JP3872395B2 - Manufacturing method of semiconductor element storage package - Google Patents

Manufacturing method of semiconductor element storage package Download PDF

Info

Publication number
JP3872395B2
JP3872395B2 JP2002222746A JP2002222746A JP3872395B2 JP 3872395 B2 JP3872395 B2 JP 3872395B2 JP 2002222746 A JP2002222746 A JP 2002222746A JP 2002222746 A JP2002222746 A JP 2002222746A JP 3872395 B2 JP3872395 B2 JP 3872395B2
Authority
JP
Japan
Prior art keywords
metal layer
semiconductor element
hole
layer
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002222746A
Other languages
Japanese (ja)
Other versions
JP2004063962A (en
Inventor
直広 鹿取
英昭 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002222746A priority Critical patent/JP3872395B2/en
Publication of JP2004063962A publication Critical patent/JP2004063962A/en
Application granted granted Critical
Publication of JP3872395B2 publication Critical patent/JP3872395B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体集積回路素子等の半導体素子を収容するための半導体素子収納用パッケージおよびその製造方法に関する。
【0002】
【従来の技術】
従来、MPU等の半導体素子を収容するための半導体素子収納用パッケージは、例えば図15に断面図で示すように、中央部に半導体素子40を収容するための段状の貫通穴41aを有する配線基板41と、この配線基板41の下面に貫通穴41aを塞ぐように接合層43を介して接合され、上面中央部に半導体素子40が搭載される搭載部42aを有する銅等の金属材料から成る放熱板42とから主に構成されている。
【0003】
この従来の半導体素子収納用パッケージにおいては、配線基板41は、例えばガラスクロスにエポキシ樹脂等の熱硬化性樹脂を含浸させて成る二枚の絶縁板44・45を同じくガラスクロスにエポキシ樹脂等の熱硬化性樹脂を含浸させて成る接着層46を介して積層して成る。
【0004】
絶縁板44は、その中央部に貫通穴41aの一部を形成する貫通穴44aが形成されており、その上面には貫通穴44a周辺に電子部品40の各電極が電気的に接続される複数のボンディングパッド47およびこのボンディングパッド47から外周部にかけて複数の配線導体48が被着されている。さらにその下面の略全面には半導体素子40に接地および/または電源電位を供給するための複数の接地および/または電源導体49が被着されており、貫通穴44aの内壁にはボンディングパッド47の一部と接地および/または電源導体49とを接続する複数の接続導体50が被着されている。他方、絶縁板45には、その中央部に貫通穴44aよりも大きな貫通穴45aが形成されているとともに上面に外部接続パッド51が被着されている。そして、これらの絶縁板44と45との積層体の外周部には、複数の貫通孔52が設けられており、貫通孔52の内壁には配線導体48や接地および/または電源導体49と外部接続パッド51とを電気的に接続する貫通導体53が被着されている。さらに、接地および/または電源導体49の下面には配線基板41と放熱板42との接合を強固なものとするためにエポキシ樹脂から成る絶縁層54が被着されており、この絶縁層54に放熱板42がガラスクロスにエポキシ樹脂等の熱硬化性樹脂を含浸させて成る接合層43を介して接合されている。
【0005】
そして、この従来の半導体素子収納用パッケージによれば、放熱板42の搭載部42aに半導体素子40を搭載するとともにこの半導体素子40の各電極をボンディングパッド47にボンディングワイヤ55等の電気的接続手段を介して電気的に接続する。その後、外部接続パッド51に半田ボール等から成る外部接続部材56を接合するとともに貫通穴41a内へ図示しない封止用樹脂をポッティングして半導体素子40を気密に封止することにより製品としての半導体装置となる。
【0006】
なお、この従来の半導体素子収納用パッケージにおいては、接続導体50は、図16に斜視図で示すように、貫通穴44a内壁の金属層を部分的に除去して形成したスリットSにより互いに分断された幅広のパターンで形成されている。このようにスリットSで互いに分断された幅広のパターンとすることにより各接地および/または電源導体49とこれに対応するボンディングパッド47とを低いインダクタンスで接続している。このような接続導体50は、貫通穴44a内壁の全面に無電解めっきおよび電解めっきにより銅から成る金属層を被着させておくとともに、この金属層をフォトリソグラフィー技術を採用してスリットSの部分をエッチング除去することによって形成されている。
【0007】
しかしながら、この従来の半導体素子収納用パッケージによると、貫通穴44a内壁に設けた複数の接続導体50は、貫通穴44aの内壁全面に金属層を被着させるとともにこの金属層をフォトリソグラフィー技術を採用してスリットSに対応する部分をエッチング除去することによって形成されており、フォトリソグラフィーにおける露光を行なう際に、貫通穴44aの内壁が垂直であることからフォトリソグラフィーに用いる露光用マスクを良好に密着させて正確に露光することが困難であり、そのためスリットSの部分が良好にエッチング除去されずに各接続導体50同士のスリットSを介した電気的絶縁が不完全なものとなりやすく、その結果、そのような絶縁不良によって内部に収容する半導体素子40の正常な作動が妨げられてしまうという課題を有していた。
【0008】
このような課題を解決するために、本願出願人は特願2001-53177において、貫通穴内壁の全面に被着した金属層を切削工具にてスリットSの部分を除去することにより接続導体を形成する方法を提案した。この方法によれば、貫通穴内壁の複数の接続導体は、貫通穴内壁を接地および/または電源導体同士の境界に対応する部位で絶縁板の上面から下面にかけて切削した切り欠き部により互いに分離されていることから、この切削で形成された切り欠き部により互いに確実かつ良好に電気的に絶縁される。
【0009】
【発明が解決しようとする課題】
しかしながら、特願2001-53177で提案した方法では、貫通穴内壁の全面に被着した金属層を切削工具にてスリットSの部分を除去することにより接続導体を形成した後に、絶縁板の上面および下面の全面に被着した金属層にボンディングパッドや接地および/または電源導体を形成するための開口を有する耐めっき樹脂層を被着し、しかる後、この開口内にめっきを被着している。その結果、切削工具にてスリットSの部分を除去する際に発生した微細なバリが金属層上に残り、耐めっき樹脂層と金属層との密着性が低下し、ボンディングパッドや接地および/または電源導体をめっきにより形成する際に、耐めっき樹脂層の下にめっき液が潜り込んで後でエッチング等で除去する部分の厚みが部分的に厚いものとなり、その結果、ボンディングパッド間や接地および電源導体間のめっきを完全に除去できず、ボンディングパッド間や接地および電源導体間で短絡が発生してしまい易いという問題点を有していた。また、エッチングの時間が長くなってしまうという問題点を有していた。
【0010】
本発明は、かかる従来の問題点に鑑み完成されたものであり、その目的は、ボンディングパッド間や接地および電源導体間の電気的短絡を防止し、内部に収容する半導体素子を正常に作動させることが可能な半導体素子収納用パッケージを提供することにある。
【0011】
【課題を解決するための手段】
本発明の半導体素子収納用パッケージの製造方法は、中央部に半導体素子を収容するための貫通穴を有し、上面および下面ならびに前記貫通穴内壁の全面に第1の金属層が被着された絶縁板を準備する工程と、前記貫通穴内壁を前記上面から下面にかけて切削して切り欠き部を設け、この切り欠き部により前記貫通穴内壁の前記第1の金属層を分断して複数の接続導体用の下地部分を形成する工程と、前記第1の金属層の表面をエッチングする工程と、前記上面および下面の前記第1の金属層上に所定パターンの開口を有する樹脂層を被着する工程と、前記下地部分および前記開口内に露出した前記第1の金属層上に第2の金属層を被着する工程と、前記樹脂層を剥離した後、露出した前記第1の金属層を除去して、前記上面に一部が前記接続導体に繋がった複数のボンディングパッドを設けるとともに前記下面に前記接続導体に繋がった複数の接地および/または電源導体を形成する工程とを順次行なうことを特徴とするものである。
【0012】
本発明の半導体素子収納用パッケージの製造方法によれば、貫通穴内壁に被着した第1の金属層を上面から下面にかけて切削して切り欠き部を設け、この切り欠き部により貫通穴内壁の第1の金属層を分断して複数の接続導体を形成し、しかる後、第1の金属層をエッチングすることから、切削の際に発生した微小なバリが第1の金属層の表面に残ることはなく、その結果、樹脂層と第1の金属層との密着性が良好となり、ボンディングパッドや接地および/または電源導体をめっきにより形成する場合、樹脂層の下にめっき液が潜り込んでエッチングで除去する部分の厚みが部分的に厚いものとなることはなく、ボンディングパッド間や接地および電源導体間のめっきを完全に除去することができ、接続信頼性に優れた半導体素子収納用パッケージとすることができる。また、エッチングの時間が長くなってしまうこともない。
【0013】
【発明の実施の形態】
次に、本発明の半導体素子収納用パッケージの製造方法を添付の図面に基づいて説明する。図1は、本発明の製造方法によって製作した半導体素子収納用パッケージの実施形態の一例を示す断面図、図2は、図1に示す半導体素子収納用パッケージの斜視図である。なお、本例では、半導体素子収納用パッケージが放熱板を有する例を示している。図中、1は配線基板、2は放熱板であり、主としてこれらで半導体素子3を収容するための半導体素子収納用パッケージが構成されている。
【0014】
配線基板1は、中央部に半導体素子3を収容するための貫通穴4aを有するとともに上面に複数のボンディングパッド5およびこのボンディングパッド5の一部から外周部に延在する複数の配線導体6を、下面の略全面に複数の接地および/または電源導体7を、貫通穴4a内壁にボンディングパッド5の一部と接地および/または電源導体7とを接続する複数の接続導体8を有する略四角枠状の絶縁板4と、中央部に貫通穴4aよりも大きな貫通穴9aを有するとともに上面に複数の外部接続パッド10が被着形成された略四角枠状の絶縁板9とを接着層11を介して接着して成る。また、その外周部に複数の貫通孔12が形成されており、この貫通孔12内には貫通導体13が被着されている。さらにその下面には絶縁層14が被着されている。
【0015】
配線基板1を構成する絶縁板4や9は、ガラス繊維やアラミド繊維のクロスにエポキシ樹脂やビスマレイミドトリアジン樹脂等の熱硬化性樹脂を含浸させて成り、ボンディングパッド5・配線導体6・接地および/または電源導体7・接続導体8や外部接続パッド10の支持体として機能するとともに貫通穴4a・9a内に半導体素子3を収容するための空所を形成する。
【0016】
また、これらの絶縁板4・9を接着する接着層11は、同じくガラス繊維やアラミド繊維のクロスにエポキシ樹脂やビスマレイミドトリアジン樹脂等の熱硬化性樹脂を含浸させて成り、絶縁板4と9とを接着する接着部材として機能する。
【0017】
絶縁板4の上面に被着されたボンディングパッド5は、半導体素子3の各電極(信号電極・接地電極・電源電極)が電気的に接続される領域であり、図2に斜視図で示すように、略四角形状のパターンである。そして、その上面に半導体素子3の各電極がボンディングワイヤ15を介して電気的に接続される。なお、図2においては、簡略のため1本のボンディングワイヤ15のみを図示している。
【0018】
ボンディングパッド5の一部から延びる配線導体6は、略帯状パターンであり、パッケージ内に収容される半導体素子3の各電極を外部電気回路に電気的に接続するための導電路の一部として機能し、貫通導体13に接続されている。
【0019】
また、絶縁板4の下面に被着された接地および/または電源導体7は、絶縁板4の下面の略全面に被着形成されている。この接地および/または電源導体7は、半導体素子3に接地および/または電源電位を供給するとともに配線導体6の特性インピーダンスを所定の値に調整する機能を有し、ボンディングパッド5の一部に接続導体8を介して接続されているとともに貫通導体13に接続されている。
【0020】
さらに、ボンディングパッド5の一部と接地および/または電源導体7とを接続する接続導体8は、ボンディングパッド5と接地および/または電源導体7とを低インダクタンスで接続することにより半導体素子3を安定して作動可能とするためのものであり、貫通穴4aの内壁の略全面に幅広のパターンで形成されている。
【0021】
また、絶縁板9の上面に被着された外部接続パッド10は、外部電気回路との接続用導体として機能し、貫通導体13に電気的に接続するようにして形成されている。そして、この外部接続パッド10には、半田ボール等からなる外部接続部材16が取着される。
【0022】
なお、ボンディングパッド5・配線導体6・接地および/または電源導体7・接続導体8・外部接続パッド10は、通常、銅箔や銅めっき等の金属から成り、厚みが5〜50μm程度である。また、これらのボンディングパッド5等における露出表面には、通常であれば1〜30μm程度の厚みのニッケルめっき層および0.1〜3μm程度の厚みの金めっき層が無電解めっき法や電解めっき法により順次被着されている。それにより、ボンディングパッド5等における酸化腐食を有効に防止することができるとともにボンディングパッド5とボンディングワイヤ15との電気的接続および外部接続パッド10と外部接続部材16との電気的接続を良好となすことができる。
【0023】
また、貫通孔12の内壁に被着された貫通導体13は配線導体6や接地および/または電源導体7と外部接続パッド10とを電気的に接続させる接続用導体として機能し、接続導体は、配線基板1の上面から下面にかけて穿孔された多数の貫通孔12の内壁に銅めっき層を無電解めっき法や電解めっき法を採用して被着することにより形成されている。
【0024】
さらに、絶縁板4の下面にはエポキシ樹脂等の熱硬化性樹脂から成る絶縁層14が被着形成されている。絶縁層14は、配線基板1に放熱板2を強固に接合させるための接合用下地部材として機能し、この絶縁層14の下面に放熱板2が接合層17を介して接合されることにより配線基板1と放熱板2とが接合されている。この絶縁層14にはシリカ等の無機絶縁物粉末から成るフィラーを5〜50重量%程度含有させてもよい。フィラーを含有させることにより絶縁層14の熱膨張係数を調整することができるとともに、絶縁層14の耐熱性等を向上させることができる。
【0025】
他方、配線基板1の下面に接合層17を介して接合された放熱板2は、銅等の熱伝導性に優れる金属から成り、貫通穴4aを塞ぐようにして接合されている。この放熱板2は、半導体素子3を支持するための支持体として機能するとともに半導体素子3が作動時に発生する熱を外部に良好に放熱するための放熱部材として機能し、その上面中央部に半導体素子3を搭載するための搭載部2aを有している。そして、この搭載部2aに半導体素子3がエポキシ樹脂等の接着剤を介して接着固定される。
【0026】
このような放熱板2は、例えば銅から成る板材を打ち抜き金型により所定の形状に打ち抜くことによって形成すればよい。なお、放熱板2の表面にニッケルや金等の耐食性の良好な金属をめっき法により1〜20μmの厚みに被着させておくと、放熱板2の酸化腐食を有効に防止することができる。さらに、放熱板2と接合層17との接合力向上のために、放熱板2表面に黒化処理やブラスト処理を施し、その表面に算術平均粗さRaが0.2〜3μm程度となるような凹凸を形成してもよい。
【0027】
また、配線基板1と放熱板2とを接合する接合層17は、例えばガラスクロスにエポキシ樹脂等の熱硬化性樹脂を含浸させて成る略四角枠状であり、このような構成により接合面にボイドが発生せず接合強度が大きく密着性に優れている。このような接合層17は、例えばガラスクロスに未硬化のエポキシ樹脂を含浸させたシートを打ち抜き金型等を用いて絶縁板4と略同一の形状に打ち抜き、これを配線基板1と放熱板2との間に挟んで上下から加圧しながら熱硬化させることにより配線基板1と放熱板2とを強固に接合する。
【0028】
さらに本発明においては、図2に示すように、接続導体8は、厚みが0.5〜3mの無電解銅めっき層上に厚みが10〜20μmの電解銅めっき層を被着して成り、絶縁板4に無電解銅めっき層を被着させた貫通穴4a内壁を上面から下面にかけて切削した複数の切り欠き部Aにより互いに分離されている。このように、接続導体8は、絶縁板1に無電解銅めっき層を被着させた貫通穴4a内壁を上面から下面にかけて切削した複数の切り欠き部Aにより互いに分離されていることから、この切削で形成された切り欠き部Aにより互いに確実かつ良好に電気的に絶縁されているので、各接続導体8を短絡のないものとすることができる。
【0029】
接続導体の無電解銅めっき層の厚みが0.5μm未満であると絶縁板4の全面に安定させて無電解銅めっきを被着できない傾向にあり、3μmを超えるとバリが発生し易くなり、各接続導体8同士が短絡し易くなる傾向にある。従って、接続導体の無電解銅めっき層の厚みは、0.5〜3μmでなければならない。また、電解銅めっき層の厚みが10μm未満であると上面のボンディングパッド5と下面の接地および/または電源導体との接続信頼性が低下する傾向にあり、20μmを超えるとエッチングが難しく、高密度配線できない傾向にある。従って、電解銅めっき層の厚みは、10〜20μmが好ましい。
【0030】
なお、切り欠き部Aは、図3に要部拡大上面図で示すように、貫通穴4aの内壁に向かって左側を上面側から見て右回転の切削工具31で切削するか、または、右側を左回転の切削工具31で切削することにより1回の切削で形成されている。
【0031】
また、切り欠き部Aは、その幅が0.1mm未満であると隣接する接続導体8同士を電気的に良好に絶縁することが困難となる傾向にあり、他方、2.0mmを超えると、接続導体8の幅がその分だけ狭いものとなり、ボンディングパッド5と接地および/または電源導体7とを低インダクタンスで接続することが困難となる傾向にある。従って、切り欠き部Aの幅は、0.1〜2.0mmの範囲が好ましい。
【0032】
さらに、切り欠き部Aは、その深さが0.1mm未満では、隣接する接続導体8同士を電気的に確実に分離することができなくなる危険性があり、他方、0.5mmを超えると、絶縁板4上にボンディングパッド5を形成する領域を十分に確保することが困難となる傾向にある。従って、切り欠き部Aの深さは、0.1〜0.5mmの範囲が好ましい。
【0033】
このような半導体素子収納用パッケージは、放熱板2の搭載部2aに半導体素子3を搭載するとともに、この半導体素子3の各電極とボンディングパッド5とをボンディングワイヤ15を介して電気的に接続し、しかる後、貫通穴4a・9a内へ封止用樹脂をポッティングして樹脂封止を行なうことにより半導体装置となる。
【0034】
なお、このような半導体素子収納用パッケージにおいては、必要に応じて配線基板1上に外部接続パッド10の外周部を覆うソルダーレジスト層18を設けてもよい。このようなソルダーレジスト層18は、例えばシリカ等の絶縁性フィラーを含有させたエポキシ樹脂等の熱硬化性樹脂から成り、外部接続パッド10上に半田ボール等の外部接続部材16を取着する際の外部接続部材16の不要な濡れ広がりを制御するダムの作用をする。
【0035】
次に、上述の半導体素子収納用パッケージの製造方法について説明する。
まず、図4に断面図で示すように、中央部に貫通穴4aを有するとともに上面および下面の全面に厚みが12〜60μm程度の銅箔21・22が貼着された絶縁板4と、中央部に貫通穴9aを有するとともに上面の全面に厚みが12〜60μm程度の銅箔23が貼着された絶縁板9とを準備する。このような絶縁板4・9は、例えばガラスクロスに未硬化のエポキシ樹脂等の熱硬化性樹脂を含浸させてなるシートに銅箔21・22や23を貼着するとともに、これを熱硬化させることによって形成され、貫通穴4a・9aは、硬化した絶縁板4・9に切削加工を施すことにより形成される。
【0036】
次に、図5に要部拡大断面図で示すように、絶縁板4の銅箔21・22および貫通穴4a内壁の全面に厚みが0.5〜3μmの第1の金属層24を、例えば無電解銅めっきにより被着させる。第1の金属層24となる無電解銅めっき層を被着させるには、銅箔21・22の表面および貫通穴4a内壁に例えば塩化アンモニウム系酢酸パラジウムを含有するパラジウム活性液を使用してパラジウム触媒を付着させるとともに、その上に硫酸銅系の無電解銅めっき液を用いて行なえばよい。
【0037】
次に、図6に要部拡大部分断面斜視図で示すように、絶縁板4の貫通穴4a内壁を上面から下面にかけてドリルやルーター等の切削工具を用いて略半円状に切削して切り欠き部Aを形成する。このように切り欠き部Aを形成することにより貫通穴4a内壁に被着させた第1の金属層24が分断される。貫通穴4a内壁に残った第1の金属層24が接続導体8用の下地部分となる。このとき、貫通穴4a内壁の第1の金属層24は、切削で形成された切り欠き部Aにより互いに確実かつ良好に分断される。
【0038】
次に、第1の金属層24の表面を、過酸化水素水/希硫酸系エッチング液や塩化第二鉄水溶液・塩化第二銅水溶液でエッチングする。そして、本発明においては、貫通穴4a内壁の第1の金属層24を切削して切り欠き部Aを形成した後に、第1の金属層24の表面をエッチングすることが重要である。
【0039】
本発明の半導体素子収納用パッケージの製造方法によれば、貫通穴4a内壁の第1の金属層24を切削して切り欠き部Aを形成した後に、第1の金属層24をエッチングすることから、切削の際に発生した微小なバリが第1の金属層24の表面に残ることはなく、その結果、後述するめっきレジスト層である樹脂層25と第1の金属層24との密着性が良好となり、ボンディングパッドや接地および/または電源導体をめっきにより形成する場合に、樹脂層25の下にめっき液が潜り込んで、後でエッチング等で除去する金属層の厚みが部分的に厚いものとなることはなく、ボンディングパッド間や接地および電源導体間のめっきを完全に除去することができ、接続信頼性に優れた半導体素子収納用パッケージとすることができる。
【0040】
このようなエッチングは、例えばエッチング液が過酸化水素水/希硫酸系エッチング液からなる場合は、濃度が10〜50%、温度が25〜50℃のエッチング液に半導体素子収納用パッケージを約1分間浸漬することにより行なわれ、この条件により第1の金属層24表面の算術平均粗さが0.5μm程度から0.1〜0.3μmになり、切削の際に発生した微小なバリを完全に除去することが可能となる。なお、第1の金属層24表面の算術平均粗さが0.1μm未満では、樹脂層25との密着性が弱くなり、第2の金属層26を形成する際にめっき液が第1の金属層24と樹脂層25との間に浸入しやすくなる傾向があり、0.3μmを超えると、切削の際に発生した微小なバリを完全に除去することが困難となる傾向がある。従って、エッチング後の第1の金属層24表面の算術平均粗さを0.1〜0.3μmの範囲にすることが好ましい。
【0041】
次に、図7に要部拡大部分断面斜視図で示すように、第1の金属層24上に感光性樹脂層を貼着するとともにこれを露光・現像してボンディングパッド5・配線導体6・接地および/または電源導体7・接続導体9に対応する部位に開口を有する樹脂層25を形成する。めっきレジスト用の感光性樹脂としては、例えばドライフィルムレジストを用いればよい。
【0042】
本発明の半導体素子収納用パッケージの製造方法によれば、貫通穴4a内壁を上面から下面にかけて切削して切り欠き部Aを設け、切り欠き部Aにより貫通穴4a内壁の第1の金属層24を分断して複数の接続導体8を形成した後、第1の金属層24をエッチングすることから、切削により発生した微小なバリもエッチングにより除去でき、その結果、高密度配線を行なっても、ボンディングパッド5間や配線導体6同士の短絡がない。
【0043】
次に、図8に要部拡大断面図で示すように、樹脂層25から露出した第1の金属層24の表面に厚みが10〜20μm程度の電解銅めっきからなる第2の金属層26および厚みが3〜10μm程度の半田めっき層27を順次被着させる。電解銅めっき液としては例えば硫酸銅系から成る銅めっき液を、半田めっき液としては例えば硫酸第1錫系から成る半田めっき液を用いればよい。
【0044】
次に、図9に要部拡大断面図で示すように、樹脂層25を剥離するとともに半田めっき層27をエッチングマスクとして用いることにより半田めっき層27から露出する部位の第1の金属層24および銅箔21・22をエッチング除去し、しかる後、半田めっき層27をエッチング除去することにより図10に要部拡大斜視図で示すようにボンディングパッド5・配線導体6・接地および/または電源導体7・接続導体8を形成する。第1の金属層24および銅箔21・22をエッチングするエッチング液としては、例えばアルカリ性のエッチング液を用いればよい。また、半田めっき層27をエッチングするエッチング液としては過酸化水素系のエッチング液を用いればよい。
【0045】
なお、本発明の半導体素子収納用パッケージの製造方法によれば、貫通穴4a内壁の全面に第1の金属層24を被着させた絶縁板4を切削して切り欠き部Aを形成した後に第2の金属層26を被着することから、第1の金属層24が略0.5〜3μmときわめて薄いため、大きなバリ等の発生により電気的短絡が発生せず、確実に互いに分断することができ、この切削で形成された切り欠き部により互いに確実かつ良好に電気的に絶縁される。
【0046】
他方、絶縁板9は、図11に断面図で示すように、銅箔23を所定のパターンにエッチングすることによりその上面に外部接続パッド10を形成する。
【0047】
次に、図12に断面図で示すように、絶縁板4と絶縁板9とを間に接着層11を挟んで接着して積層体となす。絶縁板4と絶縁板9とを接着層11を介して接着するには、ガラスクロスに未硬化のエポキシ樹脂等の熱硬化性樹脂を含浸させて成る接着層11を絶縁板4と絶縁板9との間に挟んで積層するとともに、これらを例えば積層プレス機を用いて、真空度が4kPa以下、温度が180〜200℃の範囲、圧力が2〜4MPaの範囲の条件で90〜120分間加圧加熱することにより接着層11を熱硬化させて絶縁板4と絶縁板9とを接着する方法が採用される。
【0048】
次に、図13に断面図で示すように、積層体の外周部に複数の貫通孔12をルーター加工やドリル加工等の切削加工により形成するとともに、貫通孔12の内壁に無電解めっき法や電解めっき法により銅から成る貫通導体13を被着形成して外部接続パッド10とこれに対応する配線導体6や接地および/または電源導体7とをそれぞれ電気的に接続する。
【0049】
次に、図14に断面図で示すように、絶縁板4の下面に絶縁層14用の未硬化の熱硬化性樹脂ペーストをスクリーン印刷法を採用して印刷塗布した後、これを熱硬化させて絶縁層14を形成することによって配線基板1を製作する。
【0050】
そして、最後にこの配線基板1の下面に放熱板2を接合層17を介して接合することにより図1に示したような本発明の半導体素子収納用パッケージが完成する。なお、配線基板1と放熱板2との接合は、ガラスクロスに未硬化のエポキシ樹脂等を含浸させた接合層17を間に挟んで配線基板1と放熱板2とを積層し、これらを上下から0.3〜0.5MPaの圧力を印加しながら150〜200℃の温度で60〜120分間程度の時間加熱して接合層17を熱硬化させることにより行なわれる。
【0051】
さらに、本発明の製造方法においては、必要に応じて配線基板1上に外部接続パッド10の外周部を覆うソルダーレジスト層18を形成してもよい。このようなソルダーレジスト層18を設けることにより外部接続パッド10上に半田ボール等の外部接続部材16を接合した際に半田ボール等の不要な濡れ広がりを防止することができる。このようなソルダーレジスト層18は、例えばシリカ等のフィラーを含有するエポキシ樹脂等の熱硬化性樹脂から形成すればよく、シリカ等のフィラーを含有する未硬化の感光性を有する熱硬化性樹脂ペーストを絶縁板9上の略全面にスクリーン印刷法等を採用して印刷塗布した後、これを公知のフォトリソグラフィー技術を採用して所定のパターンにエッチングし、最後にこれを130〜180℃で約1時間程度加熱して硬化させることによって形成すればよい。
【0052】
かくして、また、本発明の半導体素子収納用パッケージの製造方法によれば、貫通穴4a内壁を上面から下面にかけて切削して切り欠き部Aを設け、切り欠き部Aにより貫通穴4a内壁の第1の金属層24を分断して複数の接続導体8の下地部分を形成した後、第1の金属層24をエッチングすることから、切削に発生した微小なバリもエッチングにより除去でき、その結果、高密度配線を行なっても、ボンディングパッド5や配線導体6同士の短絡がない。また、後からエッチングを行なうため、切削は1回で十分であり、切削工程を短縮できる。
【0053】
なお、本発明は上述の実施形態例に限定されるものではなく、本発明の要旨を逸脱しない範囲であれば種々の変更は可能である。例えば、上述の実施の形態例では、2枚の絶縁板4・9を接着した配線基板1を例に示したが、1枚の絶縁板の上面にボンディングパッド5と配線導体6と外部接続パッド10とを一体的に形成するとともに下面に接地および/または電源導体を形成して成る配線基板や、3枚以上の絶縁板を積層して成る配線基板を用いたものであってもよい。また、上述の実施の形態例における貫通穴4a・9aは、打ち抜き金型を用いたパンチングにより、あるいはレーザ加工機により形成してもよい。さらに、貫通孔12の加工はレーザ加工機を用いて行なっても良い。
【0054】
【発明の効果】
本発明の半導体素子収納用パッケージの製造方法によれば、貫通穴内壁に被着した第1の金属層を上面から下面にかけて切削して切り欠き部を設け、この切り欠き部により貫通穴内壁の第1の金属層を分断して複数の接続導体を形成し、しかる後、第1の金属層をエッチングすることから、切削の際に発生した微小なバリが第1の金属層の表面に残ることはなく、その結果、樹脂層と第1の金属層との密着性が良好となり、ボンディングパッドや接地および/または電源導体をめっきにより形成する際に、樹脂層の下にめっき液が潜り込んでエッチングで除去する部分の厚みが部分的に厚いものとなることはなく、ボンディングパッド間や接地および電源導体間のめっきを完全に除去することができ、接続信頼性に優れた半導体素子収納用パッケージとすることができる。また、エッチングの時間が長くなってしまうこともない。
【図面の簡単な説明】
【図1】本発明の半導体素子収納用パッケージの実施の形態の一例を示す断面図である。
【図2】図1に示す半導体素子収納用パッケージの斜視図である。
【図3】(a)および(b)は、図1に示す半導体素子収納用パッケージの配線基板の製造方法を説明するための要部拡大上面図である。
【図4】図1に示す半導体素子収納用パッケージの配線基板の製造方法を説明するための断面図である。
【図5】図1に示す半導体素子収納用パッケージの配線基板の製造方法を説明するための要部拡大断面図である。
【図6】図1に示す半導体素子収納用パッケージの配線基板の製造方法を説明するための要部拡大部分断面斜視図である。
【図7】図1に示す半導体素子収納用パッケージの配線基板の製造方法を説明するための要部拡大部分断面斜視図である。
【図8】図1に示す半導体素子収納用パッケージの配線基板の製造方法を説明するための要部拡大断面図である。
【図9】図1に示す半導体素子収納用パッケージの配線基板の製造方法を説明するための要部拡大断面図である。
【図10】図1に示す半導体素子収納用パッケージの配線基板の製造方法を説明するための要部拡大斜視図である。
【図11】図1に示す半導体素子収納用パッケージの配線基板の製造方法を説明するための断面図である。
【図12】図1に示す半導体素子収納用パッケージの配線基板の製造方法を説明するための断面図である。
【図13】図1に示す半導体素子収納用パッケージの配線基板の製造方法を説明するための断面図である。
【図14】図1に示す半導体素子収納用パッケージの配線基板の製造方法を説明するための断面図である。
【図15】従来の半導体素子収納用パッケージを示す断面図である。
【図16】従来の半導体素子収納用パッケージの斜視図である。
【符号の説明】
1・・・・・・・配線基板
2・・・・・・・放熱板
3・・・・・・・半導体素子
4、9・・・・・絶縁板
4a、9a・・・・・半導体素子を収容するための貫通穴
5・・・・・・・ボンディングパッド
6・・・・・・・配線導体
7・・・・・・・接地および/または電源導体
8・・・・・・・接続導体
24・・・・・・・第1の金属層
26・・・・・・・第2の金属層
A・・・・・・・切り欠き部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a package for housing a semiconductor element for housing a semiconductor element such as a semiconductor integrated circuit element and a method for manufacturing the same.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a package for housing a semiconductor element for housing a semiconductor element such as an MPU is a wiring having a stepped through hole 41a for accommodating a semiconductor element 40 in the center as shown in a sectional view in FIG. The substrate 41 is made of a metal material such as copper having a mounting portion 42a that is bonded to the lower surface of the wiring substrate 41 through the bonding layer 43 so as to close the through hole 41a and in which the semiconductor element 40 is mounted at the center of the upper surface. It is mainly composed of the heat sink 42.
[0003]
In this conventional package for housing semiconductor elements, the wiring board 41 is composed of, for example, two insulating plates 44 and 45 formed by impregnating a glass cloth with a thermosetting resin such as an epoxy resin. It is laminated through an adhesive layer 46 impregnated with a thermosetting resin.
[0004]
The insulating plate 44 has a through hole 44a forming a part of the through hole 41a at the center thereof, and a plurality of electrodes on the electronic component 40 are electrically connected to the upper surface of the insulating plate 44 around the through hole 44a. The bonding pads 47 and a plurality of wiring conductors 48 are attached from the bonding pads 47 to the outer periphery. Further, a plurality of ground and / or power supply conductors 49 for supplying a ground and / or power supply potential to the semiconductor element 40 are deposited on substantially the entire lower surface thereof, and bonding pads 47 are formed on the inner wall of the through hole 44a. A plurality of connection conductors 50 are attached to connect a part to the ground and / or power supply conductor 49. On the other hand, a through hole 45a larger than the through hole 44a is formed in the central portion of the insulating plate 45, and an external connection pad 51 is attached to the upper surface. A plurality of through holes 52 are provided in the outer peripheral portion of the laminate of these insulating plates 44 and 45, and the inner wall of the through hole 52 is connected to the wiring conductor 48, the ground and / or the power supply conductor 49 and the outside. A through conductor 53 that electrically connects the connection pad 51 is attached. Further, an insulating layer 54 made of an epoxy resin is attached to the lower surface of the grounding and / or power supply conductor 49 in order to strengthen the bonding between the wiring board 41 and the heat sink 42. The heat radiating plate 42 is bonded via a bonding layer 43 formed by impregnating a glass cloth with a thermosetting resin such as an epoxy resin.
[0005]
According to this conventional package for housing a semiconductor element, the semiconductor element 40 is mounted on the mounting portion 42a of the heat sink 42, and each electrode of the semiconductor element 40 is electrically connected to the bonding pad 47 such as a bonding wire 55. Electrical connection through Thereafter, an external connection member 56 made of a solder ball or the like is joined to the external connection pad 51, and a sealing resin (not shown) is potted into the through hole 41a to hermetically seal the semiconductor element 40, thereby producing a semiconductor as a product. It becomes a device.
[0006]
In this conventional package for housing semiconductor elements, the connection conductors 50 are separated from each other by slits S formed by partially removing the metal layer on the inner wall of the through hole 44a, as shown in a perspective view in FIG. It is formed with a wide pattern. In this way, by forming a wide pattern separated from each other by the slit S, each ground and / or power supply conductor 49 and the corresponding bonding pad 47 are connected with low inductance. In such a connection conductor 50, a metal layer made of copper is deposited on the entire inner wall of the through hole 44a by electroless plating and electrolytic plating, and the metal layer is applied to the slit S portion by using a photolithography technique. Is removed by etching.
[0007]
However, according to this conventional package for housing semiconductor elements, the plurality of connecting conductors 50 provided on the inner wall of the through hole 44a have a metal layer deposited on the entire inner wall of the through hole 44a and this metal layer is applied with photolithography technology. Then, it is formed by etching away the portion corresponding to the slit S. When performing exposure in photolithography, the inner wall of the through hole 44a is vertical, so that the exposure mask used for photolithography is satisfactorily adhered. Therefore, it is difficult to accurately expose, and therefore, the portion of the slit S is not satisfactorily etched away, and electrical insulation through the slit S between the connection conductors 50 tends to be incomplete, and as a result, The problem that the normal operation of the semiconductor element 40 accommodated therein is hindered by such an insulation failure. It had.
[0008]
In order to solve such a problem, the applicant of the present application forms a connection conductor in Japanese Patent Application No. 2001-53177 by removing a portion of the slit S with a cutting tool from a metal layer deposited on the entire inner wall of the through hole. Proposed method to do. According to this method, the plurality of connecting conductors on the inner wall of the through hole are separated from each other by notches formed by cutting the inner wall of the through hole from the upper surface to the lower surface of the insulating plate at a portion corresponding to the ground and / or the boundary between the power supply conductors. Therefore, the notches formed by this cutting are reliably and well electrically insulated from each other.
[0009]
[Problems to be solved by the invention]
However, in the method proposed in Japanese Patent Application No. 2001-53177, the metal layer deposited on the entire inner surface of the through hole is formed by removing the slit S portion with a cutting tool, and then the upper surface of the insulating plate and The metal layer deposited on the entire lower surface is coated with a plating-resistant resin layer having an opening for forming a bonding pad and grounding and / or a power supply conductor, and then plated in this opening. . As a result, fine burrs generated when the slit S portion is removed by the cutting tool remain on the metal layer, the adhesion between the plating-resistant resin layer and the metal layer is reduced, and bonding pads, grounding and / or When the power supply conductor is formed by plating, the plating solution sinks under the anti-plating resin layer, and the thickness of the part that is later removed by etching or the like becomes partially thick. Plating between conductors could not be removed completely, and there was a problem that a short circuit was likely to occur between bonding pads and between ground and power supply conductors. In addition, there is a problem that the etching time becomes long.
[0010]
The present invention has been completed in view of such conventional problems, and an object of the present invention is to prevent an electrical short circuit between bonding pads or between a ground and a power supply conductor and to normally operate a semiconductor element accommodated therein. An object of the present invention is to provide a package for housing a semiconductor element.
[0011]
[Means for Solving the Problems]
The method for manufacturing a package for housing a semiconductor device of the present invention has a through hole for housing a semiconductor device in the center, and the first metal layer is deposited on the upper and lower surfaces and the entire inner wall of the through hole. A step of preparing an insulating plate, and cutting the inner wall of the through hole from the upper surface to the lower surface to provide a notch, and dividing the first metal layer of the inner wall of the through hole by the notch to form a plurality of connections Forming a base portion for a conductor; etching a surface of the first metal layer; and depositing a resin layer having openings of a predetermined pattern on the first metal layer on the upper surface and the lower surface. A step of depositing a second metal layer on the base metal portion and the first metal layer exposed in the opening; and peeling the resin layer and then exposing the exposed first metal layer Removed and part of the contact is formed on the upper surface. Is characterized in that sequentially carried out and forming a plurality of ground and / or power conductors connected to the connection conductor to the lower surface provided with a plurality of bonding pads connected to conductor.
[0012]
According to the method for manufacturing a package for housing a semiconductor element of the present invention, the first metal layer deposited on the inner wall of the through hole is cut from the upper surface to the lower surface to provide a notch, and the notch is used to form the inner wall of the through hole. Since the first metal layer is divided to form a plurality of connection conductors, and then the first metal layer is etched, minute burrs generated during cutting remain on the surface of the first metal layer. As a result, the adhesion between the resin layer and the first metal layer is improved, and when a bonding pad, grounding and / or power supply conductor is formed by plating, the plating solution sinks under the resin layer and is etched. In this case, the thickness of the part to be removed is not partly thick, and the plating between bonding pads and between the ground and power supply conductors can be completely removed. It is possible to the cage. Further, the etching time does not become long.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Next, a method for manufacturing a semiconductor element storage package according to the present invention will be described with reference to the accompanying drawings. FIG. 1 is a cross-sectional view showing an example of an embodiment of a package for housing a semiconductor element manufactured by the manufacturing method of the present invention, and FIG. 2 is a perspective view of the package for housing a semiconductor element shown in FIG. In this example, an example in which the semiconductor element storage package has a heat sink is shown. In the figure, reference numeral 1 denotes a wiring board, and 2 denotes a heat radiating plate, which mainly constitute a semiconductor element housing package for housing the semiconductor element 3.
[0014]
The wiring substrate 1 has a through hole 4a for accommodating the semiconductor element 3 at the center, and a plurality of bonding pads 5 on the upper surface and a plurality of wiring conductors 6 extending from a part of the bonding pads 5 to the outer periphery. A substantially square frame having a plurality of grounding and / or power supply conductors 7 on substantially the entire bottom surface and a plurality of connection conductors 8 connecting a part of the bonding pad 5 and the grounding and / or power supply conductors 7 to the inner wall of the through hole 4a. An adhesive layer 11 and a substantially rectangular frame-like insulating plate 9 having a through hole 9a larger than the through hole 4a at the center and a plurality of external connection pads 10 formed on the upper surface. It is formed by bonding through. A plurality of through holes 12 are formed in the outer peripheral portion, and a through conductor 13 is attached in the through hole 12. Further, an insulating layer 14 is deposited on the lower surface.
[0015]
The insulating plates 4 and 9 constituting the wiring board 1 are formed by impregnating a glass fiber or aramid fiber cloth with a thermosetting resin such as an epoxy resin or a bismaleimide triazine resin. / Or functions as a support for the power supply conductor 7, the connection conductor 8, and the external connection pad 10, and forms a space for accommodating the semiconductor element 3 in the through holes 4 a and 9 a
[0016]
The adhesive layer 11 for bonding the insulating plates 4 and 9 is formed by impregnating a glass fiber or aramid fiber cloth with a thermosetting resin such as epoxy resin or bismaleimide triazine resin. Functions as an adhesive member.
[0017]
The bonding pad 5 attached to the upper surface of the insulating plate 4 is a region where each electrode (signal electrode, ground electrode, power supply electrode) of the semiconductor element 3 is electrically connected, and as shown in a perspective view in FIG. Furthermore, it is a substantially square pattern. Then, each electrode of the semiconductor element 3 is electrically connected to the upper surface via a bonding wire 15. In FIG. 2, only one bonding wire 15 is shown for simplicity.
[0018]
The wiring conductor 6 extending from a part of the bonding pad 5 has a substantially band-like pattern and functions as a part of a conductive path for electrically connecting each electrode of the semiconductor element 3 accommodated in the package to an external electric circuit. The through conductor 13 is connected.
[0019]
The grounding and / or power supply conductor 7 attached to the lower surface of the insulating plate 4 is formed on substantially the entire lower surface of the insulating plate 4. The ground and / or power supply conductor 7 has a function of supplying the ground and / or power supply potential to the semiconductor element 3 and adjusting the characteristic impedance of the wiring conductor 6 to a predetermined value, and is connected to a part of the bonding pad 5. It is connected via the conductor 8 and connected to the through conductor 13.
[0020]
Further, the connection conductor 8 that connects a part of the bonding pad 5 and the ground and / or power supply conductor 7 stabilizes the semiconductor element 3 by connecting the bonding pad 5 and the ground and / or power supply conductor 7 with low inductance. And is formed in a wide pattern on substantially the entire inner wall of the through hole 4a.
[0021]
Further, the external connection pad 10 attached to the upper surface of the insulating plate 9 functions as a conductor for connection with an external electric circuit and is formed so as to be electrically connected to the through conductor 13. An external connection member 16 made of a solder ball or the like is attached to the external connection pad 10.
[0022]
The bonding pad 5, the wiring conductor 6, the ground and / or the power supply conductor 7, the connection conductor 8, and the external connection pad 10 are usually made of metal such as copper foil or copper plating and have a thickness of about 5 to 50 μm. In addition, a nickel plating layer with a thickness of about 1 to 30 μm and a gold plating layer with a thickness of about 0.1 to 3 μm are usually sequentially formed on the exposed surfaces of these bonding pads 5 and the like by an electroless plating method or an electrolytic plating method. It is attached. Thereby, oxidative corrosion in the bonding pad 5 or the like can be effectively prevented, and the electrical connection between the bonding pad 5 and the bonding wire 15 and the electrical connection between the external connection pad 10 and the external connection member 16 are improved. be able to.
[0023]
The through conductor 13 attached to the inner wall of the through hole 12 functions as a connection conductor for electrically connecting the wiring conductor 6 and the ground and / or power supply conductor 7 to the external connection pad 10. The wiring board 1 is formed by depositing a copper plating layer on the inner walls of a large number of through holes 12 drilled from the upper surface to the lower surface of the wiring board 1 by employing an electroless plating method or an electrolytic plating method.
[0024]
Further, an insulating layer 14 made of a thermosetting resin such as an epoxy resin is deposited on the lower surface of the insulating plate 4. The insulating layer 14 functions as a bonding base member for firmly bonding the heat sink 2 to the wiring board 1, and the heat sink 2 is bonded to the lower surface of the insulating layer 14 via the bonding layer 17. The board | substrate 1 and the heat sink 2 are joined. The insulating layer 14 may contain about 5 to 50% by weight of a filler made of an inorganic insulating powder such as silica. By containing the filler, the thermal expansion coefficient of the insulating layer 14 can be adjusted, and the heat resistance and the like of the insulating layer 14 can be improved.
[0025]
On the other hand, the heat sink 2 joined to the lower surface of the wiring board 1 via the joining layer 17 is made of a metal having excellent thermal conductivity such as copper and joined so as to close the through hole 4a. The heat radiating plate 2 functions as a support for supporting the semiconductor element 3 and also functions as a heat radiating member for radiating heat generated when the semiconductor element 3 is activated to the outside. A mounting portion 2a for mounting the element 3 is provided. Then, the semiconductor element 3 is bonded and fixed to the mounting portion 2a via an adhesive such as an epoxy resin.
[0026]
Such a heat radiating plate 2 may be formed by punching a plate material made of, for example, copper into a predetermined shape using a punching die. If a metal having good corrosion resistance such as nickel or gold is deposited on the surface of the heat radiating plate 2 to a thickness of 1 to 20 μm by plating, the oxidative corrosion of the heat radiating plate 2 can be effectively prevented. Further, in order to improve the bonding force between the heat sink 2 and the bonding layer 17, the surface of the heat sink 2 is subjected to blackening treatment or blast treatment so that the surface has an arithmetic average roughness Ra of about 0.2 to 3 μm. May be formed.
[0027]
Further, the bonding layer 17 for bonding the wiring board 1 and the heat sink 2 has a substantially rectangular frame shape formed by impregnating a glass cloth with a thermosetting resin such as an epoxy resin. No voids are generated and the bonding strength is large and the adhesiveness is excellent. For example, the bonding layer 17 is formed by punching a sheet of glass cloth impregnated with an uncured epoxy resin into a shape substantially the same as that of the insulating plate 4 using a punching die or the like. The wiring board 1 and the heat radiating plate 2 are firmly bonded to each other by being thermally cured while pressing from above and below.
[0028]
Further, in the present invention, as shown in FIG. 2, the connection conductor 8 is formed by depositing an electrolytic copper plating layer having a thickness of 10 to 20 μm on an electroless copper plating layer having a thickness of 0.5 to 3 m. 4 are separated from each other by a plurality of cutout portions A cut from the upper surface to the lower surface of the through-hole 4a in which the electroless copper plating layer is attached to 4. As described above, the connection conductor 8 is separated from each other by the plurality of cutout portions A obtained by cutting the inner wall of the through hole 4a in which the electroless copper plating layer is attached to the insulating plate 1 from the upper surface to the lower surface. Since each of the connection conductors 8 can be made short-circuited because it is reliably and well electrically insulated by the notch A formed by cutting.
[0029]
If the thickness of the electroless copper plating layer of the connecting conductor is less than 0.5 μm, the surface of the insulating plate 4 tends to be stabilized and the electroless copper plating tends not to be applied. If the thickness exceeds 3 μm, burrs are likely to occur. The connection conductors 8 tend to be short-circuited. Therefore, the thickness of the electroless copper plating layer of the connection conductor must be 0.5 to 3 μm. Further, if the thickness of the electrolytic copper plating layer is less than 10 μm, the connection reliability between the bonding pad 5 on the upper surface and the ground and / or power supply conductor on the lower surface tends to be lowered. There is a tendency to not be able to wire. Therefore, the thickness of the electrolytic copper plating layer is preferably 10 to 20 μm.
[0030]
As shown in the enlarged top view of the main part in FIG. 3, the notch A is cut with a cutting tool 31 that is rotated clockwise when the left side is viewed from the top side toward the inner wall of the through hole 4a, or on the right side. Is formed by one-time cutting.
[0031]
Further, when the width of the cutout portion A is less than 0.1 mm, it tends to be difficult to electrically insulate adjacent connection conductors 8 from each other. On the other hand, when the width exceeds 2.0 mm, the connection conductor 8 The width of 8 becomes narrow accordingly, and it tends to be difficult to connect the bonding pad 5 and the ground and / or power supply conductor 7 with low inductance. Therefore, the width of the notch A is preferably in the range of 0.1 to 2.0 mm.
[0032]
Furthermore, when the depth of the cutout portion A is less than 0.1 mm, there is a risk that the adjacent connection conductors 8 cannot be electrically separated from each other. On the other hand, when the depth exceeds 0.5 mm, the insulating plate 4, it tends to be difficult to secure a sufficient area for forming the bonding pad 5 on the substrate 4. Therefore, the depth of the notch A is preferably in the range of 0.1 to 0.5 mm.
[0033]
In such a package for housing a semiconductor element, the semiconductor element 3 is mounted on the mounting portion 2 a of the heat sink 2, and each electrode of the semiconductor element 3 and the bonding pad 5 are electrically connected via bonding wires 15. Thereafter, a resin is sealed by potting a sealing resin into the through holes 4a and 9a, thereby obtaining a semiconductor device.
[0034]
In such a package for housing a semiconductor element, a solder resist layer 18 that covers the outer peripheral portion of the external connection pad 10 may be provided on the wiring board 1 as necessary. Such a solder resist layer 18 is made of a thermosetting resin such as an epoxy resin containing an insulating filler such as silica, for example, and when the external connection member 16 such as a solder ball is attached onto the external connection pad 10. It acts as a dam that controls unnecessary wetting and spreading of the external connection member 16.
[0035]
Next, a method for manufacturing the above-described semiconductor element storage package will be described.
First, as shown in a sectional view in FIG. 4, an insulating plate 4 having a through hole 4a in the central portion and copper foils 21 and 22 having a thickness of about 12 to 60 μm adhered to the entire upper and lower surfaces, And an insulating plate 9 having a through hole 9a in the part and having a copper foil 23 with a thickness of about 12 to 60 μm adhered to the entire upper surface. Such insulating plates 4 and 9 are made by, for example, attaching copper foils 21, 22, and 23 to a sheet obtained by impregnating a glass cloth with a thermosetting resin such as an uncured epoxy resin and thermosetting the same. The through holes 4a and 9a are formed by cutting the hardened insulating plates 4 and 9.
[0036]
Next, as shown in an enlarged cross-sectional view of the main part in FIG. 5, a first metal layer 24 having a thickness of 0.5 to 3 μm is formed on the entire inner surfaces of the copper foils 21 and 22 and the through holes 4a of the insulating plate 4, for example, electroless. Deposit by copper plating. In order to deposit the electroless copper plating layer to be the first metal layer 24, palladium is used by using a palladium active solution containing, for example, ammonium chloride-based palladium acetate on the surfaces of the copper foils 21 and 22 and the inner wall of the through hole 4a. What is necessary is just to perform using a copper sulfate type electroless copper plating liquid on it, making a catalyst adhere.
[0037]
Next, as shown in an enlarged partial sectional perspective view in FIG. 6, the inner wall of the through hole 4a of the insulating plate 4 is cut into a substantially semicircular shape using a cutting tool such as a drill or a router from the upper surface to the lower surface. A notch A is formed. By forming the cutout portion A in this way, the first metal layer 24 deposited on the inner wall of the through hole 4a is divided. The first metal layer 24 remaining on the inner wall of the through hole 4a serves as a base portion for the connection conductor 8. At this time, the first metal layer 24 on the inner wall of the through hole 4a is reliably and well divided from each other by the notch A formed by cutting.
[0038]
Next, the surface of the first metal layer 24 is etched with a hydrogen peroxide solution / dilute sulfuric acid-based etching solution, a ferric chloride aqueous solution, or a cupric chloride aqueous solution. In the present invention, it is important to etch the surface of the first metal layer 24 after the first metal layer 24 on the inner wall of the through hole 4a is cut to form the notch A.
[0039]
According to the method for manufacturing a package for housing a semiconductor element of the present invention, the first metal layer 24 is etched after the first metal layer 24 on the inner wall of the through hole 4a is cut to form the notch A. Fine burrs generated during cutting do not remain on the surface of the first metal layer 24. As a result, the adhesion between the resin layer 25, which is a plating resist layer described later, and the first metal layer 24 is improved. When the bonding pad, grounding and / or power supply conductor is formed by plating, the plating solution enters under the resin layer 25, and the thickness of the metal layer to be removed later by etching or the like is partially thick. The plating between the bonding pads and between the ground and the power supply conductor can be completely removed, and a package for housing a semiconductor element having excellent connection reliability can be obtained.
[0040]
In such etching, for example, when the etching solution is made of hydrogen peroxide / dilute sulfuric acid-based etching solution, the semiconductor element housing package is about 1 in an etching solution having a concentration of 10 to 50% and a temperature of 25 to 50 ° C. This is performed by immersing for a minute, and under this condition, the arithmetic average roughness of the surface of the first metal layer 24 is changed from about 0.5 μm to 0.1 to 0.3 μm, and the fine burrs generated during cutting are completely removed. Is possible. If the arithmetic average roughness of the surface of the first metal layer 24 is less than 0.1 μm, the adhesion with the resin layer 25 is weakened, and the plating solution is used when the second metal layer 26 is formed. There is a tendency to easily enter between 24 and the resin layer 25, and when it exceeds 0.3 μm, it tends to be difficult to completely remove minute burrs generated during cutting. Therefore, it is preferable that the arithmetic average roughness of the surface of the first metal layer 24 after etching is in the range of 0.1 to 0.3 μm.
[0041]
Next, as shown in an enlarged partial sectional perspective view in FIG. 7, a photosensitive resin layer is adhered onto the first metal layer 24 and exposed and developed to bond the bonding pad 5, the wiring conductor 6. A resin layer 25 having an opening at a portion corresponding to the ground and / or the power supply conductor 7 and the connection conductor 9 is formed. For example, a dry film resist may be used as the photosensitive resin for the plating resist.
[0042]
According to the method for manufacturing a package for housing a semiconductor element of the present invention, the inner wall of the through hole 4a is cut from the upper surface to the lower surface to provide the notch A, and the first metal layer 24 on the inner wall of the through hole 4a is formed by the notch A. Since the first metal layer 24 is etched after the plurality of connection conductors 8 are formed by cutting, the fine burrs generated by cutting can be removed by etching. As a result, even if high-density wiring is performed, There is no short circuit between the bonding pads 5 or between the wiring conductors 6.
[0043]
Next, as shown in an enlarged cross-sectional view of the main part in FIG. 8, a second metal layer 26 made of electrolytic copper plating having a thickness of about 10 to 20 μm is formed on the surface of the first metal layer 24 exposed from the resin layer 25 and A solder plating layer 27 having a thickness of about 3 to 10 μm is sequentially deposited. For example, a copper plating solution made of copper sulfate may be used as the electrolytic copper plating solution, and a solder plating solution made of, for example, stannous sulfate may be used as the solder plating solution.
[0044]
Next, as shown in an enlarged cross-sectional view of the main part in FIG. 9, the first metal layer 24 at a portion exposed from the solder plating layer 27 by peeling the resin layer 25 and using the solder plating layer 27 as an etching mask, and The copper foils 21 and 22 are removed by etching, and then the solder plating layer 27 is removed by etching, whereby a bonding pad 5, wiring conductor 6, ground and / or power supply conductor 7 are shown in FIG. A connection conductor 8 is formed. As an etching solution for etching the first metal layer 24 and the copper foils 21 and 22, for example, an alkaline etching solution may be used. Further, as an etching solution for etching the solder plating layer 27, a hydrogen peroxide-based etching solution may be used.
[0045]
According to the method for manufacturing a package for housing a semiconductor element of the present invention, after the insulating plate 4 having the first metal layer 24 deposited on the entire inner wall of the through hole 4a is cut to form the notch A. Since the second metal layer 26 is deposited, the first metal layer 24 is very thin, approximately 0.5 to 3 μm, and therefore, an electrical short circuit does not occur due to the generation of large burrs and the like, so that they can be reliably separated from each other. It is possible to reliably and satisfactorily electrically insulate each other by the notches formed by this cutting.
[0046]
On the other hand, as shown in the sectional view of FIG. 11, the insulating plate 9 is formed by etching the copper foil 23 into a predetermined pattern to form the external connection pads 10 on the upper surface thereof.
[0047]
Next, as shown in a cross-sectional view in FIG. 12, the insulating plate 4 and the insulating plate 9 are bonded together with an adhesive layer 11 interposed therebetween to form a laminated body. In order to bond the insulating plate 4 and the insulating plate 9 via the adhesive layer 11, the adhesive layer 11 formed by impregnating a glass cloth with a thermosetting resin such as an uncured epoxy resin is used as the insulating plate 4 and the insulating plate 9. And, for example, using a laminating press, apply a pressure of 90 to 120 minutes under conditions of a vacuum of 4 kPa or less, a temperature in the range of 180 to 200 ° C., and a pressure in the range of 2 to 4 MPa. A method of bonding the insulating plate 4 and the insulating plate 9 by thermosetting the adhesive layer 11 by pressure heating is employed.
[0048]
Next, as shown in a cross-sectional view in FIG. 13, a plurality of through holes 12 are formed in the outer peripheral portion of the laminate by a cutting process such as a router process or a drill process. A through conductor 13 made of copper is deposited by electrolytic plating to electrically connect the external connection pad 10 to the corresponding wiring conductor 6 and ground and / or power supply conductor 7.
[0049]
Next, as shown in a cross-sectional view in FIG. 14, an uncured thermosetting resin paste for the insulating layer 14 is printed on the lower surface of the insulating plate 4 by screen printing, and then thermally cured. Then, the wiring substrate 1 is manufactured by forming the insulating layer 14.
[0050]
Finally, the heat sink 2 is bonded to the lower surface of the wiring board 1 via the bonding layer 17 to complete the package for housing a semiconductor element of the present invention as shown in FIG. The wiring board 1 and the heat radiating plate 2 are joined by laminating the wiring board 1 and the heat radiating plate 2 with a bonding layer 17 in which a glass cloth is impregnated with an uncured epoxy resin or the like. Then, the bonding layer 17 is thermally cured by heating at a temperature of 150 to 200 ° C. for about 60 to 120 minutes while applying a pressure of 0.3 to 0.5 MPa.
[0051]
Furthermore, in the manufacturing method of the present invention, a solder resist layer 18 that covers the outer peripheral portion of the external connection pad 10 may be formed on the wiring board 1 as necessary. By providing such a solder resist layer 18, it is possible to prevent unnecessary wetting and spreading of the solder ball or the like when the external connection member 16 such as a solder ball or the like is joined to the external connection pad 10. Such a solder resist layer 18 may be formed from, for example, a thermosetting resin such as an epoxy resin containing a filler such as silica, and an uncured photosensitive thermosetting resin paste containing a filler such as silica. Is applied to the substantially entire surface of the insulating plate 9 by using a screen printing method or the like, and is then etched into a predetermined pattern by using a well-known photolithography technique. What is necessary is just to form by heating and hardening for about 1 hour.
[0052]
Thus, according to the method for manufacturing a package for housing a semiconductor element of the present invention, the inner wall of the through hole 4a is cut from the upper surface to the lower surface to provide the cutout portion A, and the cutout portion A provides the first inner wall of the through hole 4a. Since the first metal layer 24 is etched after the metal layer 24 is divided and the base portions of the plurality of connecting conductors 8 are formed, minute burrs generated in the cutting can be removed by etching. Even if density wiring is performed, there is no short circuit between the bonding pads 5 and the wiring conductors 6. Further, since the etching is performed later, one cutting is sufficient, and the cutting process can be shortened.
[0053]
In addition, this invention is not limited to the above-mentioned embodiment example, A various change is possible if it is the range which does not deviate from the summary of this invention. For example, in the above-described embodiment, the wiring board 1 in which the two insulating plates 4 and 9 are bonded is shown as an example. However, the bonding pad 5, the wiring conductor 6, and the external connection pad are provided on the upper surface of one insulating plate. 10 may be used, and a wiring board formed by grounding and / or a power supply conductor on the lower surface and a wiring board formed by laminating three or more insulating plates may be used. Further, the through holes 4a and 9a in the above-described embodiment may be formed by punching using a punching die or by a laser processing machine. Further, the processing of the through hole 12 may be performed using a laser processing machine.
[0054]
【The invention's effect】
According to the method for manufacturing a package for housing a semiconductor element of the present invention, the first metal layer deposited on the inner wall of the through hole is cut from the upper surface to the lower surface to provide a notch, and the notch is used to form the inner wall of the through hole. Since the first metal layer is divided to form a plurality of connection conductors, and then the first metal layer is etched, minute burrs generated during cutting remain on the surface of the first metal layer. As a result, the adhesion between the resin layer and the first metal layer is improved, and when the bonding pad, the ground and / or the power supply conductor is formed by plating, the plating solution enters under the resin layer. The thickness of the part to be removed by etching does not become partly thick, and the plating between bonding pads and between grounding and power supply conductors can be completely removed. It can be a cage. Further, the etching time does not become long.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an example of an embodiment of a package for housing a semiconductor element of the present invention.
2 is a perspective view of the package for housing a semiconductor element shown in FIG. 1. FIG.
FIGS. 3A and 3B are enlarged top views of main parts for explaining a method of manufacturing a wiring board of the package for housing a semiconductor element shown in FIG. 1;
4 is a cross-sectional view for explaining a method of manufacturing a wiring board of the semiconductor element storage package shown in FIG. 1; FIG.
5 is an essential part enlarged cross-sectional view for describing a method for manufacturing a wiring board of the package for housing a semiconductor element shown in FIG. 1; FIG.
6 is an enlarged fragmentary partial cross-sectional perspective view for explaining a method of manufacturing a wiring board of the package for housing a semiconductor element shown in FIG. 1; FIG.
7 is an enlarged partial cross-sectional perspective view of a main part for explaining a method of manufacturing a wiring board of the package for housing a semiconductor element shown in FIG. 1; FIG.
8 is an essential part enlarged cross-sectional view for describing a method for manufacturing a wiring board of the package for housing a semiconductor element shown in FIG. 1; FIG.
9 is an essential part enlarged cross-sectional view for describing a method for manufacturing a wiring board of the package for housing a semiconductor element shown in FIG. 1; FIG.
10 is an essential part enlarged perspective view for explaining a method for manufacturing a wiring board of the package for housing a semiconductor element shown in FIG. 1; FIG.
11 is a cross-sectional view for explaining the method of manufacturing the wiring board of the semiconductor element housing package shown in FIG. 1; FIG.
12 is a cross-sectional view for explaining a method of manufacturing the wiring board of the semiconductor element storage package shown in FIG. 1; FIG.
13 is a cross-sectional view for explaining a method for manufacturing the wiring board of the semiconductor element storage package shown in FIG. 1; FIG.
14 is a cross-sectional view for explaining a method for manufacturing the wiring board of the semiconductor element storage package shown in FIG. 1; FIG.
FIG. 15 is a cross-sectional view showing a conventional package for housing semiconductor elements.
FIG. 16 is a perspective view of a conventional semiconductor element housing package.
[Explanation of symbols]
1 .... Wiring board
2 ..... Heat sink
3 .... Semiconductor element
4, 9 ... Insulation plate
4a, 9a ... Through holes for accommodating semiconductor elements
5 .. Bonding pad
6. Wiring conductor
7 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Grounding and / or power supply conductor
8 .... Connection conductor
24 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ First metal layer
26 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Second metal layer
A ......... Notch

Claims (1)

中央部に半導体素子を収容するための貫通穴を有し、上面および下面ならびに前記貫通穴内壁の全面に第1の金属層が被着された絶縁板を準備する工程と、前記貫通穴内壁を前記上面から下面にかけて切削して切り欠き部を設け、該切り欠き部により前記貫通穴内壁の前記第1の金属層を分断して複数の接続導体用の下地部分を形成する工程と、前記第1の金属層の表面をエッチングする工程と、前記上面および下面の前記第1の金属層上に所定パターンの開口を有する樹脂層を被着する工程と、前記下地部分および前記開口内に露出した前記第1の金属層上に第2の金属層を被着する工程と、前記樹脂層を剥離した後、露出した前記第1の金属層を除去して、前記上面に一部が前記接続導体に繋がった複数のボンディングパッドを設けるとともに前記下面に前記接続導体に繋がった複数の接地および/または電源導体を形成する工程とを順次行なうことを特徴とする半導体素子収納用パッケージの製造方法。A step of preparing an insulating plate having a through hole for accommodating a semiconductor element in the center, and having an upper surface and a lower surface and the entire inner wall of the through hole deposited on the first metal layer; and the inner wall of the through hole Cutting from the upper surface to the lower surface to provide a notch, and dividing the first metal layer of the inner wall of the through hole by the notch to form a base portion for a plurality of connection conductors; etching the surface of the first metal layer, a step of depositing a resin layer having an opening of a predetermined pattern on the upper surface and the lower surface of the first metal layer and exposed to the background portion and in the opening A step of depositing a second metal layer on the first metal layer, and after peeling off the resin layer, the exposed first metal layer is removed, and a part of the connection conductor is formed on the upper surface. If multiple bonding pads connected to the A plurality of ground and / or method of manufacturing a semiconductor device package for housing, characterized in that sequentially carried out and forming a power supply conductor that is connected to the connection conductor to the lower surface also.
JP2002222746A 2002-07-31 2002-07-31 Manufacturing method of semiconductor element storage package Expired - Fee Related JP3872395B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002222746A JP3872395B2 (en) 2002-07-31 2002-07-31 Manufacturing method of semiconductor element storage package

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002222746A JP3872395B2 (en) 2002-07-31 2002-07-31 Manufacturing method of semiconductor element storage package

Publications (2)

Publication Number Publication Date
JP2004063962A JP2004063962A (en) 2004-02-26
JP3872395B2 true JP3872395B2 (en) 2007-01-24

Family

ID=31942691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002222746A Expired - Fee Related JP3872395B2 (en) 2002-07-31 2002-07-31 Manufacturing method of semiconductor element storage package

Country Status (1)

Country Link
JP (1) JP3872395B2 (en)

Also Published As

Publication number Publication date
JP2004063962A (en) 2004-02-26

Similar Documents

Publication Publication Date Title
JP5100081B2 (en) Electronic component-mounted multilayer wiring board and manufacturing method thereof
JP2002026187A (en) Semiconductor package and manufacturing method therefor
KR20050033821A (en) Semiconductor device and method of fabricating the same
JP3946659B2 (en) High heat dissipation plastic package and manufacturing method thereof
JP4266717B2 (en) Manufacturing method of semiconductor device
JP4574035B2 (en) Manufacturing method of semiconductor element storage package
JP3872395B2 (en) Manufacturing method of semiconductor element storage package
JP2005072085A (en) Method of manufacturing wiring board and wiring board
JPH08130372A (en) Manufacture of multilayer printed wiring board
JP2001077536A (en) Printed wiring board with built-in electronic circuit board, and manufacture thereof
JP3854131B2 (en) Wiring board with heat sink
JP2002217328A (en) Package for containing semiconductor element
JP2003338579A (en) Wiring board with radiator plate
JPH09199632A (en) Electronic component mounting substrate and its fabrication method
JP2002217327A (en) Package for containing semiconductor element and its manufacturing method
JP4080357B2 (en) Manufacturing method of high heat dissipation plastic package
JP2002076170A (en) Package for semiconductor element storage and its manufacturing method
JP2003282771A (en) Wiring board with heat sink plate
JP2000200855A (en) Pga-type wiring board, manufacture thereof and semiconductor device
JP4364231B2 (en) High heat dissipation plastic package
JP2001291800A (en) Package for electronic component
JP2005051012A (en) High heat radiating plastic package and its manufacturing method
JP3667846B2 (en) Method for manufacturing hybrid integrated circuit device
JP2001102480A (en) Semiconductor package and manufacturing method thereof
JP2001244381A (en) Substrate for mounting semiconductor chip, semiconductor device, and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061019

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131027

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees