JP2003224235A - Wiring board with heat sink - Google Patents

Wiring board with heat sink

Info

Publication number
JP2003224235A
JP2003224235A JP2002019024A JP2002019024A JP2003224235A JP 2003224235 A JP2003224235 A JP 2003224235A JP 2002019024 A JP2002019024 A JP 2002019024A JP 2002019024 A JP2002019024 A JP 2002019024A JP 2003224235 A JP2003224235 A JP 2003224235A
Authority
JP
Japan
Prior art keywords
layer
power supply
conductor layer
supply conductor
wiring board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002019024A
Other languages
Japanese (ja)
Inventor
Kenji Nakamura
憲志 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002019024A priority Critical patent/JP2003224235A/en
Publication of JP2003224235A publication Critical patent/JP2003224235A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wiring board with a heat sink, wherein the wiring board and the heat sink are firmly bonded together through the intermediary of a bonding layer formed of a conductive resin, and a grounding part or a power supply conductor layer provided to the wiring board is electrically, stably, and well connected to the heat sink. <P>SOLUTION: A grounding layer or a power supply conductor layer 6 is deposited on the underside of a wiring board 1, an insulating layer 12 formed of a thermosetting resin is partially deposited so as to make a part of the grounding layer or the power supply conductor layer 6 exposed, and a metal heat sink 2 is bonded to the grounding layer or the power supply conductor layer 6 and the insulating layer 12 through the intermediary of a bonding layer 15 formed of conductive filler and thermosetting resin for the formation of the wiring board with the heat sink. Projections 2a are provided on the top surface of the heat sink 2 as they are protruding upright, corresponding to the exposed parts of the grounding part or the power supply conductor layer 6. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、半導体集積回路素
子等の半導体素子を収容するための半導体素子収納用パ
ッケージに用いられる放熱板付き配線基板に関するもの
である。 【0002】 【従来の技術】従来、MPU等の半導体素子を収容する
ための半導体素子収納用パッケージに使用される放熱板
付き配線基板は、例えば図2に断面図で示すように、中
央部に半導体素子20を収容するための段状の貫通穴21a
を有する配線基板21と、この配線基板21の下面に貫通穴
21aを塞ぐように接合層23を介して接合されており、上
面中央部に半導体素子20が搭載される搭載部22aを有す
る上下面が平坦な銅等の金属材料から成る放熱板22とか
ら主に構成されている。 【0003】この従来の放熱板付き配線基板において
は、配線基板21は、例えばガラスクロスにエポキシ樹脂
等の熱硬化性樹脂を含浸させて成る二枚の絶縁板24・25
を同じくガラスクロスにエポキシ樹脂等の熱硬化性樹脂
を含浸させて成る接着層26を介して積層して成る。そし
て、絶縁板24には、その中央部に半導体素子20よりも若
干大きな貫通穴24aが形成されているとともにその上面
の貫通穴24a周辺から外周部にかけて配線導体層27およ
びその下面の略全面に接地または電源導体層28が被着さ
れており、絶縁板25には、その中央部に貫通穴24aより
も大きな貫通穴25aが形成されているとともに上面に外
部接続導体29が被着されている。そして、これらの絶縁
板24・25および接着層26の外周部には、複数の貫通孔30
が設けられており、貫通孔30の内壁には配線導体層27や
接地または電源導体層28と外部接続導体29とを電気的に
接続する貫通導体31が被着されている。さらに、配線基
板21の下面には接地または電源導体層28の一部および貫
通導体31が下面に露出している部分に、接地または電源
導体層28と放熱板22との接合を強固なものとするととも
に放熱板22と配線導体層27との不要な電気的短絡を防止
するためにエポキシ樹脂から成る絶縁層32が被着されて
いる。そして、この接地または電源導体層28と絶縁層32
の下面に放熱板22が金属粉末等の導電性フィラーを含有
するエポキシ樹脂等の導電性接着樹脂からなる接合層23
を介して接合おり、接地または電源導体層28と放熱板22
とが、この接合層23により電気的に導通されている。 【0004】そして、この従来の放熱板付き配線基板に
よれば、放熱板22の搭載部22aに半導体素子20を搭載す
るとともに、この半導体素子20の各電極を配線導体層27
にボンディングワイヤ33等の電気的接続手段を介して電
気的に接続し、しかる後、外部接続導体29に半田ボール
等から成る外部接続部材34を接合するとともに貫通穴21
a内へ図示しない封止用樹脂をポッティングして半導体
素子20を気密に封止することにより製品としての半導体
装置となる。 【0005】なお、配線基板21の下面に放熱板22を接合
層23を介して接合するには、接地または電源導体層28お
よび絶縁層32が被着された配線基板21の下面に、未硬化
の熱硬化性樹脂と導電性フィラーとの混合物から成る導
電性接着剤ペーストを印刷塗布するとともに、その導電
性接着剤ペーストに放熱板22を当接させて上下から加圧
しながら導電性接着剤ペーストを熱硬化させる方法が採
用されている。 【0006】 【発明が解決しようとする課題】しかしながら、この従
来の放熱板付き配線基板によると、配線基板21の接地ま
たは電源導体層28の下面に絶縁層32が部分的に被着され
ていることから、この絶縁層32により配線基板21と放熱
板22とが接合層23を介して強固に接合されるものの、接
地または電源導体層28の下面と絶縁層32の下面との間に
絶縁層32の厚みに対応した高さの段差が形成されるこ
と、および放熱板22の上面が平坦であることから、導電
性樹脂から成る接合層23の厚みが接地または電源導体層
28と接合する部位で厚いものとなり、そのような厚い接
合層23により接地または電源導体層28と放熱板22との間
の電気抵抗が高いものとなる。また、配線基板21と放熱
板22とを接合する際に、接合層23と接地または電源導体
層28とが良好に圧接されずに、両者の間にボイドや密着
不良が発生してしまいやすい。したがって、放熱板22と
接地または電源導体層28とを電気的に良好かつ安定に接
続することが困難であるという問題点を有していた。 【0007】本発明は、かかる従来の問題点に鑑み案出
されたものであり、その目的は、配線基板と放熱板とを
導電性樹脂から成る接合層を介して強固に接合すること
ができるとともに、配線基板の接地または電源導体層と
放熱板とを電気的に良好かつ安定に接続することが可能
な放熱板付き配線基板を提供することにある。 【0008】 【課題を解決するための手段】本発明の放熱板付き配線
基板は、中央部に半導体素子収納用の貫通穴を有する絶
縁基板と、該絶縁基板の前記貫通穴周辺の上面から外周
部にかけて被着された配線導体層と、前記絶縁基板の下
面に被着された接地または電源導体層と、前記接地また
は電源導体層の下面に該接地または電源導体層の一部を
露出させるようにして部分的に被着された熱硬化性樹脂
から成る絶縁層と、前記接地または電源導体層の露出部
および前記絶縁層に、前記貫通穴を塞ぐようにして導電
性フィラーおよび熱硬化性樹脂から成る接合層を介して
接合された金属製の放熱板とを具備して成る放熱板付き
配線基板において、前記放熱板は、その上面に前記露出
部に対応して突出する突起部を有していることを特徴と
するものである。 【0009】本発明の半導体素子収納用パッケージによ
れば、接地または電源導体層の下面に熱硬化性樹脂から
成る絶縁層を部分的に被着させたことから、その絶縁層
と接合層とが強固に接合して、接地または電源導体層が
被着された絶縁基板の下面に放熱板が強固に接合され
る。また、放熱板の上面に接地または電源導体層の露出
部に対応して突出する突起部を設けたことから、接合層
の厚みが接地または電源導体層と接合する部位で厚くな
ることがなく、したがって、接地または電源導体層と放
熱板とを接合層を介して低い電気抵抗で接続することが
できる。また、配線基板と放熱板とを接合層を介して接
合する際に、接地または電源導体層と接合層とが突起部
により十分に圧接されるので、両者の間にボイドや密着
不良が発生することがなく、両者を電気的に良好かつ安
定に接続することができる。 【0010】 【発明の実施の形態】次に、本発明の放熱板付き配線基
板を添付の図面に基づいて説明する。図1は、本発明の
放熱板付き配線基板の実施の形態の一例を示す断面図で
ある。図中、1は配線基板、2は放熱板であり、主とし
てこれらで半導体素子3を搭載するための放熱板付き配
線基板が構成されている。なお、本例では、中央部に半
導体素子3を収容する空所を形成するための貫通穴4a
を有するとともに上面に配線導体層5および下面に接地
または電源導体層6が被着された絶縁板4と、中央部に
貫通穴4aより大きい貫通穴7aを有するとともに上面
に外部接続導体8が被着された絶縁板7とを接着層9を
介して接着して配線基板1を形成した例を示している。
また、この配線基板1の外周部には複数の貫通孔10が形
成されており、貫通孔10の内壁には貫通導体11が被着さ
れている。なお、接地または電源導体層6は、半導体素
子3の接地電極または電源電極のどちらかに電気的に接
続され、それにより接地導体層として機能したり、電源
導体層として機能したりする。 【0011】配線基板1を構成する絶縁板4や7は、例
えばガラス繊維やアラミド繊維のクロスにエポキシ樹脂
やビスマレイミドトリアジン樹脂等の熱硬化性樹脂を含
浸させて成る略四角枠状であり、配線導体層5・接地ま
たは電源導体層6や外部接続導体8の支持体として機能
するとともに、貫通穴4a・7a内に半導体素子3を収
容するための空所を形成する。 【0012】このような絶縁板4や7は、例えばガラス
クロスに未硬化のエポキシ樹脂等の熱硬化性樹脂を含浸
させてなるシートを得るとともに、これを熱硬化させる
ことによって形成され、貫通穴4a・7aは、硬化した
絶縁板4・7に切削加工を施すことにより形成される。 【0013】また、これらの絶縁板4・7を接着する接
着層9は、同じくガラス繊維やアラミド繊維等から成る
クロスにエポキシ樹脂やビスマレイミドトリアジン樹脂
等の熱硬化性樹脂を含浸させて成り、絶縁板4と7とを
接着する接着部材として機能する。なお、絶縁板4と7
とは、ガラス繊維等から成るクロスに未硬化のエポキシ
樹脂等の熱硬化性樹脂を含浸させて成る接着層9用のシ
ートを絶縁板4と7との間に挟むとともに、これを熱硬
化させることにより接着層9を介して接着される。 【0014】絶縁板4の上面に被着された配線導体層5
は、銅箔等の金属から成り、貫通穴4aの開口近傍から
外周部にかけて複数の帯状パターンに被着形成されてい
る。この配線導体層5は、半導体素子3の各電極を外部
電気回路に電気的に接続するための導電路の一部として
機能し、その貫通穴4a近傍部位には半導体素子3の各
電極がボンディングワイヤ13を介して接続され、その外
周部は貫通導体11に接続されている。 【0015】また、絶縁板4の下面に被着された接地ま
たは電源導体層6は、銅箔等の金属から成り、絶縁板4
の下面の略全面に被着形成されている。この接地または
電源導体層6は、半導体素子3に接地または電源電位を
供給するとともに、配線導体層5の特性インピーダンス
を所定の値に調整する機能を有し、貫通導体11に電気的
に接続されている。 【0016】このような配線導体層5や接地または電源
導体層6は、絶縁板4用の未硬化のシートの上下面に銅
箔を貼着しておくとともに、そのシートを硬化させた
後、シートに貼着させた銅箔をフォトリソグラフィー技
術により所定のパターンにエッチングすることにより形
成される。 【0017】なお、接地または電源導体層6の内縁を絶
縁板4の貫通穴4aの開口よりも0.1〜5mm外周側に
位置して設けておくと、絶縁板4に貫通穴4aを加工す
る際に接地または電源導体層6にバリが発生することが
なく、それにより半導体素子3を搭載した際に、接地ま
たは電源導体層6と半導体素子3とが接触することが有
効に防止され、その結果、半導体素子3と接地または電
源導体層6との間の不要な電気的短絡や電気的絶縁性の
低下を防止して半導体素子3を正常に作動させることが
できる。したがって、接地または電源導体層6は、その
内縁を貫通穴4aの開口よりも0.1〜5mm程度外周側
に位置して設けることが好ましい。なお、接地または電
源導体層6の内縁と貫通穴4aの開口との距離が0.1m
mよりも短いと、貫通穴4aを加工する際に接地または
電源導体層6にバリが発生する危険性が大きくなる傾向
にあり、他方、接地または電源導体層6の内縁と貫通穴
4aの開口との距離が5mmよりも長い場合には、接地
または電源導体層6を十分な面積で確保できなくなり、
半導体素子3に十分に安定した接地または電源電位を供
給することができなくなるとともに、配線導体層5の特
性インピーダンスを所定の値に調整することが困難とな
る傾向がある。 【0018】また、絶縁板7の上面に被着された外部接
続導体8は、外部電気回路との接続用導体として機能
し、貫通導体11に電気的に接続するようにして形成され
ている。そして、この外部接続導体8には、半田ボール
等からなる外部接続部材14が取着される。この外部接続
導体8は、配線導体層5や接地または電源導体層6と同
様に銅箔から成り、絶縁板7用の未硬化のシートの上面
に銅箔を貼着しておくとともに、そのシートを硬化させ
た後、シートに貼着させた銅箔をフォトリソグラフィー
技術により所定のパターンにエッチングすることにより
形成される。 【0019】なお、配線導体層5および外部接続導体8
は、通常、5〜50μm程度の厚みである。高速の信号を
伝達させるという観点からは5μm以上の厚みが好まし
く、配線導体層5や外部接続導体8を寸法精度良く加工
するためには50μm以下の厚みとしておくことが好まし
い。また、これらの配線導体層5および外部接続導体8
の露出する表面には、通常であれば1〜30μm程度の厚
みのニッケルめっき層および0.1〜3μm程度の厚みの
金めっき層が無電解めっき法や電解めっき法により順次
被着されている。それにより、配線導体層5および外部
接続導体8の酸化腐食を有効に防止することができると
ともに、配線導体層5とボンディングワイヤ13との電気
的接続および外部接続導体8と外部接続部材14との電気
的接続を良好となすことができる。 【0020】また、貫通孔10の内壁に被着された貫通導
体11は配線導体層5や接地または電源導体層6と外部接
続導体8とを電気的に接続させる接続導体として機能
し、配線基板1の上面から下面にかけて穿孔された多数
の貫通孔10の内壁に厚みが4〜50μm程度の銅めっき層
を無電解めっき法や電解めっき法を採用して被着するこ
とにより形成されている。なお、貫通導体11の厚みが4
μm未満では、配線導体層5や接地または電源導体層6
と外部接続導体8とを電気的に良好に接続することが困
難となる傾向にあり、他方、50μmを超えると、そのよ
うな厚みの貫通導体11を形成するために長時間を要し、
配線基板1を製造する効率が極めて低いものとなる傾向
にある。 【0021】さらに、接地または電源導体層6が被着さ
れた配線基板1の下面には、エポキシ樹脂等の熱硬化性
樹脂から成る絶縁層12が、接地または電源導体層6の一
部を例えば枠状に露出させるようにして部分的に被着形
成されている。絶縁層12は、絶縁基板1に放熱板2を強
固に接合させるための接合用下地部材として機能し、接
地または電源導体層6および絶縁層12に放熱板2が導電
性フィラーと熱硬化性樹脂とから成る導電性の接合層15
を介して接合されることにより絶縁基板1と放熱板2と
が接合されているとともに、接地または電源導体層6と
放熱板2とが電気的に接続されている。この絶縁層12に
はシリカ等の無機絶縁物粉末から成る無機フィラーを5
〜50重量%程度含有させてもよい。そのような無機フィ
ラーを含有させることにより絶縁層12の熱膨張係数を調
整することができるとともに、絶縁層12の耐熱性等を向
上させることができる。このような絶縁層12は、未硬化
のエポキシ樹脂等の熱硬化性樹脂ペーストを配線基板1
の下面に部分的に塗布した後、これを熱硬化させること
により形成される。 【0022】ところで、本発明の放熱板付き配線基板に
おいては、熱硬化性樹脂から成る絶縁層12が接地または
電源導体層6の一部を露出させるようにして接地または
電源導体層6の下面に部分的に被着されていることか
ら、この絶縁層12が被着された接地または電源導体層6
と放熱板2とが接合層15を介して強固に接合される。こ
のとき、接地または電源導体層6に部分的に被着された
絶縁層12は、導電性フィラーおよび熱硬化性樹脂から成
る接合層15を接地または電源導体層6に強固に固着させ
るためのアンカーとして作用し、絶縁層12中の熱硬化性
樹脂と接合層15中の熱硬化性樹脂とが強固に接合するこ
とにより接地または電源導体層6と接合層15との密着性
を向上させることができる。 【0023】この場合、接地または電源導体層6の下面
に占める絶縁層12の面積比率を5%〜40%とすることに
より、接地または電源導体層6と接合層15との密着性が
特に向上する。接地または電源導体層6の下面に占める
絶縁層12の面積比率が5%より小さいと、絶縁層12のア
ンカーとしての効果が小さく、接地または電源導体層6
と接合層15とを強固に密着させることが困難となる傾向
にあり、逆に40%より大きいと、接地または電源導体層
6と導電性の接合層15との接着面積が少なくなるため接
地または電源導体層6と放熱板2の間の電気抵抗が若干
大きくなってしまい、放熱板2を接地または電源電位に
安定して接続することが困難となってしまう。 【0024】なお、この例では、絶縁層12は接地または
電源導体層6の下面の一部を枠状に露出させるように被
着されているが、絶縁層12は接地または電源導体層6の
下面の一部を格子状やドット状に部分的に露出させるよ
うに被着されていてもよい。 【0025】他方、配線基板1の下面に接合層15を介し
て接合された放熱板2は、銅等の熱伝導性に優れる金属
から成り、貫通穴4aを塞ぐようにして接合されてい
る。この放熱板2は、半導体素子3を支持するための支
持体として機能するとともに、半導体素子3が作動時に
発生する熱を外部に良好に放熱するための放熱部材とし
て機能し、その上面中央部に半導体素子3を搭載するた
めの搭載部2aを有している。そして、この搭載部2a
に半導体素子3が導電性のエポキシ樹脂等の接着剤を介
して接着固定される。 【0026】このような放熱板2は、例えば銅から成る
板材をプレス金型により所定の形状に打ち抜きプレスし
たり、エッチング加工したりすることによって形成され
る。なお、放熱板2の表面にニッケルや金等の耐食性の
良好な金属をめっき法により1〜20μmの厚みに被着さ
せておくと、放熱板2の酸化腐食を有効に防止すること
ができる。さらに、放熱板2と接合層15との接合力向上
のために、放熱板2表面に黒化処理やブラスト処理を施
し、その表面に中心線平均粗さRaが0.2〜3μm程度
となるような凹凸を形成してもよい。 【0027】また、絶縁基板1と放熱板2とを接合する
接合層15は、例えば銅粉末や銀粉末等の導電性フィラー
とエポキシ樹脂等の熱硬化性樹脂とから成る。このよう
な構成により接地または電源導体6と放熱板2とを機械
的に接合するとともに電気的に接続することができる。
このような接合層15は、例えば未硬化の熱硬化性樹脂と
導電性フィラーとの混合物から成る導電性接着剤ペース
トを絶縁層12が部分的に被着された配線基板1の下面に
スクリーン印刷法を採用して印刷塗布し、これに放熱板
2を当接させて上下から加圧しながら熱硬化させること
により配線基板1と放熱板2とを強固に接合する。この
とき、接地または電源導体層6の下面には熱硬化性樹脂
から成る絶縁層12が部分的に被着されているので、この
絶縁層12がアンカーとなって接地または電源導体層6と
接合層15とが強固に接合される。 【0028】したがって、本発明の放熱板付き配線基板
によれば、放熱板2の搭載部2aに搭載する半導体素子
3が作動時に発生する熱が繰り返し印加されたとしても
接地または電源導体層6と接合層15との間に剥離が発生
することはなく、接地または電源導体層6と放熱板2と
を電気的・機械的に強固に接合することができ、搭載す
る半導体素子3を長期間にわたり正常に作動させること
ができる。 【0029】なお、接合層15用のペーストの内縁が貫通
穴4aの開口から0.1〜1mm外周側に位置するように
印刷塗布しておくと、配線基板1と放熱板2とを接合層
15を介して接合する際に、接合層15に含有される熱硬化
性樹脂の一部が貫通穴4a内壁を伝って配線導体層5に
付着するのを有効に防止することができるとともに、配
線基板1と放熱板2との間に大きな隙間を形成すること
なく両者を強固に接合することができる。したがって、
接合層15用のペーストは、その内縁が貫通穴4aの開口
から0.1〜1mm外周側に位置するように印刷塗布する
ことが好ましい。 【0030】さらに、本発明においては、放熱板2の上
面に、接地または電源導体層6が絶縁層12から露出する
露出部に対応して突出する突起部2aが形成されてい
る。そして、そのことが重要である。このように、放熱
板2の上面に、接地または電源導体層6が絶縁層12から
露出する露出部に対応して突出する突起部2aが形成さ
れていることから、配線基板1と放熱板2とを接合層15
を介して接合しても、接合層15の厚みが接地または電源
導体層6との接合部で厚くなることがなく、したがっ
て、接地または電源導体層6と放熱板2との間を低い電
気抵抗で接続することができる。また、配線基板1と放
熱板2とを接合層15を介して接合する際に、接地または
電源導体層6と接合層15とが突起部2aにより十分に圧
接されるので、両者の間にボイドや密着不良が発生する
ことがなく、両者を電気的に良好かつ安定に接続するこ
とができる。 【0031】なお、放熱板2の上面に形成された突起部
2aの高さが絶縁層12の厚みより小さい場合、接合層15
の厚みが接地または電源導体層6と突起部2aとの間で
厚いものとなりやすいとともに、配線基板1と放熱板2
とを接合層15を介して接合する際に、接合層15と接地ま
たは電源導体層6とが突起部2aにより十分に圧接され
ずに、両者の間にボイドや密着不良が発生する危険性が
大きなものとなる。したがって、突起部2aの高さは絶
縁層12の厚みよりも大きいことが好ましい。 【0032】かくして、本発明の放熱板付き配線基板に
よれば、放熱板2の搭載部2aに半導体素子3を搭載す
るとともに、この半導体素子3の各電極と配線導体層5
とをボンディングワイヤ13を介して電気的に接続し、し
かる後、貫通穴4a・7a内へ封止用樹脂をポッティン
グして樹脂封止を行なうことにより半導体装置となる。 【0033】なお、このような放熱板付き配線基板にお
いては、必要に応じて配線基板1上に外部接続導体8の
外周部を覆うソルダーレジスト層16を設けてもよい。こ
のようなソルダーレジスト層16は、例えばシリカ等の絶
縁性フィラーを含有させたエポキシ樹脂等の熱硬化性樹
脂から成り、外部接続導体8上に半田ボール等の外部接
続部材14を取着する際の外部接続部材14の不要な濡れ広
がりを制御するダムの作用をする。このようなソルダー
レジスト層16は、未硬化の感光性を有する熱硬化性樹脂
ペーストを外部接続導体8が形成された絶縁板7の上面
にスクリーン印刷法を採用して塗布するとともに従来公
知のフォトリソグラフィ−により所定のパターンにエッ
チングした後、熱硬化させることにより形成することが
できる。 【0034】なお、本発明は上述の実施の形態例に限定
されるものではなく、本発明の要旨を逸脱しない範囲で
あれば種々の変更は可能である。例えば、上述の実施の
形態例では、2枚の絶縁板5・7を接着した配線基板1
を例に示したが、1枚の絶縁板の上面に配線導体層と外
部接続導体とを一体的に形成するとともに、下面に接地
または電源導体層を形成して成る配線基板や、3枚以上
の絶縁板を積層して成る配線基板を用いたものであって
もよい。 【0035】 【発明の効果】本発明の放熱板付き配線基板によれば、
接地または電源導体層の下面に熱硬化性樹脂から成る絶
縁層を部分的に被着させたことから、その絶縁層と接合
層とが強固に接合して、接地または電源導体層が被着さ
れた絶縁基板の下面に放熱板が強固に接合される。ま
た、放熱板の上面に接地または電源導体層の露出部に対
応して突出する突起部を設けたことから、接合層の厚み
が接地または電源導体層と接合する部位で厚くなること
がなく、したがって、接地または電源導体層と放熱板と
を接合層を介して低い電気抵抗で接続することができ
る。また、配線基板と放熱板とを接合層を介して接合す
る際に、接地または電源導体層と接合層とが突起部によ
り十分に圧接されるので、両者の間にボイドや密着不良
が発生することがなく、両者を電気的に良好かつ安定に
接続することができる。
Description: BACKGROUND OF THE INVENTION [0001] 1. Field of the Invention [0002] The present invention relates to a wiring board with a radiator plate used for a package for housing a semiconductor element such as a semiconductor integrated circuit element. is there. 2. Description of the Related Art Conventionally, a wiring board with a heat radiating plate used for a semiconductor element housing package for housing a semiconductor element such as an MPU has a central portion as shown in FIG. Stepped through hole 21a for accommodating semiconductor element 20
And a through hole in the lower surface of the wiring board 21.
A heat radiation plate 22 made of a metal material such as copper and having flat upper and lower surfaces having a mounting portion 22a on which a semiconductor element 20 is mounted at the center of the upper surface is bonded mainly through a bonding layer 23 so as to close the upper surface 21a. Is configured. In this conventional wiring board with a heat sink, the wiring board 21 is made of two insulating plates 24 and 25 made of glass cloth impregnated with a thermosetting resin such as an epoxy resin.
Are laminated via an adhesive layer 26 made of a glass cloth impregnated with a thermosetting resin such as an epoxy resin. In the insulating plate 24, a through hole 24a slightly larger than the semiconductor element 20 is formed at the center thereof, and the wiring conductor layer 27 and the substantially entire lower surface thereof extend from the periphery of the through hole 24a on the upper surface to the outer peripheral portion. A ground or power supply conductor layer 28 is attached, and a through hole 25a larger than the through hole 24a is formed in the center of the insulating plate 25, and an external connection conductor 29 is attached on the upper surface. . A plurality of through holes 30 are formed in the outer peripheral portions of the insulating plates 24 and 25 and the adhesive layer 26.
A through conductor 31 that electrically connects the wiring conductor layer 27 and the ground or power supply conductor layer 28 to the external connection conductor 29 is attached to the inner wall of the through hole 30. Further, a part of the grounding or power supply conductor layer 28 and the heatsink 22 are firmly bonded to a part of the grounding or power supply conductor layer 28 and a part where the through conductor 31 is exposed on the lower surface of the wiring board 21. In addition, an insulating layer 32 made of epoxy resin is applied to prevent unnecessary electrical short circuit between the heat sink 22 and the wiring conductor layer 27. Then, the ground or power supply conductor layer 28 and the insulating layer 32
On the lower surface of the heat sink 22 is a bonding layer 23 made of a conductive adhesive resin such as an epoxy resin containing a conductive filler such as a metal powder.
And the ground or power supply conductor layer 28 and the heat sink 22
Are electrically conducted by the bonding layer 23. According to the conventional wiring board with a heat sink, the semiconductor element 20 is mounted on the mounting portion 22a of the heat sink 22 and each electrode of the semiconductor element 20 is connected to the wiring conductor layer 27.
Are electrically connected to each other through an electrical connection means such as a bonding wire 33. Thereafter, an external connection member 34 made of a solder ball or the like is joined to the external connection conductor 29 and the through hole 21 is formed.
A semiconductor device as a product is obtained by potting a sealing resin (not shown) into a and hermetically sealing the semiconductor element 20. In order to join the heat radiating plate 22 to the lower surface of the wiring board 21 via the bonding layer 23, the uncured surface is attached to the lower surface of the wiring board 21 on which the grounding or power supply conductor layer 28 and the insulating layer 32 are applied. A conductive adhesive paste composed of a mixture of a thermosetting resin and a conductive filler is applied by printing, and the heat-radiating plate 22 is brought into contact with the conductive adhesive paste and the conductive adhesive paste is pressed from above and below. Has been adopted. However, according to this conventional wiring board with a heat sink, the insulating layer 32 is partially applied to the ground of the wiring board 21 or the lower surface of the power supply conductor layer 28. Therefore, although the wiring board 21 and the heat sink 22 are firmly joined by the insulating layer 32 via the joining layer 23, the insulating layer is located between the lower surface of the ground or power supply conductor layer 28 and the lower surface of the insulating layer 32. Since a step having a height corresponding to the thickness of 32 is formed, and the upper surface of the heat sink 22 is flat, the thickness of the bonding layer 23 made of a conductive resin is reduced to the ground or power supply conductor layer.
It becomes thick at a portion where it is joined to the heat sink 28, and the electrical resistance between the ground or power supply conductor layer 28 and the heat sink 22 is increased by such a thick joint layer 23. Further, when the wiring board 21 and the heat sink 22 are joined, the joining layer 23 and the ground or the power supply conductor layer 28 are not satisfactorily pressed against each other, and a void or poor adhesion is likely to occur between them. Therefore, there is a problem that it is difficult to electrically and satisfactorily connect the heat sink 22 to the ground or the power supply conductor layer 28. The present invention has been devised in view of such a conventional problem, and an object of the present invention is to enable a wiring board and a heat sink to be firmly joined via a joining layer made of a conductive resin. Another object of the present invention is to provide a wiring board with a heat sink that can electrically and stably connect the ground or power supply conductor layer of the wiring board to the heat sink. A wiring board with a heat sink according to the present invention has an insulating substrate having a through hole for accommodating a semiconductor element in a central portion, and an outer peripheral surface from an upper surface around the through hole of the insulating substrate. A wiring conductor layer applied over the portion, a ground or power supply conductor layer attached to the lower surface of the insulating substrate, and a portion of the ground or power supply conductor layer exposed on the lower surface of the ground or power supply conductor layer. An insulating layer made of a thermosetting resin partially adhered to the conductive filler and the thermosetting resin so as to cover the through hole in the exposed portion of the grounding or power supply conductor layer and the insulating layer. And a metal heat radiating plate joined via a bonding layer made of a heat radiating plate, wherein the heat radiating plate has a projection projecting on an upper surface thereof corresponding to the exposed portion. Characterized by Things. According to the semiconductor device housing package of the present invention, since the insulating layer made of a thermosetting resin is partially applied to the lower surface of the ground or power supply conductor layer, the insulating layer and the bonding layer are formed. The heat sink is firmly joined to the lower surface of the insulating substrate on which the ground or power supply conductor layer is adhered. In addition, since the projecting portion is provided on the upper surface of the heat sink corresponding to the exposed portion of the grounding or power supply conductor layer, the thickness of the bonding layer does not increase at the portion where the grounding or power supply conductor layer is joined, Therefore, the ground or power supply conductor layer and the heat sink can be connected with a low electric resistance via the bonding layer. Further, when the wiring board and the heat sink are joined via the joining layer, the grounding or the power supply conductor layer and the joining layer are sufficiently pressed against each other by the projection, so that a void or poor adhesion occurs between the two. Therefore, both can be connected electrically and satisfactorily and stably. Next, a wiring board with a heat sink of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a sectional view showing an example of an embodiment of a wiring board with a heat sink of the present invention. In the drawing, reference numeral 1 denotes a wiring board, and 2 denotes a heat radiating plate. These mainly constitute a wiring board with a heat radiating plate for mounting the semiconductor element 3. In this example, a through hole 4a for forming a space for accommodating the semiconductor element 3 in the center is provided.
An insulating plate 4 having a wiring conductor layer 5 on the upper surface and a grounding or power supply conductor layer 6 on the lower surface, a through hole 7a larger than the through hole 4a in the center, and an external connection conductor 8 on the upper surface. This shows an example in which the wiring board 1 is formed by bonding the attached insulating plate 7 through an adhesive layer 9.
A plurality of through holes 10 are formed in the outer peripheral portion of the wiring board 1, and a through conductor 11 is attached to an inner wall of the through hole 10. Note that the ground or power supply conductor layer 6 is electrically connected to either the ground electrode or the power supply electrode of the semiconductor element 3 and thereby functions as a ground conductor layer or as a power supply conductor layer. The insulating plates 4 and 7 constituting the wiring board 1 are in a substantially rectangular frame shape formed by impregnating a thermosetting resin such as an epoxy resin or a bismaleimide triazine resin into a cloth of glass fiber or aramid fiber, for example. In addition to functioning as a support for the wiring conductor layer 5, the ground or power supply conductor layer 6, and the external connection conductor 8, a space for accommodating the semiconductor element 3 is formed in the through holes 4a, 7a. The insulating plates 4 and 7 are formed by, for example, obtaining a sheet in which a glass cloth is impregnated with a thermosetting resin such as an uncured epoxy resin, and thermosetting the sheet to form a through hole. 4a and 7a are formed by cutting the cured insulating plates 4 and 7. The bonding layer 9 for bonding the insulating plates 4 and 7 is formed by impregnating a cloth made of glass fiber or aramid fiber with a thermosetting resin such as epoxy resin or bismaleimide triazine resin. It functions as a bonding member for bonding the insulating plates 4 and 7 together. The insulating plates 4 and 7
Means that a sheet for the adhesive layer 9 formed by impregnating a cloth made of glass fiber or the like with a thermosetting resin such as an uncured epoxy resin is sandwiched between the insulating plates 4 and 7 and is thermally cured. Thus, the bonding is performed via the bonding layer 9. Wiring conductor layer 5 adhered to upper surface of insulating plate 4
Is formed of a metal such as copper foil, and is formed in a plurality of band-shaped patterns from the vicinity of the opening of the through hole 4a to the outer peripheral portion. The wiring conductor layer 5 functions as a part of a conductive path for electrically connecting each electrode of the semiconductor element 3 to an external electric circuit, and each electrode of the semiconductor element 3 is bonded to a portion near the through hole 4a. The connection is made via a wire 13, and the outer periphery thereof is connected to the through conductor 11. The ground or power supply conductor layer 6 adhered to the lower surface of the insulating plate 4 is made of metal such as copper foil.
Is formed on substantially the entire lower surface of the substrate. The ground or power supply conductor layer 6 has a function of supplying a ground or power supply potential to the semiconductor element 3 and adjusting the characteristic impedance of the wiring conductor layer 5 to a predetermined value, and is electrically connected to the through conductor 11. ing. The wiring conductor layer 5 and the grounding or power supply conductor layer 6 are formed by attaching copper foil to the upper and lower surfaces of an uncured sheet for the insulating plate 4 and curing the sheet. The copper foil adhered to the sheet is formed by etching a predetermined pattern by a photolithography technique. If the inner edge of the grounding or power supply conductor layer 6 is provided 0.1 to 5 mm on the outer peripheral side of the opening of the through hole 4a of the insulating plate 4, the through hole 4a is formed in the insulating plate 4. As a result, no burrs are formed on the ground or power supply conductor layer 6, thereby effectively preventing the ground or power supply conductor layer 6 from coming into contact with the semiconductor element 3 when the semiconductor element 3 is mounted. In addition, it is possible to prevent the semiconductor element 3 from operating unnecessarily by preventing unnecessary electrical short-circuiting between the semiconductor element 3 and the ground or the power supply conductor layer 6 or a decrease in electrical insulation. Therefore, it is preferable that the grounding or power supply conductor layer 6 be provided with its inner edge located on the outer peripheral side by about 0.1 to 5 mm from the opening of the through hole 4a. The distance between the inner edge of the ground or power supply conductor layer 6 and the opening of the through hole 4a is 0.1 m.
If it is shorter than m, the risk of burrs occurring in the ground or power supply conductor layer 6 when processing the through hole 4a tends to increase, while the inner edge of the ground or power supply conductor layer 6 and the opening of the through hole 4a If the distance to the ground is longer than 5 mm, the ground or the power supply conductor layer 6 cannot be secured with a sufficient area,
A sufficiently stable ground or power supply potential cannot be supplied to the semiconductor element 3, and it tends to be difficult to adjust the characteristic impedance of the wiring conductor layer 5 to a predetermined value. The external connection conductor 8 attached to the upper surface of the insulating plate 7 functions as a connection conductor with an external electric circuit, and is formed so as to be electrically connected to the through conductor 11. An external connection member 14 made of a solder ball or the like is attached to the external connection conductor 8. The external connection conductor 8 is made of copper foil like the wiring conductor layer 5 and the grounding or power supply conductor layer 6. The copper foil is stuck on the uncured sheet for the insulating plate 7 and After curing, the copper foil adhered to the sheet is formed into a predetermined pattern by photolithography technology. The wiring conductor layer 5 and the external connection conductor 8
Usually has a thickness of about 5 to 50 μm. The thickness is preferably 5 μm or more from the viewpoint of transmitting a high-speed signal, and is preferably 50 μm or less in order to process the wiring conductor layer 5 and the external connection conductor 8 with high dimensional accuracy. The wiring conductor layer 5 and the external connection conductor 8
In general, a nickel plating layer having a thickness of about 1 to 30 μm and a gold plating layer having a thickness of about 0.1 to 3 μm are sequentially applied to the exposed surface by electroless plating or electrolytic plating. Thereby, oxidation corrosion of the wiring conductor layer 5 and the external connection conductor 8 can be effectively prevented, and the electrical connection between the wiring conductor layer 5 and the bonding wire 13 and the connection between the external connection conductor 8 and the external connection member 14 can be prevented. Good electrical connection can be achieved. The through conductor 11 attached to the inner wall of the through hole 10 functions as a connection conductor for electrically connecting the wiring conductor layer 5 or the grounding or power supply conductor layer 6 to the external connection conductor 8. 1 is formed by applying an electroless plating method or an electrolytic plating method to a copper plating layer having a thickness of about 4 to 50 μm on the inner wall of a large number of through holes 10 formed from the upper surface to the lower surface. The thickness of the through conductor 11 is 4
If it is less than μm, the wiring conductor layer 5 or the ground or power supply conductor layer 6
And the external connection conductor 8 tend to be difficult to electrically connect well. On the other hand, if it exceeds 50 μm, it takes a long time to form the through conductor 11 having such a thickness,
The efficiency of manufacturing the wiring board 1 tends to be extremely low. Further, an insulating layer 12 made of a thermosetting resin such as an epoxy resin is provided on the lower surface of the wiring board 1 on which the ground or power supply conductor layer 6 is adhered, for example, to partly connect the ground or power supply conductor layer 6. It is partially formed so as to be exposed in a frame shape. The insulating layer 12 functions as a joining base member for firmly joining the heat radiating plate 2 to the insulating substrate 1, and the heat radiating plate 2 is formed of a conductive filler and a thermosetting resin on the grounding or power supply conductor layer 6 and the insulating layer 12. A conductive bonding layer 15 comprising
The insulating substrate 1 and the heat radiating plate 2 are joined together through the connection, and the grounding or power supply conductor layer 6 and the heat radiating plate 2 are electrically connected. The insulating layer 12 contains 5 inorganic fillers made of an inorganic insulating powder such as silica.
You may make it contain about 50 weight%. By including such an inorganic filler, the thermal expansion coefficient of the insulating layer 12 can be adjusted, and the heat resistance and the like of the insulating layer 12 can be improved. Such an insulating layer 12 is formed by applying a thermosetting resin paste such as an uncured epoxy resin to the wiring board 1.
After being partially applied to the lower surface of the substrate, it is formed by heat curing. In the wiring board with a heat sink of the present invention, the insulating layer 12 made of a thermosetting resin is provided on the lower surface of the ground or power supply conductor layer 6 such that a part of the ground or power supply conductor layer 6 is exposed. Since the insulating layer 12 is partially applied, the ground or power supply conductor layer 6 on which the insulating layer 12 is applied is formed.
And the radiator plate 2 are firmly joined via the joining layer 15. At this time, the insulating layer 12 partially applied to the ground or power supply conductor layer 6 is an anchor for firmly fixing the bonding layer 15 made of a conductive filler and a thermosetting resin to the ground or power supply conductor layer 6. , And the thermosetting resin in the insulating layer 12 and the thermosetting resin in the bonding layer 15 are firmly bonded to each other, thereby improving the adhesion between the grounding or the power supply conductor layer 6 and the bonding layer 15. it can. In this case, by setting the area ratio of the insulating layer 12 to the lower surface of the grounding or power supply conductor layer 6 to 5% to 40%, the adhesion between the grounding or power supply conductor layer 6 and the bonding layer 15 is particularly improved. I do. If the area ratio of the insulating layer 12 to the lower surface of the grounding or power supply conductor layer 6 is less than 5%, the effect of the insulation layer 12 as an anchor is small, and
It tends to be difficult to firmly adhere the bonding layer 15 and the bonding layer 15. On the other hand, if it is more than 40%, the bonding area between the grounding or the power supply conductive layer 6 and the conductive bonding layer 15 decreases, and The electric resistance between the power supply conductor layer 6 and the radiator plate 2 is slightly increased, which makes it difficult to stably connect the radiator plate 2 to the ground or the power supply potential. In this example, the insulating layer 12 is attached so as to expose a part of the lower surface of the ground or power supply conductor layer 6 in a frame shape. The lower surface may be attached so as to partially expose the lower surface in a grid or dot shape. On the other hand, the heat radiating plate 2 joined to the lower surface of the wiring board 1 via the joining layer 15 is made of a metal having excellent thermal conductivity such as copper and is joined so as to close the through hole 4a. The heat radiating plate 2 functions as a support for supporting the semiconductor element 3 and also functions as a heat radiating member for radiating heat generated during operation of the semiconductor element 3 to the outside. It has a mounting portion 2a for mounting the semiconductor element 3. And this mounting part 2a
The semiconductor element 3 is bonded and fixed via an adhesive such as a conductive epoxy resin. The heat radiating plate 2 is formed by punching a plate made of, for example, copper into a predetermined shape by a press die, or by performing an etching process. If a metal having good corrosion resistance, such as nickel or gold, is applied to the surface of the heat radiating plate 2 to a thickness of 1 to 20 μm by plating, oxidation corrosion of the heat radiating plate 2 can be effectively prevented. Further, in order to improve the bonding strength between the heat radiating plate 2 and the bonding layer 15, the surface of the heat radiating plate 2 is subjected to a blackening treatment or a blasting treatment so that the surface has a center line average roughness Ra of about 0.2 to 3 μm. Irregularities may be formed. The bonding layer 15 for bonding the insulating substrate 1 and the heat sink 2 is made of a conductive filler such as copper powder or silver powder and a thermosetting resin such as epoxy resin. With such a configuration, the ground or power supply conductor 6 and the heat sink 2 can be mechanically joined and electrically connected.
Such a bonding layer 15 is formed, for example, by screen-printing a conductive adhesive paste made of a mixture of an uncured thermosetting resin and a conductive filler on the lower surface of the wiring board 1 on which the insulating layer 12 is partially applied. The wiring board 1 and the heat radiating plate 2 are firmly joined by applying a printing method by applying the heat radiating plate 2 and thermally curing the radiating plate 2 while applying pressure from above and below. At this time, since the insulating layer 12 made of a thermosetting resin is partially applied to the lower surface of the ground or power supply conductor layer 6, the insulation layer 12 serves as an anchor and is bonded to the ground or power supply conductor layer 6. The layer 15 is firmly joined. Therefore, according to the wiring board with a heat sink of the present invention, even if heat generated when the semiconductor element 3 mounted on the mounting portion 2a of the heat sink 2 is operated is repeatedly applied, the ground or the power supply conductor layer 6 can be connected. There is no separation between the bonding layer 15 and the ground or power supply conductor layer 6 and the heat sink 2 can be firmly bonded electrically and mechanically, and the semiconductor element 3 to be mounted can be maintained for a long time. It can be operated normally. If the paste for the bonding layer 15 is printed and applied so that the inner edge of the paste is located 0.1 to 1 mm on the outer peripheral side from the opening of the through hole 4a, the wiring board 1 and the heat sink 2 are bonded to each other.
When joining via the wiring 15, it is possible to effectively prevent a part of the thermosetting resin contained in the bonding layer 15 from adhering to the wiring conductor layer 5 along the inner wall of the through hole 4 a, Both can be firmly joined without forming a large gap between the substrate 1 and the heat sink 2. Therefore,
It is preferable that the paste for the bonding layer 15 is printed and applied so that the inner edge thereof is located 0.1 to 1 mm on the outer peripheral side from the opening of the through hole 4a. Further, in the present invention, a projection 2a is formed on the upper surface of the heat radiating plate 2 so as to project corresponding to an exposed portion where the ground or power supply conductor layer 6 is exposed from the insulating layer 12. And that is important. As described above, since the projections 2a are formed on the upper surface of the heat sink 2 corresponding to the exposed portions where the ground or power supply conductor layer 6 is exposed from the insulating layer 12, the wiring board 1 and the heat sink 2 are formed. And the bonding layer 15
The thickness of the bonding layer 15 does not increase at the bonding portion between the ground or the power supply conductor layer 6 and the electric resistance between the ground or the power supply conductor layer 6 and the radiator plate 2 is low. Can be connected. Further, when the wiring board 1 and the heat sink 2 are joined via the joining layer 15, the grounding or power supply conductor layer 6 and the joining layer 15 are sufficiently pressed into contact with the projection 2a. Therefore, the two can be electrically and stably connected to each other without causing any poor adhesion. If the height of the protrusion 2 a formed on the upper surface of the heat sink 2 is smaller than the thickness of the insulating layer 12, the bonding layer 15
Is likely to be thicker between the ground or power supply conductor layer 6 and the protrusion 2a, and the wiring board 1 and the heat sink 2
When bonding is performed via the bonding layer 15, there is a risk that the bonding layer 15 and the grounding or power supply conductor layer 6 will not be sufficiently pressed into contact with each other by the projections 2a, and that a void or poor adhesion will occur between them. It will be big. Therefore, it is preferable that the height of the projection 2a is larger than the thickness of the insulating layer 12. Thus, according to the wiring board with radiator plate of the present invention, the semiconductor element 3 is mounted on the mounting portion 2a of the radiator plate 2, and each electrode of the semiconductor element 3 and the wiring conductor layer 5
Are electrically connected to each other through a bonding wire 13, and thereafter, a sealing resin is potted into the through holes 4a and 7a to perform resin sealing, thereby obtaining a semiconductor device. In such a wiring board with a heat sink, a solder resist layer 16 covering the outer peripheral portion of the external connection conductor 8 may be provided on the wiring board 1 if necessary. Such a solder resist layer 16 is made of a thermosetting resin such as an epoxy resin containing an insulating filler such as silica, and is used when attaching the external connection member 14 such as a solder ball on the external connection conductor 8. Acts as a dam for controlling unnecessary spreading of the external connection member 14. Such a solder resist layer 16 is formed by applying an uncured photosensitive thermosetting resin paste to the upper surface of the insulating plate 7 on which the external connection conductors 8 are formed by using a screen printing method, and using a conventionally known photo resist. After etching into a predetermined pattern by lithography, it can be formed by thermosetting. The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the gist of the present invention. For example, in the above-described embodiment, the wiring board 1 to which the two insulating plates 5 and 7 are bonded is described.
However, a wiring board formed by integrally forming a wiring conductor layer and an external connection conductor on the upper surface of one insulating plate and forming a ground or power supply conductor layer on the lower surface, Using a wiring board formed by laminating the above insulating plates. According to the wiring board with a heat sink of the present invention,
Since the insulating layer made of a thermosetting resin is partially adhered to the lower surface of the ground or power supply conductor layer, the insulation layer and the bonding layer are firmly joined, and the ground or power supply conductor layer is adhered. The heat sink is firmly joined to the lower surface of the insulating substrate. In addition, since the projecting portion is provided on the upper surface of the heat sink corresponding to the exposed portion of the grounding or power supply conductor layer, the thickness of the joining layer does not increase at the portion where the grounding or power supply conductor layer is joined, Therefore, the ground or power supply conductor layer and the heat sink can be connected with a low electric resistance via the bonding layer. Further, when the wiring board and the heat sink are joined via the joining layer, the grounding or the power supply conductor layer and the joining layer are sufficiently pressed against each other by the projection, so that a void or poor adhesion occurs between the two. Therefore, both can be connected electrically and satisfactorily and stably.

【図面の簡単な説明】 【図1】本発明の放熱板付き配線基板の実施の形態の一
例を示す断面図である。 【図2】従来の放熱板付き配線基板の断面図である。 【符号の説明】 1・・・・・絶縁基板 2・・・・・放熱板 2a・・・・突起部 3・・・・・半導体素子 4a・・・・半導体素子収納用の貫通穴 5・・・・・配線導体層 6・・・・・接地または電源導体層 12・・・・・絶縁層 15・・・・・接合層
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a sectional view showing an example of an embodiment of a wiring board with a heat sink according to the present invention. FIG. 2 is a cross-sectional view of a conventional wiring board with a heat sink. [Description of Signs] 1 ... Insulating substrate 2 ... Heat radiation plate 2a ... Protrusion 3 ... Semiconductor element 4a ... Through hole 5 for housing semiconductor element ... Wiring conductor layer 6... Grounding or power supply conductor layer 12... Insulating layer 15.

Claims (1)

【特許請求の範囲】 【請求項1】 中央部に半導体素子収納用の貫通穴を有
する絶縁基板と、該絶縁基板の前記貫通穴周辺の上面か
ら外周部にかけて被着された配線導体層と、前記絶縁基
板の下面に被着された接地または電源導体層と、前記接
地または電源導体層の下面に該接地または電源導体層の
一部を露出させるようにして部分的に被着された熱硬化
性樹脂から成る絶縁層と、前記接地または電源導体層の
露出部および前記絶縁層に、前記貫通穴を塞ぐようにし
て導電性フィラーおよび熱硬化性樹脂から成る接合層を
介して接合された金属製の放熱板とを具備して成る放熱
板付き配線基板において、前記放熱板は、その上面に前
記露出部に対応して突出する突起部を有していることを
特徴とする放熱板付き配線基板。
Claims: 1. An insulating substrate having a through hole for accommodating a semiconductor element in a central portion, a wiring conductor layer applied from an upper surface around the through hole to an outer peripheral portion of the insulating substrate, A ground or power supply conductor layer applied to the lower surface of the insulating substrate, and a thermoset partially applied to the lower surface of the ground or power supply layer so as to expose a part of the ground or power supply conductor layer Bonded to the insulating layer made of a conductive resin, the exposed portion of the ground or power supply conductor layer, and the insulating layer via a bonding layer made of a conductive filler and a thermosetting resin so as to cover the through hole. A wiring board with a radiating plate, comprising: a radiating plate having a projection formed on an upper surface of the radiating plate so as to correspond to the exposed portion. substrate.
JP2002019024A 2002-01-28 2002-01-28 Wiring board with heat sink Pending JP2003224235A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002019024A JP2003224235A (en) 2002-01-28 2002-01-28 Wiring board with heat sink

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002019024A JP2003224235A (en) 2002-01-28 2002-01-28 Wiring board with heat sink

Publications (1)

Publication Number Publication Date
JP2003224235A true JP2003224235A (en) 2003-08-08

Family

ID=27743098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002019024A Pending JP2003224235A (en) 2002-01-28 2002-01-28 Wiring board with heat sink

Country Status (1)

Country Link
JP (1) JP2003224235A (en)

Similar Documents

Publication Publication Date Title
JP5100081B2 (en) Electronic component-mounted multilayer wiring board and manufacturing method thereof
US7002236B2 (en) Semiconductor package and method for producing the same
JP2003101243A (en) Multilayer wiring board and semiconductor device
JPH09223820A (en) Display apparatus
CN111132476A (en) Preparation method of double-sided circuit radiating substrate
JP4266717B2 (en) Manufacturing method of semiconductor device
JP2002118204A (en) Semiconductor device, substrate for mounting semiconductor and method for manufacturing the same
JP5539453B2 (en) Electronic component-mounted multilayer wiring board and manufacturing method thereof
JP2003338579A (en) Wiring board with radiator plate
JP4510975B2 (en) Circuit board
JP3854131B2 (en) Wiring board with heat sink
JP2003224235A (en) Wiring board with heat sink
JP2003282771A (en) Wiring board with heat sink plate
JP4574035B2 (en) Manufacturing method of semiconductor element storage package
JPH1098127A (en) Semiconductor package for surface mounting
JP2009158769A (en) Semiconductor device
JP2002217328A (en) Package for containing semiconductor element
JPS62114247A (en) Manufacture of chip carrier for electronic element
JP2753767B2 (en) Substrate for mounting electronic components
JP2809316B2 (en) Substrate for mounting electronic components
JP2002217327A (en) Package for containing semiconductor element and its manufacturing method
KR101134794B1 (en) The radiant heat circuit board and the method for manufacturing the same
JP3872395B2 (en) Manufacturing method of semiconductor element storage package
JP2686156B2 (en) Heat dissipation type semiconductor package
JP2003243558A (en) Wiring board with heat spreader