに上記反射信号光量が上記所定値より大きい場合であっても、上記所定値より大きい第2所定値以下の場合のみに上記輝度分布に基づいて上記被写体の距離を演算すると共に、上記反射信号光量が上記第2所定値以上の場合には、上記測距用光の上記被写体からの反射光を上記第2受光手段によって受光し、この受光位置に基づいて上記被写体の距離を演算することを特徴とする。この第1の態様の測距装置において、上記第1受光手段は、カメラのリモコン装置の受光手段と兼用することを特徴としてもよい。
【0010】
【発明の実施の形態】
本発明の実施の形態を説明する前に、まず、本発明の理解を容易にするために、上述のパッシブ方式の測距装置について説明する。
図2(a)は、パッシブ方式の測距装置の測距原理を説明するための図である。
【0011】
受光レンズ2,4は、対象物6から入射した光をセンサアレイ8,10にそれぞれ導く。ここで、対象物6が明瞭な明るさの差を有する場合は、上記センサアレイ8,10を構成する個々の受光素子から出力される光電流をコンデンサなどに蓄積して積分し、この電圧を検出することにより、概念的に図2(a)に示すような光量分布12をセンサアレイ8,10上に得ることができる。
【0012】
このとき、二つの受光レンズ2,4の間隔(基線長)Sにより視差が存在するため、センサアレイ8,10上に生じる上記光量分布12は位置の差Xを持つ。したがって、上記受光レンズ2,4の焦点距離をfとすると、対象物までの距離Lは、
L = S × f/X …[1]
にて求めることができる。
【0013】
しかし、上記差Xは測距ポイント14における輝度分布の輝度差が明瞭でない、すなわち、コントラストが低いとき、または低輝度であるときには、正確に検出することができない。したがって、図2(b)の画面16に示すような風景シーンなどではコントラストが低いため、誤測距する可能性が高い。また、図2(c)の画面16に示すような薄暗い状況下においても、対象物の輝度分布の輝度差は小さく、測距精度が劣化してしまう。ある測距時のデータによると、測距において、信頼性の高い測距ができないシーンの8割以上がこのような状況下であるとされている。
【0014】
次に、本発明に係る第1の実施の形態の測距装置について説明する。
図1は、第1の実施の形態の測距装置の構成を示す図である。
受光レンズ2,4とセンサアレイ8,10は、図2(a)に示したパッシブ方式の測距装置を構成する部材と同様のものであり、これらにて第2の受光部を形成する。アナログ/デジタル(A/D)変換部20は、上記センサアレイ8,10の出力をアナログ信号からデジタル信号に変換してワンチップマイクロコンピュータなどからなる演算制御部(以下、CPUと記す)22に入力するためのものである。
【0015】
次に、第1の実施の形態の測距装置の動作について説明する。
上記CPU22は投光部24の投光動作を制御し、対象物に測距用光を投光する。このとき、上記投光部24とセンサ26は対象物の方向を向いているため、対象物により反射された光は、第1の受光部としてのセンサ26で受光される。このセンサ26の出力は、光量検出部28により測距用光のみによる反射信号光成分P1とそれ以外の定常的に照射されている光による定常光成分P0に分離される。CPU22はこうして得られた反射信号光成分P1を受け取り、対象物の距離を算出する。
【0016】
また、図3は本測距装置の動作を示すフローチャートである。
まず、CPU22は投光部24を作動しない状態で、センサ26に入射する定常光による光量P0を定常光除去回路28bの出力から検出する(ステップS1)。続いて、CPU22は投光部24を作動して対象物へ測距用光を投光させ、上記対象物により反射されてセンサ26に入射する光の光量のうち、上記測距用光のみによる反射信号光の光量P1を検出する(ステップS2)。
【0017】
このとき、上記センサ26に入射する光は、定常光による反射光に測距用光による反射信号光が加味されたものであるため、センサ26に入射する光の光量から定常光除去回路28bによって定常光の光量P0を減算することにより、CPU22は光量検出回路28aによって対象物に反射された測距用光のみによる反射信号光の光量P1を算出することができる。
【0018】
次に、CPU22は測距用光のみによる反射信号光の光量P1が極度に小さいか否か(所定値より小さいか否か)を判定する(ステップS3)。ここで、この光量P1は、投光部24による投光光量が一定の場合、対象物の距離が遠くなるに従って小さくなる。したがって、上記光量P1が極度に小さいときは、すなわち、図2(b)に示したような風景シーンにおいては、ステップS7へ分岐し、対象物の距離を無限遠とすることにより、上述したようなパッシブ方式の測距による誤測距をなくす。その後、本動作を終了する。
【0019】
一方、上記ステップS3にて光量P1が極度に小さくないときは、CPU22は上記ステップS2,S1にて求めた光量P1と光量P0との比率(P1/P0)が所定値αより大きいか否かを判定する(ステップS4)。ここで、光量P1と光量P0との比率が所定値αより大きいときは、CPU22は図2(c)に示したような薄暗い状況下であると判断し、再度、投光部24を投光させ、これに同期させてセンサアレイ8を作動させる。これにより、CPU22は対象物により反射される反射信号光のセンサアレイ8上への入射位置を求める。
【0020】
この入射位置は、三角測距の原理により対象物が遠くなるに従って受光レンズ2の光軸から離れ、対象物の距離に応じて変化する。このため、センサアレイ8を形成する個々の受光素子からのアナログ出力を、A/D変換部20によりデジタル信号に変換させ、このデジタル信号をCPU22が受け取れば、そのピーク値を示す上記受光素子の位置関係からアクティブ方式による測距が可能となる(ステップS5)。このようにして、図2(c)に示したような薄暗い状況下での測距が可能となる。その後、本動作を終了する。
【0021】
なお、上記ステップS5での投光部24の投光をパッシブ方式による測距の補助光として利用してもよいが、この場合にはCPU22はセンサアレイ10の出力も受け取り、さらに二つのセンサアレイ8,10の出力の輝度分布の相関演算を行わなければならないため、測距に長い時間を要してしまう。また、二つのセンサアレイ8,10の出力に従って上記輝度分布の相関を調べてから投光部24を作動させるか否かを決定する方法も考えられるが、暗い状況下では定常光の光量が少なく、センサアレイ8,10の出力する光電流も微弱となるため、相関を調べられるまで光を受光して積分していると時間的ロスが大きくなる。
【0022】
一方、上記ステップS4にて光量P1と光量P0との比率が所定値αより大きくないときは、CPU22は上述したセンサアレイ8,10を用いたパッシブ方式による測距を行う(ステップS6)。その後、本動作を終了する。
【0023】
なお、上記ステップS3においては、光量P1に対して1つの判定レベルで無限遠かどうかを判定しているが、複数の判定レベルを設け、無限遠の他、複数の距離について判定するようにしてもよいことはもちろんである。
【0024】
以上説明したように本第1の実施の形態では、コントラストの低い対象物や、暗い状況下においても、高速で正確な測距を行うことができる測距装置が単純な構成で提供できる。また、予め補助光を投光し、対象物により反射される光から定常光成分を除去して補助光成分のみの大きさを求めることにより、補助光の投光が有効であるか否かを高速に決定することができるため、不要な補助光を投光して電源のエネルギを浪費することもない。
【0025】
また、本第1の実施の形態では、定常光と測距用光による反射信号光とを別々に測定することができるため、高輝度下でコントラストが低いような状況下において、いくら信号光を照射しても明瞭なコントラストが得られない状況にあることを簡単に判別することができる。
【0026】
次に、本発明に係る第2の実施の形態の測距装置について説明する。
この第2の実施の形態は、カメラに測距装置を搭載した例であり、上記第1の実施の形態におけるセンサ26にはカメラを遠隔操作するためのリモコン用の受光素子としての機能も兼用させて、省スペース化及び低コスト化を図っている。
【0027】
図4は、第2の実施の形態の測距装置を搭載したカメラの主要部の構成を示す図である。
一般にカメラのリモコン装置は、定常光の影響を受けにくいように、赤外光を所定のパルスパターンで送信機(図示せず)から送信し、それを可視光には反応しない赤外光用のセンサ26で受光レンズ30を介して受信し、受信したパルスパターンにしたがってカメラを制御するようになっている。
【0028】
本実施の形態の投光部24おいても、ドライバ回路32を駆動して赤外光発光ダイオード(以下IREDと記す)34を発光させ、このIRED34の出力光を投光レンズ36により集光して対象物に投光するようにしている。なお、上記ドライバ回路32は、CPU22の制御によりIRED34に電流を供給する。
【0029】
上記投光部24から対象物に対して投光された信号光は、該対象物により反射されセンサ26に入射する。このとき、CPU22はスイッチ38を測距用に切り換え制御して、このセンサ26の出力が図1に示した上記第1の実施の形態と同様に光量検出部28に入力されるようにする。一方、上記センサ26がリモコン用として用いられるときには、CPU22は上記スイッチ38をリモコン用に切り換えてセンサ26の出力がリモコン処理回路40に入力されるようにする。
【0030】
受光レンズ2,4、センサアレイ8,10、アナログ/デジタル(A/D)変換器20は、図1に示した上記第1の実施の形態で説明した測距装置の一部の部材と同様である。投光部24が投光した光の反射信号光はセンサアレイ8にも受光レンズ2を介して入射し、上記第1の実施の形態と同様にこの反射信号光の入射位置を使っても測距が可能となっている。CPU22は測距動作のみならずカメラ全体の動作制御を司り、測距動作の結果にしたがってピント合せ部42を制御し、さらに、撮影時の露出制御なども行う。
【0031】
図5は、カメラに搭載された本測距装置の測距原理を説明するための図である。
投光レンズ36と受光レンズ2の主点間距離を基線長S2とし、受光レンズ2の焦点距離をfとする。
【0032】
すると、通常、距離Lのところに存在する対象物から反射してきた信号光は、図5(b)に示すように、センサアレイ8上の位置X2にピークがくる光量分布44aを示す光スポットを形成する。上記距離Lと位置X2は、上記図2に示したパッシブ方式の測距原理と同様の関係にあり、次の式で表すことができる。
【0033】
X2 = S2 × f/L …[2]
また、上記対象物に輝度のコントラストがない場合でも、投光部24によって測距用光を投光すれば、同様にセンサアレイ8上の位置X2にピークがくる光量分布44aを示す光スポットがセンサアレイ8上に形成される。そこで、CPU22はセンサアレイ8を構成する各受光素子の出力を受け取って上記位置X2を求めることにより、上記[2]式から対象物の距離Lを算出することができる。
【0034】
また、対象物により反射される反射信号光の光量が小さい場合には、図5(b)に示すように、明瞭な凹凸形状をとらない光量分布44bを示す光スポットがセンサアレイ8上に形成される。そこで、本第2の実施の形態では、センサ26に入射する光のうち、定常光によるものと投光部24の投光による反射信号光とを分離して検出できる光量検出部28を具備し、CPU22はこれらの光量を判断することにより、センサアレイ8上に入射する反射信号光が明瞭な光量分布44aを示す光スポットを形成するときのみ、上述した原理にて測距を行う。
次に、従来パッシブ方式の測距装置が苦手としてきた、図6(a)に示すような背景に提灯などがある場合、すなわち、背後に強い光の照射物がある状況下において、上述した構成によって対象物6を正確に測距できる理由を説明する。
【0035】
図6(b)は、背後に強い光の照射物がある状況下におけるセンサアレイ上の光量分布を示す図である。光量分布46bは投光部24による投光前のセンサアレイの出力を示し、光量分布46aは投光部24によって投光を行いながらセンサアレイの出力をモニタしたときを示す。このとき、投光部24による投光によって新しく生じた光量分布46aのピークの位置X2を用いることにより、上記[2]式から正確な対象物の距離を算出することができる。
【0036】
このように、従来は例えば背景に提灯などがある場合、この提灯の光によって上記光量分布46bに測距対象物と無関係のピークが発生し、これにより誤測距となる可能性があったが、本第2の実施の形態では投光部24による信号光の投光によってこれを対策している。
【0037】
さらに、本第2の実施の形態では光量検出部28を有することにより、投光部24による測距用光の投光前後におけるセンサアレイの出力を読み出すことなく、上記光量分布46aのような明瞭なピークが得られるか否かを知ることができる。これにより測距に要する時間を短縮することができる。
【0038】
次に、図7に示すフローチャートを用いて、本測距装置を搭載したカメラの動作について説明する。
まず、CPU22はセンサ26の出力を光量検出部28に入力するために、スイッチ38を光量検出部28側に切り換える(ステップS11)。続いて、CPU22はドライバ回路32を駆動しIRED34から赤外光を投光させ、対象物により反射されてセンサ26に入射する光の光量のうち、上記測距用光のみによる反射信号光の光量P1を光量検出部28により検出する(ステップS12)。
【0039】
次に、CPU22はこのとき得られた反射信号光の光量が第1所定値より小さいか否かを判定する(ステップS13)。ここで、光量が第1所定光量より小さいときは、対象物が遠距離に存在するとしてカメラの撮影レンズのピント合せ距離を無限遠相当とする(ステップS17)。そして、CPU22はピント合せ部42により無限遠にピントを合せ(ステップS21)、本動作を終了する。
【0040】
一方、上記ステップS13において反射信号光の光量が第1所定光量より小さくないときは、さらに、この光量が第2所定光量より大きいか否かを判定する(ステップS14)。なお、第1所定光量<第2所定光量とする。ここで、光量が第2所定光量より大きいときは、対象物がある程度近い距離に存在すると考えられるので、CPU22は投光部24により測距用光を投光させながらセンサアレイ8に入射する反射信号光の光量分布を検出する(ステップS18)。
【0041】
そして、対象物が所定の距離範囲に存在することより、CPU22はセンサアレイ8に入射する反射信号光のピーク位置も所定の範囲ΔXにあるとして、この範囲ΔX内のピーク位置を検出し、この結果を位置X2とする(ステップS19)。さらに、CPU22は上記[2]式により上記ステップS19にて得られた位置X2より対象物の距離L、すなわち、ピント合せ用の距離Lを算出する(ステップS20)。そして、CPU22はピント合せ部42により上記距離Lにピントを合せ(ステップS21)、本動作を終了する。
【0042】
また、上記ステップS14において反射信号光の光量が第2所定光量より大きくないときは、通常のパッシブ方式による測距を行う。まず、CPU22はセンサアレイ8,10上に生じる光量分布の位置の差Xを検出する(ステップS15)。そして、検出した上記差Xを上記[1]式に代入して対象物の距離L、すなわち、ピント合せ用の距離Lを算出する(ステップS16)。そして、CPU22はピント合せ部42により上記距離Lにピントを合せ(ステップS21)、本動作を終了する。
【0043】
次に、測距装置の構成例について説明する。
この構成例は、カメラに測距装置を搭載した例であり、上記第2の実施の形態における投光部24としてのカメラのストロボ発光手段を用いるものであり、別途に投光部24を設ける必要がないため、省スペース化及び低コスト化を図ることができる。
【0044】
図8は、本構成例の測距装置を搭載したカメラの主要部の構成を示す図である。
図8において、ストロボ発光部50はキセノン放電管及び反射傘からなっており、撮影時に対象物を照射し露出を補うものである。ストロボ回路52は上記キセノン放電管に高電圧を印加するための昇圧回路、エネルギ蓄積用のコンデンサ、及び放電誘発用のトリガ電圧印加回路等からなり、CPU22によってその駆動が制御される。
【0045】
ストロボ発光部50から対象物にストロボ光を照射したとき、対象物により反射された反射信号光を受光するセンサ26は、受光レンズ30を介して対象物のごく狭い範囲のみをにらんでいる。これにより、投光部24にストロボ発光部50を利用し広い範囲に光を照射しても、その一部のみの反射信号光を観測することができるため、背景などの影響を受けることはない。さらに、ストロボ発光部50の発する光束密度は上記第2の実施の形態のIRED34にくらべて40倍もの大きさを有するため、測距用光としての効果は非常に大きい。
【0046】
なお、受光レンズ2,4、センサアレイ8,10、アナログ/デジタル(A/D)変換器20、及び光量検出部28は、図1に示した上記第1の実施の形態として説明した測距装置の一部の部材と同様であるため、説明は省略する。
【0047】
次に、図9に示すフローチャートを用いて、本測距装置を搭載したカメラの動作について説明する。
まず、CPU22は上記第1の実施の形態にて説明したパッシブ方式による測距を行い、センサアレイ8,10上に生じる光量分布の位置の差Xを検出する(ステップS30)。続いて、CPU22は対象物に輝度の差がなく、コントラストが低い(ローコントラスト)対象物か否かを、センサアレイ8,10の出力結果より判定する(ステップS31)。ここで、ローコントラストの対象物でないときは、ステップS35へ飛び、CPU22は検出した上記差Xを上記[1]式に代入して対象物の距離L、すなわち、ピント合せ用の距離Lを算出する(ステップS35)。そして、CPU22はピント合せ部42により上記距離Lにピントを合せ(ステップS40)、本動作を終了する。
【0048】
一方、上記ステップS31にてローコントラストの対象物であり、パッシブ方式による測距が不可能であると判断したときは、CPU22はストロボ回路52を駆動しストロボ発光部50によりストロボ光を発光する。そして、対象物により反射された反射信号光の光量をセンサ26により検出する(ステップS32)。
【0049】
次に、CPU22は上記センサ26により検出した反射信号光の光量が所定光量より小さいか否かを判定する(ステップS33)。ここで、上記光量が所定光量より小さいときは、CPU22は図2(b)に示したような風景シーンであると判断して、ピント合せ用の距離Lを無限遠相当とする(ステップS36)。そして、CPU22はピント合せ部42により上記距離Lにピントを合せ(ステップS40)、本動作を終了する。
【0050】
一方、上記ステップS33において反射信号光の光量が所定光量より小さくないときは、CPU22は図2(c)に示したような暗いシーンであると判断して、ストロボ発光部50によりストロボ光を発光して補助的に光を補い、図2(a)を用いて説明したような原理でパッシブ方式による測距を行って、センサアレイ8,10上に生じる光量分布の位置の差Xを検出する(ステップS34)。CPU22は検出した上記差Xを上記[1]式に代入して対象物の距離L、すなわち、ピント合せ用の距離Lを算出する(ステップS35)。そして、CPU22はピント合せ部42により上記距離Lにピントを合せ(ステップS40)、本動作を終了する。
【0051】
以上説明したように本構成例によれば、強力なストロボ光を測距のための補助光に利用することにより、別途に投光部を設ける必要がないため、該投光部を設けるコストやスペースを節約した設計が可能となる。上記ストロボ光は、一般に広い範囲を照射するため測距用には向いていないが、センサ26の睨む範囲を絞り込むことによりこの点を対策している。したがって、本構成例のような簡単な構成によって、従来、苦手とされていた図2(b),(c)に示したような風景シーンや暗いシーンにおける対象物に対しても正確に測距することが可能である。
【0052】
なお、センサ26は、センサアレイ8,10、及びアナログ/デジタル変換部20などと同一のプロセスを利用して同じチップ内に作りこんだり、図10に示すように同一のパッケージ54の中に配置すれば、省スペース化や低コスト化を図ることができる。また、センサアレイ8またはセンサアレイ10を構成する受光素子の中の一つに、センサ26の機能を持たせるようにしてもよい。
【0053】
次に、測距装置の他の構成例について説明する。
図11(a)は、本構成例の測距装置を搭載したカメラの主要部の構成を示す図である。
【0054】
図11(b)に示すように、対象物6が画面16の中心部14に存在しないときは、ピント合せができない場合がある。こうしたシーンでは画面のいくつものポイントを測距して対象物6(被写体)を探す必要があるが、そのたびにセンサアレイ8,10の各出力をモニタしていると長いタイムラグが生じてしまう。
【0055】
そこで、本構成例は、画面16内の三ポイントに対して投光可能な3個の発光ダイオード(以下LEDと記す)60a,60b,60cを設け、選択的にこれを投光制御する選択投光部62を具備している。そして、3つのLED60a,60b,60cのなかでどのLEDを投光した場合に一番強い反射信号光がセンサ26に返ってくるかどうかを検出し、この結果に基づいて一番強い反射信号光が返って来た部分を重点的に、受光レンズ2,4、センサアレイ8,10、A/D変換部20等によってパッシブ方式による測距を行うようにした。その他の構成については、上記測距装置の構成例と同様であるため、ここに編入するものとしその説明は省略する。
【0056】
本測距装置おいて画面中央部を測距するときには、図2(a)に示したように、センサアレイ8の受光レンズ2の光軸上の受光素子を基準センサとし、この受光素子で得られるのと同様な輝度分布をセンサアレイ10で検出して上述したパッシブ方式による測距を行えばよい。しかし、周辺部を測距するときは、画面16の右側なら図12に示すようにセンサアレイ8上の受光素子Saを基準センサとして、画面16の左側を測距するにはセンサアレイ8上の受光素子Scを基準センサとすることにより、センサアレイ10上に生じる輝度分布を検出してパッシブ方式による測距を行えばよい。
【0057】
次に、図13に示すフローチャートを用いて、本測距装置を搭載したカメラの動作について説明する。
まず、CPU22は選択投光部62を介してLED60a,60b,60cを順次発光させ、画面16の右側,中央,左側へ順に投光する。このとき、CPU22はセンサ26に返ってくる反射信号光のそれぞれの光量Pa,Pb,Pcを光量検出部28により検出する(ステップS50〜S52)。これら光量Pa,Pb,Pcのいずれが最大値をとるかによって、CPU22はステップS53,54において判定を行って次の処理に分岐し、最大の光量が返ってきた方向に対して重点的にパッシブ方式による測距を行う。
【0058】
すなわち、CPU22は上記光量Pa,Pb,Pcの中で光量Paが最大値であるか否かを判定する(ステップS53)。光量Paが最大値であるときは、CPU22はストロボ発光部50によりストロボ光を投光して補助的に光を補い、上記センサアレイ8上の受光素子Saを基準に、センサアレイ10上に生じる輝度分布の位置の差Xを検出する(ステップS56)。続いて、CPU22は検出した上記差Xを上記[1]式に代入して対象物までの距離L、すなわち、ピント合せ用の距離Lを算出する(ステップS60)。そして、CPU22はピント合せ部42により上記距離Lにピントを合せ(ステップS61)、本動作を終了する。
【0059】
一方、上記ステップS53にて光量Paが最大値でないときは、CPU22は上記光量Pcが最大値であるか否かを判定する(ステップS54)。光量Pcが最大値であるときは、CPU22はストロボ発光部50によりストロボ光を投光して補助的に光を補い、上記センサアレイ8上の受光素子Scを基準に、センサアレイ10上に生じる輝度分布の位置の差Xを検出する(ステップS57)。続いて、CPU22は検出した上記差Xを上記[1]式に代入して対象物までの距離L、すなわち、ピント合せ用の距離Lを算出する(ステップS60)。そして、CPU22はピント合せ部42により上記距離Lにピントを合せ(ステップS61)、本動作を終了する。
【0060】
一方、上記ステップS54にて光量Pcが最大値でないときは、CPU22は光量Pbが最大値であるとして、この光量Pbが所定値以下か否かを判定する(ステップS55)。光量Pbが所定値以下でないとき、すなわち、所定値より大きいときは、光量Pbは最大値かつ所定値より大きい場合であり、CPU22はストロボ発光部50によりストロボ光を投光して補助的に光を補い、上記センサアレイ8上の受光素子Sbを基準に、センサアレイ10上に生じる輝度分布の位置の差Xを検出する(ステップS58)。続いて、CPU22は検出した上記差Xを上記[1]式に代入して対象物までの距離L、すなわち、ピント合せ用の距離Lを算出する(ステップS60)。そして、CPU22はピント合せ部42により上記距離Lにピントを合せ(ステップS61)、本動作を終了する。
【0061】
また、上記ステップS55にて光量Pbが所定値以下であるときは、CPU22はピント合せ用の距離Lを無限遠相当とする(ステップS59)。このステップS55は、画面中央からの反射信号光の光量の大きさを判定し、これが所定値以下であるときは風景シーンであると判断して、無限遠にピントを合せるものである。これにより、図2(b)に示したような風景シーンの測距時における誤測距を防止することができる。続いて、CPU22はピント合せ部42により上記距離Lにピントを合せ(ステップS61)、本動作を終了する。
【0062】
以上説明したように本構成例においては、3つのLED60a,60b,60cを順次投光し、センサ26に返ってくるそれぞれの反射信号光の光量Pa,Pb,Pcの中で最大の光量が帰ってきた方向に対して重点的にパッシブ方式による測距を行うことにより、何度もセンサアレイ8,10の出力をモニタしたり、その結果からセンサアレイ8,10上に生じる光量分布の位置の差Xを求める計算をしたりするタイムラグが押さえられる。かつ、そのたびに補助光を照射してエネルギを浪費したりすることを防ぐことができる。したがって、本構成例によれば、測距においてタイムラグの少ない省エネルギ設計で、かつ測距が困難な被写体の少ないオートフォーカスカメラを提供できる。
【0063】
上記実施の形態によれば、構成が単純で廉価でありながら、近距離から遠距離までの低輝度や高輝度下や遠距離の低コントラストの対象物に対しても正確な測距を行うことが可能な測距装置が提供できる。
【0064】
なお、本発明の上記実施形態によれば、以下のごとき構成が得られる。
(1) 被写体に対し、測距用光を投射する投光手段と、
上記被写体からの上記測距用光の反射信号光量を定常光から分離して検出可能な第1受光手段と、
上記被写体を定常的に照射する光による輝度分布をモニタする一対のセンサアレイからなる第2受光手段と、
上記投光手段を制御して、上記第1及び第2受光手段の出力結果に基づいて上記被写体距離を計算する演算制御手段と、
を有することを特徴とする測距装置。
(2) 上記演算制御手段は、上記第2受光手段の出力結果より、上記被写体の輝度分布のコントラストが低いと判断した場合に、上記投光手段を投射し、その時の上記第1受光手段の出力結果に従って上記被写体距離を決定する(1)に記載の測距装置。
(3) 上記演算制御手段は、上記投光手段を投射したときの上記第1受光手段の出力結果と、上記投光手段を投射しないときの上記第1受光手段の出力結果に従って、上記投光手段を投射したときの上記第2受光手段の出力に従って上記距離計算を行うか否かを決定する(1)に記載の測距装置。
(4) 上記第1受光手段は、装置を遠隔操作するためのリモコン用センサを兼用する(1)に記載の測距装置。
(5) 上記(1)に記載の測距装置を自動焦点装置に利用するカメラにおいて、上記投光手段は、上記カメラのストロボ装置を兼用することを特徴とする。
(6) 被写体に対し、測距用光を投射する投光手段と、
上記被写体からの上記測距用光の反射信号光量を定常光から分離して検出可能な第1受光手段と、
上記被写体を定常的に照射する光による輝度分布をモニタする一対のセンサアレイからなる第2受光手段と、
上記第1受光手段による上記反射信号光量が所定値以上の場合に、上記第2受光手段によって出力される上記輝度分布に基づいて上記被写体の距離を演算する距離演算制御手段と、
を有することを特徴とする測距装置。
(7) 上記距離演算制御手段は、さらに上記反射信号光量が上記所定値より大きい場合であっても、第2所定値(所定値>第2所定値)以下の場合のみに上記輝度分布に基づいて上記被写体距離を演算すると共に、上記反射信号光量が上記所定値以下であって上記第2所定値以上の場合には、上記測距用光の上記被写体からの反射光を上記第2受光手段によって受光し、この受光位置に基づいて上記被写体距離を演算する(6)に記載の測距装置。
(8) 上記第1受光手段は、カメラのリモコン装置の受光手段と兼用することを特徴とする(6)に記載の測距装置。
(9) 上記投光手段と上記第2受光手段とは基線長離れて位置されている(6)に記載の測距装置。
(10) 上記投光手段は、カメラのストロボ装置と兼用することを特徴とする(6)に記載の測距装置。
(11) 上記投光手段は、異なる方向に投光可能な複数の投光部を有し、上記距離演算制御手段は、上記複数の投光部を順次投光させ、反射光量の最も大きかった投光方向を検出し、上記第2受光手段による上記輝度分布に基づいて上記被写体距離を演算するに当たって、上記投光方向に基づいてセンサ基準位置を変更することを特徴とする(6)に記載の測距装置。
(12) 被写体に対し、測距用光を投射する投光手段と、
上記被写体からの上記測距用光の反射信号光量を定常光から分離して検出可能な第1受光手段と、
上記被写体を定常的に照射する光による輝度分布をモニタする一対のセンサアレイからなる第2受光手段と、
上記第2受光手段による上記輝度分布が低コントラストの場合に、上記投光手段による測距用光に反射信号光に基づいて被写体距離を決定する距離演算制御手段と、
を有することを特徴とする測距装置。
(13) 上距離演算制御手段は、上記低コントラスト時には、上記測距用光の投射を行い、上記第1受光手段による上記反射信号光量が所定値以上の場合には、上記第2受光手段での上記測距用光の受光位置に基づいて上記被写体距離を演算することを特徴とする(12)に記載の測距装置。
(14) 上記投光手段は、カメラのストロボ装置の発光部を兼用することを特徴とする(12)に記載の測距装置。
(15) 上記第2受光手段の受光角は、上記ストロボ装置の発光部の投光角よりも狭いことを特徴とする(14)に記載の測距装置
(16) 上記第2受光手段は、カメラのストロボ装置の受光部と兼用することを特徴とする(12)に記載の測距装置。
(17) 上記投光手段は、異なる方向に投光可能な複数の投光部を有し、上記距離演算制御手段は、上記複数の投光部を順次投光させ、反射光量の最も大きかった投光方向を検出し、上記第2受光手段による上記輝度分布に基づいて上記被写体距離を演算するに当たって、上記投光方向に基づいてセンサ基準位置を変更することを特徴とする(12)に記載の測距装置。
(18) 被写体に対し、異なる方向にそれぞれ測距用光を投射可能な複数の投光部を有する投光手段と、
上記被写体からの上記測距用光の反射信号光量を定常光から分離して検出可能な第1受光手段と、
上記被写体を定常的に照射する光による輝度分布をモニタする一対のセンサアレイからなる第2受光手段と、
上記投光手段による各投射方向毎に上記被写体からの測距用光の反射光を受光し、最大となる投射方向を検出する検出手段と、
この検出手段によって検出された最大となる投射方向に応じて、センサ基準位置を変更して、上記輝度分布から上記被写体距離を演算する距離演算手段と、
を有することを特徴とする測距装置。
(19) 異なる2位置から検出した被写体像の輝度分布の位相差に基づいて被写体の距離を検出する測距装置において、
上記位相差に基づく上記被写体距離の検出が不能または信頼性が低い状況と判断された場合に、上記被写体に向けて投光し、この反射光の受光光量に基づいて上記被写体距離を決定することを特徴とする測距装置。
(20) 被写体に対し、測距用光を投射する投光手段と、
上記被写体からの上記測距用光の反射信号光量を定常光から分離して検出可能な第1受光手段と、
上記被写体を定常的に照射する光による輝度分布をモニタする一対のセンサアレイからなる第2受光手段と、
上記第2受光手段によって出力される上記輝度分布に基づいて上記被写体の距離を演算すると共に、上記被写体が所定距離遠方であるか否かは、上記第1受光手段によって受光される上記反射信号光量に基づいて決定する距離演算制御手段と、
を有することを特徴とする測距装置。
【0065】
【発明の効果】
以上述べたように本発明によれば、低輝度もしくは低コントラストの被写体に対しても信頼性の高い測距を行うことができる測距装置を提供することが可能である。
【図面の簡単な説明】
【図1】第1の実施の形態の測距装置の構成を示す図である。
【図2】(a)はパッシブ方式の測距装置における測距原理を説明するための図であり、(b),(c)はパッシブ方式の測距装置が苦手とするシーンを示す図である。
【図3】上記測距装置の動作を示すフローチャートである。
【図4】第2の実施の形態の測距装置を搭載したカメラの主要部の構成を示す図である。
【図5】上記カメラに搭載された測距装置の測距原理を説明するための図である。
【図6】背後に強い光の照射物がある状況下において正確に測距可能であることを説明するための図である。
【図7】上記カメラに搭載された測距装置の動作を示すフローチャートである。
【図8】 測距装置の構成例を搭載したカメラの主要部の構成を示す図である。
【図9】上記カメラに搭載された測距装置の動作を示すフローチャートである。
【図10】同一パッケージの中に構成部材の一部を配置した図である。
【図11】 (a)は測距装置の他の構成例を搭載したカメラの主要部の構成を示す図であり、(b)は対象物が画面の中心部に存在せずピント合せができないシーンを示す図である。
【図12】上記カメラに搭載された測距装置の測距時における基準センサを示す図である。
【図13】上記カメラに搭載された測距装置の動作を示すフローチャートである。
【符号の説明】
2,4 受光レンズ
6 対象物
8,10 センサアレイ
12,44a,44b,46a,46b 光量分布
14 測距ポイント
16 画面
20 アナログ/デジタル(A/D)変換部
22 演算制御部(CPU)
24 投光部
26 センサ
28 光量検出部
28a 光量検出回路
28b 定常光除去回路
30 受光レンズ
32 ドライバ回路
34 赤外光発光ダイオード(IRED)
36 投光レンズ
38 スイッチ
40 リモコン処理回路
42 ピント合せ部
50 ストロボ発光部
52 ストロボ回路
54 パッケージ

Claims (2)

  1. 被写体に対し、測距用光を投射する投光手段と、
    上記被写体からの上記測距用光の反射信号光量を定常光から分離して検出可能な第1受光手段と、
    上記被写体を定常的に照射する光による輝度分布をモニタする一対のセンサアレイからなる第2受光手段と、
    上記第1受光手段による上記反射信号光量が所定値以下の場合に、上記被写体の距離を無限遠とし、上記第1受光手段による上記反射信号光量が所定値以上の場合に、上記第2受光手段によって出力される上記輝度分布に基づいて上記被写体の距離を演算する距離演算制御手段と、
    を有し、
    上記距離演算制御手段は、さらに上記反射信号光量が上記所定値より大きい場合であっても、上記所定値より大きい第2所定値以下の場合のみに上記輝度分布に基づいて上記被写体の距離を演算すると共に、上記反射信号光量が上記第2所定値以上の場合には、上記測距用光の上記被写体からの反射光を上記第2受光手段によって受光し、この受光位置に基づいて上記被写体の距離を演算することを特徴とする測距装置。
  2. 上記第1受光手段は、カメラのリモコン装置の受光手段と兼用することを特徴とする請求項1に記載の測距装置
JP14175396A 1996-06-04 1996-06-04 測距装置 Expired - Fee Related JP3872841B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP14175396A JP3872841B2 (ja) 1996-06-04 1996-06-04 測距装置
US08/865,205 US5915233A (en) 1996-06-04 1997-05-29 Distance measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14175396A JP3872841B2 (ja) 1996-06-04 1996-06-04 測距装置

Publications (2)

Publication Number Publication Date
JPH09325262A JPH09325262A (ja) 1997-12-16
JP3872841B2 true JP3872841B2 (ja) 2007-01-24

Family

ID=15299400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14175396A Expired - Fee Related JP3872841B2 (ja) 1996-06-04 1996-06-04 測距装置

Country Status (2)

Country Link
US (1) US5915233A (ja)
JP (1) JP3872841B2 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11326744A (ja) * 1998-05-18 1999-11-26 Minolta Co Ltd オートフォーカスカメラ
JP4002680B2 (ja) 1998-07-15 2007-11-07 オリンパス株式会社 測距装置付きカメラ
JP2000180703A (ja) * 1998-12-14 2000-06-30 Olympus Optical Co Ltd 測距装置
JP2000283754A (ja) * 1999-03-31 2000-10-13 Seiko Precision Inc センサシステム
JP2000330001A (ja) * 1999-05-20 2000-11-30 Olympus Optical Co Ltd 測距装置
JP2000330000A (ja) * 1999-05-20 2000-11-30 Olympus Optical Co Ltd 測距装置
JP4350207B2 (ja) * 1999-06-01 2009-10-21 オリンパス株式会社 測距装置
JP2001141987A (ja) * 1999-11-17 2001-05-25 Olympus Optical Co Ltd 測距装置
US7327440B2 (en) * 2004-08-16 2008-02-05 James N. Horn Distance measuring device
TW200717170A (en) * 2005-10-19 2007-05-01 Premier Image Technology Corp Method and image capture device for autofocus via specific light signal
JP5134476B2 (ja) * 2008-09-16 2013-01-30 キヤノン株式会社 撮像装置及びその制御方法
US20100158495A1 (en) * 2008-12-22 2010-06-24 Spence John P Autofocus assist lighting used for rangefinding in very low light conditions
US8949069B2 (en) * 2009-12-16 2015-02-03 Intel Corporation Position determination based on propagation delay differences of multiple signals received at multiple sensors
US8411258B2 (en) 2010-12-22 2013-04-02 Intel Corporation Systems and methods for determining position using light sources
WO2014193334A1 (en) 2013-05-26 2014-12-04 Intel Corporation Apparatus, system and method of communicating positioning information
US9432115B2 (en) 2013-07-10 2016-08-30 Intel Corporation Apparatus, system and method of communicating positioning transmissions
CN105627926B (zh) * 2016-01-22 2017-02-08 尹兴 四像机组平面阵列特征点三维测量系统及测量方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54126023A (en) * 1978-03-23 1979-09-29 Canon Inc Optical device
US4357083A (en) * 1980-10-06 1982-11-02 Polaroid Corporation Method and apparatus using weighted range signal for controlling photographic functions
US4592638A (en) * 1983-09-03 1986-06-03 Canon Kabushiki Kaisha Automatic focus adjusting device
JPS62124408A (ja) * 1985-11-25 1987-06-05 Minolta Camera Co Ltd 測距装置
JPS62204245A (ja) * 1986-03-04 1987-09-08 Minolta Camera Co Ltd Afシステムにおける絞り制御方法
US5680648A (en) * 1993-11-15 1997-10-21 Olympus Optical Co., Ltd. Light projection type distance measuring device for auto-focusing in camera
US5652926A (en) * 1993-12-15 1997-07-29 Fuji Photo Optical Co., Ltd. Distance measuring apparatus
US5589910A (en) * 1993-12-15 1996-12-31 Fuji Photo Optical Co., Ltd. Apparatus for measuring a distance
JPH08334678A (ja) * 1995-06-09 1996-12-17 Fuji Photo Optical Co Ltd 測距装置
JP3120956B2 (ja) * 1995-06-14 2000-12-25 富士写真光機株式会社 測距装置

Also Published As

Publication number Publication date
US5915233A (en) 1999-06-22
JPH09325262A (ja) 1997-12-16

Similar Documents

Publication Publication Date Title
JP3872841B2 (ja) 測距装置
US7405762B2 (en) Camera having AF function
JP2002244027A (ja) 測距装置
US5006700A (en) Distance-measuring apparatus for camera
US6222996B1 (en) Camera with distance measuring apparatus for preferentially controlling passive and active type AF system
JP2002221655A (ja) 測距装置
JP3381233B2 (ja) オートフォーカス装置及びフォーカス調整方法
US5808291A (en) Image information detection system and optical equipment using the system
US6614509B2 (en) Distance measuring apparatus
US6826362B2 (en) Camera having distance measuring apparatus
JP4426670B2 (ja) カメラのピント合わせ装置
JP2000171685A (ja) 焦点検出装置
US6195509B1 (en) Exposure control apparatus for a camera
JPH08184881A (ja) カメラ
JPH09318871A (ja) 補助投光装置および焦点検出装置
JPH1096851A (ja) カメラの測距装置
US6336004B1 (en) Distance measuring equipment and camera
JP3868035B2 (ja) 測距装置
US6285832B1 (en) Semiconductor photo detector element, distance measuring equipment, and camera
JP3064429B2 (ja) 動体測距装置および動体測距方法
US6327435B1 (en) Focus adjusting apparatus
KR100509362B1 (ko) 디지탈 카메라의 패시브 초점 조절 장치 및 그 방법
JP2002206923A (ja) 測距装置
JP2004206084A (ja) 測距装置を有するカメラ
JP2003279837A (ja) カメラ用受光センサ

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061023

LAPS Cancellation because of no payment of annual fees