JP3868830B2 - 自動車用吸振ホイール - Google Patents
自動車用吸振ホイール Download PDFInfo
- Publication number
- JP3868830B2 JP3868830B2 JP2002061037A JP2002061037A JP3868830B2 JP 3868830 B2 JP3868830 B2 JP 3868830B2 JP 2002061037 A JP2002061037 A JP 2002061037A JP 2002061037 A JP2002061037 A JP 2002061037A JP 3868830 B2 JP3868830 B2 JP 3868830B2
- Authority
- JP
- Japan
- Prior art keywords
- disk
- hollow
- shaped plate
- wheel
- vibration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/80—Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
- Y02T10/86—Optimisation of rolling resistance, e.g. weight reduction
Landscapes
- Tires In General (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、タイヤを装着するリムを備えた自動車用ホイールに関するもので、特に、走行時のタイヤの歪を低減するための自動車用ホイールに関する。
【0002】
【従来の技術】
近年、自動車の燃費低減のため、タイヤの転がり抵抗削減が求められている。タイヤの転がり抵抗の主な要因としては、▲1▼.タイヤが転動する際の変形(歪)により発生するヒステリシスロスによる損失、▲2▼.タイヤと路面との摩擦、▲3▼.タイヤの空気抵抗、等が挙げられるが、▲1▼.の変形によるロスが最も大きいといわれている。上記ロスの大きさはトレッドコンパウンドの特性にもよるが、タイヤ内圧が下がったときや、荷重が重くなったときにタイヤの歪が大きくなり、ヒステリシスロスが増大する。また、タイヤの種類でも異なり、偏平なタイヤの方がトレッド部の変形が小さいためタイヤの転がり抵抗は小さい。
そこで、現在では、例えば、高空気圧化したタイヤや、タイヤのサイドウォール部の高さが低いロープロファイルタイヤ等の採用が増加しつつある。
【0003】
【発明が解決しようとする課題】
しかしながら、上記のようなタイヤはタイヤ上下方向のバネ定数が極めて高く、また、上記タイヤを装着するホイールの径も大きくなるため、バネ下質量が増大する。バネ下質量が大きいと、路面から車体への振動伝達緩和が低減するので、乗り心地が悪化するだけでなく、凹凸路を走行したときにはタイヤ接地力の変動が増大して、路面追従性が悪化するといった問題点があった。
【0004】
本発明は、従来の問題点に鑑みてなされたもので、走行時のタイヤの歪を低減してタイヤの転がり抵抗を削減するとともに、タイヤ接地力の変動を抑制して、車両の乗り心地と路面追従性とを向上させることのできる自動車用吸振ホイールを提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明の請求項1に記載の自動車用吸振ホイールは、リムを備えた第1のディスクと、この第1のディスクとホイール軸方向に隔てて配置された、車両へのホイール取り付け部を備えた第2のディスクと、上記第1のディスクと第2のディスクとを結合する弾性部材とを備えるとともに、上記第1のディスクと第2のディスクとを、その表面側と裏面側とに、表面側と裏面側とで互いに作動方向が直交するように配置された複数の直動ガイドを備えた中空円盤状プレートにより結合したことを特徴とするものである。
【0006】
請求項2に記載の自動車用吸振ホイールは、上記直動ガイドを、中空円盤状プレートの周上に、90°または180°間隔で、かつ、上記プレートの表,裏の同位置にそれぞれ配置したものである。
請求項3に記載の自動車用吸振ホイールは、上記第1のディスク側の全ての直動ガイドの稼動方向を、中空円盤状プレートの径方向に対して45°方向とし、上記第2のディスク側の全ての直動ガイドの稼動方向を、上記第1のディスク側の直動ガイドの稼動方向に対して直交する方向としたものである。
【0007】
また、請求項4に記載の自動車用吸振ホイールは、上記中空円盤状プレート(第1の中空円盤状プレート)の径方向内周側に、上記第1の中空円盤状プレートとは表,裏逆に直行ガイドが配置された第2の中空円盤状プレートを配置し、上記第1のディスクと第2のディスクとを、上記第1の中空円盤状プレートと上記第2の中空円盤状プレートとにより結合したものである。
請求項5に記載の自動車用吸振ホイールは、上記第1の中空円盤状プレートの質量と第2の中空円盤状プレートの質量とを等しくしたものである。
【0008】
請求項6に記載の自動車用吸振ホイールは、請求項1〜請求項5のいずれかに記載の自動車用吸振ホイールにおいて、上記ゴム部材を中空円筒形状とするとともに、その軸方向端面をそれぞれ上記第1及び第2のディスクに接合したものである。
【0009】
【発明の実施の形態】
以下、本発明の実施の形態について、図面に基づき説明する。
実施の形態1.
図1は、本発明の実施の形態1に係る自動車用吸振ホイール(以下、吸振ホイールという)10を示す断面図で、同図において、11はリム11Rを備えた第1のディスク、12は上記第1のディスク11とホイール軸方向に隔てて配置された、車両へのホイール取り付け部12Hを備えた第2のディスク、13は上記第1のディスク11と第2のディスク12とを連結する弾性部材であるゴム部材、14はこのゴム部材13のホイール径方向内側に配置された中空円盤状プレートである。この中空円盤状プレート14の表面14F側(第1のディスク11側)と裏面14R側(第2のディスク12側)には、上記表面14F側と裏面14R側の同位置に、表面14F側と裏面14R側とで互いに作動方向が直交する直動ガイド15及び直動ガイド16が配置されており、上記中空円盤状プレート14は、上記直動ガイド15,16を介して、上記第1のディスク11と第2のディスク12とを結合する。
【0010】
本例においては、上記ゴム部材13を中空円筒形状とするとともに、その軸方向端面を、第1及び第2のディスク11,12の互いに対向する面の、上記中空円盤状プレート14の径方向外側の周縁部にそれぞれ接合することにより、上記第1のディスク11と第2のディスク12とを結合するようにしている。これにより、本例の吸振ホイール10は、上記ゴム部材13の半径方向の剪断応力により、ディスク径方向に対して弾性支持される。
【0011】
また、本例の直動ガイド15は、図2(a),(b)に示すように、第1のディスク11側の周上に180°間隔で設けられた、上記第1のディスク11のラジアル方向に延長する凹部を有する2個のガイド15a,15aと、中空円盤状プレート14の表面14F側である第1のディスク11側の周上の、上記ガイド15a,15aに対応する位置に設けられ、上記ガイド15a,15aに係合する凸部を有する2個のガイドレール15b,15bとにより構成され、上記ガイド15a,15aと上記ガイドレール15b,15bとが相対的にスライドすることにより、第1のディスク11と中空円盤状プレート14とを互いにディスク径方向に案内する。なお、ガイド15aの凹部とガイドレール15bの凸部との間に複数の鋼球を配設することにより、上記ガイド15aとガイドレール15bとをより円滑にスライドさせることができる。
また、直動ガイド16は、図2(a),(c)に示すように、中空円盤状プレート14の裏面14R側である第2のディスク12側の周上に、上記ガイドレール15b,15bと直交するように、180°間隔で設けられた2本ガイドレール16b,16bと、第2のディスク12の周上の、上記ガイドレール16b,16bに対応する位置に設けられた2つのガイド16a,16aとにより構成され、上記ガイド16a,16aと上記ガイドレール16b,16bとが相対的にスライドすることにより、第2のディスク12と中空円盤状プレート14とを互いにディスク径方向に案内する。
このように、第1のディスク11と中空円盤状プレート14とは作動方向を揃えた直動ガイド15により連結され、第2のディスク12と上記中空円盤状プレート14とは稼動方向が上記直動ガイド15に直交する直動ガイド16により連結されているので、第1のディスク11と第2のディスク12とは回転方向に位相差を生じずに互いにどの方向にも偏心することが可能となる。
【0012】
図3は上記吸振ホイール10を回転させたときの第1のディスク11、中空円盤状プレート14、及び、第2のディスク12の動きを示した模式図で、中心近傍の小丸(○)は中空円盤状プレート14の中心位置を示している。第1及び第2のディスク11,12と、互いに作動方向が直交する直動ガイド15,16により連結された中空円盤状プレート14は、図3に示すように、上記第1及び第2のディスク11,12間で偏心しながら回転する。これに対して、上記第1のディスク11と第2のディスク12とは、それぞれ、上記中空円盤状プレート14と直動ガイド15,16を介して結合されているので、第2のディスク12が第1のディスク11に対して下方向(あるいは、上方向)には偏心して回転するが前後方向には偏心しない。したがって、図示しない車軸からの回転力を第2のディスク12から第1のディスク11に効率的に伝達することが可能となる。
【0013】
このように、本実施の形態1の吸振ホイール10は、リム11Rを備えた第1のディスク11と、車両へのホイール取り付け部12Hを備えた第2のディスク12とを中空円筒状のゴム部材13により結合するとともに、上記第1のディスク11と第2のディスク12とを、表面14Fと裏面14Rに、それぞれ、互いに作動方向が直交する直動ガイド15,16を配置した中空円盤状プレート14により結合して、吸振ホイール10の半径方向の弾性支持を上記ゴム部材13で負担し、回転方向の支持を上記中空円盤状プレート14によって負担するようにしたので、弾性部材であるゴム部材13により、上,下方向にのみ偏心する吸振ホイール10の振動を低減することができる。したがって、タイヤ転動時の変形を低減して、タイヤ接地力の変動を抑制することができるとともに、車軸からの回転力を効率的に伝達できるので、車両の乗り心地と路面追従性とを向上させることができる。
また、弾性部材である上記ゴム部材13には加減速時のトルクは付加されず、車両重量を支えるためには径方向の弾性支持だけを負担すればよいので、ゴム部材13は径方向の弾性支持分のバネ定数だけを狙って低めに設定することができ、路面追従性を大幅に改良することができる。
【0014】
実施の形態2.
上記実施の形態1では、第1のディスク11と第2のディスク12とをディスク径方向に案内する直動ガイド15,16を備えた中空円盤状プレート14を用いて第1のディスク11と第2のディスク12とを結合した吸振ホイール10について説明したが、図4,図5に示すように、それぞれの稼動方向が第1及び第2のディスク11,12、及び、中空円盤状プレート14の径方向に対して45°方向となるように直動ガイド21,22を取り付けた吸振ホーイル20を用いても同様の効果を得ることができる。なお、この場合にも、上記第2のディスク12側の直動ガイド22の稼動方向を、上記第1のディスク11側の直動ガイド21の稼動方向に対して直交するようにする。
具体的には、図5に示すように、第1のディスク11の周上に、90°間隔で、径方向に対して45°方向延長する凹部を有する4個のガイド21aを配置するとともに、中空円盤状プレート14の上記各ガイド21aに対応する位置に、上記各ガイド21aに係合する凸部を有する4個のガイドレール21bを配置する。
また、中空円盤状プレート14の第2のディスク12側の周上に、上記ガイドレール21bと直交するように、90°間隔で4個のガイドレール22bを配置し、第2のディスク12の周上の、上記各ガイドレール22bに対応する位置に4個のガイド22aを配置する。
【0015】
上記構成において、図示しない車軸から第2のディスク12を介して第1のディスク11に回転力が伝達される場合には、各直動ガイド22は中空円盤状プレート14の軸方向に対して45°方向に配向されているため、図6に示すように、上記中空円盤状プレート14には周方向に回転する力と径方向に押し広げる力が作用する。しかしながら、上記中空円盤状プレート14の上記各直動ガイド22の裏側(第1のディスク11側)、すなわち、上記各直動ガイド22と同位置には、上記各直動ガイド22のそれぞれの稼動方向に対して直交する直動ガイド21が配置されているので、上記中空円盤状プレート14を径方向に押し広げる力は、上記各直動ガイド21による径方向に押し広げる力と釣り合って、結果的には回転力のみが第1のディスク11に伝達される。したがって、直動ガイド21に入力された回転力は上記中空円盤状プレート14を挿んで第1のディスク11に確実に伝達される。
このように、本実施の形態2においても、第1のディスク11と中空円盤状プレート14とは作動方向を揃えた直動ガイド21により連結され、第2のディスク12と上記中空円盤状プレート14とは稼動方向が上記直動ガイド21に直交する直動ガイド22により連結されているので、第1のディスク11と第2のディスク12とは回転方向に位相差を生じずに互いにどの方向にも偏心することが可能となる。
なお、上記各直動ガイド21は全ての稼動方向が同じであるので、円盤には圧縮と引張り応力が同時には発生せず、全体を径方向に拡張もしくは圧縮する力のみが作用する。各直動ガイド22も、全ての稼動方向が上記直動ガイド21の稼動方向と直交するので、円盤には圧縮と引張り応力が同時には発生しない。また、上記拡張もしくは圧縮する力は、中空円盤状プレート14を挿んだ両側のガイドレール21b,22bの両側から伝達されるので、中空円盤状プレート14の周方向においては荷重のオフセットがなく、座屈の危険が減少する。
また、上記構成では、各直動ガイド21,22は、中空円盤状プレート14を挿んで同位置にあるので、て第1のディスク11と第2のディスク12とは常に並行状態を保つことができるので、タイヤに横力が入力された場合のキャンバー・トー変化や操舵に対する応答遅れを生じることがないという利点を有する。
【0016】
実施の形態3.
図7は、本発明の実施の形態3に係る吸振ホイール30を示す断面図で、同図において、31はリム31Rを備えた第1のディスク、32は上記第1のディスク31とホイール軸方向に隔てて配置された、車両へのホイール取り付け部32Hを備えた第2のディスク、33は上記第1のディスク31と第2のディスク32とを連結する中空円筒形状のゴム部材、34はこのゴム部材33のホイール径方向内側に配置され、その表面34F側と裏面34R側とに、それぞれ互いに作動方向が直交する直動ガイド35,36を備え、上記第1のディスク31と第2のディスク32とを結合する第1の中空円盤状プレート、37は上記第1の中空円盤状プレート34のホイール径方向内側に配置され、その表面37F側と裏面37R側とに、上記第1の中空円盤状プレート34の直動ガイド35,36とは表,裏逆に配置された直動ガイド38,39を備え、上記第1のディスク31と第2のディスク32とを結合する第2の中空円盤状プレートである。
上記中空円筒形状のゴム部材33は、上記実施の形態1,2と同様に、軸方向端面において、上記第1の中空円盤状プレート34の径方向の外側である第1及び第2のディスク31,32の互いに対向する面の周縁部にそれぞれ接合されており、これにより、本例の吸振ホイール30は、上記ゴム部材33の半径方向の剪断応力により、ディスク径方向に対して弾性支持される。
【0017】
直動ガイド35は、図8に示すように、第1のディスク31の周上に180°間隔で設けられた、上記第1のディスク31のラジアル方向に延長する凹部を有する2個のガイド35a,35aと、第1の中空円盤状プレート34の表面34F側の周上の、上記ガイド35a,35aに対応する位置に設けられ、上記ガイド35a,35aに係合する凸部を有する2個のガイドレール35b,35bとにより構成され、第1のディスク31と第1の中空円盤状プレート34とを互いにディスク径方向に案内する。
また、直動ガイド36は、第1の中空円盤状プレート34の裏面34R側の周上に、上記ガイドレール35b,35bと直交するように、180°間隔で設けられた2個のガイドレール36b,36bと、第2のディスク32の周上の、上記ガイドレール36b,36bに対応する位置に設けられた2個のガイド36a,36aとにより構成され、第2のディスク32と第1の中空円盤状プレート34とを互いにディスク径方向に案内する。
【0018】
一方、直動ガイド38は、上記ガイド35a,35aのホイール径方向内側の周上に、上記ガイド35a,35aを90°回転させた方向に、180°間隔で設けられた、上記第1のディスク31のラジアル方向に延長する凹部を有する2個のガイド38a,38aと、第2の中空円盤状プレート37の表面37F側の周上の、上記ガイド38a,38aに対応する位置に設けられ、上記ガイド38a,38aに係合する凸部を有する2個のガイドレール38b,38bとにより構成され、直動ガイド39は、第2の中空円盤状プレート37の裏面37R側の周上に、上記ガイドレール38b,38bと直交するように、180°間隔で設けられた2個のガイドレール39b,39bと、第2のディスク32の周上の、上記ガイドレール39b,39bに対応する位置、すなわち、上記ガイド36a,36aのホイール径方向内側の周上に、上記ガイド36a,36aを90°回転させた方向に設けられた2個のガイド39a,39aとにより構成される。
このように、第1のディスク31と第2のディスク32とは、直動ガイド35,35とこれに直交する方向に稼動する直動ガイド36,36とを備えた第1の中空円盤状プレート34と、直動ガイド38,38とこれに直交する方向に稼動する直動ガイド39,39とを備えた第2の中空円盤状プレート37とにより連結されるので、回転方向に位相差を生じずに互いにどの方向にも偏心することが可能となる。
【0019】
図9(a)〜(c)は上記吸振ホイール30を回転させたときの第1のディスク31、中空円盤状プレート34,37、及び、第2のディスク32の動きを示した模式図で、第2のディスク32が第1のディスク31に対して下方向に偏心したまま時計周りに回転する場合、吸振ホイール30が90°ずつ回転すると、外側にある第1の中空円盤状プレート34は、第1のディスク31の軸と第2のディスク32の軸間の中点を中心にして、下→左→上と偏心したまま時計周りに回転する。一方、内側にある第2の中空円盤状プレート37は、第1のディスク31の軸と第2のディスク32の軸間の中点を中心にして、上→右→下と偏心したまま時計周りに回転する。
ここで、上記第2の中空円盤状プレート37の質量を第1の中空円盤状プレート34の質量と同じにすれば、上記第1及び第2の中空円盤状プレート34,37は、上記のように点対称の方向に偏心したまま回転するので、偏心による振動が相殺され、第1のディスク31と第2のディスク32とは、上下方向にのみ偏心し前後方向には偏心しない。したがって、図示しない車軸からの回転力を第2のディスク32から第1のディスク31に効率的に伝達することが可能となる。
【0020】
また、本例においても、吸振ホイール30の半径方向の弾性支持をリング状のゴム部材33で負担し、回転方向の支持を直動ガイド35,36を備えた第1の中空円盤状プレート34と直動ガイド38,39を備えた第2の中空円盤状プレート37とによって負担するようにしたので、タイヤ転動時の変形を低減して、タイヤ接地力の変動を抑制することができるとともに、車軸からの回転力を効率的に伝達でき、車両の乗り心地と路面追従性とを向上させることができる。
また、上記構成では、第1及び第2の中空円盤状プレート34,37の剛性により、第1のディスク31と第2のディスク32とは常に並行状態を保つことができるので、タイヤに横力が入力された場合のキャンバー・トー変化や操舵に対する応答遅れを生じることがない。
【0021】
なお、上記実施の形態3では、第1のディスク31と第2のディスク32とを、ディスク径方向に案内する直動ガイド35,36、及び、直動ガイド38,39を備えた中空円盤状プレート34,37を用いて結合した場合について説明したが、図10に示すように、それぞれの稼動方向が、第1及び第2のディスク31,32、及び、中空円盤状プレート34,37の径方向に対して45°方向となるような、直動ガイド45,46、及び、直動ガイド48,49を取り付けても同様の効果を得ることができる。
なお、上記直動ガイド45,46のガイド45a,46a及びガイドレール45b,46bの構成、及び、上記直動ガイド48,49のガイド48a,49a及びガイドレール48b,48bの配置及び構成は、上記実施の形態2,3と同様であるので、その説明を省略する。
【0022】
また、上記実施の形態1,2,3では、中空円盤状プレート14あるいは第1及び第2の中空円盤状プレート34,37を、中空円筒形状のゴム部材13,33のホイール径方向内側に配置した例を示したが、中空円盤状プレート14,34,37を上記ゴム部材13,33のホイール径方向外側に配置してもよい。
また、上記例では、中空円筒形状のゴム部材13,33を用いて第1のディスク11と第2のディスク12、あるいは、第1のディスク31と第2のディスク32とを結合したが、ディスク径方向に伸縮する複数のバネ部材により結合してもよい。
【0023】
<実施例>
本発明による吸振ホイールと従来のホイールにおける接地力の変動レベルを、図11,図12及び図13の表に示すような、凹凸路走行時の車両振動モデルにより解析した結果を図14のグラフに示す。
なお、表中のタイヤ・リム重量はホイールディスク重量を含めたもので、実施例1〜3においては、第2のディスクを除いた重量を示す。また、図14において、横軸は加振周波数(Hz)、縦軸はタイヤ接地力変動(N)を示し、このタイヤ接地力変動が小さいほど路面追従性がよく、走行性能に優れている。
比較例1は、通常のタイヤ、ホイールであり、比較例2はタイヤ内圧を高めた、縦バネ定数が増大したものである。また、比較例3はリム径が大きなホイールとロープロファイルタイヤの組み合わせである。このような従来のタイヤ、ホイールを有する車両振動モデルとしては、図11に示すような2自由度のバネ下振動モデルで表わされる。詳細には、バネ下質量m1がタイヤの接地面とタイヤ縦バネk1及びダッシュポットc1により結合され、上記バネ下質量m1とバネ上質量m2とがサスペンションk2及びダッシュポットc2により結合された振動モデルとなる。
比較例2のように、通常のタイヤ(比較例1)に対して縦バネ定数k1を増加させると、図14に示すように、バネ下共振点付近の10〜20Hzでの周波数帯域におけるタイヤ接地力変動レベルが増大し路面追従性が悪化する。
また、比較例3のように、縦バネ定数k1とタイヤ・ホイール重量(バネ下質量m1)とがともに増加した場合には、上記周波数帯域におけるタイヤ接地力変動レベルが更に増大してしまう。
【0024】
これに対して、本発明による吸振ホイールは、リムを備えた第1のディスクと、車両へのホイール取り付け部を備えた第2のディスクとを直動ガイドを備えた中空円盤状プレートを用いて結合して、タイヤに入力する振動を上下方向の振動に変換するとともに、第1のホイールと第2のホイールとをゴムバネにより連結する構成としているので、上記吸振ホイールを有する車両振動モデルとしては、図12に示すような3自由度のバネ下振動モデルで表わされる。
詳細には、タイヤ・リム質量m1がタイヤの接地面とタイヤ縦バネk1及びダッシュポットc1により結合され、上記タイヤ・リム質量m1とバネ下質量m2とがリング状ゴムバネk2及びダッシュポットc2により結合され、上記バネ下質量m2とバネ上質量m3とがサスペンションk3及びダッシュポットc3により結合された振動モデルとなる。
したがって、実施例1のように、ホイールを分割し、ゴムバネを挿入して上記分割したホイールを結合した本発明の吸振ホイールでは、図14のグラフに示すように、上記周波数帯域におけるタイヤ接地力変動レベルを通常のタイヤである比較例1とほぼ同等のレベルに抑制することができる。なお、上記実施例1では、30〜40Hz近辺でタイヤ接地力変動レベルが若干増大する。
また、実施例2のようにゴムバネのバネ定数を下げると、10〜20Hz近辺のタイヤ接地力変動レベルは更に低減されるが、30〜40Hz近辺のタイヤ接地力変動レベルが増大する。
そこで、実施例3のように、ゴムバネのバネ定数を下げた上で、上記ゴムバネの減衰を大きくとると、10〜20Hz近辺のタイヤ接地力変動レベルと30〜40Hz近辺のタイヤ接地力変動レベルとを効果的に下げることができる。
【0025】
【発明の効果】
以上説明したように、本発明によれば、ホイールをリムを備えた第1のディスクと、車両へのホイール取り付け部を備えた第2のディスクとの分割し、これを弾性部材により結合するとともに、上記第1のディスクのと第2のディスクとを、表面と裏面に互いに作動方向が直交する複数の直動ガイド配置した中空円盤状プレートにより結合し、上記弾性部材により吸振ホイールの半径方向を弾性的に支持し、直動ガイドを備えた中空円盤状プレートによって回転方向を支持するようにしたので、タイヤ転動時の変形を低減して、タイヤ接地力の変動を抑制することができるとともに、車軸からの回転力を効率的に伝達できるので、車両の乗り心地と路面追従性とを向上させることができる。
【図面の簡単な説明】
【図1】 本発明の実施の形態1に係る吸振ホイールの構成を示す断面図である。
【図2】 本実施の形態1に係るディスクの結合状態を示す図である。
【図3】 本実施の形態1に係る吸振ホイールの動作を示す図である。
【図4】 本実施の形態2に係る吸振ホイールの構成を示す断面図である。
【図5】 本実施の形態2に係るディスクの結合状態を示す図である。
【図6】 本実施の形態2に係る吸振ホイールの動作を示す図である。
【図7】 本実施の形態3に係る吸振ホイールの構成を示す断面図である。
【図8】 本実施の形態3に係るディスクの結合状態を示す図である。
【図9】 本実施の形態3に係る吸振ホイールの動作を示す図である。
【図10】 本発明による吸振ホイールの他の構成を示す断面図である。
【図11】 従来のホイールの車両振動モデルを示す図である。
【図12】 本発明の吸振ホイールの車両振動モデルを示す図である。
【図13】 本発明の吸振ホイールと従来のホイールの車両振動モデルで設定した質量、バネ定数等の諸定数を示す表である。
【図14】 タイヤ接地力変動レベルの解析結果を示す図である。
【符号の説明】
10 自動車用吸振ホイール、11 第1のディスク、11R リム、
12 第2のディスク、12H ホイール取り付け部、13 ゴム部材、
14 中空円盤状プレート、15,16 直動ガイド、15a,16a ガイド、15b,16b ガイドレール。
【発明の属する技術分野】
本発明は、タイヤを装着するリムを備えた自動車用ホイールに関するもので、特に、走行時のタイヤの歪を低減するための自動車用ホイールに関する。
【0002】
【従来の技術】
近年、自動車の燃費低減のため、タイヤの転がり抵抗削減が求められている。タイヤの転がり抵抗の主な要因としては、▲1▼.タイヤが転動する際の変形(歪)により発生するヒステリシスロスによる損失、▲2▼.タイヤと路面との摩擦、▲3▼.タイヤの空気抵抗、等が挙げられるが、▲1▼.の変形によるロスが最も大きいといわれている。上記ロスの大きさはトレッドコンパウンドの特性にもよるが、タイヤ内圧が下がったときや、荷重が重くなったときにタイヤの歪が大きくなり、ヒステリシスロスが増大する。また、タイヤの種類でも異なり、偏平なタイヤの方がトレッド部の変形が小さいためタイヤの転がり抵抗は小さい。
そこで、現在では、例えば、高空気圧化したタイヤや、タイヤのサイドウォール部の高さが低いロープロファイルタイヤ等の採用が増加しつつある。
【0003】
【発明が解決しようとする課題】
しかしながら、上記のようなタイヤはタイヤ上下方向のバネ定数が極めて高く、また、上記タイヤを装着するホイールの径も大きくなるため、バネ下質量が増大する。バネ下質量が大きいと、路面から車体への振動伝達緩和が低減するので、乗り心地が悪化するだけでなく、凹凸路を走行したときにはタイヤ接地力の変動が増大して、路面追従性が悪化するといった問題点があった。
【0004】
本発明は、従来の問題点に鑑みてなされたもので、走行時のタイヤの歪を低減してタイヤの転がり抵抗を削減するとともに、タイヤ接地力の変動を抑制して、車両の乗り心地と路面追従性とを向上させることのできる自動車用吸振ホイールを提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明の請求項1に記載の自動車用吸振ホイールは、リムを備えた第1のディスクと、この第1のディスクとホイール軸方向に隔てて配置された、車両へのホイール取り付け部を備えた第2のディスクと、上記第1のディスクと第2のディスクとを結合する弾性部材とを備えるとともに、上記第1のディスクと第2のディスクとを、その表面側と裏面側とに、表面側と裏面側とで互いに作動方向が直交するように配置された複数の直動ガイドを備えた中空円盤状プレートにより結合したことを特徴とするものである。
【0006】
請求項2に記載の自動車用吸振ホイールは、上記直動ガイドを、中空円盤状プレートの周上に、90°または180°間隔で、かつ、上記プレートの表,裏の同位置にそれぞれ配置したものである。
請求項3に記載の自動車用吸振ホイールは、上記第1のディスク側の全ての直動ガイドの稼動方向を、中空円盤状プレートの径方向に対して45°方向とし、上記第2のディスク側の全ての直動ガイドの稼動方向を、上記第1のディスク側の直動ガイドの稼動方向に対して直交する方向としたものである。
【0007】
また、請求項4に記載の自動車用吸振ホイールは、上記中空円盤状プレート(第1の中空円盤状プレート)の径方向内周側に、上記第1の中空円盤状プレートとは表,裏逆に直行ガイドが配置された第2の中空円盤状プレートを配置し、上記第1のディスクと第2のディスクとを、上記第1の中空円盤状プレートと上記第2の中空円盤状プレートとにより結合したものである。
請求項5に記載の自動車用吸振ホイールは、上記第1の中空円盤状プレートの質量と第2の中空円盤状プレートの質量とを等しくしたものである。
【0008】
請求項6に記載の自動車用吸振ホイールは、請求項1〜請求項5のいずれかに記載の自動車用吸振ホイールにおいて、上記ゴム部材を中空円筒形状とするとともに、その軸方向端面をそれぞれ上記第1及び第2のディスクに接合したものである。
【0009】
【発明の実施の形態】
以下、本発明の実施の形態について、図面に基づき説明する。
実施の形態1.
図1は、本発明の実施の形態1に係る自動車用吸振ホイール(以下、吸振ホイールという)10を示す断面図で、同図において、11はリム11Rを備えた第1のディスク、12は上記第1のディスク11とホイール軸方向に隔てて配置された、車両へのホイール取り付け部12Hを備えた第2のディスク、13は上記第1のディスク11と第2のディスク12とを連結する弾性部材であるゴム部材、14はこのゴム部材13のホイール径方向内側に配置された中空円盤状プレートである。この中空円盤状プレート14の表面14F側(第1のディスク11側)と裏面14R側(第2のディスク12側)には、上記表面14F側と裏面14R側の同位置に、表面14F側と裏面14R側とで互いに作動方向が直交する直動ガイド15及び直動ガイド16が配置されており、上記中空円盤状プレート14は、上記直動ガイド15,16を介して、上記第1のディスク11と第2のディスク12とを結合する。
【0010】
本例においては、上記ゴム部材13を中空円筒形状とするとともに、その軸方向端面を、第1及び第2のディスク11,12の互いに対向する面の、上記中空円盤状プレート14の径方向外側の周縁部にそれぞれ接合することにより、上記第1のディスク11と第2のディスク12とを結合するようにしている。これにより、本例の吸振ホイール10は、上記ゴム部材13の半径方向の剪断応力により、ディスク径方向に対して弾性支持される。
【0011】
また、本例の直動ガイド15は、図2(a),(b)に示すように、第1のディスク11側の周上に180°間隔で設けられた、上記第1のディスク11のラジアル方向に延長する凹部を有する2個のガイド15a,15aと、中空円盤状プレート14の表面14F側である第1のディスク11側の周上の、上記ガイド15a,15aに対応する位置に設けられ、上記ガイド15a,15aに係合する凸部を有する2個のガイドレール15b,15bとにより構成され、上記ガイド15a,15aと上記ガイドレール15b,15bとが相対的にスライドすることにより、第1のディスク11と中空円盤状プレート14とを互いにディスク径方向に案内する。なお、ガイド15aの凹部とガイドレール15bの凸部との間に複数の鋼球を配設することにより、上記ガイド15aとガイドレール15bとをより円滑にスライドさせることができる。
また、直動ガイド16は、図2(a),(c)に示すように、中空円盤状プレート14の裏面14R側である第2のディスク12側の周上に、上記ガイドレール15b,15bと直交するように、180°間隔で設けられた2本ガイドレール16b,16bと、第2のディスク12の周上の、上記ガイドレール16b,16bに対応する位置に設けられた2つのガイド16a,16aとにより構成され、上記ガイド16a,16aと上記ガイドレール16b,16bとが相対的にスライドすることにより、第2のディスク12と中空円盤状プレート14とを互いにディスク径方向に案内する。
このように、第1のディスク11と中空円盤状プレート14とは作動方向を揃えた直動ガイド15により連結され、第2のディスク12と上記中空円盤状プレート14とは稼動方向が上記直動ガイド15に直交する直動ガイド16により連結されているので、第1のディスク11と第2のディスク12とは回転方向に位相差を生じずに互いにどの方向にも偏心することが可能となる。
【0012】
図3は上記吸振ホイール10を回転させたときの第1のディスク11、中空円盤状プレート14、及び、第2のディスク12の動きを示した模式図で、中心近傍の小丸(○)は中空円盤状プレート14の中心位置を示している。第1及び第2のディスク11,12と、互いに作動方向が直交する直動ガイド15,16により連結された中空円盤状プレート14は、図3に示すように、上記第1及び第2のディスク11,12間で偏心しながら回転する。これに対して、上記第1のディスク11と第2のディスク12とは、それぞれ、上記中空円盤状プレート14と直動ガイド15,16を介して結合されているので、第2のディスク12が第1のディスク11に対して下方向(あるいは、上方向)には偏心して回転するが前後方向には偏心しない。したがって、図示しない車軸からの回転力を第2のディスク12から第1のディスク11に効率的に伝達することが可能となる。
【0013】
このように、本実施の形態1の吸振ホイール10は、リム11Rを備えた第1のディスク11と、車両へのホイール取り付け部12Hを備えた第2のディスク12とを中空円筒状のゴム部材13により結合するとともに、上記第1のディスク11と第2のディスク12とを、表面14Fと裏面14Rに、それぞれ、互いに作動方向が直交する直動ガイド15,16を配置した中空円盤状プレート14により結合して、吸振ホイール10の半径方向の弾性支持を上記ゴム部材13で負担し、回転方向の支持を上記中空円盤状プレート14によって負担するようにしたので、弾性部材であるゴム部材13により、上,下方向にのみ偏心する吸振ホイール10の振動を低減することができる。したがって、タイヤ転動時の変形を低減して、タイヤ接地力の変動を抑制することができるとともに、車軸からの回転力を効率的に伝達できるので、車両の乗り心地と路面追従性とを向上させることができる。
また、弾性部材である上記ゴム部材13には加減速時のトルクは付加されず、車両重量を支えるためには径方向の弾性支持だけを負担すればよいので、ゴム部材13は径方向の弾性支持分のバネ定数だけを狙って低めに設定することができ、路面追従性を大幅に改良することができる。
【0014】
実施の形態2.
上記実施の形態1では、第1のディスク11と第2のディスク12とをディスク径方向に案内する直動ガイド15,16を備えた中空円盤状プレート14を用いて第1のディスク11と第2のディスク12とを結合した吸振ホイール10について説明したが、図4,図5に示すように、それぞれの稼動方向が第1及び第2のディスク11,12、及び、中空円盤状プレート14の径方向に対して45°方向となるように直動ガイド21,22を取り付けた吸振ホーイル20を用いても同様の効果を得ることができる。なお、この場合にも、上記第2のディスク12側の直動ガイド22の稼動方向を、上記第1のディスク11側の直動ガイド21の稼動方向に対して直交するようにする。
具体的には、図5に示すように、第1のディスク11の周上に、90°間隔で、径方向に対して45°方向延長する凹部を有する4個のガイド21aを配置するとともに、中空円盤状プレート14の上記各ガイド21aに対応する位置に、上記各ガイド21aに係合する凸部を有する4個のガイドレール21bを配置する。
また、中空円盤状プレート14の第2のディスク12側の周上に、上記ガイドレール21bと直交するように、90°間隔で4個のガイドレール22bを配置し、第2のディスク12の周上の、上記各ガイドレール22bに対応する位置に4個のガイド22aを配置する。
【0015】
上記構成において、図示しない車軸から第2のディスク12を介して第1のディスク11に回転力が伝達される場合には、各直動ガイド22は中空円盤状プレート14の軸方向に対して45°方向に配向されているため、図6に示すように、上記中空円盤状プレート14には周方向に回転する力と径方向に押し広げる力が作用する。しかしながら、上記中空円盤状プレート14の上記各直動ガイド22の裏側(第1のディスク11側)、すなわち、上記各直動ガイド22と同位置には、上記各直動ガイド22のそれぞれの稼動方向に対して直交する直動ガイド21が配置されているので、上記中空円盤状プレート14を径方向に押し広げる力は、上記各直動ガイド21による径方向に押し広げる力と釣り合って、結果的には回転力のみが第1のディスク11に伝達される。したがって、直動ガイド21に入力された回転力は上記中空円盤状プレート14を挿んで第1のディスク11に確実に伝達される。
このように、本実施の形態2においても、第1のディスク11と中空円盤状プレート14とは作動方向を揃えた直動ガイド21により連結され、第2のディスク12と上記中空円盤状プレート14とは稼動方向が上記直動ガイド21に直交する直動ガイド22により連結されているので、第1のディスク11と第2のディスク12とは回転方向に位相差を生じずに互いにどの方向にも偏心することが可能となる。
なお、上記各直動ガイド21は全ての稼動方向が同じであるので、円盤には圧縮と引張り応力が同時には発生せず、全体を径方向に拡張もしくは圧縮する力のみが作用する。各直動ガイド22も、全ての稼動方向が上記直動ガイド21の稼動方向と直交するので、円盤には圧縮と引張り応力が同時には発生しない。また、上記拡張もしくは圧縮する力は、中空円盤状プレート14を挿んだ両側のガイドレール21b,22bの両側から伝達されるので、中空円盤状プレート14の周方向においては荷重のオフセットがなく、座屈の危険が減少する。
また、上記構成では、各直動ガイド21,22は、中空円盤状プレート14を挿んで同位置にあるので、て第1のディスク11と第2のディスク12とは常に並行状態を保つことができるので、タイヤに横力が入力された場合のキャンバー・トー変化や操舵に対する応答遅れを生じることがないという利点を有する。
【0016】
実施の形態3.
図7は、本発明の実施の形態3に係る吸振ホイール30を示す断面図で、同図において、31はリム31Rを備えた第1のディスク、32は上記第1のディスク31とホイール軸方向に隔てて配置された、車両へのホイール取り付け部32Hを備えた第2のディスク、33は上記第1のディスク31と第2のディスク32とを連結する中空円筒形状のゴム部材、34はこのゴム部材33のホイール径方向内側に配置され、その表面34F側と裏面34R側とに、それぞれ互いに作動方向が直交する直動ガイド35,36を備え、上記第1のディスク31と第2のディスク32とを結合する第1の中空円盤状プレート、37は上記第1の中空円盤状プレート34のホイール径方向内側に配置され、その表面37F側と裏面37R側とに、上記第1の中空円盤状プレート34の直動ガイド35,36とは表,裏逆に配置された直動ガイド38,39を備え、上記第1のディスク31と第2のディスク32とを結合する第2の中空円盤状プレートである。
上記中空円筒形状のゴム部材33は、上記実施の形態1,2と同様に、軸方向端面において、上記第1の中空円盤状プレート34の径方向の外側である第1及び第2のディスク31,32の互いに対向する面の周縁部にそれぞれ接合されており、これにより、本例の吸振ホイール30は、上記ゴム部材33の半径方向の剪断応力により、ディスク径方向に対して弾性支持される。
【0017】
直動ガイド35は、図8に示すように、第1のディスク31の周上に180°間隔で設けられた、上記第1のディスク31のラジアル方向に延長する凹部を有する2個のガイド35a,35aと、第1の中空円盤状プレート34の表面34F側の周上の、上記ガイド35a,35aに対応する位置に設けられ、上記ガイド35a,35aに係合する凸部を有する2個のガイドレール35b,35bとにより構成され、第1のディスク31と第1の中空円盤状プレート34とを互いにディスク径方向に案内する。
また、直動ガイド36は、第1の中空円盤状プレート34の裏面34R側の周上に、上記ガイドレール35b,35bと直交するように、180°間隔で設けられた2個のガイドレール36b,36bと、第2のディスク32の周上の、上記ガイドレール36b,36bに対応する位置に設けられた2個のガイド36a,36aとにより構成され、第2のディスク32と第1の中空円盤状プレート34とを互いにディスク径方向に案内する。
【0018】
一方、直動ガイド38は、上記ガイド35a,35aのホイール径方向内側の周上に、上記ガイド35a,35aを90°回転させた方向に、180°間隔で設けられた、上記第1のディスク31のラジアル方向に延長する凹部を有する2個のガイド38a,38aと、第2の中空円盤状プレート37の表面37F側の周上の、上記ガイド38a,38aに対応する位置に設けられ、上記ガイド38a,38aに係合する凸部を有する2個のガイドレール38b,38bとにより構成され、直動ガイド39は、第2の中空円盤状プレート37の裏面37R側の周上に、上記ガイドレール38b,38bと直交するように、180°間隔で設けられた2個のガイドレール39b,39bと、第2のディスク32の周上の、上記ガイドレール39b,39bに対応する位置、すなわち、上記ガイド36a,36aのホイール径方向内側の周上に、上記ガイド36a,36aを90°回転させた方向に設けられた2個のガイド39a,39aとにより構成される。
このように、第1のディスク31と第2のディスク32とは、直動ガイド35,35とこれに直交する方向に稼動する直動ガイド36,36とを備えた第1の中空円盤状プレート34と、直動ガイド38,38とこれに直交する方向に稼動する直動ガイド39,39とを備えた第2の中空円盤状プレート37とにより連結されるので、回転方向に位相差を生じずに互いにどの方向にも偏心することが可能となる。
【0019】
図9(a)〜(c)は上記吸振ホイール30を回転させたときの第1のディスク31、中空円盤状プレート34,37、及び、第2のディスク32の動きを示した模式図で、第2のディスク32が第1のディスク31に対して下方向に偏心したまま時計周りに回転する場合、吸振ホイール30が90°ずつ回転すると、外側にある第1の中空円盤状プレート34は、第1のディスク31の軸と第2のディスク32の軸間の中点を中心にして、下→左→上と偏心したまま時計周りに回転する。一方、内側にある第2の中空円盤状プレート37は、第1のディスク31の軸と第2のディスク32の軸間の中点を中心にして、上→右→下と偏心したまま時計周りに回転する。
ここで、上記第2の中空円盤状プレート37の質量を第1の中空円盤状プレート34の質量と同じにすれば、上記第1及び第2の中空円盤状プレート34,37は、上記のように点対称の方向に偏心したまま回転するので、偏心による振動が相殺され、第1のディスク31と第2のディスク32とは、上下方向にのみ偏心し前後方向には偏心しない。したがって、図示しない車軸からの回転力を第2のディスク32から第1のディスク31に効率的に伝達することが可能となる。
【0020】
また、本例においても、吸振ホイール30の半径方向の弾性支持をリング状のゴム部材33で負担し、回転方向の支持を直動ガイド35,36を備えた第1の中空円盤状プレート34と直動ガイド38,39を備えた第2の中空円盤状プレート37とによって負担するようにしたので、タイヤ転動時の変形を低減して、タイヤ接地力の変動を抑制することができるとともに、車軸からの回転力を効率的に伝達でき、車両の乗り心地と路面追従性とを向上させることができる。
また、上記構成では、第1及び第2の中空円盤状プレート34,37の剛性により、第1のディスク31と第2のディスク32とは常に並行状態を保つことができるので、タイヤに横力が入力された場合のキャンバー・トー変化や操舵に対する応答遅れを生じることがない。
【0021】
なお、上記実施の形態3では、第1のディスク31と第2のディスク32とを、ディスク径方向に案内する直動ガイド35,36、及び、直動ガイド38,39を備えた中空円盤状プレート34,37を用いて結合した場合について説明したが、図10に示すように、それぞれの稼動方向が、第1及び第2のディスク31,32、及び、中空円盤状プレート34,37の径方向に対して45°方向となるような、直動ガイド45,46、及び、直動ガイド48,49を取り付けても同様の効果を得ることができる。
なお、上記直動ガイド45,46のガイド45a,46a及びガイドレール45b,46bの構成、及び、上記直動ガイド48,49のガイド48a,49a及びガイドレール48b,48bの配置及び構成は、上記実施の形態2,3と同様であるので、その説明を省略する。
【0022】
また、上記実施の形態1,2,3では、中空円盤状プレート14あるいは第1及び第2の中空円盤状プレート34,37を、中空円筒形状のゴム部材13,33のホイール径方向内側に配置した例を示したが、中空円盤状プレート14,34,37を上記ゴム部材13,33のホイール径方向外側に配置してもよい。
また、上記例では、中空円筒形状のゴム部材13,33を用いて第1のディスク11と第2のディスク12、あるいは、第1のディスク31と第2のディスク32とを結合したが、ディスク径方向に伸縮する複数のバネ部材により結合してもよい。
【0023】
<実施例>
本発明による吸振ホイールと従来のホイールにおける接地力の変動レベルを、図11,図12及び図13の表に示すような、凹凸路走行時の車両振動モデルにより解析した結果を図14のグラフに示す。
なお、表中のタイヤ・リム重量はホイールディスク重量を含めたもので、実施例1〜3においては、第2のディスクを除いた重量を示す。また、図14において、横軸は加振周波数(Hz)、縦軸はタイヤ接地力変動(N)を示し、このタイヤ接地力変動が小さいほど路面追従性がよく、走行性能に優れている。
比較例1は、通常のタイヤ、ホイールであり、比較例2はタイヤ内圧を高めた、縦バネ定数が増大したものである。また、比較例3はリム径が大きなホイールとロープロファイルタイヤの組み合わせである。このような従来のタイヤ、ホイールを有する車両振動モデルとしては、図11に示すような2自由度のバネ下振動モデルで表わされる。詳細には、バネ下質量m1がタイヤの接地面とタイヤ縦バネk1及びダッシュポットc1により結合され、上記バネ下質量m1とバネ上質量m2とがサスペンションk2及びダッシュポットc2により結合された振動モデルとなる。
比較例2のように、通常のタイヤ(比較例1)に対して縦バネ定数k1を増加させると、図14に示すように、バネ下共振点付近の10〜20Hzでの周波数帯域におけるタイヤ接地力変動レベルが増大し路面追従性が悪化する。
また、比較例3のように、縦バネ定数k1とタイヤ・ホイール重量(バネ下質量m1)とがともに増加した場合には、上記周波数帯域におけるタイヤ接地力変動レベルが更に増大してしまう。
【0024】
これに対して、本発明による吸振ホイールは、リムを備えた第1のディスクと、車両へのホイール取り付け部を備えた第2のディスクとを直動ガイドを備えた中空円盤状プレートを用いて結合して、タイヤに入力する振動を上下方向の振動に変換するとともに、第1のホイールと第2のホイールとをゴムバネにより連結する構成としているので、上記吸振ホイールを有する車両振動モデルとしては、図12に示すような3自由度のバネ下振動モデルで表わされる。
詳細には、タイヤ・リム質量m1がタイヤの接地面とタイヤ縦バネk1及びダッシュポットc1により結合され、上記タイヤ・リム質量m1とバネ下質量m2とがリング状ゴムバネk2及びダッシュポットc2により結合され、上記バネ下質量m2とバネ上質量m3とがサスペンションk3及びダッシュポットc3により結合された振動モデルとなる。
したがって、実施例1のように、ホイールを分割し、ゴムバネを挿入して上記分割したホイールを結合した本発明の吸振ホイールでは、図14のグラフに示すように、上記周波数帯域におけるタイヤ接地力変動レベルを通常のタイヤである比較例1とほぼ同等のレベルに抑制することができる。なお、上記実施例1では、30〜40Hz近辺でタイヤ接地力変動レベルが若干増大する。
また、実施例2のようにゴムバネのバネ定数を下げると、10〜20Hz近辺のタイヤ接地力変動レベルは更に低減されるが、30〜40Hz近辺のタイヤ接地力変動レベルが増大する。
そこで、実施例3のように、ゴムバネのバネ定数を下げた上で、上記ゴムバネの減衰を大きくとると、10〜20Hz近辺のタイヤ接地力変動レベルと30〜40Hz近辺のタイヤ接地力変動レベルとを効果的に下げることができる。
【0025】
【発明の効果】
以上説明したように、本発明によれば、ホイールをリムを備えた第1のディスクと、車両へのホイール取り付け部を備えた第2のディスクとの分割し、これを弾性部材により結合するとともに、上記第1のディスクのと第2のディスクとを、表面と裏面に互いに作動方向が直交する複数の直動ガイド配置した中空円盤状プレートにより結合し、上記弾性部材により吸振ホイールの半径方向を弾性的に支持し、直動ガイドを備えた中空円盤状プレートによって回転方向を支持するようにしたので、タイヤ転動時の変形を低減して、タイヤ接地力の変動を抑制することができるとともに、車軸からの回転力を効率的に伝達できるので、車両の乗り心地と路面追従性とを向上させることができる。
【図面の簡単な説明】
【図1】 本発明の実施の形態1に係る吸振ホイールの構成を示す断面図である。
【図2】 本実施の形態1に係るディスクの結合状態を示す図である。
【図3】 本実施の形態1に係る吸振ホイールの動作を示す図である。
【図4】 本実施の形態2に係る吸振ホイールの構成を示す断面図である。
【図5】 本実施の形態2に係るディスクの結合状態を示す図である。
【図6】 本実施の形態2に係る吸振ホイールの動作を示す図である。
【図7】 本実施の形態3に係る吸振ホイールの構成を示す断面図である。
【図8】 本実施の形態3に係るディスクの結合状態を示す図である。
【図9】 本実施の形態3に係る吸振ホイールの動作を示す図である。
【図10】 本発明による吸振ホイールの他の構成を示す断面図である。
【図11】 従来のホイールの車両振動モデルを示す図である。
【図12】 本発明の吸振ホイールの車両振動モデルを示す図である。
【図13】 本発明の吸振ホイールと従来のホイールの車両振動モデルで設定した質量、バネ定数等の諸定数を示す表である。
【図14】 タイヤ接地力変動レベルの解析結果を示す図である。
【符号の説明】
10 自動車用吸振ホイール、11 第1のディスク、11R リム、
12 第2のディスク、12H ホイール取り付け部、13 ゴム部材、
14 中空円盤状プレート、15,16 直動ガイド、15a,16a ガイド、15b,16b ガイドレール。
Claims (6)
- リムを備えた第1のディスクと、この第1のディスクとホイール軸方向に隔てて配置された、車両へのホイール取り付け部を備えた第2のディスクと、上記第1のディスクと第2のディスクとを結合する弾性部材とを備えるとともに、上記第1のディスクと第2のディスクとを、その表面側と裏面側とに、表面側と裏面側とで互いに作動方向が直交するように配置された複数の直動ガイドを備えた中空円盤状プレートにより結合したことを特徴とする自動車用吸振ホイール。
- 上記直動ガイドを、中空円盤状プレートの周上に、90°または180°間隔で、かつ、上記プレートの表,裏の同位置にそれぞれ配置したことを特徴とする請求項1に記載の自動車用吸振ホイール。
- 上記第1のディスク側の全ての直動ガイドの稼動方向を、中空円盤状プレートの径方向に対して45°方向とし、上記第2のディスク側の全ての直動ガイドの稼動方向を、上記第1のディスク側の直動ガイドの稼動方向に対して直交する方向としたことを特徴とする請求項1または請求項2に記載の自動車用吸振ホイール。
- 上記第1のディスクと第2のディスクとを、上記中空円盤状プレートと、上記中空円盤状プレートの径方向内周側に配置された、上記中空円盤状プレートとは表,裏逆に直動ガイドが配置された第2の中空円盤状プレートとにより結合したことを特徴とする請求項1〜請求項3のいずれかに記載の自動車用吸振ホイール。
- 第1の中空円盤状プレートの質量と第2の中空円盤状プレートの質量とを等しくしたことを特徴とする請求項4に記載の自動車用吸振ホイール。
- 上記ゴム部材を中空円筒形状とするとともに、その軸方向端面をそれぞれ上記第1及び第2のディスクに接合したことを特徴とする請求項1〜請求項5のいずれかに記載の自動車用吸振ホイール。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002061037A JP3868830B2 (ja) | 2002-03-06 | 2002-03-06 | 自動車用吸振ホイール |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002061037A JP3868830B2 (ja) | 2002-03-06 | 2002-03-06 | 自動車用吸振ホイール |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003260902A JP2003260902A (ja) | 2003-09-16 |
JP3868830B2 true JP3868830B2 (ja) | 2007-01-17 |
Family
ID=28670170
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002061037A Expired - Fee Related JP3868830B2 (ja) | 2002-03-06 | 2002-03-06 | 自動車用吸振ホイール |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3868830B2 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1715205B1 (en) | 2003-11-21 | 2013-04-03 | NTN Corporation | Shaft coupling |
-
2002
- 2002-03-06 JP JP2002061037A patent/JP3868830B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2003260902A (ja) | 2003-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7306065B2 (en) | Fixing method of in-wheel motor and in-wheel motor system | |
EP1733911B1 (en) | In-wheel motor system | |
US8453774B2 (en) | In-wheel motor system for a steering wheel | |
WO2004020236A1 (ja) | インホイールモータシステム | |
JP3910001B2 (ja) | 自動車用ダンパー付きホイールとその製造方法 | |
WO2006030715A1 (ja) | フレキシブルカップリング、及び、インホイールモータシステム | |
JP2002370503A (ja) | サスペンション内蔵ホイール | |
JP4589567B2 (ja) | 鉄道車両の軸箱支持装置 | |
JP2003034103A (ja) | サスペンション内蔵ホイール | |
JP3868830B2 (ja) | 自動車用吸振ホイール | |
US7614467B2 (en) | In-wheel motor system having damping mechanism | |
JP2005289321A (ja) | インホイールモータ搭載全輪駆動車 | |
JP2007186052A (ja) | インホイールモータシステム | |
JP4350591B2 (ja) | インホイールモータシステム | |
JP4279213B2 (ja) | インホイールモータシステム | |
JP2023148101A (ja) | 弾性車輪 | |
JP2003039901A (ja) | サスペンション内蔵ホイール | |
JP2002234302A (ja) | 弾性ホイールとサスペンションメンバとの組合せ構造体 | |
JP2003104001A (ja) | 弾性ホイール | |
JPS6271707A (ja) | 空気入りタイヤ | |
JP2000343901A (ja) | 自動車用ダンパー付きホイール | |
JP2001080303A (ja) | ダンパー付きホイール | |
JP2001277805A (ja) | 操安性向上ホイール | |
JP2001180206A (ja) | ディスクホイール | |
WO2007032345A1 (ja) | インホイールモータシステム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050303 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20061010 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20061016 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20061011 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |