JP3870884B2 - ガス分析用白熱ランプ - Google Patents

ガス分析用白熱ランプ Download PDF

Info

Publication number
JP3870884B2
JP3870884B2 JP2002274472A JP2002274472A JP3870884B2 JP 3870884 B2 JP3870884 B2 JP 3870884B2 JP 2002274472 A JP2002274472 A JP 2002274472A JP 2002274472 A JP2002274472 A JP 2002274472A JP 3870884 B2 JP3870884 B2 JP 3870884B2
Authority
JP
Japan
Prior art keywords
incandescent lamp
light
gas
thickness
gas analysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002274472A
Other languages
English (en)
Other versions
JP2004109025A (ja
Inventor
憲五 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Denki KK
Original Assignee
Ushio Denki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Denki KK filed Critical Ushio Denki KK
Priority to JP2002274472A priority Critical patent/JP3870884B2/ja
Publication of JP2004109025A publication Critical patent/JP2004109025A/ja
Application granted granted Critical
Publication of JP3870884B2 publication Critical patent/JP3870884B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、赤外線ガス分析装置の光源に利用されるガス分析用白熱ランプに関するものである。
【0002】
【従来の技術】
従来から大気や排気ガスやその他のガスに含まれた成分を検出し分析するための赤外線ガス分析装置が知られている。
【0003】
図6は、赤外線ガス分析装置の説明図であり、セル1は、比較用ガスと測定用ガスが交互に供給される試料変調方式におけるセルであり、ガスの供給口10と排出口11が設けられた筒状体であり、一端側には赤外線入射窓12を、他端側には赤外線出射窓13を設けてこれによってセル1を外気に対して気密にしている。
【0004】
赤外線入射窓12と対向する位置に光源2が配置されており、この光源2は、赤外線を放射するためのガス分析用白熱ランプ20と、この白熱ランプ20から放射される赤外線を赤外線入射窓12方向に反射させるための反射鏡21とから構成されている。
【0005】
赤外線出射窓13と対向する位置に検出器3が配置されており、この検出器3は、セル1内の比較用ガス、又は、測定用ガスを透過した赤外線を検出するためのものである。
この検出器3は、PdS、InSd等の半導体検出器であったり、或いは、赤外線をハーフミラーで2分割させる光学検出器である。
【0006】
一般に、ガスの種類によって吸収される赤外線の波長が異なり、例えば、COは4.67μm、NOは5.33μm、Coは4.26μm、CSは6.57μm、NOは4.50μm、HOは2.66μm、HSは3.73μm、SOは7.35μmの波長の吸収が最も大きく、この特性を利用してガスの濃度を分析し測定するものである。
【0007】
このようにそれぞれのガスはある特定の赤外線を吸収するものであり、赤外線ガス分析装置の光源としては、より効果的に赤外線を放射するガス分析用白熱ランプが必要である。
【0008】
図7はガス分析用白熱ランプの説明図であり、白熱電球20は、シリカ質ガラスである石英ガラスからなる封体201の内部にタングステン製のフィラメント202が配置されている一端封止型の白熱ランプである。
そして、フィラメント202から放射された光が封体201を透過し、その透過した光をガスの分析に利用するものである。
【0009】
このような白熱ランプ20では、シリカ質ガラスからなる封体を用いているために、5μm(5000nm)以上の長波長側の光は封体201で吸収され透過されないものである。
従って、このような白熱ランプ20を光源として利用した場合、吸収波長が5μm以下の特性を有するガスであるCOやCOは正確に分析できる。
【0010】
一方、封体201は、長波長側の光を吸収し封体自体の温度が上昇し、ついには封体201の表面から5μm(5000nm)以上の長波長の赤外線が放射されることになる。しかしながら、赤外線ガス分析装置では、光源からの光を平行光や集光光として利用するものであり、フィラメント202が反射鏡21の焦点に位置するように設計されているので封体202の表面から放射された5μm(5000nm)以上の光は反射鏡21の焦点からずれた位置から放射されていることになり、よって、平行光や集光光にはならず、単に散乱光になっているだけであり、この散乱光はガス分析に利用することが難しく、従来の白熱ランプ20では吸収波長が5μm以上の特性を有するガスであるCSやSOを正確に分析することができなかった。
【0011】
このような白熱ランプ20に代えて光出射部に5μm(5000nm)以上の長波長側の光を透過するサファイヤを用いたランプを光源に利用することも考えられるが、サファイヤはシリカ質ガラスに比べ非常に高価なものであり、また、封止構造が複雑になり、赤外線ガス分析装置の光源として適切なものではなかった。
【0012】
【特許文献1】
特開平09−033432号
実開平07−002962号
特開2001−076685号
【0013】
【発明が解決しようとする課題】
本発明は、以上のような事情に基づいてなされたものであって、簡単な構造で確実に長波長領域である少なくとも7500nmまでの光を放射することができ、しかも、反射鏡を用いて少なくとも7500nmまでの光を平行光や集光光にできるガス分析用白熱ランプを提供することにある。
【0014】
【課題を解決するための手段】
請求項1に記載のガス分析用白熱ランプは、シリカ質ガラスからなる封体の内部にタングステン製のフィラメントが配置されたガス分析用白熱ランプにおいて、封体の少なくとも一部は、厚みが200μm以下の薄肉部を有していることを特徴とする。
【0015】
請求項2に記載のガス分析用白熱ランプは、請求項1に記載のガス分析用白熱ランプであって、特に、前記封体は、一の素材で形成されていることを特徴とする。
【0016】
請求項3に記載のガス分析用白熱ランプは、請求項2に記載のガス分析用白熱ランプであって、特に、薄肉部は封体内表面積の10〜40%の範囲であることを特徴とする。
【0017】
【発明の実施の形態】
図1は、本発明のガス分析用白熱ランプの断面説明図である。
ガス分析用白熱ランプ4(以下、単に白熱ランプとも呼ぶ)は、シリカ質ガラスである石英ガラスからなる封体40の内部にハロゲンガス、希ガス、窒素ガス等の不活性ガスが封入され、タングステン製のフィラメント41が配置されており、封体40の一端部がピンチシールされた一端封止側の白熱ランプである。
【0018】
ここでいうシリカ質ガラスとは、SiO四面体同士がアモルファス状に結合したものであり、封体としてシリカ質ガラスを用いる理由は、通常の白熱ランプの封体として用いられている材料であり広く流通し安価であることと、および、封止構造が技術的に十分に確立されたピンチシール法を用いて確実にしかも容易に封止できることによるものである。
なお、封体40として石英ガラスを用いたが、ホウ珪酸ガラスであってもよい。
【0019】
そして、封体40は、厚みが200μm以下となっている薄肉部42を有している。図1の薄肉部42の厚みは50μmである。
この薄肉部42を作る方法は、予め所定の形状に封体40を加工しておき、薄肉部42となる部分の封体表面をバーナーで加熱し、加熱部分が軟化した状態の時に、封体40の内部にガスを噴出し、そのガスの圧力によってガラスを伸ばして薄肉部42を形成するものであり、封体40は薄肉部42を含め一の素材から形成されている。
【0020】
白熱ランプ4の具体的な仕様をまとめると、封体40は石英ガラス製であって、薄肉部42の厚みは50μmでそれ以外部分の厚みは1mm、フィラメント41のシングルコイルタングステンフィラメント、定格12V、50Wのハロゲン白熱ランプである。
【0021】
次に、封体の厚みとフィラメントから放射される光の透過率について説明する。
従来技術のところで述べたように、シリカ質ガラスは長波長側の光を吸収し、短波長側の光は透過する性質を有している。
そして、長波長側の光を封体から透過させるためには、ガラス中を進行する光の距離を短くすればよく、具体的には封体の厚みを薄くすればよい。
【0022】
図2はシリカ質ガラスである石英ガラスの厚みと光の透過率の関係を示すデータ説明図である。
グラフaは石英ガラスの厚みが1mmのものであり、グラフbは石英ガラスの厚みが200μmのものであり、グラフcは石英ガラスの厚みが100μmのものであり、グラフdは石英ガラスの厚みが50μmのものである。
【0023】
図2中、グラフaに示すように厚みが1mmの石英ガラスでは、波長5000nm以上の長波長側の光は透過できず、石英ガラス自体で吸収されていることがわかる。そして、グラフb、グラフc、グラフdの順で、ガラスの厚みが薄くなるにつれて長波長側の光の透過率が高くなっており、グラフbに示すように石英ガラスの厚みが200μmでは7500nmまでの波長の光を透過することができる。さらには、石英ガラスの厚みを200μmより薄くすることにより、さらに高い割合で、長波長側の光を透過することができる。
【0024】
次に、図1に示す封体がシリカ質ガラスである石英ガラスからなり薄肉部の厚みが200μm、100μm、50μmの本発明の白熱ランプと、封体が同じ石英ガラスからなり薄肉部がなく封体の厚みが1mmの比較用白熱ランプの相対放射強度を示すデータを図3に示す。
【0025】
グラフaは比較用白熱ランプのデータであり、グラフbは薄肉部の厚みが200μmの本発明の白熱ランプのデータであり、グラフcは薄肉部の厚みが150μmの本発明の白熱ランプのデータであり、グラフdは薄肉部の厚みが50μmの本発明の白熱ランプのデータであり、本発明の薄肉部の厚みが50μmの白熱ランプから放射される光のうち、波長2500nmの光の放射強度を1として相対表示したものである。
【0026】
図3中グラフaに示すように、比較白熱ランプでは封体の厚みが1mmあり肉厚が厚く5000nm以上の長波長側の光は放射されない。一方、本願発明の白熱ランプは、グラフb、グラフc、グラフdに示すように、長波長側の光も放射していることがわかる。そして、グラフb、グラフc、グラフdの順で、薄肉部の厚みが薄くなるにつれて長波長側の光の放射強度が高くなっており、グラフbに示すように薄肉部の厚みが200μmでは7500nmまでの波長の光を放射し、グラフdに示すように薄肉部の厚みが50μmでは8000nmまでの波長の光を放射していることがわかる。
【0027】
つまり、図2、図3から理解できるように、本発明の白熱ランプは、シリカ質ガラスからなる封体に、厚みが200μm以下の薄肉部を形成することにより、この薄肉部を介して短波長側から少なくとも7500nmに渡る波長の光を良好に放射することができる。
【0028】
本発明の白熱ランプを赤外線ガス分析装置に組み込んだ時の反射鏡と本発明の白熱ランプとの位置関係を図4に示す。
本発明の白熱ランプ4はフィラメント41が反射鏡21の焦点に位置するように配置され、しかも、薄肉部42が反射鏡20の反射面210に対向するように配置されている。
【0029】
つまり、反射鏡21の焦点にフィラメント41が配置され、薄肉部42が反射鏡21の反射面210に対向しているので、このフィラメント41から放射された短波長側から7500nm以上に渡る波長の光は、この薄肉部42を透過し反射鏡21の反射面210に照射される。そして、この反射面210によって、短波長側から7500nm以上に渡る波長の光は平行光或いは集光光となり光の進行方向が制御され、赤外線ガス分析装置では、平行光或いは集光光のみ確実に利用できる構造となっているので、本発明の白熱ランプは、赤外線ガス分析装置に最適な光源となる。
【0030】
図5は、本発明の白熱ランプの他の例を示すものであり、図1に示す本発明の白熱ランプと同様に、シリカ質ガラスである石英ガラスからなる封体40の内部にハロゲンガス、希ガス、窒素ガス等の不活性ガスが封入され、タングステン製のフィラメント41が配置されており、封体40の一端部がピンチシールされた一端封止側の白熱ランプである。
そして、薄肉部42が封体40の頂部ではなく、側面部に形成されている。図示していないが、薄肉部42は反射鏡の反射面に対向するように反射鏡と組み合わされるものである。
【0031】
さらに、図1を用いて説明すると、図中点線Gで示す薄肉部42の内表面積は、薄肉部42の内表面積を含む封体40全体の内表面積の10〜40%の範囲である。
この値が10%以下の場合、封体40全体における薄肉部の割合が小さくなり、封体40を透過する長波長側の光が減少し、ガス分析用白熱ランプとして十分な赤外線放射強度が得られず、一方、40%以上となると封体40の強度が著しく低下しランプの破損につながる可能性が高くなる。
【0032】
【発明の効果】
以上説明したように、本発明のガス分析用白熱ランプは、シリカ質ガラスからなる封体に、厚みが200μm以下の薄肉部を形成することにより、この薄肉部を介して少なくとも7500nmまでの波長の光を良好に放射することができ、しかも、反射鏡と組み合わせて少なくとも7500nmまでの光を平行光や集光光にでき、赤外線ガス分析装置の光源として最適なものとなる。
【0033】
また、薄肉部を有する封体は一の素材で形成されているので、薄肉部を含め封体の製造が容易になる。
【0034】
さらには、薄肉部は封体内表面積の10〜40%の範囲であるので、長波長側の光である赤外線を十分に放射することでき、しかも、封体の機械的強度を十分に高い状態に保つことができる。
【図面の簡単な説明】
【図1】本発明のガス分析用白熱ランプの説明図である。
【図2】シリカ質ガラスである石英ガラスの厚みと光の透過率の関係を示すデータ説明図である。
【図3】本発明のガス分析用白熱ランプと比較用白熱ランプの相対放射強度を示すデータ説明図である。
【図4】本発明の白熱ランプを赤外線ガス分析装置に組み込んだ時の反射鏡と本発明の白熱ランプとの位置関係を示す説明図である。
【図5】本発明の他のガス分析用白熱ランプの説明図である。
【図6】赤外線ガス分析装置の説明図である。
【図7】従来のガス分析用白熱ランプの説明図である。
【符号の説明】
4 ガス分析用白熱ランプ
40 封体
41 フィラメント
42 薄肉部
G 薄肉部の内表面

Claims (3)

  1. シリカ質ガラスからなる封体の内部にフィラメントが配置されたガス分析用白熱ランプにおいて、
    封体の少なくとも一部は、厚みが200μm以下の薄肉部を有していることを特徴とするガス分析用白熱ランプ。
  2. 前記封体は、一の素材で形成されていることを特徴とする請求項1に記載のガス分析用白熱ランプ。
  3. 前記薄肉部は封体内表面積の10〜40%の範囲であることを特徴とする請求項2に記載のガス分析用白熱ランプ。
JP2002274472A 2002-09-20 2002-09-20 ガス分析用白熱ランプ Expired - Fee Related JP3870884B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002274472A JP3870884B2 (ja) 2002-09-20 2002-09-20 ガス分析用白熱ランプ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002274472A JP3870884B2 (ja) 2002-09-20 2002-09-20 ガス分析用白熱ランプ

Publications (2)

Publication Number Publication Date
JP2004109025A JP2004109025A (ja) 2004-04-08
JP3870884B2 true JP3870884B2 (ja) 2007-01-24

Family

ID=32270935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002274472A Expired - Fee Related JP3870884B2 (ja) 2002-09-20 2002-09-20 ガス分析用白熱ランプ

Country Status (1)

Country Link
JP (1) JP3870884B2 (ja)

Also Published As

Publication number Publication date
JP2004109025A (ja) 2004-04-08

Similar Documents

Publication Publication Date Title
US5170064A (en) Infrared-based gas detector using a cavity having elliptical reflecting surface
JP2002203804A (ja) 加熱装置、当該加熱装置を有する熱処理装置、及び、熱処理制御方法
JP2007524828A (ja) 熱光学フィルタ及びそれを用いた赤外線センサ
US20190360975A1 (en) Photoacoustic gas sensor and method for operating a photoacoustic gas sensor
US4049987A (en) Ozone absorbance controller
US5093601A (en) Double bulb type halogen lamp in which a space between inner and outer bulbs is filled with a weak oxidation gas
JP3870884B2 (ja) ガス分析用白熱ランプ
US7122815B2 (en) Infrared radiation emitter
JPH061688B2 (ja) 白色パルス光発生装置
JP2003157807A (ja) ガスのセンサー・濃度検知器などに用いる赤外線放射ランプ
JP2006242733A (ja) 蛍光体の発光特性評価法
WO2020230757A1 (ja) 光源装置、光学装置
JP2001307507A (ja) 無電極の低圧放電ランプ
JP2015041545A (ja) 赤外光源、および、それを用いたガス検出装置
JP2001221689A (ja) 赤外線光源及び赤外線ガス分析計
JPS63182530A (ja) 分光光度計用光源
JPS6049857B2 (ja) 視界測定装置
JPH0442025A (ja) ウェハー温度測定方法とその装置
JP2002142083A (ja) 原稿読取装置
CN219512097U (zh) 一种气体检测装置
US6878938B2 (en) High frequency infrared radiation source
JP6750266B2 (ja) 紫外線照射装置及び紫外線検出方法
JP2001076685A (ja) 発光装置
JP2006275641A (ja) 分光式ガスセンサ
JP2632710B2 (ja) 光源装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061009

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091027

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees