JP2003282771A - Wiring board with heat sink plate - Google Patents

Wiring board with heat sink plate

Info

Publication number
JP2003282771A
JP2003282771A JP2002079065A JP2002079065A JP2003282771A JP 2003282771 A JP2003282771 A JP 2003282771A JP 2002079065 A JP2002079065 A JP 2002079065A JP 2002079065 A JP2002079065 A JP 2002079065A JP 2003282771 A JP2003282771 A JP 2003282771A
Authority
JP
Japan
Prior art keywords
heat sink
wiring board
conductor layer
layer
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002079065A
Other languages
Japanese (ja)
Inventor
Atsushi Kumano
篤 熊野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002079065A priority Critical patent/JP2003282771A/en
Publication of JP2003282771A publication Critical patent/JP2003282771A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wiring board with a heat sink plate which is composed of the wiring board and the heat sink plate that are firmly bonded together through a conductive adhesive layer, and enables a semiconductor element mounted on the heat sink plate to operate stably and normally for a long term. <P>SOLUTION: The heat sink plate 2 made of copper is bonded on the undersurface of an insulating board 1 through the conductive adhesive layer 15 composed of a conductive filler and a thermosetting resin to form the wiring board with the heat sink plate, and a large number of micro projections 2a which are formed of laminated copper crystals are formed on the top surface of the heat sinking plate. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、半導体集積回路素
子等の半導体素子を収容するための半導体素子収納用パ
ッケージに用いられる放熱板付き配線基板に関する。 【0002】 【従来の技術】従来、半導体集積回路素子等の半導体素
子を収容するための半導体素子収納用パッケージに使用
される放熱板付き配線基板は、例えば図3に断面図で示
すように、中央部に半導体素子20を収容するための段
状の貫通穴21aを有する配線基板21と、この配線基
板21の下面に貫通穴21aを塞ぐようにしてエポキシ
樹脂等の熱硬化性樹脂から成る接着層23を介して接合
されており、上面中央部に半導体素子20が搭載される
搭載部22aを有する平板状の放熱板22とから主に構
成されている。 【0003】この従来の放熱板付き配線基板において
は、配線基板21は、例えばガラスクロスにエポキシ樹
脂等の熱硬化性樹脂を含浸させて成る2枚の絶縁板2
4、25を同じくガラスクロスにエポキシ樹脂等の熱硬
化性樹脂を含浸させて成る接着層26を介して積層して
成る。そして、絶縁板24には、その中央部に半導体素
子20よりも若干大きな貫通穴24aが形成されている
とともに、その上面の貫通穴24a周辺から外周部にか
けて配線導体層27およびその下面の略全面に接地また
は電源導体層28が被着されており、絶縁板25には、
その中央部に貫通穴24aよりも大きな貫通穴25aが
形成されているとともに上面に外部接続導体29が被着
されている。そして、これらの絶縁板24、25および
接着層26の外周部には、複数の貫通孔30が設けられ
ており、貫通孔30の内壁には配線導体層27や接地ま
たは電源導体層28と外部接続導体29とを電気的に接
続する貫通導体31が被着されている。さらに、配線基
板21の下面には接地または電源導体層28および貫通
導体31を覆うようにしてエポキシ樹脂等の熱硬化性樹
脂から成る絶縁層32が被着されており、この絶縁層3
2と接着層23とが接合されることにより配線基板21
と放熱板22とが接着層23を介して接合されている。 【0004】他方、放熱板22は、銅から成る略四角平
板であり、通常は、その上面に接着層23との接合を強
固なものとするために酸化膜を形成して成る黒化処理が
施されている。 【0005】そして、この従来の放熱板付き配線基板に
よれば、放熱板22の搭載部22aに半導体素子20を
搭載するとともに、この半導体素子20の各電極を配線
導体層27にボンディングワイヤ33等の電気的接続手
段を介して電気的に接続し、しかる後、外部接続導体2
9に半田ボール等から成る外部接続部材34を接合する
とともに貫通穴21a内へ図示しない封止用樹脂を充填
して半導体素子20を気密に封止することにより製品と
しての半導体装置となる。 【0006】 【発明が解決しようとする課題】しかしながら、近時、
半導体素子20の作動を安定にするために放熱板22と
接地または電源導体層28とを電気的に接続させて成る
放熱板付き配線基板が要求されるようになってきてい
る。そのような場合、配線基板1の下面に被着させた絶
縁層32の一部に接地または電源導体層28を露出させ
る開口を設けておくとともに、放熱板22の上面に黒化
処理を施さずにおき、さらにそれらの配線基板21と放
熱板22とを接合する接着層23として例えば銅や銀等
の良導電性の金属粉末を含有するエポキシ樹脂から成る
導電性接着剤を用いることにより、絶縁層32の開口か
ら露出する接地または電源導体層28と酸化膜のない銅
から成る放熱板22とを導電性の接着層23を介して接
続する方法が採用されている。 【0007】ところが、放熱板22の上面に黒化処理を
施さずにおくとともに、その放熱板22と配線基板21
とを導電性接着剤から成る接着層23を介して接合した
場合、銅から成る放熱板22と導電性樹脂から成る接合
層23との接合力が弱く、そのため配線基板21および
放熱板22に半導体素子20が作動時に発生する熱が長
期間にわたり繰り返し印加されると、配線基板21と放
熱板22との間に両者の熱膨張係数の相違に起因して発
生する熱応力により放熱板22と接着層23との間で剥
離が発生し、その結果、放熱板22上に搭載された半導
体素子20に対する気密性が損なわれるとともに放熱板
22と接地または電源導体層28との電気的接続が不安
定となり、半導体素子20を長期間にわたり正常かつ安
定に作動させることができないという問題点を有してい
た。 【0008】本発明は、かかる従来の問題点に鑑み案出
されたものであり、その目的は、配線基板と放熱板とを
導電性樹脂から成る接着層を介して確実かつ強固に接合
することができ、放熱板に搭載される半導体素子を長期
間にわたり正常かつ安定に作動させることが可能な放熱
板付き配線基板を提供することにある。 【0009】 【課題を解決するための手段】本発明の放熱板付き配線
基板は、中央部に半導体素子収納用の貫通穴を有する絶
縁基板と、該絶縁基板の前記貫通穴周辺の上面から外周
部に向けて被着された複数の配線導体層と、前記絶縁基
板の下面の略全面に被着された接地または電源導体層
と、該接地または電源導体層の下面に前記接地または電
源導体層の一部を露出させるようにして被着された熱硬
化性樹脂から成る絶縁層と、該絶縁層の下面および前記
接地または電源導体層の露出部に、前記貫通穴を塞ぐよ
うにして導電性フィラーおよび熱硬化性樹脂から成る導
電性接着層を介して接合された銅から成る放熱板とを具
備して成る放熱板付き配線基板であって、前記放熱板
は、その上面に複数個の銅の結晶が積み重なって形成さ
れた多数の微小突起を有していることを特徴とするもの
である。 【0010】本発明の放熱板付き配線基板によれば、放
熱板の上面に複数個の銅の結晶が積み重なって形成され
た多数の微小突起を有していることから、これらの微小
突起が導電性接着層に食い込んで放熱板と導電性接着層
とが機械的かつ電気的に極めて強固に接合される。 【0011】 【発明の実施の形態】次に、本発明の放熱板付き配線基
板を添付の図面に基づいて説明する。図1は、本発明の
放熱板付き配線基板の実施の形態の一例を示す断面図で
ある。図中、1は配線基板、2は放熱板であり、主とし
てこれらで半導体素子3を搭載するための放熱板付き配
線基板が構成されている。なお、本例では、中央部に半
導体素子3を収容する空所を形成するための貫通穴4a
を有するとともに上面に配線導体層5および下面に接地
または電源導体層6が被着された絶縁板4と、中央部に
貫通穴4aより大きい貫通穴7aを有するとともに上面
に外部接続導体8が被着された絶縁板7とを接着層9を
介して接着して配線基板1を形成した例を示している。
また、この配線基板1の外周部には複数の貫通孔10が
形成されており、貫通孔10の内壁には貫通導体11が
被着されている。なお、接地または電源導体層6は、半
導体素子3の接地電極または電源電極のどちらかに電気
的に接続され、それにより接地導体層として機能した
り、電源導体層として機能したりする。 【0012】配線基板1を構成する絶縁板4や7は、例
えばガラス繊維やアラミド繊維のクロスにエポキシ樹脂
やビスマレイミドトリアジン樹脂等の熱硬化性樹脂を含
浸させて成る略四角枠状であり、配線導体層5や接地ま
たは電源導体層6、外部接続導体8の支持体として機能
するとともに、貫通穴4a、7a内に半導体素子3を収
容するための空所を形成する。 【0013】このような絶縁板4や7は、例えばガラス
クロスに未硬化のエポキシ樹脂等の熱硬化性樹脂を含浸
させて成るシートを得るとともに、これを熱硬化させる
ことによって形成され、貫通穴4aや7aは、硬化した
絶縁板4、7に切削加工を施すことにより形成される。 【0014】また、これらの絶縁板4と7とを接着する
接着層9は、同じくガラス繊維やアラミド繊維等から成
るクロスにエポキシ樹脂やビスマレイミドトリアジン樹
脂等の熱硬化性樹脂を含浸させて成り、絶縁板4と7と
を接着する接着部材として機能する。なお、絶縁板4と
7とは、ガラス繊維等から成るクロスに未硬化のエポキ
シ樹脂等の熱硬化性樹脂を含浸させて成る接着層9用の
シートを絶縁板4と7との間に挟むとともに、これを熱
硬化させることにより接着層9を介して接着される。 【0015】絶縁板4の上面に被着された配線導体層5
は、銅箔等の金属から成り、貫通穴4aの開口近傍から
外周部にかけて複数の帯状パターンに被着形成されてい
る。この配線導体層5は、半導体素子3の各電極を外部
電気回路に電気的に接続するための導電路の一部として
機能し、その貫通穴4a近傍部位には半導体素子3の各
電極がボンディングワイヤ13を介して接続され、その
外周部は貫通導体11に接続されている。 【0016】また、絶縁板4の下面に被着された接地ま
たは電源導体層6は、銅箔等の金属から成り、絶縁板4
の下面の略全面に被着形成されている。この接地または
電源導体層6は、半導体素子3に接地または電源電位を
供給するとともに、配線導体層5の特性インピーダンス
を所定の値に調整する機能を有し、貫通導体11に電気
的に接続されている。 【0017】このような配線導体層5や接地または電源
導体層6は、絶縁板4用の未硬化のシートの上下面に銅
箔を貼着しておくとともに、そのシートを硬化させた
後、シートに貼着させた銅箔をフォトリソグラフィー技
術により所定のパターンにエッチングすることにより形
成される。 【0018】また、絶縁板7の上面に被着された外部接
続導体8は、外部電気回路との接続用導体として機能
し、貫通導体11に電気的に接続するようにして形成さ
れている。そして、この外部接続導体8には、半田ボー
ル等からなる外部接続部材14が取着される。この外部
接続導体8は、配線導体層5や接地または電源導体層6
と同様に銅箔から成り、絶縁板7用の未硬化のシートの
上面に銅箔を貼着しておくとともに、そのシートを硬化
させた後、シートに貼着させた銅箔をフォトリソグラフ
ィー技術により所定のパターンにエッチングすることに
より形成される。 【0019】なお、配線導体層5および外部接続導体8
は、通常、5〜50μm程度の厚みである。高速の信号
を伝達させるという観点からは5μm以上の厚みが好ま
しく、配線導体層5や外部接続導体8を寸法精度良く加
工するためには50μm以下の厚みとしておくことが好
ましい。また、これらの配線導体層5および外部接続導
体8の露出する表面には、通常であれば1〜10μm程
度の厚みのニッケルめっき層および0.1〜3μm程度
の厚みの金めっき層が無電解めっき法や電解めっき法に
より順次被着されている。それにより、配線導体層5お
よび外部接続導体8の酸化腐食を有効に防止することが
できるとともに、配線導体層5とボンディングワイヤ1
3との電気的接続および外部接続導体8と外部接続部材
14との電気的接続を良好となすことができる。 【0020】また、貫通孔10の内壁に被着された貫通
導体11は配線導体層5や接地または電源導体層6と外
部接続導体8とを電気的に接続させる接続導体として機
能し、配線基板1の上面から下面にかけて穿孔された多
数の貫通孔10の内壁に厚みが4〜50μm程度の銅め
っき層を無電解めっき法や電解めっき法を採用して被着
することにより形成されている。なお、貫通導体11の
厚みが4μm未満では、配線導体層5や接地または電源
導体層6と外部接続導体8とを電気的に良好に接続する
ことが困難となる傾向にあり、他方、50μmを超える
と、そのような厚みの貫通導体11を形成するために長
時間を要し、配線基板1を製造する効率が極めて低いも
のとなる傾向にある。 【0021】さらに、接地または電源導体層6が被着さ
れた配線基板1の下面には、エポキシ樹脂等の熱硬化性
樹脂から成る絶縁層12が、接地または電源導体層6の
一部を例えば枠状に露出させるようにして部分的に被着
形成されている。絶縁層12は、絶縁基板1に放熱板2
を強固に接合させるための接合用下地部材として機能
し、接地または電源導体層6および絶縁層12に放熱板
2が銅や銀等の金属粉末から成る導電性フィラーを含有
するエポキシ樹脂等の熱硬化性樹脂から成る導電性接着
層15を介して接合されることにより絶縁基板1と放熱
板2とが接合されているとともに、接地または電源導体
層6と放熱板2とが電気的に接続されている。この絶縁
層12にはシリカ等の無機絶縁物粉末から成る無機フィ
ラーを5〜50質量%程度含有させてもよい。そのよう
な無機フィラーを含有させることにより絶縁層12の熱
膨張係数を調整することができるとともに、絶縁層12
の耐熱性等を向上させることができる。このような絶縁
層12は、未硬化のエポキシ樹脂等の熱硬化性樹脂ペー
ストを配線基板1の下面に部分的に塗布した後、これを
熱硬化させることにより形成される。 【0022】他方、配線基板1の下面に導電性接着層1
5を介して接合された放熱板2は、銅から成り、貫通穴
4aを塞ぐようにして接合されている。この放熱板2
は、半導体素子3を支持するための支持体として機能す
るとともに、半導体素子3が作動時に発生する熱を外部
に良好に放熱するための放熱部材として機能し、その上
面中央部に半導体素子3を搭載するための搭載部2aを
有している。そして、この搭載部2aに半導体素子3が
銅や銀等の金属粉末から成る導電性フィラーを含有する
エポキシ樹脂等の導電性接着剤を介して接着固定され
る。 【0023】さらに本発明においては、銅から成る放熱
板2は、図2に電子顕微鏡写真で示すように、その上面
に銅の結晶が複数個積み重なって形成された多数の微小
突起2aが形成されている。そして、そのことが重要で
ある。なお、この微小突起2aは、例えば粒径が0.5
〜1μm程度の銅の結晶が複数個積み重なって形成され
ており、その高さが2〜3μm程度であり、また放熱板
2上の単位長さ当りの個数は、200〜500個/mm
程度である。このように本発明の配線基板においては、
銅から成る放熱板2の上面に銅の結晶が複数個積み重な
って形成された多数の微小突起2aが形成されているこ
とから、これらの微小突起2aが配線基板1と放熱板2
とを接合する導電性接着層15に食い込んで、それによ
り放熱板2と導電性接着層15とが極めて強固に接合さ
れる。したがって、配線基板1と放熱板2とが導電性接
着層15を介して確実かつ強固に接合され、放熱板2に
搭載される半導体素子3を長期間にわたり正常かつ安定
に作動させることができる。なお、微小突起2aは、そ
の高さが2μm未満、または放熱板2上の単位長さ当り
の個数が200個/mm未満では、放熱板2と接合層1
5とを強固に接合させることが困難となる傾向にあり、
またその高さが3μmを超える、または放熱板2上の単
位長さ当りの個数が500個/mmを超えると、そのよ
うな微小突起2aを効率良く形成することが困難となる
傾向にある。したがって、微小突起2aは、その高さが
2〜3μmで放熱板2上の単位長さ当りの個数が200
〜500個/mmの範囲が好ましい。 【0024】なお、このような微小突起2aは、例えば
放熱板2として電解銅を用い、これに限界電流密度付近
でのパルス電流を用いた電解めっきにより銅の結晶塊を
多数析出させることにより形成される。 【0025】また、絶縁基板1と放熱板2とを接合する
導電性接着層15は、例えば未硬化のエポキシ樹脂等の
熱硬化性樹脂と銅や銀等の金属粉末から成る導電性フィ
ラーとの混合物から成る導電性樹脂ペーストを配線基板
1の下面にスクリーン印刷法を採用して印刷塗布し、そ
の上に放熱板2を当接させて上下から加圧しながら熱硬
化させることにより配線基板1と放熱板2とを接合する
ように形成される。 【0026】かくして、本発明の放熱板付き配線基板に
よれば、放熱板2の搭載部2aに半導体素子3を導電性
接着材を介して接着固定するとともに、半導体素子3の
各電極と配線導体5とをボンディングワイヤ13を介し
て電気的に接続し、貫通孔4aおよび7a内に図示しな
い封止樹脂を充填して半導体素子3を封止することによ
って半導体装置となる。 【0027】なお、このような放熱板付き配線基板にお
いては、必要に応じて配線基板1上に外部接続導体8の
外周部を覆うソルダーレジスト層16を設けてもよい。こ
のようなソルダーレジスト層16は、例えばシリカ等の絶
縁性フィラーを含有させたエポキシ樹脂等の熱硬化性樹
脂から成り、外部接続導体8上に半田ボール等の外部接
続部材14を取着する際の外部接続部材14の不要な濡れ広
がりを防止するダムの作用をする。このようなソルダー
レジスト層16は、未硬化の感光性を有する熱硬化性樹脂
ペーストを外部接続導体8が形成された絶縁板7の上面
にスクリーン印刷法を採用して塗布するとともに従来公
知のフォトリソグラフィーにより所定のパターンにエッ
チングした後、熱硬化させることにより形成することが
できる。 【0028】なお、本発明は上述の実施の形態例に限定
されるものではなく、本発明の要旨を逸脱しない範囲で
あれば種々の変更は可能である。例えば、上述の実施の
形態例では、2枚の絶縁板5、7を接着した配線基板1
を例に示したが、1枚の絶縁板の上面に配線導体層と外
部接続導体とを一体的に形成するとともに、下面に接地
または電源導体層を形成して成る配線基板や、3枚以上
の絶縁板を積層して成る配線基板を用いたものであって
もよい。 【0029】 【発明の効果】本発明の放熱板付き配線基板によれば、
放熱板の上面に複数個の銅の結晶が積み重なって形成さ
れた多数の微小突起を有していることから、これらの微
小突起が導電性接着層に食い込んで放熱板と導電性接着
層とが機械的かつ電気的に極めて強固に接合される。し
たがって、放熱板に搭載される半導体素子を長期間にわ
たり正常かつ安定に作動させることが可能な放熱板付き
配線基板を提供することができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wiring board with a heat radiating plate used for a semiconductor element housing package for housing a semiconductor element such as a semiconductor integrated circuit element. 2. Description of the Related Art Conventionally, a wiring board with a heat radiating plate used for a semiconductor element housing package for housing a semiconductor element such as a semiconductor integrated circuit element is, for example, as shown in a sectional view of FIG. A wiring board 21 having a stepped through hole 21a for accommodating the semiconductor element 20 in the center, and a bonding made of a thermosetting resin such as an epoxy resin on the lower surface of the wiring board 21 so as to cover the through hole 21a. It is mainly composed of a flat heat dissipation plate 22 having a mounting portion 22a on which the semiconductor element 20 is mounted at the center of the upper surface. In this conventional wiring board with a heat sink, the wiring board 21 is composed of two insulating plates 2 made of glass cloth impregnated with a thermosetting resin such as an epoxy resin.
4 and 25 are also laminated via an adhesive layer 26 made of glass cloth impregnated with a thermosetting resin such as an epoxy resin. In the insulating plate 24, a through hole 24a slightly larger than the semiconductor element 20 is formed at the center thereof, and the wiring conductor layer 27 and substantially the entire lower surface thereof extend from the periphery of the through hole 24a on the upper surface to the outer peripheral portion. Is grounded or a power supply conductor layer 28 is applied to the insulating plate 25.
A through hole 25a larger than the through hole 24a is formed at the center thereof, and an external connection conductor 29 is attached on the upper surface. A plurality of through holes 30 are provided in the outer peripheral portions of the insulating plates 24 and 25 and the adhesive layer 26, and the inner wall of the through hole 30 has a wiring conductor layer 27, a ground or power supply conductor layer 28, A through conductor 31 that electrically connects the connection conductor 29 is provided. Further, an insulating layer 32 made of a thermosetting resin such as epoxy resin is applied to the lower surface of the wiring board 21 so as to cover the ground or power supply conductor layer 28 and the through conductor 31.
2 and the adhesive layer 23 are joined to each other to
And the radiator plate 22 are joined via the adhesive layer 23. On the other hand, the heat radiating plate 22 is a substantially rectangular flat plate made of copper. Usually, the heat radiating plate 22 is subjected to a blackening process in which an oxide film is formed on the upper surface thereof in order to strengthen the bonding with the adhesive layer 23. It has been subjected. According to the conventional wiring board with a heat sink, the semiconductor element 20 is mounted on the mounting portion 22a of the heat sink 22 and each electrode of the semiconductor element 20 is connected to the wiring conductor layer 27 by a bonding wire 33 or the like. Electrically connected via the electrical connection means, and then the external connection conductor 2
An external connection member 34 made of a solder ball or the like is joined to 9 and the through hole 21a is filled with a sealing resin (not shown) to hermetically seal the semiconductor element 20 to obtain a semiconductor device as a product. [0006] However, recently,
In order to stabilize the operation of the semiconductor element 20, a wiring board with a heat radiating plate, in which the heat radiating plate 22 is electrically connected to the ground or the power supply conductor layer 28, has been required. In such a case, an opening for exposing the grounding or power supply conductor layer 28 is provided in a part of the insulating layer 32 adhered to the lower surface of the wiring board 1, and the upper surface of the heat sink 22 is not blackened. Further, as the adhesive layer 23 for joining the wiring board 21 and the heat sink 22 to each other, a conductive adhesive made of an epoxy resin containing a metal powder of good conductivity such as copper or silver is used to make the insulation. A method of connecting the ground or power supply conductor layer 28 exposed from the opening of the layer 32 and the heat sink 22 made of copper without an oxide film via a conductive adhesive layer 23 is adopted. However, the upper surface of the heat radiating plate 22 is not subjected to the blackening treatment, and the heat radiating plate 22 is
Is bonded via an adhesive layer 23 made of a conductive adhesive, the bonding strength between the heat radiating plate 22 made of copper and the bonding layer 23 made of the conductive resin is weak, and therefore, the semiconductor substrate is connected to the wiring board 21 and the heat radiating plate 22. When the heat generated during the operation of the element 20 is repeatedly applied for a long period of time, the wiring board 21 and the heat radiating plate 22 adhere to the heat radiating plate 22 due to the thermal stress generated due to the difference in the coefficient of thermal expansion between the two. Separation occurs with the layer 23, and as a result, the airtightness of the semiconductor element 20 mounted on the heat sink 22 is impaired, and the electrical connection between the heat sink 22 and the ground or the power supply conductor layer 28 becomes unstable. Therefore, there is a problem that the semiconductor element 20 cannot be normally and stably operated for a long period of time. The present invention has been devised in view of such a conventional problem, and has as its object to reliably and firmly join a wiring board and a heat sink through an adhesive layer made of a conductive resin. It is an object of the present invention to provide a wiring board with a heat sink, which can make the semiconductor element mounted on the heat sink operate normally and stably for a long period of time. A wiring board with a heat sink according to the present invention has an insulating substrate having a through hole for accommodating a semiconductor element in a central portion, and an outer peripheral surface from an upper surface around the through hole of the insulating substrate. A plurality of wiring conductor layers applied toward the portion, a ground or power supply conductor layer applied to substantially the entire lower surface of the insulating substrate, and the ground or power supply conductor layer provided on the lower surface of the ground or power supply conductor layer. An insulating layer made of a thermosetting resin applied so as to expose a part of the conductive layer, and a conductive layer formed on a lower surface of the insulating layer and an exposed portion of the ground or power supply conductor layer so as to cover the through hole. And a heat sink made of copper joined via a conductive adhesive layer made of a filler and a thermosetting resin, wherein the heat sink has a plurality of copper on its upper surface. Many formed by stacking crystals of Characterized by having the fine projections described above. According to the wiring board with a heat sink of the present invention, since a plurality of fine protrusions formed by stacking a plurality of copper crystals on the upper surface of the heat sink, these fine protrusions are conductive. The heat sink and the conductive adhesive layer are extremely strongly mechanically and electrically bonded to the conductive adhesive layer. Next, a wiring board with a heat sink according to the present invention will be described with reference to the accompanying drawings. FIG. 1 is a sectional view showing an example of an embodiment of a wiring board with a heat sink of the present invention. In the drawing, reference numeral 1 denotes a wiring board, and 2 denotes a heat radiating plate. These mainly constitute a wiring board with a heat radiating plate for mounting the semiconductor element 3. In this example, a through hole 4a for forming a space for accommodating the semiconductor element 3 in the center is provided.
An insulating plate 4 having a wiring conductor layer 5 on the upper surface and a grounding or power supply conductor layer 6 on the lower surface, a through hole 7a larger than the through hole 4a in the center, and an external connection conductor 8 on the upper surface. This shows an example in which the wiring board 1 is formed by bonding the attached insulating plate 7 through an adhesive layer 9.
A plurality of through holes 10 are formed in the outer peripheral portion of the wiring board 1, and a through conductor 11 is attached to an inner wall of the through hole 10. Note that the ground or power supply conductor layer 6 is electrically connected to either the ground electrode or the power supply electrode of the semiconductor element 3 and thereby functions as a ground conductor layer or as a power supply conductor layer. The insulating plates 4 and 7 constituting the wiring board 1 are in a substantially rectangular frame shape formed by impregnating a thermosetting resin such as an epoxy resin or a bismaleimide triazine resin into a cloth of glass fiber or aramid fiber, for example. In addition to functioning as a support for the wiring conductor layer 5, the ground or power supply conductor layer 6, and the external connection conductor 8, a space for accommodating the semiconductor element 3 is formed in the through holes 4a and 7a. The insulating plates 4 and 7 are formed by impregnating, for example, a glass cloth with a thermosetting resin such as an uncured epoxy resin, and then thermosetting the sheet to form a through hole. 4a and 7a are formed by cutting the cured insulating plates 4 and 7. The adhesive layer 9 for bonding the insulating plates 4 and 7 is formed by impregnating a cloth made of glass fiber or aramid fiber with a thermosetting resin such as epoxy resin or bismaleimide triazine resin. , Function as an adhesive member for adhering the insulating plates 4 and 7. The insulating plates 4 and 7 sandwich a sheet for the adhesive layer 9 formed by impregnating a cloth made of glass fiber or the like with a thermosetting resin such as an uncured epoxy resin between the insulating plates 4 and 7. At the same time, it is bonded via the bonding layer 9 by thermosetting. The wiring conductor layer 5 attached to the upper surface of the insulating plate 4
Is formed of a metal such as copper foil, and is formed in a plurality of band-shaped patterns from the vicinity of the opening of the through hole 4a to the outer peripheral portion. The wiring conductor layer 5 functions as a part of a conductive path for electrically connecting each electrode of the semiconductor element 3 to an external electric circuit, and each electrode of the semiconductor element 3 is bonded to a portion near the through hole 4a. The connection is made via a wire 13, and the outer periphery thereof is connected to the through conductor 11. The ground or power supply conductor layer 6 adhered to the lower surface of the insulating plate 4 is made of metal such as copper foil.
Is formed on substantially the entire lower surface of the substrate. The ground or power supply conductor layer 6 has a function of supplying a ground or power supply potential to the semiconductor element 3 and adjusting the characteristic impedance of the wiring conductor layer 5 to a predetermined value, and is electrically connected to the through conductor 11. ing. The wiring conductor layer 5 and the ground or power supply conductor layer 6 are formed by attaching copper foil to the upper and lower surfaces of an uncured sheet for the insulating plate 4 and curing the sheet. It is formed by etching a copper foil adhered to a sheet into a predetermined pattern by a photolithography technique. The external connection conductor 8 attached to the upper surface of the insulating plate 7 functions as a connection conductor with an external electric circuit, and is formed so as to be electrically connected to the through conductor 11. An external connection member 14 made of a solder ball or the like is attached to the external connection conductor 8. The external connection conductor 8 is connected to the wiring conductor layer 5 or the ground or power supply conductor layer 6.
A copper foil is adhered to the upper surface of an uncured sheet for the insulating plate 7 in the same manner as described above, and after the sheet is cured, the copper foil adhered to the sheet is subjected to photolithography technology. To form a predetermined pattern. The wiring conductor layer 5 and the external connection conductor 8
Usually has a thickness of about 5 to 50 μm. The thickness is preferably 5 μm or more from the viewpoint of transmitting a high-speed signal, and is preferably 50 μm or less in order to process the wiring conductor layer 5 and the external connection conductor 8 with high dimensional accuracy. On the exposed surfaces of the wiring conductor layer 5 and the external connection conductor 8, a nickel plating layer having a thickness of about 1 to 10 μm and a gold plating layer having a thickness of about 0.1 to 3 μm are usually electroless. They are sequentially deposited by plating or electrolytic plating. Thereby, oxidation corrosion of the wiring conductor layer 5 and the external connection conductor 8 can be effectively prevented, and the wiring conductor layer 5 and the bonding wire 1
3 and the electrical connection between the external connection conductor 8 and the external connection member 14 can be improved. The through conductor 11 attached to the inner wall of the through hole 10 functions as a connection conductor for electrically connecting the wiring conductor layer 5 or the ground or power supply conductor layer 6 to the external connection conductor 8, and 1 is formed by applying a copper plating layer having a thickness of about 4 to 50 μm to the inner wall of a large number of through holes 10 drilled from the upper surface to the lower surface by using an electroless plating method or an electrolytic plating method. If the thickness of the through conductor 11 is less than 4 μm, it tends to be difficult to electrically connect the wiring conductor layer 5 or the ground or power supply conductor layer 6 to the external connection conductor 8 satisfactorily. If it exceeds, it takes a long time to form the through conductor 11 having such a thickness, and the efficiency of manufacturing the wiring board 1 tends to be extremely low. Further, an insulating layer 12 made of a thermosetting resin such as an epoxy resin is provided on the lower surface of the wiring board 1 on which the ground or power supply conductor layer 6 is adhered. It is partially formed so as to be exposed in a frame shape. The insulating layer 12 is provided on the heat insulating plate 2
Function as a bonding base member for firmly bonding the heat sink to the grounding or power supply conductor layer 6 and the insulating layer 12 so that the heat radiating plate 2 is made of an epoxy resin or the like containing a conductive filler made of a metal powder such as copper or silver. The insulating substrate 1 and the radiator plate 2 are joined by being joined via the conductive adhesive layer 15 made of a curable resin, and the ground or power supply conductor layer 6 and the radiator plate 2 are electrically connected. ing. The insulating layer 12 may contain about 5 to 50% by mass of an inorganic filler made of an inorganic insulating powder such as silica. By including such an inorganic filler, the thermal expansion coefficient of the insulating layer 12 can be adjusted and the insulating layer 12
Can be improved in heat resistance and the like. Such an insulating layer 12 is formed by partially applying a thermosetting resin paste such as an uncured epoxy resin to the lower surface of the wiring board 1 and then thermosetting the paste. On the other hand, a conductive adhesive layer 1
The heat radiating plate 2 joined through the joint 5 is made of copper and joined so as to close the through hole 4a. This heat sink 2
Functions not only as a support for supporting the semiconductor element 3 but also as a heat radiating member for satisfactorily radiating the heat generated during operation of the semiconductor element 3 to the outside. It has a mounting portion 2a for mounting. The semiconductor element 3 is bonded and fixed to the mounting portion 2a via a conductive adhesive such as an epoxy resin containing a conductive filler made of a metal powder such as copper or silver. Further, in the present invention, the heat radiating plate 2 made of copper has a large number of fine protrusions 2a formed by stacking a plurality of copper crystals on the upper surface thereof, as shown in an electron micrograph in FIG. ing. And that is important. The fine projections 2a have, for example, a particle size of 0.5.
It is formed by stacking a plurality of copper crystals of about 1 to about 1 μm, the height is about 2 to 3 μm, and the number per unit length on the heat sink 2 is 200 to 500 pieces / mm.
It is about. Thus, in the wiring board of the present invention,
Since a large number of fine protrusions 2a formed by stacking a plurality of copper crystals are formed on the upper surface of the heat radiating plate 2 made of copper, these fine protrusions 2a
The heat sink 2 and the conductive adhesive layer 15 are bonded very firmly. Therefore, the wiring board 1 and the radiator plate 2 are securely and firmly joined via the conductive adhesive layer 15, and the semiconductor element 3 mounted on the radiator plate 2 can operate normally and stably for a long period of time. When the height of the micro projections 2a is less than 2 μm or the number per unit length on the heat radiating plate 2 is less than 200 / mm, the heat radiating plate 2 and the bonding layer 1
5 tends to be difficult to join firmly,
If the height exceeds 3 μm or the number per unit length on the heat sink 2 exceeds 500 / mm, it tends to be difficult to efficiently form such minute projections 2a. Therefore, the minute protrusions 2a have a height of 2 to 3 μm and a number per unit length on the heat sink 2 of 200 μm.
The range of -500 / mm is preferred. The fine projections 2a are formed, for example, by using electrolytic copper as the heat sink 2 and depositing a large number of copper crystal lump thereon by electrolytic plating using a pulse current near the limit current density. Is done. The conductive adhesive layer 15 for joining the insulating substrate 1 and the heat radiating plate 2 is made of, for example, a thermosetting resin such as an uncured epoxy resin and a conductive filler made of a metal powder such as copper or silver. A conductive resin paste made of a mixture is printed and applied to the lower surface of the wiring board 1 by using a screen printing method, and a heat sink 2 is brought into contact with the paste and thermally cured while applying pressure from above and below. It is formed so as to be joined to the heat sink 2. Thus, according to the wiring board with a radiator plate of the present invention, the semiconductor element 3 is bonded and fixed to the mounting portion 2a of the radiator plate 2 via the conductive adhesive, and each electrode of the semiconductor element 3 is connected to the wiring conductor. The semiconductor device 3 is electrically connected to the semiconductor device 3 via a bonding wire 13, and the semiconductor element 3 is sealed by filling the through holes 4a and 7a with a sealing resin (not shown). In such a wiring board with a heat sink, a solder resist layer 16 covering the outer peripheral portion of the external connection conductor 8 may be provided on the wiring board 1 if necessary. Such a solder resist layer 16 is made of a thermosetting resin such as an epoxy resin containing an insulating filler such as silica, and is used when attaching the external connection member 14 such as a solder ball on the external connection conductor 8. It functions as a dam for preventing unnecessary external spreading of the external connection member 14. The solder resist layer 16 is formed by applying an uncured photosensitive thermosetting resin paste to the upper surface of the insulating plate 7 on which the external connection conductors 8 are formed by using a screen printing method, and using a conventionally known photo resist. After etching into a predetermined pattern by lithography, it can be formed by thermosetting. The present invention is not limited to the above-described embodiment, and various changes can be made without departing from the gist of the present invention. For example, in the above-described embodiment, the wiring board 1 to which the two insulating plates 5 and 7 are bonded is described.
However, a wiring board formed by integrally forming a wiring conductor layer and an external connection conductor on the upper surface of one insulating plate and forming a ground or power supply conductor layer on the lower surface, Using a wiring board formed by laminating the above insulating plates. According to the wiring board with a heat sink of the present invention,
Since the upper surface of the heat sink has a large number of fine protrusions formed by stacking a plurality of copper crystals, these fine protrusions cut into the conductive adhesive layer, and the heat sink and the conductive adhesive layer Very strong mechanical and electrical bonding. Accordingly, it is possible to provide a wiring board with a radiator plate, which allows a semiconductor element mounted on the radiator plate to operate normally and stably for a long period of time.

【図面の簡単な説明】 【図1】本発明の放熱板付き配線基板の実施の形態の一
例を示す断面図である。 【図2】本発明の放熱板付き配線基板における放熱板の
上面の電子顕微鏡写真である。 【図3】従来の放熱板付き配線基板の断面図である。 【符号の説明】 1・・・・・絶縁基板 2・・・・・放熱板 2a・・・・・微小突起 3・・・・・半導体素子 4a・・・・半導体素子収納用の貫通穴 5・・・・・配線導体層 6・・・・・接地または電源導体層 12・・・・・絶縁層 15・・・・・導電性接着層
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a sectional view showing an example of an embodiment of a wiring board with a heat sink according to the present invention. FIG. 2 is an electron micrograph of the upper surface of a heat sink in the wiring board with a heat sink of the present invention. FIG. 3 is a cross-sectional view of a conventional wiring board with a heat sink. [Description of Signs] 1... Insulating substrate 2... Heat radiating plate 2a... Microprojections 3... Semiconductor element 4a. ······ Wiring conductor layer 6 ····· Ground or power supply conductor layer 12 ····· Insulating layer 15 ····· Conductive adhesive layer

Claims (1)

【特許請求の範囲】 【請求項1】 中央部に半導体素子収納用の貫通穴を有
する絶縁基板と、該絶縁基板の前記貫通穴周辺の上面か
ら外周部に向けて被着された複数の配線導体層と、前記
絶縁基板の下面の略全面に被着された接地または電源導
体層と、該接地または電源導体層の下面に前記接地また
は電源導体層の一部を露出させるようにして被着された
熱硬化性樹脂から成る絶縁層と、該絶縁層の下面および
前記接地または電源導体層の露出部に、前記貫通穴を塞
ぐようにして導電性フィラーおよび熱硬化性樹脂から成
る導電性接着層を介して接合された銅から成る放熱板と
を具備して成る放熱板付き配線基板であって、前記放熱
板は、その上面に複数個の銅の結晶が積み重なって形成
された多数の微小突起を有していることを特徴とする放
熱板付き配線基板。
Claims: 1. An insulating substrate having a through hole for accommodating a semiconductor element in a central portion, and a plurality of wirings attached from an upper surface around the through hole to an outer peripheral portion of the insulating substrate. A conductor layer, a ground or power supply conductor layer adhered to substantially the entire lower surface of the insulating substrate, and a lower surface of the ground or power supply conductor layer so as to expose a part of the ground or power supply conductor layer. An insulating layer made of a cured thermosetting resin, and a conductive adhesive made of a conductive filler and a thermosetting resin on a lower surface of the insulating layer and an exposed portion of the grounding or power supply conductor layer so as to cover the through hole. A heat sink with a heat sink, comprising: a heat sink made of copper joined through layers; wherein the heat sink has a large number of minute crystals formed by stacking a plurality of copper crystals on an upper surface thereof. Characterized by having projections Hot plate with a wiring board.
JP2002079065A 2002-03-20 2002-03-20 Wiring board with heat sink plate Pending JP2003282771A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002079065A JP2003282771A (en) 2002-03-20 2002-03-20 Wiring board with heat sink plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002079065A JP2003282771A (en) 2002-03-20 2002-03-20 Wiring board with heat sink plate

Publications (1)

Publication Number Publication Date
JP2003282771A true JP2003282771A (en) 2003-10-03

Family

ID=29228682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002079065A Pending JP2003282771A (en) 2002-03-20 2002-03-20 Wiring board with heat sink plate

Country Status (1)

Country Link
JP (1) JP2003282771A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008103615A (en) * 2006-10-20 2008-05-01 Shinko Electric Ind Co Ltd Electronic component mounting multilayer wiring board and its manufacturing method
JP2012028826A (en) * 2005-08-18 2012-02-09 Daikin Ind Ltd Module
JP2012209590A (en) * 2012-07-17 2012-10-25 Shinko Electric Ind Co Ltd Electronic component mounting multilayer wiring board and manufacturing method of the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012028826A (en) * 2005-08-18 2012-02-09 Daikin Ind Ltd Module
JP2008103615A (en) * 2006-10-20 2008-05-01 Shinko Electric Ind Co Ltd Electronic component mounting multilayer wiring board and its manufacturing method
US8222747B2 (en) 2006-10-20 2012-07-17 Shinko Electric Industries Co., Ltd. Multilayer wiring substrate mounted with electronic component and method for manufacturing the same
JP2012209590A (en) * 2012-07-17 2012-10-25 Shinko Electric Ind Co Ltd Electronic component mounting multilayer wiring board and manufacturing method of the same

Similar Documents

Publication Publication Date Title
JP5100081B2 (en) Electronic component-mounted multilayer wiring board and manufacturing method thereof
US7002236B2 (en) Semiconductor package and method for producing the same
JP2001044641A (en) Wiring board incorporating semiconductor element and its manufacture
KR20090130727A (en) Printed circuit board with electronic components embedded therein and method for fabricating the same
JP4875925B2 (en) Multilayer wiring board and manufacturing method thereof
JP2004023103A (en) High-voltage ball grid array (bga) package, manufacture of heat spreader for high voltage bga package, and heat spreader for high-voltage bga package
JP2008091377A (en) Printed wiring board and its manufacturing method
JP2007059588A (en) Method of manufacturing wiring board, and wiring board
JP5539453B2 (en) Electronic component-mounted multilayer wiring board and manufacturing method thereof
JP2003282771A (en) Wiring board with heat sink plate
JP2004327743A (en) Wiring board with solder bump and its producing process
JP2003338579A (en) Wiring board with radiator plate
JPH1098127A (en) Semiconductor package for surface mounting
KR20020086000A (en) Manufacturing method of PCB and PCB thereby
JP3854131B2 (en) Wiring board with heat sink
JP4574035B2 (en) Manufacturing method of semiconductor element storage package
JP2002217328A (en) Package for containing semiconductor element
JP2011119655A (en) Printed circuit board and method of manufacturing the same
JP2970075B2 (en) Chip carrier
JP2002217327A (en) Package for containing semiconductor element and its manufacturing method
JP3872395B2 (en) Manufacturing method of semiconductor element storage package
JP5756321B2 (en) Heat dissipation member and semiconductor module
JP2003224235A (en) Wiring board with heat sink
JPH0823049A (en) Semiconductor package
JPH03233958A (en) Substrate for placing electronic component