JP3860629B2 - スレオニンアナログ耐性微生物およびビオチンの製造法 - Google Patents

スレオニンアナログ耐性微生物およびビオチンの製造法 Download PDF

Info

Publication number
JP3860629B2
JP3860629B2 JP29155796A JP29155796A JP3860629B2 JP 3860629 B2 JP3860629 B2 JP 3860629B2 JP 29155796 A JP29155796 A JP 29155796A JP 29155796 A JP29155796 A JP 29155796A JP 3860629 B2 JP3860629 B2 JP 3860629B2
Authority
JP
Japan
Prior art keywords
biotin
escherichia coli
culture
microorganism
plasmid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29155796A
Other languages
English (en)
Other versions
JPH09182584A (ja
Inventor
直之 神崎
朋広 河本
純二 松井
一雄 中濱
欧二 伊福
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shiseido Co Ltd
Takeda Pharmaceutical Co Ltd
Original Assignee
Shiseido Co Ltd
Takeda Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shiseido Co Ltd, Takeda Pharmaceutical Co Ltd filed Critical Shiseido Co Ltd
Priority to JP29155796A priority Critical patent/JP3860629B2/ja
Publication of JPH09182584A publication Critical patent/JPH09182584A/ja
Application granted granted Critical
Publication of JP3860629B2 publication Critical patent/JP3860629B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は新規スレオニンアナログ耐性微生物およびこれを利用するビオチンの製造法に関する。本発明により得られるビオチンは、医薬品、化粧品の原料、飼料添加物等として用いられる。
【0002】
【従来の技術】
ビオチン(ビタミンH)はビタミンB群の一種で、カルボキシル化酵素の補酵素として脂肪酸合成や糖代謝に関与している。このビオチンは、医薬品、化粧品の原料または飼料添加物等として化学合成法により、年間約10トン製造されているが、その工程が複雑なことから、かなり高価である。一方、発酵法によるビオチンの生産は古くから研究されているが、生産性が低いため実用化されていない。
そこで遺伝子組換え技術を用いてビオチンを製造し、安価なビオチンを提供する方法が期待されている。これらの製造方法に用いられる遺伝子工学的に改良した微生物としては、エシェリヒア(Escherichia)属に属するものとしてα−デヒドロビオチン耐性株(例、特開昭61−149091号公報等)などが知られている。これらエシェリヒア属に属する微生物以外のものとして以下の微生物が知られている。例えばバチルス(Bacillus)属に属するものとしては、バチルス・スフェリカスを形質転換し、ついでテノイルトリフルオロアセトン耐性を付与した微生物(特開平4−11894号公報)が、あるいは、セラチア(Serratia)属に属するものとしては、セラチア・マルッセンスSB411にエチオニン耐性を付与し、次いでS−アミノエチルシステイン耐性を付与し、その後ビオチン遺伝子断片を含む組換えプラスミドで形質転換させた微生物(特開平5−199867号公報)が、同様にビオチン構造類似物質であるアクチチアジン酸または5−(2−チエニル)−n−吉草酸耐性を付与した形質転換体(特開平2−27980号公報)、ニコチン酸アナログ耐性を付与した形質転換体(特願平6−311778号)などが知られている。
【0003】
【発明が解決しようとする課題】
しかしながら、従来のビオチンの生産方法では、ビオチンの工業的製造には不十分なため、ビオチンの生産性をさらに向上させる生産方法が望まれている。
【0004】
【課題を解決するための手段】
ピメリルCoAからデチオビオチン(ビオチン前駆体)への主合成経路にS−アデノシルメチオニンが必要である。本発明者らは、メチオニンの生合成経路を強化することによって、S−アデノシルメチオニンの供給系が強化され、デチオビオチンおよびビオチンの蓄積量が向上すると予想した。そこで、メチオニンの生合成経路を強化する目的でビオチン生産菌からスレオニンアナログ耐性株を分離し、デチオビオチンおよびビオチン蓄積量が著しく増大した株を取得した。この知見に基づきさらに鋭意検討した結果、本発明を完成した。
すなわち本発明は、
(1)ビオチンオペロンの一部ないし全部を含むプラスミドを有し、スレオニンアナログ耐性を示す微生物、
(2)微生物が、エシェリヒア(Escherichia)属、バチルス(Bacillus)属、またはセラチア(Serratia)属に属する微生物である上記(1)記載の微生物、
(3)スレオニンアナログが、β−ヒドロキシノルバリンである上記(1)記載の微生物、および
(4)上記(1)記載の微生物を培地で培養し、培養物中にビオチンを生成蓄積せしめ、これを採取することを特徴とするビオチンの製造法を提供するものである。
【0005】
スレオニンアナログとしては、例えばβ−ヒドロキシノルバリン等が挙げられる。
ビオチンオペロンとしては、例えばエシェリヒア属、バチルス属、セラチア属由来のビオチンオペロン等が挙げられる。エシェリヒア属由来としてはエシェリヒア・コリ(Escherichia coli)由来のビオチンオペロン(特開昭61−202686号等)が挙げられる。該ビオチンオペロンには、ビオチン生合成に関与するbioA、bioB、bioF、bioC、bioDの5つの遺伝子がコードされている。また、これらのビオチンオペロンの一部を改変したものも本発明では用いることができ、例えば、エシェリヒア・コリのビオチンオペロンの制御領域およびbioB開始コドン近傍のいずれかの塩基配列が野性型に比べて少なくとも1塩基対変異しているもの等が挙げられる。ここでビオチンオペロンの制御領域とは、bioAとbioBの間に存在するr鎖を示す配列表の配列番号1、およびより詳細には図1に示す塩基配列のうちbioB開始コドンATGのAを1として−1番目の塩基対から−86番目の塩基対までの領域をいい、bioB開始コドン近傍とは、bioB開始コドンATGのAを1として1番目の塩基対から6番目の塩基対までの領域をいう。さらに具体的には、bioB開始コドンATGのAを1として上流−53番目、−5番目、下流4番目の少なくともいずれかひとつのGC対がAT対に変異されたもの等が挙げられる(特開平5−219956号)。
【0006】
本発明で用いるプラスミドとしては、例えばエシェリヒア属、バチルス属またはセラチア属に属する微生物に保持され、かつ遺伝子が発現できるものが挙げられる。好ましくはエシェリヒア属に属する微生物に保持されているプラスミドである。該プラスミドとしては、例えばpXBA312(エシェリヒア・コリDRK−3323[pXBA312](FERM BP−2117)由来、特開平2−502065号公報)、pXBRP319[エシェリヒア・コリMM44/pXBRP319(IFO 15721, FERM BP−4724)由来、後述の実施例1参照]、pAT71(エシェリヒア・コリHB/pAT71(FERM BP−5668)由来)およびそれらの誘導体等が挙げられる。
本発明の微生物としては、ビオチンオペロン生成蓄積能を有する微生物であればよく、例えばエシェリヒア(Escherichia)属、バチルス(Bacillus)属またはセラチア(Serratia)属などに属する微生物が挙げられる。このうちエシェリヒア属に属する微生物が好ましい。該微生物としては、例えばエシェリヒア・コリ(Escherichia coli)などが挙げられ、好ましい例としては後述の実施例で得られたエシェリヒア・コリHNV148/pXBRP319(IFO15894、FERM BP−5667)、エシェリヒア・コリHB/pAT71(IFO15895、FERM BP−5668)などが挙げられる。
【0007】
本発明のスレオニンアナログ耐性およびビオチンオペロンの一部ないし全部を含むプラスミドを有する微生物としては、好ましくはスレオニンアナログ耐性およびビオチンオペロンの一部ないし全部を含むプラスミドで形質転換された微生物である。
本発明の微生物は、例えば親株となる微生物にスレオニンアナログ耐性を付与し、得られたスレオニンアナログ耐性株にビオチンオペロンの一部ないし全部を含むプラスミドを導入する、あるいは、親株となる微生物にビオチンオペロンの一部ないし全部を含むプラスミドを導入し、得られた微生物にスレオニンアナログ耐性を付与する、またはビオチンオペロンの一部ないし全部を含むプラスミドを保持している親株となる微生物にスレオニンアナログ耐性を付与することにより得られる。
本発明で用いる親株となる微生物としては、ビオチン生成蓄積能を有する微生物であればいずれでもよく、例えばエシェリヒア(Escherichia)属、バチルス(Bacillus)属またはセラチア(Serratia)属に属する微生物等が挙げられる。エシェリヒア属に属する微生物としては、例えばエシェリヒア・コリ(Escherichia coli)に属する微生物などが挙げられ、具体的にはエシェリヒア・コリ IFO 14410、エシェリヒア・コリ W−3110(IFO 12713)およびその由来株エシェリヒア・コリ DR−85(特開昭61−202686号)、エシェリヒア・コリ DR−332(特開昭62−155081号)、エシェリヒア・コリDRK−3323(特表平2−502065号)、エシェリヒア・コリ BM4062(特表昭64−500081号)、後述の参考例で得られたエシェリヒア・コリ MS10/pXBRP319(IFO 15570, FERM BP−4927)、エシェリヒア・コリANA91/pXBRP319(IFO15771,FERM BP−4928)などが挙げられる。上記のエシェリヒア・コリ IFO 14410およびエシェリヒア・コリ IFO 12713は、リスト・オブ・カルチャーズ(List of Cultures)第9版、1992年(IFO発行)にそれぞれ収載されている公知株であり、財団法人発酵研究所から入手することができる。
【0008】
バチルス属に属する微生物としては、例えばバチルス・スフェリカス(Bacillus sphaericus)に属する微生物などが挙げられ、より具体的にはバチルス・スフェリカスIFO 3525およびその由来株バチルス・スフェリカスNZ−8802(特開平4−11894号)など挙げられる。上記のバチルス・スフェリカスIFO 3525は、リスト・オブ・カルチャーズ(List of Cultures)第9版、1992年(IFO発行)に収載されている公知株であり、財団法人発酵研究所から入手できる。
セラチア属に属する微生物としては、例えばセラチア・マルセッセンス(Serratia marcescens)に属する微生物などが挙げられ、具体例としてはセラチア・マルセッセンスSn 41およびその由来株セラチア・マルセッセンスTA5024(特開平2−27980号)、セラチア・マルセッセンスSB411およびその由来株セラチア・マルセッセンスET2、セラチア・マルセッセンスETA23(特開平5−199867号)などが挙げられる。
上記した微生物は、そのまま用いてもよいが、さらにこれらの変異株を用いてもよい。これらの微生物の中で、ビオチンオペロンの一部ないし全部を含むプラスミドを保持しないものは、必要に応じ、後工程で、ビオチンオペロンの一部ないし全部を含むプラスミドを導入すればよい。
【0009】
スレオニンアナログ耐性株を得る方法としては、自体公知の方法、例えばN−メチル−N'−ニトロ−N−ニトロソグアニジン(N−methyl−N'−nitro−N−nitrosoguanidine, 以下、NTGと略すこともある)などの薬剤で処理する方法、紫外線で照射する方法などが挙げられる。
次に変異処理した菌体の懸濁液を適当な濃度、例えば親株が生育できない濃度のスレオニンアナログを含む培地(例、寒天平板培地)にまき、生育するコロニーを分離することにより容易にスレオニンアナログ耐性株を得ることができる。
上記の方法で得られたスレオニンアナログ耐性株を培養し、培養上清中のビオチンを定量することによりビオチンの蓄積量が向上した菌を選ぶことができる。ビオチンオペロンの一部ないし全部を含むプラスミドを導入する方法としては、自体公知の方法に従って行えばよい。
まず、ビオチンオペロンの一部ないし全部を含むプラスミドを構築する方法としては自体公知の方法、例えば、制限酵素によるDNAの切断、T4DNAリガーゼによるDNAの結合などを行い、目的とするプラスミドを構築する方法[モレキュラー・クローニング,ア・ラボラトリー・マニュアル・コールド・スプリング・ハーバー・ラボラトリー(Molecular Clonig, A Laboratory Manual, Cold Spring Habor Laboratory)1982]等が挙げられる。上記のプラスミドを用いて宿主細菌を形質転換する方法としては、自体公知の方法、例えばエシェリヒア属に属する細菌を宿主とする場合は、上記のモレキュラー・クローニング,ア・ラボラトリー・マニュアル・コールド・スプリング・ハーバー・ラボラトリー(Molecular Cloning A Laboratory Manual, Cold Spring Habor Laboratory), 1982に記載されている方法等が挙げられる。上記の方法でスレオニンアナログ耐性微生物が得られるが、これらの微生物はそのまま用いても良いが、さらに変異処理したり、プラスミドを改良したものを用いても良い。
【0010】
上記の方法により得られた本発明の微生物を培地で培養し、ビオチンを培地に生成させる。
本発明の培養に用いられる培地は、用いられる微生物が利用し得る栄養源を含むものなら、液状でも固状でもよいが、大量に処理するとこには液体培地を用いるのがより適当である。培地には同化し得る炭素源、消化し得る窒素源、無機物質、微量栄養素等が適宜配合される。炭素源としては、例えばブドウ糖、乳糖、ショ糖、麦芽糖、デキストリン、澱粉、マンニトール、ソルビトール、グリセロール、油脂類(例、大豆油、オリーブ油、ヌカ油、ごま油、ラード油、チキン油など)、各種脂肪酸(例、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、オレイン酸など)等が用いられる。窒素源としては、例えば肉エキス、酵母エキス、乾燥酵母、大豆粉、脱脂大豆粉、コーンスチープリカー、ペプトン、綿実粉、癈糖蜜、尿素、チオ尿素、アンモニア、アンモニウム塩類(例、硫酸アンモニウム、塩化アンモニウム、硝酸アンモニウム、酢酸アンモニウムなど)等が用いられる。さらにナトリウム、カリウム、カルシウム、マグネシウムなどを含む塩類、鉄、マンガン、亜鉛、コバルト、ニッケルなどの金属塩類、リン酸、ホウ酸などの塩類、酢酸、プロピオン酸などの有機酸の塩類が適宜用いられる。さらに、アミノ酸(例、グルタミン酸、アスパラギン酸、アラニン、リジン、バリン、メチオニン、プロリン等)、ペプチド(例、ジペプチド、トリペプチド等)、ビタミン類(例、B1、B2、ニコチン酸、B12、C等)、核酸類(例、プリン、ピリミジンおよびその誘導体)等を用いてもよい。培地のpHを調節する目的で無機または有機の酸、アルカリ類等を加えてもよく、あるいは消泡の目的で油脂類、表面活性剤等の適量が使用される。培地のpHは約4〜10が好ましく、特にpH約6〜9が好ましい。
【0011】
培養の手段としては静置培養、振とう培養、通気撹拌培養のいずれでもよい。大量の培養の際は通気撹拌培養が好ましい。培養の温度は15〜42℃、好ましくは30〜37℃である。培養時間は培養条件によって適宜選択されるが1〜10日、好ましくは2〜4日である。
培養方法としては自体公知の方法、例えばバッチ培養、フィード培養などが挙げられる。
得られた培養液を遠心分離し、その上清に蓄積されたビオチンを定量する。ビオチンの定量方法としては、自体公知の方法に従えばよく、例えば、ラクトバチルス・プランタルム(Lactobacillus plantarum)を定量菌とするバイオアッセイ法(「ザ・ビタミンズ」(The Vitamins), 第7巻、303頁(1967)、「ビタミン学、実験法[II]」475頁、日本ビタミン学会編(1985年)等)等が挙げられる。
上記の方法で微生物を培養し、培養物中にビオチンを生成蓄積させ、次のこの培養物からビオチンを採取する。生成したビオチンは主として培養濾液中に存在するので、培養液を自体公知の方法(例、濾過、遠心分離等)により濾液と菌体を分離し、得られた濾液からビオチンを分離、精製するのが有利である。また、培養液から直接に精製してもよい。
上記の分離、精製する方法としては、例えば、適当な溶媒に対する溶解性および溶解度の差、溶液からの析出法および析出速度の差、種々の吸収親和力の差、イオン交換体によるイオン交換クロマトグラフィーあるいは減圧濃縮、凍結乾燥、結晶化、再結晶、乾燥などの手段が単独あるいは任意の順序に組み合わせて、または反復して利用される。
本発明で得られるビオチンは、医薬品や化粧品の原料、飼料添加物等として使用しうる。
【0012】
【実施例】
以下に参考例および実施例を挙げて本発明をさらに具体的に説明する。培地中の%はW/V%を示す。
下記参考例で得られたエシェリヒア・コリ(Escherichia coli)MS10/pXBRP319およびエシェリヒア・コリ(Escherichia coli)ANA91/pXBRP319は、1994年12月2日より各々受託番号IFO 15770およびIFO 15771として財団法人発酵研究所(IFO)に寄託され、また1994年12月12日よりブタペスト条約下受託番号 FERM BP−4927およびFERM BP−4928として通商産業省工業技術院生命工学工業技術研究所にそれぞれ寄託されている。
また、下記実施例で得られたエシェリヒア・コリ(Escherichia coli)HNV148/pXBRP319およびエシェリヒア・コリ(Escherichia coli)HB/pAT71は、1995年10月30日より、それぞれ受託番号 FERM BP−5667およびFERM BP−5668として通商産業省工業技術院生命工学工業技術研究所に寄託されている。
【0013】
参考例1
(1)エシェリヒア・コリDRK−3323/pXBA312(FERM BP−2117)(特表平2−502065号)から単離したプラスミドpXBA312(図2参照)を制限酵素EcoRIで切断した後、PstIで部分分解し、アガロースゲル電気泳動、電気溶出法により完全長のビオチンオペロンを含むEcoRI−PstI断片(6.0Kbp)を単離した。得られたpXBA312のEcoRI−PstI断片とプラスミドpBR322のEcoRI−PstI断片(3.6Kbp)とを連結してプラスミドpXBA319を得た。
プラスミドpMW119(ニッポンジーン、日本)を制限酵素AatIIとAvaIで切断後、アガロースゲル電気泳動と電気溶出法により、AatII−AvaI断片(0.4Kbp)を得、次いでブランティングキット(宝酒造、日本)を用いて、AatII−AvaI断片の両端を平滑化した。得られたAatII−AvaI断片をpXBR319のSmaI部位に連結することによりプラスミドpXBRP319を得た。
(2)エシェリヒア・コリ IFO 14410[(財)発酵研究所より入手]をNTGで変異処理して得られた優良株に上記(1)で得られたプラスミドpXBRP319を導入し、さらにNTGで変異処理したのち各種の薬剤耐性株を分離した。この中からビオチン蓄積量が多い菌株を選び、エシェリヒア・コリMM44/pXBRP319(FERM BP−4724)を得た。
(3)上記(2)で得られたエシェリヒア・コリMM44/pXBRP319を20mlの2xYT培地(酵母エキス10g/L、ペプトン16g/Lおよび塩化ナトリウム5g/L含有)に接種し、37℃で16時間振とう培養した。得られた培養液の0.2mlを20mlの2xYT培地に移し、37℃で6時間振とう培養した。得られた培養液を遠心分離し、集められた菌体をTM緩衝液(マレイン酸5.08g/L、トリス6.05g/L、pH6.0)で2回洗浄した。この洗浄菌体を200μg/mlのNTGを含むTM緩衝液に懸濁し、37℃で25分間処理した。遠心分離して処理菌体を集め、TM緩衝液で2回洗浄したのち、同じ緩衝液に懸濁した。得られた懸濁液を、1mg/ml β−クロロ−D−アラニン、4μg/mlチアミン塩酸塩および20μg/mlカザミノ酸を含むM9最少培地の寒天平板にまき、37℃で5日間放置することによってβ−クロロ−D−アラニン耐性株のコロニーが出現し、このうち1株を選び、エシェリヒア・コリBD10/pXBRP319(FERM BP−4725)を得た。
(4)上記(3)で得られたエシェリヒア・コリ BD10/pXBRP319(FERM BP−4725)をNTGで変異処理したのち各種の薬剤耐性株を分離した。この中からビオチン蓄積量が多い菌株を選び、エシェリヒア・コリMS10/pXBRP319を得た。
(5)上記(4)で得られたエシェリヒア・コリMS10/pXBRP319を20mlの2xYT培地(酵母エキス10g/L、ペプトン16g/Lおよび塩化ナトリウム5g/L含有)に接種し、37℃で16時間振とう培養した。得られた培養液の0.2mlを20mlの2xYT培地に移し、37℃で6時間振とう培養した。得られた培養液を遠心分離し、集められた菌体をTM緩衝液(マレイン酸5.08g/L、トリス6.05g/L、pH6.0)で2回洗浄した。この洗浄菌体を200μg/mlのNTGを含むTM緩衝液に懸濁し、37℃で25分間処理した。遠心分離して処理菌体を集め、TM緩衝液で2回洗浄したのち、同じ緩衝液に懸濁した。得られた懸濁液を、30μg/ml 6−アミノニコチンアミド、4μg/mlチアミン塩酸塩および20μg/mlカザミノ酸を含むM9最少培地の寒天平板にまき、37℃で5日間放置することによって6−アミノニコチンアミド耐性株のコロニーが出現した。このうち1株を選び、エシェリヒア・コリANA91/pXBRP319と命名した。
【0014】
参考例2
参考例1で得られたエシェリヒア・コリANA91/pXBRP319をグルコース2%、炭酸カルシウム1%、コーンスティープリカー4%、硫安0.4%、KH2PO4 0.1%、K2HPO4 0.2%およびMgSO4・7H2O 0.01%からなる種培地(pH7.1)30mlを含む200ml容ひだ付フラスコで37℃で16時間振とう培養した。得られた培養液の0.6mlをグルコース5%、コーンスティープリカー5%、硫安0.2%、DL−アラニン0.3%、KH2PO4 0.1%、K2HPO4 0.2%、MgSO4・7H2O 0.01%、FeSO4・7H2O 0.001%、MnSO4・4〜6H2O 0.001%およびチアミン塩酸塩0.002%からなる種培地(pH7.1)30mlを含む200ml容ひだ付フラスコに移し、37℃で30時間振とう(220回転/分)培養した。培養後の培養液を遠心分離し、培養上清中のビオチンを定量したところ、160mg/mlのビオチンが蓄積していることがわかった。
【0015】
実施例1
参考例1で得られたエシェリヒア・コリANA91/pXBRP319を20mlの2×YT培地(酵母エキス10g/L、ペプトン16g/Lおよび塩化ナトリウム5g/L含有)に接種し、37℃で16時間振とう培養した。得られた培養液の0.2mlを20mlの2×YT培地に移し、37℃で6時間振とう培養した。得られた培養液を遠心分離し、集められた菌体をTM緩衝液(マレイン酸5.08g/L、トリス6.05g/L、pH6.0)で2回洗浄した。この洗浄菌体を200μg/mlのNTGを含むTM緩衝液に懸濁し、37℃で25分間処理した。遠心分離して処理菌体を集め、TM緩衝液で2回洗浄したのち、同じ緩衝液に懸濁した。得られた懸濁液を、2g/Lのβ−ヒドロキシノルバリンを含むM9最少培地の寒天平板にまき、37℃で5日間放置することによってβ−ヒドロキシノルバリン耐性株のコロニーが出現した。このうち1株を選び、エシェリヒア・コリHNV148/pXBRP319(FERM BP−5667、IFO15894)と命名した。
【0016】
実施例2
実施例1で得られたエシェリヒア・コリHNV148/pXBRP319をグルコース2%、炭酸カルシウム1%、コーンスティープリカー4%、硫安0.4%、KH2PO4 0.1%、K2HPO4 0.2%およびMgSO4・7H2O 0.01%からなる種培地(pH7.1)30mlを含む200ml容ひだ付フラスコで37℃、220回転/分で16時間振とう(220回転/分)培養した。得られた培養液の0.6mlをグルコース5%、コーンスティープリカー5%、炭酸カルシウム2%、硫安0.2%、DL−アラニン0.3%、KH2PO4 0.1%、K2HPO4 0.2%、MgSO4・7H2O 0.01%、FeSO4・7H2O 0.003%、MnSO4・4〜6H2O 0.003%およびチアミン塩酸塩0.002%からなる主培地(pH7.1)30mlを含む200ml容ひだ付フラスコに移し、37℃で30時間振とう(220回転/分)培養した。培養後、培養液を遠心分離し、得られた培養上清中のビオチン蓄積量をラクトバチルス・プランタルムIFO 3070を定量菌としてバイオアッセイ法により定量したところ、175mg/Lであった。親株を同条件下で培養したところ、160mg/Lに過ぎなかった。
【0017】
実施例3
実施例1で得られたエシェリヒア・コリHNV148/pXBRP319をグルコース2%、炭酸カルシウム1%、コーンスティープリカー4%、硫安0.4%、KH2PO4 0.1%、K2HPO4 0.2%、MgSO4・7H2O 0.01%、FeSO4・7H2O 0.05%、チアミン塩酸塩0.002%およびテトラサイクリン塩酸塩0.0012%からなる種培地(pH7.1)125mlを含む500ml容ひだ付フラスコで37℃、210回転/分で16時間振とう培養した。得られた培養液全量をグルコース3%、コーンスティープリカー6%、硫安0.2%、KH2PO4 0.1%、K2HPO4 0.2%、MgSO4・7H2O 0.02%、DL−アラニン0.3%、MnSO4・4〜6H2O 0.003%、FeSO4・7H2O 0.003%、Fe2(SO4)3・nH2O 0.02%、チアミン塩酸塩0.002%、25%アンモニア水1.6ml/Lおよびアクトコール(武田薬品工業(株)製、消泡剤)0.02%からなる主培地(pH7.1)2.5Lに移し、5L容ジャーファーメンタ中で37℃、通気量2.5L/分で培養した。撹拌数は菌体量に比例して、550回転から850回転まで上昇していき、また、グルコース濃度は0.1から0.5%の範囲になるように66.7%グルコース水溶液を連続添加した。培養中はpHが6.5から7.0の範囲になるように25%アンモニア水で制御し、また、泡がたたないように適宜アクトコールを添加した。このようにして、72時間培養した結果、ビオチン710mg/Lを含む培養液が得られた。
【0018】
実施例4
(1)プラスミドpAMP72(特開平5−219956)を制限酵素NcoIとEcoT22Iで完全分解し、ビオチンオペロンのプロモータを含む1kb断片をアガロースゲル電気泳動で分離、回収した。その一方でpXBRP319を同様にNcoIとEcoT22Iで完全消化し、約10kbの断片を回収し、先の1kb断片と連結することによりプラスミドpXBRP71を作製した。
(2)(1)で作製したプラスミドpXBRP71を制限酵素EcoRIとSalIで完全消化し、アガロースゲル電気泳動後、ビオチンオペロンを含む7kb断片を得た。
その一方で、プラスミドpBR322(宝酒造(株)製)を制限酵素AvaIで完全に分解した後、エタノール沈澱し、ブランティングキット(宝酒造(株)製)で平滑化した。熱失活後、制限酵素EcoRIで完全消化し、アガロースゲル電気泳動で分離し、テトラサイクリン耐性遺伝子を含む1.4kb断片を得た。また、プラスミドpSTV28(宝酒造(株)製)を制限酵素XmnIとSalIで完全消化し、複製開始点を含む1.1kb断片を得た。以上で得られた3断片を連結し、プラスミドpAT71を作製した。
(3)実施例1で得たエシェリヒア・コリHNV148/pXBRP319から継代培養でプラスミドpXBRP319が脱落した株、HNV148を得た。得られたHNV148をチアミンを含まないM9最少寒天平板培地にまき、37℃で4日間放置することによって、チアミン非要求性株を得た。このうちの1株を選び、エシェリヒア・コリHBと命名した。
(4)(3)で得られたエシェリヒア・コリHB株に(2)で作製したプラスミドpAT71を導入し、エシェリヒア・コリHB/pAT71(IFO15895)を得た。
【0019】
実施例5
実施例4で得られたエシェリヒア・コリHB/pAT71をグルコース2%、炭酸カルシウム1%、コーンスティープリカー4%、硫安0.4%、KH2PO40.1%、K2HPO4 0.2%およびMgSO4・7H2O 0.01%からなる種培地(pH7.1)30mlを含む200ml容ひだ付フラスコで37℃、220回転/分で16時間振とう培養した。得られた培養液の0.6mlをグルコース5%、コーンスティープリカー5%、炭酸カルシウム2%、硫安0.2%、DL−アラニン0.3%、KH2PO4 0.1%、K2HPO4 0.2%、MgSO4・7H2O 0.01%、FeSO4・7H2O 0.003%、MnSO4・4〜6H2O 0.003%およびチアミン塩酸塩0.002%からなる主培地(pH7.1)30mlを含む200ml容ひだ付フラスコに移し、37℃、220回転/分で30時間振とう培養した。培養後、培養液を遠心分離し、得られた培養上清中のビオチン蓄積量を定量したところ、200mg/Lであった。
【0020】
実施例6
実施例4で得られたエシェリヒア・コリHB/pAT71をグルコース2%、炭酸カルシウム1%、コーンスティープリカー4%、硫安0.4%、KH2PO40.1%、K2HPO4 0.2%、MgSO4・7H2O 0.01%、FeSO4・7H2O 0.05%、チアミン塩酸塩0.002%およびテトラサイクリン塩酸塩0.0012%からなる種培地(pH7.1)125mlを含む500ml容ひだ付フラスコで37℃、210回転/分で16時間振とう培養した。得られた培養液全量をグルコース3%、コーンスティープリカー6%、硫安0.2%、KH2PO4 0.1%、K2HPO4 0.2%、MgSO4・7H2O 0.05%、DL−アラニン0.3%、MnSO4・4〜6H2O 0.003%、FeSO4・7H2O 0.003%、Fe2(SO4)3・nH2O 0.1%、クエン酸カルシウム1%、チアミン塩酸塩0.002%、25%アンモニア水1.6ml/Lおよびアクトコール(武田薬品工業(株)製、消泡剤)0.02%からなる主培地(pH7.1)2.5Lに移し、5L容ジャーファーメンタ中で37℃、通気量2.5L/分で培養した。撹拌数は菌体量に比例して、550回転から950回転まで上昇していき、また、グルコース濃度は0.1から0.5%の範囲になるように66.7%グルコース水溶液を連続添加した。培養中はpHが6.5から7.0の範囲になるように25%アンモニア水と30%水酸化カリウム水溶液で制御し、また、泡がたたないようにアクトコールを適宜添加した。また、培養24時間目から72時間目にかけて、1.25%のクエン酸第2鉄300mlをフィードした。このようにして、82時間培養した結果、970mg/Lのビオチンが蓄積した。
【0021】
【発明の効果】
本発明の微生物は優れたビオチン生産能を有しており、この微生物を培養することにより、ビオチンを大量に生産することができる。
【0022】
【配列表】
Figure 0003860629

【図面の簡単な説明】
【図1】 ビオチンオペロンの制御領域およびbioB開始コドン近傍の塩基配列を示す。
【図2】 プラスミドpXBA312のDNA

Claims (2)

  1. ビオチンオペロンを含むプラスミドで形質転換した、β−ヒドロキシノルバリン耐性を有するエシェリヒア・コリFERM BP−5667または5668である微生物。
  2. 請求項1記載の微生物を培地で培養し、培養物中にビオチンを生成蓄積せしめ、これを採取することを特徴とするビオチンの製造法
JP29155796A 1995-11-02 1996-11-01 スレオニンアナログ耐性微生物およびビオチンの製造法 Expired - Fee Related JP3860629B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29155796A JP3860629B2 (ja) 1995-11-02 1996-11-01 スレオニンアナログ耐性微生物およびビオチンの製造法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-285761 1995-11-02
JP28576195 1995-11-02
JP29155796A JP3860629B2 (ja) 1995-11-02 1996-11-01 スレオニンアナログ耐性微生物およびビオチンの製造法

Publications (2)

Publication Number Publication Date
JPH09182584A JPH09182584A (ja) 1997-07-15
JP3860629B2 true JP3860629B2 (ja) 2006-12-20

Family

ID=26556018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29155796A Expired - Fee Related JP3860629B2 (ja) 1995-11-02 1996-11-01 スレオニンアナログ耐性微生物およびビオチンの製造法

Country Status (1)

Country Link
JP (1) JP3860629B2 (ja)

Also Published As

Publication number Publication date
JPH09182584A (ja) 1997-07-15

Similar Documents

Publication Publication Date Title
EP1462523B1 (en) L-Glutamic acid-producing bacterium and method for producing L-glutamic acid
JP3880636B2 (ja) 発酵法によるl−グルタミン酸の製造法
KR900004426B1 (ko) L-티로신의 제조방법
EP0955368A2 (en) L-glutamic acid-producing bacterium and method for producing l-glutamic acid
JP7125477B2 (ja) グリシン生産能が増加された微生物及びこれを用いた発酵組成物の生産方法
WO1997008294A1 (fr) Procede de production d'acide l-glutamique par fermentation
CA2433485A1 (en) Method for fermentative production of amino acids and amino acid derivatives of the phosphoglycerate family
JPH05304969A (ja) 発酵法によるアミノ酸の製造法
FR2484448A1 (fr) Procede pour produire de la l-arginine par fermentation
JPH0523191A (ja) D−パントテン酸の製造法
JP2003169668A (ja) L−システイン生産菌及びl−システインの製造法
JP4078515B2 (ja) 発酵によるl−アルギニン産生のための微生物および方法
US5919662A (en) Microorganism having low acetate forming capability, and process for production of useful substrate using same
JP3937726B2 (ja) 発酵法によるl−グルタミン酸の製造法
KR19990006810A (ko) 광학 활성 화합물의 제조 방법
JP2810697B2 (ja) 芳香族アミノ酸の製造法
KR20060023550A (ko) L-글루탐산의 제조법
JP2520139B2 (ja) 抗性物質a/40926複合体の製造方法
JP2000189169A (ja) L―グルタミン酸生産菌及びl―グルタミン酸の製造法
JP3860629B2 (ja) スレオニンアナログ耐性微生物およびビオチンの製造法
US6020173A (en) Microorganism resistant to threonine analogue and production of biotin
EP0501765A1 (en) Method of producing D-ribose
JP3739843B2 (ja) ニコチン酸アナログ耐性微生物およびビオチンの製造法
JP2722504B2 (ja) 新規微生物及びそれを用いるd−ビオチンの製法
KR100192024B1 (ko) 신규의 미생물 및 이를 사용한 d-비오틴의 제조방법

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20060124

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060324

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060713

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Effective date: 20060817

Free format text: JAPANESE INTERMEDIATE CODE: A911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20060912

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060922

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees