JP3865085B2 - Manufacturing method of electroformed product - Google Patents

Manufacturing method of electroformed product Download PDF

Info

Publication number
JP3865085B2
JP3865085B2 JP21417096A JP21417096A JP3865085B2 JP 3865085 B2 JP3865085 B2 JP 3865085B2 JP 21417096 A JP21417096 A JP 21417096A JP 21417096 A JP21417096 A JP 21417096A JP 3865085 B2 JP3865085 B2 JP 3865085B2
Authority
JP
Japan
Prior art keywords
mask
mother die
conductive
photoresist
metal layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21417096A
Other languages
Japanese (ja)
Other versions
JPH1034870A (en
Inventor
宏史 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Hitachi Maxell Ltd
Original Assignee
Kyushu Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Hitachi Maxell Ltd filed Critical Kyushu Hitachi Maxell Ltd
Priority to JP21417096A priority Critical patent/JP3865085B2/en
Publication of JPH1034870A publication Critical patent/JPH1034870A/en
Application granted granted Critical
Publication of JP3865085B2 publication Critical patent/JP3865085B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0002Apparatus or processes for manufacturing printed circuits for manufacturing artworks for printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1216Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns by screen printing or stencil printing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/20Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by affixing prefabricated conductor pattern
    • H05K3/202Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by affixing prefabricated conductor pattern using self-supporting metal foil pattern

Landscapes

  • Printing Plates And Materials Therefor (AREA)
  • Manufacture Or Reproduction Of Printing Formes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、たとえば、ICやLSI用プリント配線等のスクリーン印刷やBGA、CSP等のハンダクリーム印刷、PDP用蛍光体印刷等に使用されるメタルマスク、篩(ふるい)、その他これらに類する電鋳製品の製造方法に関する。
【0002】
【従来の技術】
例えば、印刷用メタルマスクを電鋳により製造するに際しては、まず、図3(A)に示すように、ステンレス等の導電性材料からなる母型3の表面にフォトレジスト6を密着し、次いで図3(B)のようにフォトレジスト6の上に、所望の印刷パターンを施したフィルムやガラス板等のパターンマスク20を密着させ、露光、現像、乾燥の各処理を行って、図3(C)のように所望パターンのフォトレジスト膜7をパターンニング形成する。次いで、図3(D)のように、電鋳を行って母型3のフォトレジスト膜7で覆われていない表面に電着金属層9を電着形成し、最後に電着金属層9およびフォトレジスト膜7の表面を研摩した後、図3(E)のように母型3から電着金属層9を剥離して所望パターンの開口部2を有する印刷用メタルマスク1を得ていた。
【0003】
【発明が解決しようとする課題】
上記した従来例の電鋳方法では、フォトレジスト膜7でメタルマスク1の開口部2・2間の線幅を規制するので、エッチングなどに比べて比較的再現性に優れる精密な電鋳製品が得られる。しかし、母型3としてステンレス等金属材料で製作されたものが使われるが、この金属製の母型3には鬆(す)や傷など生じている場合が多く、このため母型3とフォトレジスト膜7との密着不良が起こりやすかった。またパターンマスク20とフォトレジスト6との間に塵埃などが侵入して付着しやすく、この塵埃付着により露光不良を生じることがあった。露光するとき光線の指数関数的な吸収がフォトレジスト6の表面側と母型3に面する側とでは異なり、母型3に面する側には光線が達しにくいことから露光不足が生じやすく、この結果フォトレジスト膜7が母型3との密着力が不足し、母型3から剥がれて欠けたり、ピットが発生し、これが原因して解像度が低下していた。こうしたフォトレジスト膜7の欠けやピットの不良発生は、特に比較的厚手で、また光線透過率の小さいフォトレジスト6を使用するほど顕著になる。
【0004】
本発明の目的はこうした問題を解消するためになされたもので、製造工程時におけるフォトレジストの母型との密着性、解像度を向上させ、精度の優れる電鋳製品の製造方法を提供するにある。
【0005】
【課題を解決するための手段】
本発明の電鋳製品の製造方法では、母型3として透光性を有する非導電性材料、例えばガラス、樹脂フィルムなどからなるものを用意する。先ず、この母型3の表面に導電性薄膜4を形成する。次いで導電性薄膜4を導電性マスク5aと開口5bからなる所望パターンにパターンニング形成する。次いで母型3の導電性マスク5aで覆われていない表面と導電性マスク5aの表面に、ネガタイプのフォトレジスト6を密着重合する。次いで母型3の裏面側から紫外線や電子線等を照射して露光し、現像処理して母型3の導電性マスク5aで覆われていない表面にフォトレジスト膜7を形成する。次いで導電性マスク5aの表面に、電鋳により電着金属層9を電着形成する。電着金属層9を母型3に付けたままでフォトレジスト膜7を除去する。金属製のメッシュ10を電着金属層9の上に押し付けた状態で、メッキ11を施す。最後に母型3からメッキ11でメッシュ10と一体化した電着金属層9を剥離する。
【0006】
【作用】
フォトレジスト膜7をパターンニング形成する際、表面に導電性マスク5aをパターンニング形成するとともにネガタイプのフォトレジスト6を密着重合した母型3の裏面側から紫外線や電子線等を照射して露光するので、フォトレジスト6の硬化は母型3側から進む。従って母型3とフォトレジスト膜7との密着低下、欠けやピット等が発生せず、また導電性マスク5aとフォトレジスト膜7が確実に密着するため、解像度に優れ、寸法精度等において再現性にも優れた高精度の電鋳製品を得る。
【0007】
フォトレジスト膜7をパターンニング形成する際、前述した従来の電鋳法のごときパターンマスク20を使用しないで、メッキ用下地の機能を発揮する導電性マスク5aを利用して母型3の裏面側から露光し、現像するので、前述した従来のフォトレジスト6の露光不良の原因となる塵埃付着の問題を解消できる。
【0008】
ガラス、樹脂フィルム等からなる母型3は、金属製母型のような鬆などがないため、フォトレジスト6との密着を良好にする。また電着金属層9を剥離した場合、導電性マスク5aはそのまま母型3側に残るため、ガラス板等の剛性に優れた母型3を使用するとその母型3上に再度パターンマスクを露光、現像等の工程を経ることなく、導電性マスク5aをそのまま使用して母型3を繰り返し使用することができて作業性に優れる。
【0009】
【発明の実施の形態】
比較例)
図1は電鋳製品製造方法を印刷用メタルマスクに適用した場合の比較例を示す。図1(G)中に示すごとく印刷用メタルマスク1は所望パターンの開口部2を有するものであり、その厚さは、例えば20〜30μm程度とする。
【0010】
かかる印刷用メタルマスク1を製造するには、先ず、図1(A)のように、ガラスあるいはポリエステルやポリイミドフィルム等透明樹脂フィルムないしシート等のように透光性を有する非導電性材料からなる母型3の表面に、クロムをスパッタリングして導電性薄膜4を形成する。その膜厚は、例えば、1500〜3000Å程度とする。それよりも薄いと導電不良を生じやすく、厚いとコスト高になるばかりか、精度上問題が生じる。次いで、この導電性薄膜4上にポジタイプのレジスト薄膜を形成して、EB描画(エレクトロンビーム)あるいはPG描画(パターンジェネレータ)等にて前記レジスト薄膜を所望パターンに直描するとともに、クロム露出面をエッチング除去することで、図1(B)のように印刷用メタルマスク1の開口部2に対応する部分の導電性薄膜4が除去されて開口5bを形成した、所望パターンを有する導電性マスク5aをパターンニング形成する。
【0011】
次いで、図1(C)のように母型3の導電性マスク5aで覆われていない表面と導電性マスク5aの表面にネガタイプのフォトレジスト6をコーティングする。フォトレジスト6の厚みは20〜30μm程度とする。母型3にはガラスあるいはポリイミドフィルム等透明樹脂フィルムを用いるため、金属母型のごとき鬆などの心配がなく、フォトレジスト6を密着状態にコーティングすることができる。
【0012】
次いで、図1(D)のように母型3の裏面側から紫外線ランプにより紫外線を照射して露光し、現像、乾燥処理することにより、図1(E)のように母型3の導電性マスク5aで覆われていない開口5bに対応する表面に、印刷用メタルマスク1の開口部2のパターンに対応する部分を除く箇所のフォトレジスト6が除去されたパターンをもつフォトレジスト膜7を形成する。その際、母型3の裏面側から紫外線を照射して露光するので、フォトレジスト6の紫外線硬化は母型3側から進んで母型3とよく密着させることができ、またピットや欠けの無い高精度のフォトレジスト膜7を得ることができた。また導電性マスク5aにフォトレジスト膜7を確実に密着させることができた。
【0013】
次いで、通常のスルファミン酸ニッケル浴中で、導電性マスク5aからニッケルを成長させて図1(F)のようにフォトレジスト膜7の高さ程度にまで電鋳して電着金属層9を形成する。
スルファミン酸ニッケル浴の組成とメッキ条件の一例を示す。
スルファミン酸ニッケル 450g/l
塩化ニッケル 40g/l
ホウ酸 30g/l
浴温 50℃
pH 4.0〜4.5
電流密度 5A/dm2
【0014】
電鋳後、図1(G)のように母型3から電着金属層9を剥離することで開口部2を有する印刷用メタルマスク1が得られる。その際、導電性マスク5aは、母型3側との密着性が強く、剥離によって母型3側にそのままの状態で残り、従って導電性マスク5aを形成した母型3は繰り返し使用が可能である。
【0015】
施例)
図2は本発明の実施例を示す。この実施例では、メッシュ一体型のスクリーン印刷用メタルマスクに適用した場合の製造方法を示す。このメッシュ一体型のスクリーン印刷用メタルマスクを製造するに際しては、先ず、比較例の場合と全く同様な方法で所望パターンの開口部2を有するメタルマスク1を電鋳するが、その際、メタルマスク1(電着金属層9)を母型3に付けたままでフォトレジスト膜7を除去し、この除去後、図2(A)のように金属製のメッシュ10を電着金属層9の上に押し付けた状態で、図2(B)のようにメッキ11を施し、そのメッキ11でメッシュ10と電着金属層9とを接合一体化してメッシュ一体型のスクリーン印刷用メタルマスクを得る。
【0016】
ここで注目すべきは、母型3は非導電性材料からなるため、この母型3にメタルマスク1(電着金属層9)を付けたままで、フォトレジスト膜7のみを除去した後にメッキ11をすることができる点である。従来のメッシュ一体型スクリーン印刷用メタルマスクの電鋳方法では、母型3が金属からなるため、母型3の表面から電鋳金属が成長しないように、図4(A)に示すごとく電鋳後、表面研磨をした後フォトレジスト膜7を残したままメッシュ10を押し付けてメッキ11を行わなければならいが、これではフォトレジスト膜7は電着金属層9よりも硬度が無いため、表面研磨によりフォトレジスト膜7の表面が電着金属層9の表面より摩耗して両表面間に段差12(図4(B)の拡大図)が生じ、この段差12部分でメッキ11が成長してひさし状体13ができてしまう。このようにひさし状体13があると、このメッシュ一体型スクリーン印刷用メタルマスクを用いて印刷する場合、カーボンベース等の抵抗体やタングステンペースト・クリームはんだ等の導電性ペーストを開口部(図4(B)のフォトレジスト膜7を除去することにより形成される開口部)から吐出させるのに障害となって、印刷不良の原因となるのであった。この欠点を除くため、本実施例では、フォトレジスト膜7を除去した後にメッキ11をするので、図2(B)のようにメッキ11が電着金属層9の側面9aの全面で成長するため、図4(B)に示すごとき不具合なひさし状体13ができない。
【0017】
上記実施例では導電性薄膜4としてクロムを用いたが、これに代えてニッケル、タングステン、タンタルなどの導電性材料を用いることもできる。また導電性薄膜4を母型3の表面に形成する手段としてはスパッタリング以外に、真空蒸着、イオンプレーティングなどの乾式メッキで形成するもよい。
導電性マスク5aから成長させる電鋳金属としてはニッケル以外に、ニッケル−コバルト合金等のニッケル合金や銅など種々考えられる。
さらに、導電性薄膜4をパターンニングする方法として、上記EBやPG描画による直描に限られず、ネガタイプのレジスト上にパターンフィルムを置いたうえで紫外線照射して露光、現像してパターンニングする方法でもよい。
【0018】
【発明の効果】
本発明の電鋳製品の製造方法によれば、透光性を有する母型3の表面に導電性マスク5aをパターンニング形成するとともにフォトレジスト6を密着重合したうえで、母型3の裏面側から紫外線照射により露光し、現像してフォトレジスト膜7を形成する。従ってフォトレジスト6の紫外線硬化は母型3側から進むため、母型3との密着が良好になり、欠けやピット等の発生もなく、また導電性マスク5aとフォトレジスト膜7が確実に密着するため、解像度に優れ、寸法精度等において再現性にも優れた高精度の電鋳製品を得る。メッキ用下地の機能を発揮する導電性マスク5aを利用してフォトレジスト膜7をパターンニング形成することで、前述した従来の電鋳によるがごときパターンマスク20を使用しなくて済み、フォトレジスト6の露光不良の原因となる塵埃付着の問題をも一挙に解消できて有利である。また母型3としては金属製母型のような鬆などが無いガラスや樹脂フィルム等を用いるので、この点でもフォトレジスト6との密着を良好にすることができる。さらに、導電性マスク5aは剥離時に母型3側にそのまま残すことができるため、母型3を繰り返し使用できて作業工程の効率化を図ることもできる。フォトレジスト膜7を除去した後にメッキ11をするので、印刷不良の原因となるひさし状体13ができない。
【図面の簡単な説明】
【図1】 比較例の印刷用メタルマスクの製造工程図である。
【図2】 施例の印刷用メタルマスクの製造工程図である。
【図3】 従来例の電鋳製品の製造工程図である。
【図4】 他の従来例の電鋳製品の製造工程図である。
【符号の説明】
1 メタルマスク
2 開口部
3 母型
4 導電性薄膜
5a 導電性マスク
5b 開口
6 フォトレジスト
7 フォトレジスト膜
9 電着金属層
[0001]
BACKGROUND OF THE INVENTION
The present invention can be applied, for example, to screen printing of IC and LSI printed wiring, solder cream printing of BGA, CSP, etc., metal mask used for phosphor printing for PDP, etc. The present invention relates to a manufacturing method of a product.
[0002]
[Prior art]
For example, when a metal mask for printing is manufactured by electroforming, first, as shown in FIG. 3A, a photoresist 6 is brought into close contact with the surface of a mother die 3 made of a conductive material such as stainless steel. As shown in FIG. 3 (C), a pattern mask 20 such as a film or glass plate having a desired printing pattern is brought into close contact with the photoresist 6 as shown in FIG. 3 (B), and exposure, development, and drying are performed. The photoresist film 7 having a desired pattern is formed by patterning as shown in FIG. Next, as shown in FIG. 3D, the electrodeposition metal layer 9 is electrodeposited on the surface of the matrix 3 that is not covered with the photoresist film 7 by electroforming, and finally the electrodeposition metal layer 9 and After polishing the surface of the photoresist film 7, the electrodeposited metal layer 9 was peeled off from the mother die 3 as shown in FIG. 3E to obtain a printing metal mask 1 having openings 2 having a desired pattern.
[0003]
[Problems to be solved by the invention]
In the conventional electroforming method described above, since the line width between the openings 2 and 2 of the metal mask 1 is regulated by the photoresist film 7, a precise electroformed product that is relatively excellent in reproducibility compared with etching or the like is obtained. can get. However, although the metal mold 3 made of a metal material such as stainless steel is used, the metal metal mold 3 often has voids or scratches. The adhesion failure with the resist film 7 was likely to occur. In addition, dust or the like easily enters and adheres between the pattern mask 20 and the photoresist 6, and this dust adhesion sometimes causes exposure failure. When the exposure, the exponential absorption of light rays is different between the surface side of the photoresist 6 and the side facing the mother die 3, and the light rays hardly reach the side facing the mother die 3, so that underexposure is likely to occur. As a result, the photoresist film 7 has insufficient adhesion to the mother die 3 and is peeled off from the mother die 3 to cause chipping or pits. This causes a reduction in resolution. Such chipping of the photoresist film 7 and the occurrence of defective pits become more noticeable as the photoresist 6 is relatively thick and has a low light transmittance.
[0004]
An object of the present invention is to solve such problems, and is to provide a method for producing an electroformed product with improved accuracy by improving the adhesion and resolution of a photoresist to a mother die during the production process. .
[0005]
[Means for Solving the Problems]
In the method for producing an electroformed product according to the present invention, a non-conductive material having translucency, such as glass or a resin film, is prepared as the matrix 3. First, the conductive thin film 4 is formed on the surface of the matrix 3. Next, the conductive thin film 4 is patterned into a desired pattern including the conductive mask 5a and the openings 5b. Next, a negative type photoresist 6 is closely polymerized on the surface of the base 3 not covered with the conductive mask 5a and the surface of the conductive mask 5a. Next, exposure is performed by irradiating ultraviolet rays, electron beams, or the like from the back side of the mother die 3, and development processing is performed to form a photoresist film 7 on the surface of the mother die 3 that is not covered with the conductive mask 5 a. Next, an electrodeposition metal layer 9 is electrodeposited on the surface of the conductive mask 5a by electroforming. The photoresist film 7 is removed while the electrodeposited metal layer 9 is attached to the matrix 3. In a state where the metal mesh 10 is pressed onto the electrodeposited metal layer 9, plating 11 is applied. Finally, the electrodeposited metal layer 9 integrated with the mesh 10 is removed from the matrix 3 by plating 11 .
[0006]
[Action]
When patterning the photoresist film 7, the conductive mask 5 a is patterned on the surface, and exposure is performed by irradiating ultraviolet rays, electron beams, or the like from the back side of the matrix 3 in which the negative type photoresist 6 is closely polymerized. Therefore, the hardening of the photoresist 6 proceeds from the mother die 3 side. Accordingly, the adhesion between the mother die 3 and the photoresist film 7 does not deteriorate, chipping, pits, etc. occur, and the conductive mask 5a and the photoresist film 7 are securely in contact with each other. To obtain high precision electroformed products.
[0007]
When patterning the photoresist film 7, without using the pattern mask 20 as in the conventional electroforming method described above, the back side of the mother die 3 is utilized by using the conductive mask 5 a that functions as a base for plating. Therefore, the problem of dust adhesion that causes the exposure failure of the conventional photoresist 6 described above can be solved.
[0008]
Since the mother die 3 made of glass, resin film or the like has no void like a metal mother die, the adhesion with the photoresist 6 is improved. Further, when the electrodeposited metal layer 9 is peeled off, the conductive mask 5a remains on the mother die 3 side. Therefore, when the mother die 3 having excellent rigidity such as a glass plate is used, the pattern mask is exposed again on the mother die 3. The mother die 3 can be repeatedly used by using the conductive mask 5a as it is without going through development or the like, and the workability is excellent.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
( Comparative example)
Figure 1 shows a comparison example of the application of the product manufacturing method for printing metal mask electroforming. As shown in FIG. 1G, the printing metal mask 1 has openings 2 having a desired pattern, and the thickness thereof is, for example, about 20 to 30 μm.
[0010]
In order to manufacture such a printing metal mask 1, first, as shown in FIG. 1A, it is made of a non-conductive material having translucency such as a transparent resin film or sheet such as glass or polyester or polyimide film. A conductive thin film 4 is formed on the surface of the mother die 3 by sputtering chromium. The film thickness is, for example, about 1500 to 3000 mm. If it is thinner than that, it is likely to cause a conductive failure. Next, a positive type resist thin film is formed on the conductive thin film 4, and the resist thin film is directly drawn in a desired pattern by EB drawing (electron beam) or PG drawing (pattern generator), and the exposed chrome surface is formed. The conductive mask 5a having a desired pattern, in which the conductive thin film 4 in the portion corresponding to the opening 2 of the printing metal mask 1 is removed and the opening 5b is formed by etching away, as shown in FIG. The patterning forming.
[0011]
Next, as shown in FIG. 1C, a negative type photoresist 6 is coated on the surface of the matrix 3 not covered with the conductive mask 5a and the surface of the conductive mask 5a. The thickness of the photoresist 6 is about 20 to 30 μm. Since a transparent resin film such as glass or a polyimide film is used for the mother die 3, there is no concern about a void like a metal mother die, and the photoresist 6 can be coated in a close contact state.
[0012]
Next, as shown in FIG. 1 (D), exposure is performed by irradiating ultraviolet rays from the back side of the mother die 3 with an ultraviolet lamp, and development and drying are performed, whereby the conductivity of the mother die 3 is obtained as shown in FIG. 1 (E). Formed on the surface corresponding to the opening 5b not covered with the mask 5a is a photoresist film 7 having a pattern from which the photoresist 6 is removed except for the portion corresponding to the pattern of the opening 2 of the printing metal mask 1 To do. At this time, since exposure is performed by irradiating ultraviolet rays from the back side of the mother die 3, the ultraviolet curing of the photoresist 6 proceeds from the mother die 3 side so that it can be brought into close contact with the mother die 3 and there is no pit or chipping. A highly accurate photoresist film 7 could be obtained. Further, the photoresist film 7 could be reliably adhered to the conductive mask 5a.
[0013]
Next, in an ordinary nickel sulfamate bath, nickel is grown from the conductive mask 5a and electroformed to the height of the photoresist film 7 as shown in FIG. To do.
An example of the composition and plating conditions of a nickel sulfamate bath is shown.
Nickel sulfamate 450g / l
Nickel chloride 40g / l
Boric acid 30g / l
Bath temperature 50 ° C
pH 4.0-4.5
Current density 5A / dm 2
[0014]
After electroforming, the electrodeposition metal layer 9 is peeled off from the mother die 3 as shown in FIG. 1G, whereby the printing metal mask 1 having the opening 2 is obtained. At that time, the conductive mask 5a has strong adhesion to the mother die 3 side and remains as it is on the mother die 3 side by peeling. Therefore, the mother die 3 on which the conductive mask 5a is formed can be used repeatedly. is there.
[0015]
(Real施例)
Figure 2 shows the real施例of the present invention. In this embodiment, a manufacturing method when applied to a mesh-integrated metal mask for screen printing will be described. When manufacturing this mesh-integrated metal mask for screen printing, first, a metal mask 1 having openings 2 having a desired pattern is electroformed by the same method as in the comparative example. 1 (the electrodeposited metal layer 9) is removed from the matrix 3 while the photoresist film 7 is removed. After this removal, a metal mesh 10 is placed on the electrodeposited metal layer 9 as shown in FIG. In the pressed state, a plating 11 is applied as shown in FIG. 2B, and the mesh 10 and the electrodeposited metal layer 9 are joined and integrated by the plating 11 to obtain a mesh-integrated metal mask for screen printing.
[0016]
It should be noted here that since the mother die 3 is made of a non-conductive material, the plating 11 is removed after removing only the photoresist film 7 with the metal mask 1 (electrodeposited metal layer 9) being attached to the mother die 3. It is a point that can be done. In the conventional electrocasting method of the mesh mask for screen printing metal mask, since the mother die 3 is made of metal, electroforming as shown in FIG. 4A is performed so that the electroformed metal does not grow from the surface of the mother die 3. Then, after polishing the surface, it is necessary to press the mesh 10 while leaving the photoresist film 7 and to perform plating 11. However, since the photoresist film 7 has less hardness than the electrodeposited metal layer 9, the surface polishing is performed. As a result, the surface of the photoresist film 7 is abraded from the surface of the electrodeposited metal layer 9 and a step 12 (enlarged view of FIG. 4B) is formed between the two surfaces. The body 13 is formed. When the eaves 13 are present, when printing is performed using this mesh-integrated screen printing metal mask, a resistor such as a carbon base or a conductive paste such as tungsten paste / cream solder is opened (see FIG. 4). It becomes an obstacle to discharging from the (B) opening formed by removing the photoresist film 7) and causes printing failure. In order to eliminate this drawback, in this embodiment, since the plating 11 is performed after removing the photoresist film 7, the plating 11 grows on the entire side surface 9 a of the electrodeposited metal layer 9 as shown in FIG. As shown in FIG. 4B, a defective eaves-like body 13 cannot be formed.
[0017]
In the above embodiment, chromium is used as the conductive thin film 4, but a conductive material such as nickel, tungsten, or tantalum can be used instead. Further, as a means for forming the conductive thin film 4 on the surface of the mother die 3, it may be formed by dry plating such as vacuum deposition or ion plating other than sputtering.
As the electroformed metal grown from the conductive mask 5a, various nickel alloys such as nickel-cobalt alloy and copper can be considered in addition to nickel.
Further, the method of patterning the conductive thin film 4 is not limited to the direct drawing by the EB or PG drawing, but a method of patterning by exposing and developing by irradiating with ultraviolet rays after placing a pattern film on a negative type resist. But you can.
[0018]
【The invention's effect】
According to the method for producing an electroformed product of the present invention, the conductive mask 5a is patterned on the surface of the mother mold 3 having translucency, and the photoresist 6 is closely polymerized. Then, the photoresist film 7 is formed by exposure by ultraviolet irradiation and development. Accordingly, the UV curing of the photoresist 6 proceeds from the side of the mother die 3, so that the adhesion with the mother die 3 is good, there is no occurrence of chipping or pits, and the conductive mask 5a and the photoresist film 7 are securely attached. Therefore, a highly accurate electroformed product having excellent resolution and excellent reproducibility in dimensional accuracy and the like is obtained. By forming the photoresist film 7 by patterning using the conductive mask 5a that exhibits the function of the base for plating, it is not necessary to use the pattern mask 20 like the conventional electroforming described above. This is advantageous because it can solve the problem of dust adhesion that causes the exposure failure. Further, since the mother mold 3 is made of glass or resin film having no void like a metal mother mold, the adhesion to the photoresist 6 can be improved in this respect as well. Further, since the conductive mask 5a can be left as it is on the mother die 3 side at the time of peeling, the mother die 3 can be used repeatedly, and the efficiency of the work process can be improved. Since the plating 11 is performed after the photoresist film 7 is removed, the eaves-like body 13 that causes printing failure cannot be formed.
[Brief description of the drawings]
FIG. 1 is a manufacturing process diagram of a printing metal mask of a comparative example.
FIG. 2 is a manufacturing process diagram of the printing metal mask of the real施例.
FIG. 3 is a manufacturing process diagram of a conventional electroformed product.
FIG. 4 is a manufacturing process diagram of another conventional electroformed product.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Metal mask 2 Opening part 3 Matrix 4 Conductive thin film 5a Conductive mask 5b Opening 6 Photoresist 7 Photoresist film 9 Electrodeposition metal layer

Claims (1)

透光性を有する非導電性材料からなる母型(3)の表面に導電性薄膜(4)を形成する工程と、
導電性薄膜(4)を導電性マスク(5a)と開口(5b)からなる所望パターンにパターンニング形成する工程と、
母型(3)の導電性マスク(5a)で覆われていない表面と導電性マスク(5a)の表面に、ネガタイプのフォトレジスト(6)を密着重合する工程と、
母型(3)の裏面側から露光し、現像処理して母型(3)の導電性マスク(5a)で覆われていない開口(5b)に対応する表面にフォトレジスト膜(7)を形成する工程と、
導電性マスク(5a)の表面に、電鋳により電着金属層(9)を電着形成する工程と、
電着金属層(9)を母型(3)に付けたままでフォトレジスト膜(7)を除去する工程と、
金属製のメッシュ(10)を電着金属層(9)の上に押し付けた状態で、メッキ(11)を施す工程と、
母型(3)からメッキ(11)でメッシュ(10)と一体化した電着金属層(9)を剥離する工程とからなる電鋳製品の製造方法。
Forming a conductive thin film (4) on a surface of a mother die (3) made of a non-conductive material having translucency;
Patterning the conductive thin film (4) into a desired pattern comprising a conductive mask (5a) and an opening (5b);
A step of closely polymerizing a negative photoresist (6) on the surface not covered with the conductive mask (5a) of the matrix (3) and the surface of the conductive mask (5a);
A photoresist film (7) is formed on the surface corresponding to the opening (5b) that is not covered with the conductive mask (5a) of the mother die (3) by exposing from the back side of the mother die (3) and developing. And a process of
Forming an electrodeposited metal layer (9) on the surface of the conductive mask (5a) by electroforming;
Removing the photoresist film (7) with the electrodeposited metal layer (9) attached to the matrix (3);
Applying metal plating (11) while pressing the metal mesh (10) on the electrodeposited metal layer (9);
A method for producing an electroformed product comprising a step of peeling an electrodeposited metal layer (9) integrated with a mesh (10) by plating (11 ) from a matrix (3).
JP21417096A 1996-07-24 1996-07-24 Manufacturing method of electroformed product Expired - Fee Related JP3865085B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21417096A JP3865085B2 (en) 1996-07-24 1996-07-24 Manufacturing method of electroformed product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21417096A JP3865085B2 (en) 1996-07-24 1996-07-24 Manufacturing method of electroformed product

Publications (2)

Publication Number Publication Date
JPH1034870A JPH1034870A (en) 1998-02-10
JP3865085B2 true JP3865085B2 (en) 2007-01-10

Family

ID=16651402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21417096A Expired - Fee Related JP3865085B2 (en) 1996-07-24 1996-07-24 Manufacturing method of electroformed product

Country Status (1)

Country Link
JP (1) JP3865085B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4607390B2 (en) * 2001-08-28 2011-01-05 九州日立マクセル株式会社 Solder ball suction mask and manufacturing method thereof
JP4502255B2 (en) * 2004-08-25 2010-07-14 九州日立マクセル株式会社 Method for manufacturing electrode body
JP5291353B2 (en) * 2007-02-08 2013-09-18 株式会社ボンマーク Metal mask and manufacturing method thereof
JP5118395B2 (en) * 2007-06-21 2013-01-16 株式会社ボンマーク Mask manufacturing method and mask
JP2012122119A (en) * 2010-12-10 2012-06-28 Seiko Instruments Inc Method for production of electroformed body
CN103203967B (en) * 2012-01-16 2017-06-13 昆山允升吉光电科技有限公司 A kind of electrocasting prepares the manufacture craft of stepped formwork
JP2014077186A (en) * 2012-10-12 2014-05-01 V Technology Co Ltd Method for producing metal mask
JP6078746B2 (en) * 2012-12-21 2017-02-15 株式会社ブイ・テクノロジー Manufacturing method of vapor deposition mask
JP6918542B2 (en) * 2017-03-27 2021-08-11 太陽誘電株式会社 Manufacturing method of screen printing plate
JP6925651B2 (en) * 2019-07-31 2021-08-25 東京プロセスサービス株式会社 Screen printing plate and manufacturing method of screen printing plate

Also Published As

Publication number Publication date
JPH1034870A (en) 1998-02-10

Similar Documents

Publication Publication Date Title
JP3865085B2 (en) Manufacturing method of electroformed product
US3703450A (en) Method of making precision conductive mesh patterns
JPH10305670A (en) Metal mask and its manufacture
JPH08183151A (en) Manufacture of mesh-integrated metal mask
CA1268728A (en) Photoelectroforming mandrel
JPH10228114A (en) Production of metal mask
JP3939785B2 (en) Electroformed thin metal plate and manufacturing method thereof
JP2800476B2 (en) Intaglio production method
JPS63303737A (en) Metal mask for screen printing and its manufacture
JPH10250032A (en) Metal mask for printing
JPH0516323A (en) Manufacture of printing block
JP3061206B2 (en) Manufacturing method of metal mask
JP3494713B2 (en) Manufacturing method of metal mask
JPS63112841A (en) Production of stamper for optical disk
JPH0683067A (en) Production of printing plate
JPH02251195A (en) Manufacture of printed wiring board
JPS617839A (en) Method for mending hard mask
JPS63266058A (en) Manufacture of stamper for optical disk
JPH03146652A (en) Production of metallic parts having holes of fine pattern and master used therein
JPH05104696A (en) Manufacture of form plate
JPS63313332A (en) Production of optical disk substrate
JPH07273432A (en) Manufacture of printed wiring board
Trausch New photolithographic pattern generation process for producing precision flat parts by the electroforming method
JPH08225983A (en) Production of electroforming product having precision fine pattern
JPS62172364A (en) Production of photomask

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060819

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060927

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101013

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees