JP3939785B2 - Electroformed thin metal plate and manufacturing method thereof - Google Patents

Electroformed thin metal plate and manufacturing method thereof Download PDF

Info

Publication number
JP3939785B2
JP3939785B2 JP18410796A JP18410796A JP3939785B2 JP 3939785 B2 JP3939785 B2 JP 3939785B2 JP 18410796 A JP18410796 A JP 18410796A JP 18410796 A JP18410796 A JP 18410796A JP 3939785 B2 JP3939785 B2 JP 3939785B2
Authority
JP
Japan
Prior art keywords
opening
thin metal
mesh
metal plate
rib
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18410796A
Other languages
Japanese (ja)
Other versions
JPH09300573A (en
Inventor
博士 嶋津
宏史 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Hitachi Maxell Ltd
Original Assignee
Kyushu Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Hitachi Maxell Ltd filed Critical Kyushu Hitachi Maxell Ltd
Priority to JP18410796A priority Critical patent/JP3939785B2/en
Priority to DE1997126869 priority patent/DE19726869A1/en
Publication of JPH09300573A publication Critical patent/JPH09300573A/en
Application granted granted Critical
Publication of JP3939785B2 publication Critical patent/JP3939785B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Manufacture Or Reproduction Of Printing Formes (AREA)
  • Printing Plates And Materials Therefor (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Lead Frames For Integrated Circuits (AREA)
  • Screen Printers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、たとえば、ICやLSI用プリント配線等のスクリーン印刷等に好適に使用される印刷用メタルマスク、ICリードフレーム、インクジェットノズル、蒸着用マスク、シートコイル、薄型平面アンテナ、ロータリーエンコーダ、その他これらに類する電鋳製薄状金属板およびその製造方法に関する。
【0002】
【従来の技術】
この種の電鋳製薄状金属板、例えば、印刷用メタルマスクを電鋳により製造するに際しては、図9(A)ないし(C)に示すように、まず母型20の表面に所望パターンのフォトレジスト21をパターンニング形成し、次いで母型20のフォトレジスト21で覆われていない表面に電着層22を電着形成し、次いで電着層22の表面を研摩した後母型20から電着層22を剥離して所望パターンの開口部1を有する印刷用メタルマスクを得ていた。
【0003】
【発明が解決しようとする課題】
しかるに、上記した従来例のメタルマスクの製造方法では、フォトレジスト21でマスク基板2の開口部1・1間の線幅を規制するので、比較的再現性に優れる精密な微細パターンが得られるが、一枚毎に母型20が必要であり高価となる。また微細な開口パターンの精度がフォトレジスト21の現像性能あるいは厚さ等に左右され、現像されたフォトレジスト21の一部23が図9(A)の拡大図に示すごとく露光不足により母型20との密着力が不足していた場合母型20から剥がれることにより欠けが発生したり、ピット24の発生等により不良発生が起こすおそれがあった。さらに、フォトレジストによるパターンニング時に、室温や露光時間、現像時の条件等によってもフォトレジストの定着性等に影響を与えるため、これらを厳密に管理する必要があった。
【0004】
本発明の目的はこうした問題を解消するためになされたもので、薄状でありながら強度を確保できる電鋳製薄状金属板を提供するにある。また本発明の目的は、かかる電鋳製薄状金属板を簡単にかつ高精度に、しかも原板の繰り返し使用を可能にすることにより低コストで製造できる電鋳製薄状金属板の製造方法を提供するにある。
【0005】
【課題を解決するための手段】
本発明の電鋳製薄状金属板は、導電性材料からなる薄状金属板本体2に所望パターンの開口部1が形成されており、開口部1内の領域は、網目線1aによって複数の小さな開口領域に区切られており、網目線1aを含む薄状金属板本体2の片面に、微小ピッチで網目状に連続するリブ3が、薄状金属板本体2および網目線1aと一体に形成されており、前記開口部1に設けられる網目線1aのそれぞれに一本のリブ3が形成されるとともに、網目線1aの間隔が、前記開口部1以外の薄状金属板本体2に形成されたリブ3の隣接間隔pよりも大きく設定してあることを特徴とする。
【0006】
本発明は、上記構成の電鋳製薄状金属板を製造するに際し、前記開口部1となる部分を含む非電導性の原板4の表面に、前記リブ3のパターンに対応する微細な溝6を微小ピッチで網目状に形成する工程と、前記原板4の溝6内のみに導電性のメッキ用下地8を形成する工程と、前記原板4の溝6内のメッキ用下地8を電極として電鋳金属を成長させて、原板4の溝6内に微小ピッチで網目状のリブ3を形成し、さらに、原板4の表面の、前記開口部1となる部分には、網目線1aどうしがつながらないようにリブ3と一体に網目線1aを形成し、原板4の表面の、前記開口部1以外の部分には、リブ3どうしをつなぐ薄状金属板本体2を形成する工程と、網目線1aを含む薄状金属板本体2を、リブ3ごと原板4から剥離する工程からなることを特徴とする。
【0007】
【作用】
薄状金属板本体2の片面に微小ピッチで連続状のリブ3を形成してあると、薄状でも適度な強度、特に曲げ強度を有する薄状金属板が得られる。
【0008】
薄状金属板を製造するに際し、薄状金属板本体2を剥離した後の原板4は再使用することができる。前述した従来の電鋳によるメタルマスクのごときフォトレジストを使用しないで、微細な溝6または凹部9群を有する原板4を使用するとともに該溝6または凹部9にメッキ用下地8を形成して電鋳するので、フォトレジストの現像性、厚さやパターンニング時の条件管理などに関係なく、母型とフォトレジストとの密着度低下や特に開口部2の周縁においてピット等が発生せず、さらにパターン化された原板を繰り返し再使用できるため、寸法精度等において再現性に優れた、高精度の精密微細な開口パターンを得る。
【0009】
【発明の実施の形態】
参考例)
図1ないし図3は本発明を印刷用メタルマスクに適用した場合の参考例を示す。図1は印刷用メタルマスクの一部を示し、これは所望パターンの開口部1を有する薄状金属板本体即ちマスク基板2の印刷面2a側に、微小ピッチで連続状のリブ3を形成している。リブ3は、メタルマスクの電鋳時に電極(陰極)の役目を兼ねさせるために連続状にかつ導電性材料で形成する必要がある。例えば、マスク基板2の厚みtは50μmである。開口部1の開口幅wは、パターンの形状、大きさによって種々異なるが、例えば、30〜70μmである。リブ3は網目状に形成し、このリブ3のマスク基板2の印刷面2aからの突出高さhは0.5〜2μm、リブ3の幅qは5〜10μm、リブ3とリブ3との間隔pは5〜10μmである。
【0010】
図2(A)ないし(G)はかかる印刷用メタルマスクの電鋳製品を得るまでの工程図を示す。先ず、図2(A)のように、ガラス製の原板4の一表面側に、スパッタリング等の方法で均一にクロム薄膜を形成するとともに、この原板4のクロム薄膜の表面に、EB描画やパターンジェネレータ描画等により、開口部1のパターンに対応する部分を除く箇所に上記印刷用メタルマスクのリブ3のパターンに対応してクロム薄膜を除去したパターンをもつクロムマスク5を作成する。次いで、図2(B)のように原板4の表面のクロムマスク5で覆われていない部分をフッ化水素酸を含むガラス腐食液で腐食した後クロム膜を除去することによって、図2(C)および図3に示すように、印刷用メタルマスクの開口部1となる部分を除く箇所にリブ3のパターンに対応する網目状の微細な溝6を形成する。例えば、溝6の開口幅aは10μm、溝6と溝6の間隔bは10μm、溝6の深さdは0.7μmである。開口部1に相当する所は、パターンの形状、大きさに応じて、溝6の存在しない平坦部となっている。
次いで、図2(D)のように、原板4の表面および溝6内に銀鏡反応等の化学鍍金で銀薄膜7を形成する。次いで、水を含ませたスポンジで原板4の表面の銀薄膜7のみを除去することにより、図2(E)のように溝6内のみに銀薄膜からなる導電性のメッキ用下地8を形成する。
【0011】
次いで、通常のスルファミン酸ニッケル浴中で、この連続する溝6内のメッキ用下地8を電極として、このメッキ用下地8からニッケルを成長させて図2(F)のように原板4の溝6内のメッキ用下地8に溝6の深さを越える高さにまで電鋳し、更に電鋳ニッケルが溝6の深さを越えた後も成長し続けさせることで、隣接する溝6・6を越えた電鋳ニッケルどうしがそれぞれ連続的につながって、溝6内に印刷用メタルマスクのリブ3を形成するとともに、原板4の表面上にリブ3どうしをつなぐマスク基板2、および開口部1を形成する。このように微細な溝6を有する非導電性の原板4を使用し、その溝6にメッキ用下地8を形成した後に、リブ3およびマスク基板2を電着形成するので、従来のフォトレジストを使用する電鋳法に比べて、寸法精度のきわめて高い精密微細パターンを有する印刷用メタルマスクを得ることができる。特に、開口部1の周縁部分については、フォトレジストをパターンニングして電鋳形成するものに比べて、レジストの密着状態や現像性能に影響されることなく、ピットや欠けの無い高精度のパターンを形成することができた。
スルファミン酸ニッケル浴の組成とメッキ条件の一例を示す。
スルファミン酸ニッケル 450g/l
塩化ニッケル 40g/l
ホウ酸 30g/l
浴温 50℃
pH 4.0〜4.5
電流密度 5A/dm2
【0012】
次いで、原板4からマスク基板2をリブ3とともに剥離する(図2(G))。その際、化学鍍金銀の網目状のメッキ下地8は、原板4との付着力が弱いため、リブ3側に付着したまま、原板4から剥離される。剥離後、リブ3に付着したメッキ下地8はシアン化ナトリウムで陽極電解することにより、リブ3から除去することができる。このメッキ下地8の除去により、メッキ下地8の厚み分だけ低い突出高さを持つリブ3を得ることができる。しかし、必ずしもメッキ下地8を除去する必要はなく、リブ3に付着させたままでも使用することができる。
【0013】
このようにして得られた印刷用メタルマスクはマスク基板2の印刷面側に微小ピッチで連続状のリブ3を形成してあるので、薄状のメタルマスクも曲げ強度を確保できる。また、印刷用メタルマスクは、スクリーン印刷に際し、マスク枠に張ったうえで、プリント基板など被印刷物(印刷対象物)の上に置かれ、クリームはんだをスキージの移動によりメタルマスクの開口部1に充てんし、被印刷物に転写させるのであるが、その際、メタルマスクの印刷面にリブ3を形成してあるため、被印刷物に対しリブ3を介して密着することになるので被印刷物から離し易くなるという版離れ性に優れるものとなり、またマスク枠に食いつきやすくて強固に枠張りすることができる。さらに、印刷されるクリームはんだやタングステンペースト等の導電性ペーストの粒径は約5〜6μm程度であるが、リブ3はマスク基板2に対して0.5〜2μm程度の極めて微小高さに形成してあるので、導電性ペーストの回り込みによるにじみ発生等のおそれもなく、高精度な印刷を可能にする。
【0014】
(第実施例)
図4ないし図7は本発明の第実施例を示す。この実施例では、各開口部1を網目状に形成する以外は参考例のものと同様である。すなわち、この実施例の印刷用メタルマスクは図4にその一部を示すように、マスク基板2および開口部1内の網目線1aの印刷面側に網目状のリブ3を形成し、網目線1aの網目はリブ3の網目大きさよりも大きく形成する。このメタルマスクを使用して、たとえば、スクリーン印刷する場合は、インキやクリームはんだ等の導電性ペーストが網目状の開口部1から吐出することになる。開口部1を網目状に形成すると、開口部1が長孔などの大きい開口幅に形成される場合も網目線1aによる補強機能によって、マスク基板2が開口部1でぺらぺらになるようなことがなくて強度を確保でき、取り扱いが容易に行えるとともに、高精度の印刷を可能にする。また開口部1は、図7に示すごとく、開口部1の中央にマスク基板2とは独立したランド部を備えた環状に形成することもできる。更に、メッシュ一体型メタルマスクとして、網目線1aにより、開口部1を通しての導電性ペースト等の印刷量を規制できて高精度の印刷を行うことができる。
【0015】
図5(A)ないし(G)はかかるメタルマスク電鋳製品を得るまでの工程図を示す。図5(C)および図6に示すように、リブ3および開口部1のパターンに対応する微細な溝幅の溝6を形成したガラス製の原板4を使用する。この原板4の製法としては参考例の場合と同様にEB描画等を使用する方法である(図5(A)および(B))。溝6の開口幅a、溝6と溝6の間隔b、溝6の深さdは参考例の場合と同寸法である。本実施例の場合、開口部1の開口幅wは0.5〜5mmに設定したパターンとなっている。開口部1の網目線1aと網目線1aの間隔は前記溝6の間隔bよりも大きくて、たとえば、50〜500μmである。次いで、図5(E)に示すように原板4の網目状の溝6内に導電性のメッキ用下地8を形成する。これは、参考例の場合と同様に、図5(D)のように化学鍍金で形成した銀薄膜7を、スポンジで表面のみ除去し、溝6内のみに銀薄膜7からなるメッキ用下地8を形成する。
【0016】
次いで、通常のスルファミン酸ニッケル浴中で、図5(F)のように原板4の溝6内のメッキ用下地8に電鋳することにより、網目状のリブ3および網目状の開口部1を有するマスク基板2を電着形成する。その際、単位面積当りに電着される金属量はほぼ一定であり、開口部1の網目線1aの網目間隔はリブ3の間隔よりも数倍ないし数十倍も大きく設定してあるので、開口部1の網目線1aが印刷面側にリブ3を付ける断面きのこ形状に成長するだけで、網目線1aどうしがつながるようなことはなくて開口部1を網目状に形成することができる。この場合のスルファミン酸ニッケル浴の組成とメッキ条件は参考例の場合と同様である。最後に、図5(G)のように原板4からマスク基板2をリブ3および網目線1aとともに剥離する。
【0017】
(他の実施態様)
上記した実施例ではめっき用下地8を形成するに際し原板4の表面に銀鏡反応等の化学鍍金で銀薄膜7を形成するが、これに代えて原板4の表面にスパッタリングでパラジウム、金、銀などの導電性薄膜を形成するもよい。この場合は原板4を表面研磨することで溝6内を除く原板4の表面の導電性薄膜のみを除去し、溝6内にのみ導電性薄膜を残してめっき用下地8を形成することになる。メッキ用下地8から成長させる電鋳金属としてはニッケル以外に、ニッケル−コドルト合金等のニッケル合金や銅等種々考えられる。原板4はガラス以外に、セラミックや合成樹脂などの非導電性材料で形成することもできる。
【0018】
上記した実施例では原板4に溝6が縦線と横線をクロスさせた網目状に形成されるが、これ以外に、縦線のみ、または横線のみであってもよい。但し、これら縦線のみ又は横線のみの溝6である場合、電鋳時の電気的導通を図るために、原板4に形成した溝6・6どうしを横断する導通用溝を形成する必要がある。そのほかに、原板4に開口部1となる部分を除く箇所に溝6を付けるに代えて多数の微小凹部9群を連鎖状に付けるもよい。すなわち、図8に示す第実施例のように原板4の表面の開口部1のパターンに対応する箇所にフォトレジスト膜10を形成したうえで、その原板4の表面にショットブラストを吹き付けて、その原板4のフォトレジスト膜10で覆われている箇所以外の表面をすりガラス状に加工することで開口部1に対応するフォトレジスト膜10以外の箇所の全面に微小凹部9群を連鎖状に形成するものであってもよい。または原板4の表面の開口部1のパターンに対応する箇所にクローム等でマスキングしたうえで、フッ化水素酸などでエッチングして不規則な凹凸の付いた粗面に加工することで開口部1に対応するフォトレジスト膜10以外の箇所の全面に微小凹部9群を連鎖状に形成するものであってもよい。これらフォトレジスト膜10やクローム等のマスキング膜はその後除去して開口部1に対応する部分を露出させる。このようにして形成される多数の連鎖状の微小凹部9に銀等の導電性薄膜からなるめっき用下地8が形成されること、そのめっき用下地8から電鋳を成長させることなどは、上記実施例の溝6による場合と全く同様である。
【0019】
電鋳製薄状金属板としては、上記した印刷用メタルマスク以外に、ICリードフレーム、インクジェットノズル、蒸着用マスク、シートコイル、薄型平面アンテナ、ロータリーエンコーダなどにも同様に適用できる。その場合、リブ3の突出高さh(0.5〜1μm)を含む金属板総厚が3μm程度の超薄状金属板製品をも実現できるに至った。
【0020】
【発明の効果】
本発明の電鋳製薄状金属板によれば、薄状金属板本体2の片面に微小ピッチで連続状のリブ3を一体形成してあるので、所望パターンの開口部1を有する薄状金属板にも適度な曲げ強度等の機械的強度を向上できて印刷用メタルマスク、ICリードフレーム、インクジェットノズル、蒸着用マスク、シートコイル、薄型平面アンテナ、ロータリーエンコーダなどの電鋳製品に好適である。
【0021】
本発明の電鋳製薄状金属板の製造方法によれば、薄状金属板の開口部1となる部分を除く箇所に微細な溝6または凹部9を有する原板4を使用し、その溝6または凹部9にメッキ用下地8を形成した後に、このメッキ用下地8から成長させてリブ3および薄状金属板本体2を電着形成するので、従来のフォトレジストを使用する電鋳法に比べて、寸法精度のきわめて高い精密微細パターンを有する薄状金属板を得ることができる。特に、開口部1の周縁部分については、フォトレジストをパターンニングして電鋳形成するものに比べて、レジストの密着状態や現像性能に影響されることなく、ピットや欠けの無い高精度のパターンを形成することができる。
【0022】
また、薄状金属板本体2を電鋳後、その片面をエッチング加工などでリブ3を形成することも考えられるが、これでは折角高精度に形成した開口部1の孔壁面がエッチング液で荒らされることになるが、このような問題もなく高精度の薄状金属板を簡単に得ることができる。
しかも、原板4は繰り返し使用できて製造コストを削減できる。同じ原板4を使用することにより、電鋳浴の管理さえ厳密に行えば、常に安定したばらつきの少ない薄状金属板を得ることができる。
【図面の簡単な説明】
【図1】 参考例の印刷用メタルマスクの一部を破断して示す斜視図である。
【図2】 参考例の印刷用メタルマスクの製造工程図である。
【図3】 参考例に使用する原板の一部の斜視図である。
【図4】 第実施例の印刷用メタルマスクの一部を破断して示す斜視図である。
【図5】 第実施例の印刷用メタルマスクの製造工程図である。
【図6】 第実施例に使用する原板の一部の斜視図である。
【図7】 第実施例の印刷用メタルマスクの開口部の他の態様例を、印刷面側から見た一部の拡大平面図である。
【図8】 第実施例の原板の表面状態を示す一部斜視図である。
【図9】従来例の電鋳製品の製造工程図である。
【符号の説明】
1 開口部
2 薄状金属板本体(例えばマスク基板)
3 リブ
4 原板
6 溝
8 メッキ用下地
9 微小凹部
[0001]
BACKGROUND OF THE INVENTION
The present invention includes, for example, printing metal masks, IC lead frames, inkjet nozzles, vapor deposition masks, sheet coils, thin planar antennas, rotary encoders, and the like that are preferably used for screen printing of IC and LSI printed wiring, etc. The present invention relates to an electroformed thin metal plate similar to these and a manufacturing method thereof.
[0002]
[Prior art]
When manufacturing this type of electroformed thin metal plate, for example, a printing metal mask, by electroforming, first, as shown in FIGS. After patterning the photoresist 21, an electrodeposition layer 22 is electrodeposited on the surface of the master mold 20 that is not covered with the photoresist 21, and then the surface of the electrodeposition layer 22 is polished, and then the matrix 20 is electroplated. The metal layer for printing which peeled the adhesion layer 22 and has the opening part 1 of the desired pattern was obtained.
[0003]
[Problems to be solved by the invention]
However, in the conventional metal mask manufacturing method described above, the line width between the openings 1 and 1 of the mask substrate 2 is regulated by the photoresist 21, so that a precise fine pattern with relatively excellent reproducibility can be obtained. The master die 20 is required for each piece, which is expensive. Further, the precision of the fine opening pattern depends on the development performance or thickness of the photoresist 21, and a portion of the developed photoresist 21 is not exposed as shown in the enlarged view of FIG. In the case where the adhesive force is insufficient, chipping may occur due to peeling from the mother die 20, or defects may occur due to generation of pits 24. Furthermore, during patterning with a photoresist, the fixing property of the photoresist is also affected by the room temperature, exposure time, development conditions, and the like, so it has been necessary to strictly manage them.
[0004]
An object of the present invention is to solve such problems, and is to provide an electroformed thin metal plate that can ensure strength while being thin. Another object of the present invention is to provide a method for producing an electroformed thin metal plate that can be produced easily and accurately at low cost by enabling repeated use of the original plate. In offer.
[0005]
[Means for Solving the Problems]
In the electroformed thin metal plate of the present invention, an opening 1 having a desired pattern is formed in a thin metal plate main body 2 made of a conductive material, and a region in the opening 1 has a plurality of mesh lines 1a. Ribs 3 which are divided into small openings and are continuous with a fine pitch on one side of the thin metal plate body 2 including the mesh line 1a are formed integrally with the thin metal plate body 2 and the mesh line 1a. One rib 3 is formed on each of the mesh lines 1 a provided in the opening 1, and the interval between the mesh lines 1 a is formed on the thin metal plate body 2 other than the opening 1. It is characterized by being set to be larger than the adjacent interval p of the ribs 3 .
[0006]
In the present invention, when the electroformed thin metal plate having the above-described structure is manufactured, a fine groove 6 corresponding to the pattern of the rib 3 is formed on the surface of the non-conductive original plate 4 including the portion to be the opening 1. Forming a mesh at a fine pitch, forming a conductive plating base 8 only in the groove 6 of the original plate 4, and using the plating base 8 in the groove 6 of the original plate 4 as an electrode. The cast metal is grown to form the mesh-like ribs 3 with a fine pitch in the grooves 6 of the original plate 4, and the mesh line 1 a is not connected to the portion of the surface of the original plate 4 that becomes the opening 1. In this way, the mesh line 1a is formed integrally with the rib 3, and the thin metal plate body 2 that connects the ribs 3 is formed on the surface of the original plate 4 other than the opening 1, and the mesh line 1a. The thin metal plate main body 2 including And wherein the door.
[0007]
[Action]
If the continuous ribs 3 are formed on one surface of the thin metal plate main body 2 at a minute pitch, a thin metal plate having an appropriate strength, particularly a bending strength, can be obtained even if it is thin.
[0008]
When manufacturing a thin metal plate, the original plate 4 after peeling the thin metal plate main body 2 can be reused. Without using a photoresist such as a conventional metal mask by electroforming as described above, the base plate 4 having the fine grooves 6 or the recesses 9 group is used, and the plating base 8 is formed in the grooves 6 or the recesses 9 to make the electrolysis. Because it is cast, regardless of the developability of photoresist, thickness, and condition management during patterning, there is no decrease in the adhesion between the matrix and the photoresist, and pits are not generated especially at the periphery of the opening 2, and the pattern Since the formed original plate can be reused repeatedly, a highly precise and fine aperture pattern with excellent reproducibility in dimensional accuracy and the like is obtained.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
( Reference example)
FIGS. 1 to 3 show reference examples when the present invention is applied to a printing metal mask. FIG. 1 shows a part of a metal mask for printing, which is a thin metal plate body having a desired pattern of openings 1, that is, a continuous rib 3 formed at a minute pitch on the printing surface 2a side of a mask substrate 2. ing. The rib 3 needs to be formed continuously and with a conductive material in order to serve as an electrode (cathode) during electroforming of the metal mask. For example, the thickness t of the mask substrate 2 is 50 μm. The opening width w of the opening 1 varies depending on the shape and size of the pattern, but is, for example, 30 to 70 μm. The rib 3 is formed in a mesh shape, the protruding height h of the rib 3 from the printing surface 2 a of the mask substrate 2 is 0.5 to 2 μm, the width q of the rib 3 is 5 to 10 μm, and the rib 3 and the rib 3 The interval p is 5 to 10 μm.
[0010]
FIGS. 2A to 2G show process diagrams for obtaining an electroformed product of such a printing metal mask. First, as shown in FIG. 2 (A), a chrome thin film is uniformly formed on one surface side of the glass original plate 4 by a method such as sputtering, and an EB drawing or pattern is formed on the surface of the chromium thin film of the original plate 4. A chrome mask 5 having a pattern in which the chrome thin film is removed corresponding to the pattern of the rib 3 of the printing metal mask is created by a generator drawing or the like except for the portion corresponding to the pattern of the opening 1. Next, as shown in FIG. 2 (B), the portion of the surface of the original plate 4 not covered with the chromium mask 5 is corroded with a glass corrosive solution containing hydrofluoric acid, and then the chromium film is removed to remove the chromium film. As shown in FIG. 3 and FIG. 3, a fine mesh-like groove 6 corresponding to the pattern of the rib 3 is formed in a portion excluding the portion to be the opening 1 of the printing metal mask. For example, the opening width a of the groove 6 is 10 μm, the interval b between the groove 6 and the groove 6 is 10 μm, and the depth d of the groove 6 is 0.7 μm. The portion corresponding to the opening 1 is a flat portion where the groove 6 does not exist, depending on the shape and size of the pattern.
Next, as shown in FIG. 2D, a silver thin film 7 is formed on the surface of the original plate 4 and in the groove 6 by chemical plating such as silver mirror reaction. Next, by removing only the silver thin film 7 on the surface of the original plate 4 with a sponge soaked with water, a conductive plating base 8 made of a silver thin film is formed only in the groove 6 as shown in FIG. To do.
[0011]
Next, in a normal nickel sulfamate bath, using the plating base 8 in the continuous groove 6 as an electrode, nickel is grown from the plating base 8 to form the groove 6 of the original plate 4 as shown in FIG. The inner plating base 8 is electroformed to a height exceeding the depth of the groove 6, and the electroformed nickel is allowed to continue to grow after exceeding the depth of the groove 6. The electrocast nickels that exceed the above are continuously connected to form the rib 3 of the metal mask for printing in the groove 6, and the mask substrate 2 that connects the ribs 3 on the surface of the original plate 4, and the opening 1 Form. Since the non-conductive original plate 4 having the fine grooves 6 is used and the plating base 8 is formed in the grooves 6, the ribs 3 and the mask substrate 2 are formed by electrodeposition. Compared to the electroforming method used, a printing metal mask having a precision fine pattern with extremely high dimensional accuracy can be obtained. In particular, the peripheral portion of the opening 1 has a high-precision pattern without pits and chips without being affected by the adhesion state of the resist and the development performance as compared with the case where electroforming is performed by patterning a photoresist. Could be formed.
An example of the composition and plating conditions of a nickel sulfamate bath is shown.
Nickel sulfamate 450g / l
Nickel chloride 40g / l
Boric acid 30g / l
Bath temperature 50 ° C
pH 4.0-4.5
Current density 5A / dm 2
[0012]
Next, the mask substrate 2 is peeled off from the original plate 4 together with the ribs 3 (FIG. 2G). At that time, since the adhesive base with the original plate 4 is weak, the chemical-plated silver-plated plating base 8 is peeled off from the original plate 4 while adhering to the rib 3 side. After peeling, the plating base 8 attached to the rib 3 can be removed from the rib 3 by anodic electrolysis with sodium cyanide. By removing the plating base 8, it is possible to obtain the rib 3 having a protruding height that is lower by the thickness of the plating base 8. However, it is not always necessary to remove the plating base 8, and it can be used while being attached to the rib 3.
[0013]
Since the printing metal mask thus obtained has the continuous ribs 3 formed on the printing surface side of the mask substrate 2 at a minute pitch, the thin metal mask can ensure the bending strength. Also, the metal mask for printing is stretched on the mask frame during screen printing and then placed on a printed material such as a printed circuit board (printing object), and the cream solder is moved to the opening 1 of the metal mask by moving the squeegee. It is filled and transferred to the substrate. At this time, since the rib 3 is formed on the printing surface of the metal mask, it is in close contact with the substrate via the rib 3, so that it can be easily separated from the substrate. It is excellent in releasability, and can easily stick to the mask frame and can be firmly framed. Furthermore, the particle size of conductive paste such as cream solder or tungsten paste to be printed is about 5 to 6 μm, but the rib 3 is formed to a very small height of about 0.5 to 2 μm with respect to the mask substrate 2. Therefore, there is no risk of bleeding due to the conductive paste wrapping around, and high-precision printing is possible.
[0014]
(First Embodiment)
4 to 7 show a first embodiment of the present invention. This embodiment is the same as the reference example except that each opening 1 is formed in a mesh shape. That is, the printing metal mask of this embodiment has a mesh-like rib 3 formed on the printing surface side of the mesh substrate 1 and the mesh line 1a in the opening 1, as shown in part in FIG. The mesh of 1a is formed larger than the mesh size of the rib 3. For example, when screen printing is performed using this metal mask, a conductive paste such as ink or cream solder is discharged from the mesh-shaped opening 1. When the opening 1 is formed in a mesh shape, even when the opening 1 is formed with a large opening width such as a long hole, the mask substrate 2 may be covered with the opening 1 due to the reinforcing function by the mesh line 1a. In addition, the strength can be ensured, the handling can be easily performed, and high-precision printing is possible. Further, as shown in FIG. 7, the opening 1 can be formed in a ring shape having a land portion independent of the mask substrate 2 in the center of the opening 1. Further, as a mesh-integrated metal mask, the amount of printing of the conductive paste or the like through the opening 1 can be regulated by the mesh line 1a, and high-precision printing can be performed.
[0015]
FIGS. 5A to 5G are process diagrams for obtaining such a metal mask electroformed product. As shown in FIG. 5C and FIG. 6, a glass original plate 4 in which grooves 6 having fine groove widths corresponding to the patterns of the ribs 3 and the openings 1 are formed. As a manufacturing method of the original plate 4, as in the case of the reference example, EB drawing or the like is used (FIGS. 5A and 5B). The opening width a of the groove 6, the distance b between the grooves 6 and 6, and the depth d of the groove 6 are the same as those in the reference example. In this embodiment, the opening width w of the opening 1 is a pattern set to 0.5 to 5 mm. The interval between the mesh line 1a and the mesh line 1a of the opening 1 is larger than the interval b of the groove 6 and is, for example, 50 to 500 μm. Next, as shown in FIG. 5E, a conductive plating base 8 is formed in the mesh-like grooves 6 of the original plate 4. As in the case of the reference example, the silver thin film 7 formed by chemical plating as shown in FIG. 5D is removed only with the sponge, and the plating base 8 made of the silver thin film 7 is formed only in the groove 6. Form.
[0016]
Next, in a normal nickel sulfamate bath, the mesh-like rib 3 and the mesh-like opening 1 are formed by electroforming the plating base 8 in the groove 6 of the original plate 4 as shown in FIG. 5 (F). A mask substrate 2 having electrodeposition is formed. At that time, the amount of metal electrodeposited per unit area is substantially constant, and the mesh interval of the mesh line 1a of the opening 1 is set several times to several tens of times larger than the interval of the ribs 3. By simply growing the mesh line 1a of the opening 1 into a mushroom cross section with ribs 3 on the printing surface side, the mesh line 1a is not connected to each other, and the opening 1 can be formed in a mesh shape. In this case, the composition and plating conditions of the nickel sulfamate bath are the same as in the reference example. Finally, as shown in FIG. 5G, the mask substrate 2 is peeled from the original plate 4 together with the ribs 3 and the mesh lines 1a.
[0017]
(Other embodiments)
Forms a silver thin film 7 on the surface of the master plate 4 with a chemical plating of silver mirror reaction and the like in forming a plating base 8 for the actual施例like described above, palladium by sputtering on the surface of the master plate 4 instead of this, gold Alternatively, a conductive thin film such as silver may be formed. In this case, by polishing the surface of the original plate 4, only the conductive thin film on the surface of the original plate 4 except for the inside of the groove 6 is removed, and the plating base 8 is formed leaving the conductive thin film only in the groove 6. . As the electroformed metal grown from the plating base 8, in addition to nickel, various nickel alloys such as a nickel-codolto alloy and copper can be considered. In addition to glass, the original plate 4 can also be formed of a nonconductive material such as ceramic or synthetic resin.
[0018]
Although the grooves 6 in the original plate 4 for the actual施例like described above are formed in the vertical line and the mesh-like obtained by cross horizontal lines, in addition to this, the vertical lines only, or may be only horizontal. However, in the case where the grooves 6 are only the vertical lines or only the horizontal lines, it is necessary to form a conduction groove that crosses the grooves 6 and 6 formed in the original plate 4 in order to achieve electrical conduction during electroforming. . In addition, instead of attaching the groove 6 to the original plate 4 except for the portion that becomes the opening 1, a plurality of groups of minute recesses 9 may be attached in a chain. That is, after forming a photoresist film 10 at a location corresponding to the pattern of the opening 1 on the surface of the original plate 4 as in the second embodiment shown in FIG. 8, shot blast is sprayed on the surface of the original plate 4, By forming the surface of the original plate 4 other than the portion covered with the photoresist film 10 into a ground glass shape, a group of minute recesses 9 are formed in a chain on the entire surface other than the photoresist film 10 corresponding to the opening 1. You may do. Alternatively, the portion corresponding to the pattern of the opening 1 on the surface of the original plate 4 is masked with chrome or the like, and then etched with hydrofluoric acid or the like to be processed into a rough surface with irregular irregularities. 9 may be formed in a chain form on the entire surface other than the photoresist film 10 corresponding to. The photoresist film 10 and the masking film such as chrome are then removed to expose a portion corresponding to the opening 1. The formation of a plating base 8 made of a conductive thin film of silver or the like in a large number of chain-like minute recesses 9 formed in this way, the growth of electroforming from the plating base 8, etc. This is exactly the same as the case of the groove 6 in the embodiment.
[0019]
In addition to the above-described printing metal mask, the electroformed thin metal plate can be similarly applied to an IC lead frame, an inkjet nozzle, a vapor deposition mask, a sheet coil, a thin flat antenna, a rotary encoder, and the like. In that case, an ultra-thin metal plate product having a total metal plate thickness including the protrusion height h (0.5 to 1 μm) of the rib 3 of about 3 μm can be realized.
[0020]
【The invention's effect】
According to the electroformed thin metal plate of the present invention, the continuous ribs 3 are integrally formed on one surface of the thin metal plate main body 2 at a minute pitch, so that the thin metal having openings 1 having a desired pattern. Also suitable for electroformed products such as metal masks for printing, IC lead frames, inkjet nozzles, masks for vapor deposition, sheet coils, thin planar antennas, rotary encoders, etc. .
[0021]
According to the method for producing an electroformed thin metal plate of the present invention, the original plate 4 having a fine groove 6 or a concave portion 9 is used in a portion other than the portion to be the opening 1 of the thin metal plate, and the groove 6 is used. Alternatively, after the plating base 8 is formed in the recess 9, the rib 3 and the thin metal plate body 2 are electrodeposited by growing from the plating base 8, so that compared with the conventional electroforming method using a photoresist. Thus, a thin metal plate having a precise fine pattern with extremely high dimensional accuracy can be obtained. In particular, the peripheral portion of the opening 1 has a high-precision pattern without pits and chips without being affected by the adhesion state of the resist and the development performance as compared with the case where electroforming is performed by patterning a photoresist. Can be formed.
[0022]
Further, after electroforming the thin metal plate body 2, it is conceivable to form the rib 3 on one side thereof by etching or the like. However, in this case, the hole wall surface of the opening 1 formed with high precision is roughened by the etching solution. However, it is possible to easily obtain a highly accurate thin metal plate without such problems.
Moreover, the original plate 4 can be used repeatedly, and the manufacturing cost can be reduced. By using the same original plate 4, a stable thin metal plate with little variation can be obtained as long as the electroforming bath is strictly controlled.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a part of a metal mask for printing of a reference example in a cutaway manner.
FIG. 2 is a manufacturing process diagram of a printing metal mask of a reference example.
FIG. 3 is a perspective view of a part of an original plate used in a reference example.
FIG. 4 is a perspective view showing a part of the metal mask for printing according to the first embodiment in a cutaway manner.
FIG. 5 is a manufacturing process diagram of the printing metal mask of the first embodiment.
FIG. 6 is a perspective view of a part of an original plate used in the first embodiment.
7 is an enlarged plan view of a part of another example of the opening of the printing metal mask according to the first embodiment as viewed from the printing surface side. FIG.
FIG. 8 is a partial perspective view showing a surface state of an original plate according to a second embodiment.
FIG. 9 is a manufacturing process diagram of a conventional electroformed product.
[Explanation of symbols]
1 Opening 2 Thin metal plate body (for example, mask substrate)
3 Rib 4 Original plate 6 Groove 8 Plating substrate 9 Minute recess

Claims (2)

導電性材料からなる薄状金属板本体(2)に所望パターンの開口部(1)が形成されており、
開口部(1)内の領域は、網目線(1a)によって複数の小さな開口領域に区切られており、
網目線(1a)を含む薄状金属板本体(2)の片面に、微小ピッチで網目状に連続するリブ(3)が、薄状金属板本体(2)および網目線(1a)と一体に形成されており、
前記開口部(1)に設けられる網目線(1a)のそれぞれに一本のリブが形成されるとともに、網目線(1a)の間隔が、前記開口部(1)以外の薄状金属板本体(2)に形成されたリブ(3)の隣接間隔(p)よりも大きく設定してあることを特徴とする電鋳製薄状金属板。
An opening (1) having a desired pattern is formed in the thin metal plate body (2) made of a conductive material,
The region in the opening (1) is divided into a plurality of small opening regions by a mesh line (1a),
On one side of the thin metal plate body (2) including the mesh line (1a), a rib (3) continuous in a mesh pattern at a fine pitch is integrated with the thin metal plate body (2) and the mesh line (1a). Formed,
A rib ( 3 ) is formed on each of the mesh lines (1 a) provided in the opening (1), and the interval between the mesh lines (1 a) is a thin metal other than the opening (1). An electroformed thin metal plate, which is set to be larger than an interval (p) between adjacent ribs (3) formed on the plate body (2).
請求項1に記載の電鋳製薄状金属板の製造方法であって、
前記開口部(1)となる部分を含む非電導性の原板(4)の表面に、前記リブ(3)のパターンに対応する微細な溝(6)を微小ピッチで網目状に形成する工程と、
前記原板(4)の溝(6)内のみに導電性のメッキ用下地(8)を形成する工程と、
前記原板(4)の溝(6)内のメッキ用下地(8)を電極として電鋳金属を成長させて、原板(4)の溝(6)内に微小ピッチで網目状のリブ(3)を形成し、さらに、原板(4)の表面の、前記開口部(1)となる部分には、網目線(1a)どうしがつながらないようにリブ(3)と一体に網目線(1a)を形成し、原板(4)の表面の、前記開口部(1)以外の部分には、リブ(3)どうしをつなぐ薄状金属板本体(2)を形成する工程と、
網目線(1a)を含む薄状金属板本体(2)を、リブ(3)ごと原板(4)から剥離する工程からなる電鋳製薄状金属板の製造方法。
A method for producing an electroformed thin metal plate according to claim 1,
Forming a fine groove (6) corresponding to the pattern of the rib (3) in a mesh pattern at a fine pitch on the surface of the non-conductive original plate (4) including a portion to be the opening (1); ,
Forming a conductive plating base (8) only in the groove (6) of the original plate (4);
An electroformed metal is grown using the plating base (8) in the groove (6) of the original plate (4) as an electrode, and a mesh-like rib (3) is formed in the groove (6) of the original plate (4) with a fine pitch. In addition, the mesh line (1a) is formed integrally with the rib (3) so that the mesh line (1a) is not connected to the portion of the surface of the original plate (4) to be the opening (1). And forming a thin metal plate body (2) connecting the ribs (3) to the surface of the original plate (4) other than the opening (1),
A method for producing an electroformed thin metal plate comprising a step of peeling a thin metal plate body (2) including a mesh line (1a) together with a rib (3) from an original plate (4).
JP18410796A 1996-03-14 1996-06-24 Electroformed thin metal plate and manufacturing method thereof Expired - Fee Related JP3939785B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP18410796A JP3939785B2 (en) 1996-03-14 1996-06-24 Electroformed thin metal plate and manufacturing method thereof
DE1997126869 DE19726869A1 (en) 1996-06-24 1997-06-24 Thin metal plate used as printed wiring for LSI, lead frame of IC

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8733496 1996-03-14
JP8-87334 1996-03-14
JP18410796A JP3939785B2 (en) 1996-03-14 1996-06-24 Electroformed thin metal plate and manufacturing method thereof

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2000080938A Division JP2000301727A (en) 1996-03-14 2000-03-22 Production of nozzle substrate for ink jet nozzle
JP2003270344A Division JP3771229B2 (en) 1996-03-14 2003-07-02 Method for manufacturing nozzle substrate for inkjet nozzle

Publications (2)

Publication Number Publication Date
JPH09300573A JPH09300573A (en) 1997-11-25
JP3939785B2 true JP3939785B2 (en) 2007-07-04

Family

ID=26428622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18410796A Expired - Fee Related JP3939785B2 (en) 1996-03-14 1996-06-24 Electroformed thin metal plate and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3939785B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100813832B1 (en) * 2002-05-31 2008-03-17 삼성에스디아이 주식회사 Mask frame assembly for an evaporation and method of manufacturing the same
TW200906250A (en) * 2007-07-27 2009-02-01 Samsung Electro Mech Mask for screen printing and screen printing method using the same
JP5572303B2 (en) * 2008-11-04 2014-08-13 株式会社ボンマーク Metal mask for screen printing and manufacturing method thereof
DE102010021062A1 (en) * 2010-05-19 2011-11-24 Gallus Ferd. Rüesch AG Flat screen material and sieve
JP5561110B2 (en) * 2010-11-10 2014-07-30 日本電気株式会社 Multilayer wiring structure and manufacturing method
JP2018202748A (en) * 2017-06-05 2018-12-27 株式会社ボンマーク Metal mask, metal mesh, metal mask for ball array, and method of manufacturing them

Also Published As

Publication number Publication date
JPH09300573A (en) 1997-11-25

Similar Documents

Publication Publication Date Title
EP0604205A2 (en) Lead frame and method for manufacturing it
EP0470232A1 (en) Three dimensional plating or etching process and masks therefor
US3703450A (en) Method of making precision conductive mesh patterns
JP3939785B2 (en) Electroformed thin metal plate and manufacturing method thereof
JPH08183151A (en) Manufacture of mesh-integrated metal mask
JP3865085B2 (en) Manufacturing method of electroformed product
US5462648A (en) Method for fabricating a metal member having a plurality of fine holes
JP3136691B2 (en) Screen printing plate manufacturing method
JP2003264359A (en) Method for manufacturing microwave circuit base
JPH0692053A (en) Production of metal mask plate for printing
JPH05220920A (en) Production of metal mask plate for printing
JP2004025709A (en) Screen printing plate and method for manufacturing it
US20060243700A1 (en) Composite electroformed screening mask and method of making the same
JP3771229B2 (en) Method for manufacturing nozzle substrate for inkjet nozzle
JP4863244B2 (en) Metal mask for printing
JP3427332B2 (en) Method for producing electroformed product having precise fine pattern
JP2000301727A (en) Production of nozzle substrate for ink jet nozzle
JP4001973B2 (en) Manufacturing method of metal mask with mesh
JP2003323980A (en) Vapor deposition mask for organic el element and its manufacturing method
JP4674735B2 (en) Method for producing electroformed metal
JP4113906B2 (en) Manufacturing method of mesh-integrated metal mask
JP2987389B2 (en) Method of producing plate-making screen for screen printing
EP0713929A1 (en) Thin film pegless permanent orifice plate mandrel
JP2006159579A (en) Method for manufacturing metal mask plate for printing and metal mask plate for printing
JPH06130676A (en) Production of mask for screen printing

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050705

A131 Notification of reasons for refusal

Effective date: 20060524

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20060720

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20060809

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20061005

Free format text: JAPANESE INTERMEDIATE CODE: A523

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061005

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070111

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Effective date: 20070124

Free format text: JAPANESE INTERMEDIATE CODE: A911

A131 Notification of reasons for refusal

Effective date: 20070227

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070329

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20110406

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20130406

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees