JP3850802B2 - Steel pile and its construction method - Google Patents

Steel pile and its construction method Download PDF

Info

Publication number
JP3850802B2
JP3850802B2 JP2003058302A JP2003058302A JP3850802B2 JP 3850802 B2 JP3850802 B2 JP 3850802B2 JP 2003058302 A JP2003058302 A JP 2003058302A JP 2003058302 A JP2003058302 A JP 2003058302A JP 3850802 B2 JP3850802 B2 JP 3850802B2
Authority
JP
Japan
Prior art keywords
pile
steel pile
steel
injection
driving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003058302A
Other languages
Japanese (ja)
Other versions
JP2004270157A (en
Inventor
久男 山下
裕 平嶋
健二 西海
昌弘 寺田
清敏 庭本
健二 高橋
勇吉 鈴木
博康 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Chowa Kogyo Co Ltd
Original Assignee
Nippon Steel Corp
Chowa Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Chowa Kogyo Co Ltd filed Critical Nippon Steel Corp
Priority to JP2003058302A priority Critical patent/JP3850802B2/en
Publication of JP2004270157A publication Critical patent/JP2004270157A/en
Application granted granted Critical
Publication of JP3850802B2 publication Critical patent/JP3850802B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Piles And Underground Anchors (AREA)
  • Placing Or Removing Of Piles Or Sheet Piles, Or Accessories Thereof (AREA)

Description

【0001】
【発明が属する技術分野】
本発明は、水又は流動性固化材を噴射する噴射ノズルと突起を有する鋼杭及びこれを使用する鋼杭の施工方法に関し、特にバイブロハンマと水噴射を併用して地盤を掘進し、この鋼杭を地盤の支持層に打ち込んだ後、流動性固化材を噴射ノズルより噴射して高耐力の杭を造成する技術分野に関する。
【0002】
【従来の技術】
杭は、ディーゼルハンマや油圧ハンマなどの打撃力が大きい杭打ち機で打ち込むのが一般的である。しかし、これらの杭打ち方式では騒音が大きいため、低騒音のバイブロハンマがよく使用される。
【0003】
ところで、バイブロハンマにより、杭に振動を与え、低圧小流量の液体を供給すれば、杭を容易に沈下させることができるが、振動により杭周面の地盤がゆるむために杭の周面摩擦力が小さくなる。
【0004】
そこで、特許文献1及び特許文献2に開示されたバイブロハンマによる工法、あるいは、特許文献3及び特許文献4に開示された中掘攪拌とセメントミルクを用いた工法等により対策が図られている。例えば、特許文献1に開示するように、杭を振動させながら沈下させるときに、水及び液体に加えて固結する作用をもつ材料を添加したものを、杭の先端付近に低圧で小流量供給する。
【0005】
上述したバイブロハンマは、護岸や擁壁等の土木工事においてコンクリート製や鋼製の矢板を地中に押し込む際にも使用される。特許文献2では、先行杭を打ち込んで地中に穴を開けた後に矢板を打ち込んだり、矢板の外側壁に配管した導水管より高圧水を噴出させて、地盤を切削しつつ矢板を打ち込む。砂、砂礫、硬質粘土層でできた支持層が地表から深い位置にある場合には、鋼管杭も使用され、支持層が非常に深い場合には、鋼管杭を溶接継手で接続する。
【0006】
特許文献3では、鋼管杭に、外周面のほぼ全長にわたって突条を設け、先端部には内周面にも突状を設けている。この鋼管杭は、支持層中に根入れする。これによって、鋼管杭は、ソイルセメントを介し支持層と固着するため、大きな杭の先端支持力が期待できる。
【0007】
特許文献4では、鋼管杭の先端から地盤中にセメントミルクを高圧噴射する。セメントミルクは水平方向へも高圧噴射されるため、鋼管杭よりも大きな径の範囲までセメントミルクを注入し、ソイルセメント柱を形成する地盤改良が行われる。この技術によれば、排出される土量が少なく、既成杭と改良された地盤の一体化を高めることができ、杭の周面摩擦力及び先端支持力を確保することができる。
【0008】
【特許文献1】
特開昭56−167026号公報
【特許文献2】
特開昭57−238544号公報
【特許文献3】
特開昭63−97711号公報
【特許文献4】
特開昭64−48926号公報
【0009】
【発明が解決しようとする課題】
しかしながら、特許文献1及び特許文献2記載のバイブロハンマによる工法は、打ち込み速度や硬質地盤への打ち込み容易性の点で施工性に優れるが、支持力特性に劣るという欠点がある。また、特許文献3及び特許文献4に開示された中掘攪拌とセメントミルクを用いた工法では、支持力特性に優れるものの、礫を含む硬質地盤への打ち込み容易性等の施工性の点で問題がある。
【0010】
そこで、本発明は、突起を有する鋼杭と、バイブロハンマ及び水又は流動性固化材の噴射とを併用して、杭の周面摩擦力及び先端支持力のより一層の増大を図ることを課題とする。
【0011】
【課題を解決するための手段】
上記の課題を解決すべく本発明は、次の構成の鋼杭及びその施工方法を提供する。
(1)請求項1に係る鋼杭は、バイブロハンマと水又は流動性固化材の噴射とを用いて打ち込まれる鋼杭であって、前記鋼杭の杭先端付近における杭外面若しくは杭内面又は杭内外両面に設けた前記鋼杭の打込方向に平行な板面をもつ平板状の突起と、前記突起を取り付けた部分における杭外面若しくは杭内面又は杭内外両面に設けた螺旋状突起とを有すると共に、前記鋼杭の杭先端付近における杭外面若しくは杭内面又は杭内外両面に水又は流動性固化材を噴射する1又は複数の噴射ノズルを装着したことを特徴とする。
【0012】
(2)請求項2に係る鋼杭は、請求項1の鋼杭であって、前記噴射ノズルが着脱可能であることを特徴とする。
【0013】
(3)請求項3に係る鋼杭は、請求項1又は2の鋼杭であって、前記噴射ノズルによる噴射方向が、前記鋼杭の打込方向と該打込方向に対して垂直な方向との間のいずれかの方向であることを特徴とする。
【0014】
(4)請求項4に係る鋼杭は、請求項1〜3のいずれかに記載の鋼杭であって、前記噴射ノズルの少なくとも1つが、自転しつつ噴射するための回転噴射手段を有することを特徴とする。
【0015】
(5)請求項5に係る鋼杭は、請求項1〜4のいずれかの鋼杭であって、前記噴射ノズルの少なくとも1つが、噴射方向のそれぞれ異なる複数の噴射孔を具備することを特徴とする。
【0016】
(6)請求項6に係る鋼杭は、請求項1〜5のいずれかの鋼杭であって、前記鋼杭の杭外面に装着された前記噴射ノズルから噴射される水又は流動性固化材を前記鋼杭の内側へ取り入れるための導入孔若しくは導入切欠きを該鋼杭に穿設したことを特徴とする。
【0017】
(7)請求項7に係る鋼杭の施工方法は、請求項1〜6のいずれかの鋼杭を地盤に打ち込む施工方法において、バイブロハンマを用いかつ水又は流動性固化材を噴射しつつ前記鋼杭を地盤に打ち込むことを特徴とする。
【0018】
(8)請求項8に係る鋼杭の施工方法は、請求項7の鋼杭の施工方法において、水を噴射しつつ前記鋼杭を支持層まで打ち込む第1工程と、水又は流動性固化材を噴射しつつ前記鋼杭を引き抜く第2工程と、水又は流動性固化材を噴射しつつ前記支持層まで再度前記鋼杭を打ち込む第3工程とを含み、連続する前記第2及び第3工程を1又は複数回行うことを特徴とする。
【0019】
(9)請求項9に係る鋼杭の施工方法は、請求項8の鋼杭の施工方法において、前記第3工程における前記鋼杭の打込深度が、前記第1工程における該鋼杭の打込深度よりも浅いことを特徴とする。
【0020】
(10)請求項10に係る鋼杭の施工方法は、請求項7〜9のいずれかの鋼杭の施工方法における前記第1〜第3工程の各工程において、水又は流動性固化材の噴射圧力又は噴射量のいずれか又は双方を変化させつつ前記鋼杭を打ち込み又は引き抜くことを特徴とする。
【0021】
(11)請求項11に係る鋼杭の施工方法は、請求項7〜10のいずれかの鋼杭の施工方法において、前記鋼杭の打ち込みが完了した後、流動性固化材を噴射しつつ前記噴射ノズルを引き上げることを特徴とする。
【0022】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態について説明する。
【0023】
本発明に係る鋼杭の基本的態様は、鋼杭の杭先端付近における杭外面若しくは杭内面又は杭内外両面に突起を有すると共に、前記鋼杭の杭先端付近における杭外面若しくは杭内面又は杭内外両面に水又は流動性固化材を噴射する1又は複数の噴射ノズルを装着したことを特徴とする。尚、本発明の鋼杭には、鋼管杭、鋼管矢板、H形鋼杭等が含まれる。図1(A)及び(B)は、それぞれ本発明による鋼杭1の一例を概略的に示す正面図(上図)及び底面図(下図)である。この鋼杭1の杭先端付近における杭外面には、複数の平板状(矩形、台形等)の突起2が取り付けられている。図示の例では中、4枚の突起が、円周上90度毎に取り付けられている。また、突起2は、図1の例では、矩形状であり、溶接により取り付けられる。噴射ノズル30は、図1(A)では、先端付近外面に円周上90度毎に4個取り付けられ、それぞれ独立した配管ホース31が接続されている。この構成は、例えば、鋼杭1の外直径Dが600〜900mmのときに適している。図1(B)では、一部連結された6個の噴射ノズル30が杭先端付近の杭外面に取り付けられ、共通の配管ホース31が接続されている。この構成は、例えば、鋼杭1の外直径Dが600〜900mmのときに適している。ノズル径は、例えば6〜8mmである。
【0024】
噴射ノズル30は、固定されていても着脱可能でもよい。噴射ノズル30からは、水(ウォータージェット)又はセメントミルク等の流動性固化材が高圧力で噴射される。尚、噴射ノズル30は、鋼杭1の外面及び/又は内面に取り付けられるが、図1には、外面に取り付ける例を示している。
【0025】
図2は、噴射ノズル30とバイブロハンマ20とを取り付けた本発明の鋼杭1の別の実施例の外観図である。図2に示すように、平板状(矩形、台形等)の突起2には、1又は2以上の貫通孔3を設けてもよい。これによって、土粒子と水又は流動性固化材の鋼杭周方法における対流が促進されるため、杭周囲での撹拌効果が増大するとともに、流動性固化材により形成されるソイルセメントとの密着性が向上する。貫通孔3の個数、形状、配置は、対流を増大させるように適宜設定する。また、対流の促進に寄与する限り、隣の突起2同士で、貫通孔3の個数、形状、配置が異なってもよい。また、突起2の板面上には、凹凸を設けてもよい。例えば、縞鋼板等を用いて突起2を製作する。これによっても、流動性固化材により形成されるソイルセメントとの密着性が向上する。尚、突起2を取り付ける鋼杭1の外面及び/又は内面の少なくとも一部に、螺旋状突起4があってもよい。
【0026】
図3(A)〜(I)は、鋼杭の杭先端付近の杭外面若しくは杭内面又は杭内外両面に設けられる突起2の種々の変形例を示している。突起2は、平板状(矩形、台形等)である。その枚数、形状は図示したものには限定されない。また、図3(A)〜(E)は、突起2を取り付ける鋼杭1の外面及び/又は内面の一部に、螺旋状突起を具備する例である。
【0027】
図4(A)〜(C)は、噴射ノズル30の種々の実施例を模式的に示す外観図である。噴射ノズル30の噴射方向は、鋼杭の打込方向(通常、鉛直方向)と、打込方向に対して垂直な方向(通常、水平方向)との間の範囲内のいずれの方向としてもよく、適宜設定することができる。図4(A)では、鋼杭の打込方向が噴射方向となるように噴射孔30aが設けられ、図4(B)では、鋼杭の打込方向に対して約45度をなす方向が噴射方向となるように噴射孔30aが設けられ、図4(C)では、鋼杭の打込方向に垂直な方向が噴射方向となるように噴射孔30aが設けられている。噴射方向を、鋼杭の打込方向に対して斜め外向き方向若しくは水平方向とすることにより、鋼杭径より大きな径の合成杭(打ち込まれた鋼杭と、切削された土粒子と、流動性固化材の固化体とが一体化して最終的に地盤中に形成される杭)を形成することが可能となり、その結果、より大きな支持力が得られる。
【0028】
図5は、噴射ノズル30の別の実施例を示す外観図である。図示の噴射ノズル30は、水平方向に噴射する噴射孔30aを具備し、噴射中に噴射ノズル30がその軸30bについて矢印のように自転する回転噴射手段を有する。従って、噴射孔30aから水又は流動性固化材を噴射しつつ、噴射ノズル30が水平面内で自転することにより、噴射ノズル30の全周囲に水又は流動性固化材を分散させることができる。尚、噴射孔30aは、水平方向でなく斜め下方に向いていてもよい。これにより、水又は流動性固化材の攪拌及び注入範囲を広げ、合成杭の径増大により支持力を増大させることができる。
【0029】
図6は、噴射ノズル30のさらに別の実施例を示す外観図である。図示の噴射ノズル30は、噴射孔30aを鉛直方向と水平方向の2箇所に設けている。噴射孔30aの向きは、これらの向き以外でもよく、斜め下方に向いていてもよい。このように、1つの噴射ノズル30に噴射方向のそれぞれ異なる複数の噴射孔を設けることによっても、水又は流動性固化材の攪拌及び注入範囲を広げ、合成杭の径増大により支持力を増大させることができる。
【0030】
図7は、本発明の鋼杭の別の実施例を示しており、鋼杭1の先端付近の概略的な部分図である。上記図4〜図6のように、本発明における噴射ノズルの所与の実施例においては、打込方向以外の種々の方向へ水又は流動性固化材を噴射することができる。従って、水又は流動性固化材が、鋼杭1の外壁に当たるように(例えば、水平方向又は斜め下方に)噴射される場合、その水又は流動性固化材を鋼杭1の内側に取り入れられるように、図7(A)に示す導入孔(5a)若しくは図7(B)に示す導入切欠き(5b)を設ける。これにより、施工中には、鋼杭1内に噴流が導入されて鋼杭1の内部を閉塞させない効果があり、貫入性が向上する。また、打止め時には、導入された固化材が固化体を形成して管内を閉塞させる効果があり、支持力が向上する。
【0031】
次に、図8及び図9を参照して、本発明の鋼杭における突起2の効果について説明する。バイブロハンマを駆動すると、鋼杭1の表面から圧力波P0が放射される。図8(A)に示すように、この圧力波P0は鋼杭1の場所によって異なるが簡単のためP0と表記した。圧力波P0は圧力Pで突起2に直接入射し、又は圧力波P0が掘削孔壁などで反射されて圧力Pで突起2に入射する。そして、反射波P'を生じれば、反射波P'も撹拌効果を増大させる。また、図8(B)に示すように、圧力波Pが、横方向から突起2に入射して反射波P'を生じた場合、反射波P'によって土粒子と流動性固化材の撹拌が促進される。
【0032】
例えば、図9に示すように台形の突起2の場合には、圧力波(の垂直成分)P1が突起2下端部に入射し側方に反射されて圧力波P1'となれば、杭周囲への撹拌効果を増大させ、圧力波(水平成分)P2が突起下端部に入射し下方に反射されて圧力波P2'となれば、杭先端方向への破砕削孔力を増大させる。こうして、突起2を取り付けることによって、流動性固化材注入範囲を拡大すること、周面摩擦力を増大すること、杭基礎先端の根固め強度を増大すること、鋼杭外周に取り付けられるウォータージェット用の配管ホースを保護すること等が可能となる。
【0033】
図10は、本発明の突起付き鋼杭を建込み、打ち込むための施工方法について説明するための施工機械配置図の一例である。バイブロハンマは、鋼杭の上部をチャック装置により把持する。バイブロハンマは、モータの回転力を偏芯部材に伝達して振動を発生する装置であり、その性能は、例えばモータ出力30〜500kW、振動周波数10〜60Hz、鋼杭チャック質量3〜15トンである。例えば、円周上2カ所で鋼杭を把持する。また、大型の水深構造物用として円柱状に形成した直線型鋼矢板や鋼管矢板の場合には、機械的に連動された数台〜数十台のバイブロハンマのチャック装置により把持しクレーンで吊り上げる。
【0034】
尚、鋼杭の先端付近に取り付けられた噴射ノズル(図示せず)は、杭打込み時には、バイブロハンマと併用して、例えば圧力3〜15Mpaの高圧水(例えば清水)を噴射するウォータージェットカッタとして機能する。また、杭先端の根固めと杭周面の地盤強度の増大のために利用する流動性固化材注入工法においては、バイブロハンマを駆動しつつかつ噴射ノズルから例えば圧力15Mpa程度以下で流動性固化材を噴射する。なお、後述する本発明の施工方法においては、バイブロハンマの駆動を停止して流動性固化材を噴射する工程も含まれている。配管ホースは、切替バルブを介して、グラウト(流動性固化材)ポンプとウォータージェットカッタ装置に接続される。
【0035】
図11は、本発明による鋼杭の施工方法の一例における各工程を説明するための模式的な工程図である。本工程図は、前述した本発明における突起付き鋼杭1について示しているが、他の本発明の実施例である円柱状に配置した突起付き鋼管矢板(後述する図13に示す)や鋼矢板についても同様である。但し、打込深度が非常に深い場合には、下杭、中杭、上杭を順次溶接しながら打ち込みを行うが、溶接工程については説明を省略する。
【0036】
図11を参照すると、第1工程は、鋼杭の打込工程である。ウォータージェットを噴出ノズル30から噴射し、鋼杭1とバイブロハンマの質量で、例えば5D〜10D(Dは鋼杭の外直径)程度を自重自沈させ、その後バイブロハンマを運転し、振動と水の力で連続的に打設する。連続打設速度は、例えば100cm/分とする。支持層内への打込速度は、例えば60cm/分程度以下とする。支持層の確認は、事前に行われた地質調査結果や地層断面図で行うほか、予め推定した支持層に杭先端が近づいたら、バイブロハンマの全荷重を杭に預け、打込速度と打込抵抗の変化(例えば電動式バイブロハンマの場合は負荷電流)を読み取ることで行う。
【0037】
鋼杭1の先端が、中間層と支持層の界面(支持層深度)を通過した後、打込掘削深度で打ち止める。図示の例では、打込掘削深度が支持層深度より2.0D程度深い位置に設定されている。ここで、ウォータージェットを停止する。バイブロハンマは、一旦停止してもよいが、引き続く第2工程のために運転したままとしてもよい。
【0038】
第2工程は、流動性固化材振動撹拌工程である。前述の図10における水と流動性固化材のそれぞれのタンクへの配管の切替バルブを操作して、流動性固化材流路に切り替える。セメントサイロからセメントを供給し、その他の注入材を配合してW/Cが50%〜150%の流動性固化材(セメントミルク等)を調製しておく。このような流動性固化材を噴射圧力最大15Mpa程度以下で噴射を開始し、バイブロハンマを運転して鋼杭1を、引上深度まで引き上げる。図示の例では、支持層深度より1.0D程度浅い位置まで引き上げている。
【0039】
さらに第3工程において、流動性固化材を噴射しつつ引上深度から定着深度まで鋼杭1を打ち込む。図示の例では、定着深度は、支持層深度より1.0D程度深く、第1工程の打込掘削深度よりも浅い。その際の鋼杭1の移動速度は、50〜200cm/分程度である。
【0040】
上記の連続する第2及び第3工程は、1回のみ行ってもよく、地盤の硬度等の状況に応じて複数回繰り返してもよい。硬い地盤の場合は、地盤の攪拌のため適宜繰り返すことが好ましい。この第2及び第3工程の繰り返し工程においては、流動性固化材又は水(すなわちウォータージェット)のいずれを噴射してもよい。これにより、鋼杭先端において固化体の拡大された球根を確実に形成することができ、先端支持力を増大させることができる。
【0041】
そして、第2及び第3工程を1回のみ行う場合も、繰り返し行う場合も、最後に行う第3工程により鋼杭1を定着深度にて打ち止めた後、バイブロハンマを停止する。その後、鋼杭1を定着深度に停止したまま、根固め工程として所定時間流動性固化材を噴射する。工程管理は、グラウトポンプの圧力計、流量計による。
【0042】
次に、噴射ノズル引抜き工程を行う。先ず、配管ホース31と共に噴射ノズル30を鋼杭1から離脱させる。その後、配管ホース31の上端部をベースマシンの主クレーンで吊り上げつつ、噴射ノズル30を所定の速度、例えば50〜200cm/分で引き抜く。このとき、流動性固化材を噴射しながら噴射ノズル30を引き抜く。そして、噴射ノズル30を打込深度に対して所定割合、例えば90%まで引き抜いたところで噴射を停止する。流動性固化材を噴射しつつ噴射ノズルを引き抜くことにより、鋼杭1の外側に流動性固化材の固化体を形成し、これにより周面摩擦力を増大させる。
【0043】
尚、上記第1〜第3工程の各工程においては、水又は流動性固化材の噴射圧力又は噴射量のいずれか又は双方を変化させつつ前記鋼杭を打ち込み又は引き抜くようにしてもよい。
【0044】
図12は、本発明による鋼杭の施工方法によって形成される杭基礎(合成杭)の断面図である。本施工方法によれば、杭先端部には、鋼杭1に比して拡径された略歯根状のソイルセメント固化体200が形成される。ソイルセメント固化体200の下端の深度は、打込深度又はそれ以上まで達している。すなわち、歯根状のソイルセメント固化体200の歯根にあたる部分が支持層へ確実に根入れされている。尚、歯根状という表現は比喩的であり、地盤条件や施工条件によって必ずしも明確な歯根状とならない場合もある。いずれにしても支持層への確実な根入れが実現される。また、第2工程(流動性固化材振動撹拌工程)によって、鋼杭1の内側にも流動性固化材が注入され、最終的にソイルセメント固化体200の一部となる。鋼杭1の内側のソイルセメント柱の上端は、根固め工程において噴射される流動性固化材のため、引上深度より上方まで達している。これにより、鋼杭1の杭先端は閉塞される。
【0045】
最後に、本発明における鋼杭には、多数の直線上鋼矢板や、多数の鋼管からなる矢板(鋼管矢板)を円柱状に形成したものも含まれる。図13は、鋼管矢板10の集合体である鋼管矢板基礎100を示す。この鋼管矢板基礎100を構成する各鋼管矢板10の先端付近外面にはそれぞれ複数の突起2が溶接されている。
【0046】
【発明の効果】
本発明の鋼杭によれば、突起によって杭先端周囲における土粒子と流動性固化材の攪拌効果が増大するとともに、固化後は鋼杭径より拡径したソイルセメント合成杭として機能を発揮する。これによって、突起のない鋼管を使用する場合に比べて、地盤からの鉛直支持力は著しく向上する。条件によっては2倍以上に向上する場合もある。
【0047】
また、本発明の鋼杭の施工方法によれば、上記第1〜第3工程において流動性固化材を鋼管外側及び/又は内側先端付近から噴射して、杭先端に歯根状のセメント固化体を形成するとともに、鋼管の内側に流動性固化材の固化体を一定レベルまで充填させることができる。この結果、鋼杭先端部には拡径したソイルセメント固化体の閉塞球根が確実に形成でき、支持力が増大する。
【図面の簡単な説明】
【図1】(A)及び(B)は、それぞれ本発明による鋼杭1の一例を概略的に示す正面図(上図)及び底面図(下図)である。
【図2】噴射ノズルとバイブロハンマとを取り付けた本発明の鋼杭の別の実施例の外観図である。
【図3】(A)〜(I)は、鋼杭1の杭先端付近の杭外面、杭内面又は杭内外面に設けられる突起2と、鋼杭1の外面又は内面の螺旋状突起の有無とを組み合わせた種々の変形例を示す図である。
【図4】(A)〜(C)は、噴射ノズルの種々の実施例を示す外観図である。
【図5】噴射ノズルの別の実施例を示す外観図である。
【図6】噴射ノズルのさらに別の実施例を示す外観図である。
【図7】鋼杭の別の実施例を示しており、鋼杭の先端付近の概略的な部分図である。
【図8】本発明の突起付き鋼杭の正面図及び上面図である。
【図9】台形状の突起を有する鋼杭の正面図である。
【図10】本発明の鋼杭の施工方法における施工機械の配置の一例を示す図である。
【図11】本発明の鋼杭の施工方法の各工程を説明するための工程図である。
【図12】本発明による鋼杭の施工方法によって形成される杭基礎(合成杭)の状態を示す地盤断面図である。
【図13】突起付き鋼管の集合体である鋼管矢板を示す図である。
【符号の説明】
1 鋼杭
2 突起
3 貫通孔
4 螺旋状突起
5a 導入孔
5b 導入切欠き
10 鋼管矢板
30 噴射ノズル
30a 噴射孔
30b 噴射ノズルの軸
31 配管ホース
100 鋼管矢板基礎
200 ソイルセメント固化体
[0001]
[Technical field to which the invention belongs]
TECHNICAL FIELD The present invention relates to a steel pile having a jet nozzle and projections for jetting water or a fluidized solidifying material, and a method for constructing a steel pile using the same, and in particular, excavating the ground using a vibro hammer and water jet together. The present invention relates to a technical field in which a high-strength pile is constructed by injecting a fluidized solidified material from an injection nozzle after driving the substrate into a ground support layer.
[0002]
[Prior art]
The pile is generally driven by a pile driving machine having a large hitting force such as a diesel hammer or a hydraulic hammer. However, since these pile driving methods are noisy, low noise vibratory hammers are often used.
[0003]
By the way, if a vibration is applied to the pile by a vibro hammer and a liquid with a low pressure and a low flow rate is supplied, the pile can be easily sunk, but the ground surface of the pile is loosened by the vibration, so the peripheral friction force of the pile is small. Become.
[0004]
Therefore, countermeasures are taken by the construction method using a vibro hammer disclosed in Patent Literature 1 and Patent Literature 2, or the construction method using digging agitation and cement milk disclosed in Patent Literature 3 and Patent Literature 4. For example, as disclosed in Patent Document 1, when a pile is submerged while being vibrated, a material added with water and liquid and a material that has the effect of solidifying is supplied at a low pressure near the tip of the pile. To do.
[0005]
The above-described vibratory hammer is also used when a concrete or steel sheet pile is pushed into the ground in civil engineering work such as revetments and retaining walls. In Patent Document 2, a sheet pile is driven after a leading pile is driven and a hole is made in the ground, or high pressure water is ejected from a water conduit piped on the outer wall of the sheet pile, and the sheet pile is driven while cutting the ground. Steel pipe piles are also used when the support layer made of sand, gravel and hard clay layer is deep from the ground surface, and when the support layer is very deep, the steel pipe piles are connected by a welded joint.
[0006]
In patent document 3, the protrusion is provided in the steel pipe pile over substantially the full length of the outer peripheral surface, and the protrusion is provided also in the inner peripheral surface at the front-end | tip part. This steel pipe pile is embedded in the support layer. As a result, the steel pipe pile is fixed to the support layer via the soil cement, so that it is possible to expect a large pile support force.
[0007]
In patent document 4, high pressure injection of cement milk is carried out in the ground from the front-end | tip of a steel pipe pile. Since cement milk is sprayed at a high pressure in the horizontal direction, the soil is improved by injecting cement milk to a larger diameter range than the steel pipe pile to form a soil cement pillar. According to this technique, the amount of soil discharged is small, the integration of the existing pile and the improved ground can be enhanced, and the peripheral surface friction force and the tip support force of the pile can be ensured.
[0008]
[Patent Document 1]
Japanese Patent Laid-Open No. 56-167026 [Patent Document 2]
JP-A-57-238544 [Patent Document 3]
JP-A-63-97711 [Patent Document 4]
Japanese Patent Laid-Open No. 64-48926
[Problems to be solved by the invention]
However, the construction method using the vibro hammer described in Patent Document 1 and Patent Document 2 is excellent in workability in terms of the driving speed and the ease of driving into the hard ground, but has a drawback of being inferior in supporting force characteristics. In addition, in the method using the excavation stirring and cement milk disclosed in Patent Document 3 and Patent Document 4, although the bearing capacity is excellent, there is a problem in terms of workability such as ease of driving into hard ground including gravel. There is.
[0010]
Then, this invention makes it the subject to aim at the further increase of the surrounding surface frictional force of a pile, and a tip support force by using together the steel pile which has a protrusion, and injection of a vibro hammer and water or a fluid solidification material. To do.
[0011]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides a steel pile having the following configuration and a construction method thereof.
(1) A steel pile according to claim 1 is a steel pile driven by using a vibro hammer and water or a jet of fluidized solidifying material, and the outer surface of the pile, the inner surface of the pile or the inner and outer sides of the pile near the tip of the pile. A flat plate-like protrusion having a plate surface parallel to the driving direction of the steel pile provided on both surfaces, and a spiral protrusion provided on the outer surface of the pile or the inner surface of the pile or both the inner and outer surfaces of the pile in the portion where the protrusion is attached One or more injection nozzles for injecting water or a fluidized solidifying material are mounted on the outer surface of the pile, the inner surface of the pile, or both the inner and outer surfaces of the pile near the tip of the steel pile.
[0012]
(2) The steel pile according to claim 2 is the steel pile according to claim 1, wherein the injection nozzle is detachable.
[0013]
(3) The steel pile according to claim 3 is the steel pile according to claim 1 or 2, wherein an injection direction by the injection nozzle is perpendicular to the driving direction of the steel pile and the driving direction. It is characterized by being in any direction between.
[0014]
(4) A steel pile according to claim 4 is the steel pile according to any one of claims 1 to 3, wherein at least one of the injection nozzles has a rotary injection means for injecting while rotating. It is characterized by.
[0015]
(5) A steel pile according to claim 5 is the steel pile according to any one of claims 1 to 4, wherein at least one of the injection nozzles includes a plurality of injection holes having different injection directions. And
[0016]
(6) A steel pile according to claim 6 is the steel pile according to any one of claims 1 to 5, wherein water or fluidized solidified material sprayed from the spray nozzle mounted on the pile outer surface of the steel pile. An introduction hole or an introduction notch for taking in the inside of the steel pile is formed in the steel pile.
[0017]
(7) A steel pile construction method according to claim 7 is the construction method in which the steel pile according to any one of claims 1 to 6 is driven into the ground, using the vibro hammer and injecting water or a fluidized solidifying material. It is characterized by driving piles into the ground.
[0018]
(8) The steel pile construction method according to claim 8 is the steel pile construction method according to claim 7, wherein the first step of driving the steel pile to the support layer while injecting water, and water or a fluidized solidified material. A second step of drawing out the steel pile while injecting water, and a third step of driving the steel pile again to the support layer while injecting water or a fluidized solidifying material. Is performed one or more times.
[0019]
(9) The steel pile construction method according to claim 9 is the steel pile construction method according to claim 8, wherein the steel pile driving depth in the third step is the hammering of the steel pile in the first step. It is characterized by shallower depth.
[0020]
(10) A method for constructing a steel pile according to claim 10 is the injection of water or a fluidized solidifying material in each of the first to third steps in the method for constructing a steel pile according to any one of claims 7 to 9. The steel pile is driven or pulled out while changing either or both of the pressure and the injection amount.
[0021]
(11) A steel pile construction method according to claim 11 is the steel pile construction method according to any one of claims 7 to 10, wherein after the driving of the steel pile is completed, the fluidized solidification material is injected. The spray nozzle is pulled up.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0023]
The basic aspect of the steel pile according to the present invention has protrusions on the outer surface of the pile, the inner surface of the pile, or both the inner and outer surfaces of the pile in the vicinity of the pile tip of the steel pile, One or a plurality of spray nozzles for spraying water or a fluidized solidifying material are mounted on both sides. The steel piles of the present invention include steel pipe piles, steel pipe sheet piles, H-shaped steel piles and the like. 1A and 1B are respectively a front view (upper view) and a bottom view (lower view) schematically showing an example of a steel pile 1 according to the present invention. A plurality of flat plate-like (rectangular, trapezoidal, etc.) protrusions 2 are attached to the outer surface of the pile near the pile tip. In the example shown in the figure, four protrusions are attached every 90 degrees on the circumference. Moreover, the protrusion 2 is rectangular shape in the example of FIG. 1, and is attached by welding. In FIG. 1A, four injection nozzles 30 are attached to the outer surface near the tip every 90 degrees on the circumference, and independent pipe hoses 31 are connected to each other. This configuration is suitable, for example, when the outer diameter D of the steel pile 1 is 600 to 900 mm. In FIG. 1 (B), six partially connected injection nozzles 30 are attached to the outer surface of the pile near the tip of the pile, and a common piping hose 31 is connected. This configuration is suitable, for example, when the outer diameter D of the steel pile 1 is 600 to 900 mm. The nozzle diameter is, for example, 6 to 8 mm.
[0024]
The injection nozzle 30 may be fixed or removable. From the injection nozzle 30, a fluid solidifying material such as water (water jet) or cement milk is injected at a high pressure. In addition, although the injection nozzle 30 is attached to the outer surface and / or inner surface of the steel pile 1, the example attached to an outer surface is shown in FIG.
[0025]
FIG. 2 is an external view of another embodiment of the steel pile 1 of the present invention to which the injection nozzle 30 and the vibro hammer 20 are attached. As shown in FIG. 2, one or two or more through holes 3 may be provided in a flat plate-like (rectangular, trapezoidal, etc.) projection 2. As a result, convection in the steel pile circumference method of soil particles and water or fluidized solidification material is promoted, so that the stirring effect around the pile is increased and the adhesion with the soil cement formed by the fluidized solidification material is increased. Will improve. The number, shape, and arrangement of the through holes 3 are appropriately set so as to increase convection. Further, as long as it contributes to the promotion of convection, the number, shape, and arrangement of the through holes 3 may be different between the adjacent protrusions 2. Further, unevenness may be provided on the plate surface of the protrusion 2. For example, the protrusion 2 is manufactured using a striped steel plate or the like. This also improves the adhesion with the soil cement formed by the fluidized solidifying material. In addition, the helical protrusion 4 may exist in at least one part of the outer surface and / or inner surface of the steel pile 1 which attaches the protrusion 2. FIG.
[0026]
FIGS. 3A to 3I show various modifications of the protrusions 2 provided on the outer surface of the pile near the tip of the steel pile, the inner surface of the pile, or both the inner and outer sides of the pile. The protrusion 2 is flat (rectangular, trapezoidal, etc.). The number and shape are not limited to those illustrated. 3A to 3E are examples in which a spiral protrusion is provided on a part of the outer surface and / or the inner surface of the steel pile 1 to which the protrusion 2 is attached.
[0027]
4A to 4C are external views schematically showing various examples of the injection nozzle 30. FIG. The injection direction of the injection nozzle 30 may be any direction within the range between the driving direction of the steel pile (usually the vertical direction) and the direction perpendicular to the driving direction (usually the horizontal direction). Can be set as appropriate. In FIG. 4 (A), the injection hole 30a is provided so that the driving direction of the steel pile becomes the injection direction, and in FIG. 4 (B), the direction which makes about 45 degrees with respect to the driving direction of the steel pile. The injection hole 30a is provided so that it may become an injection direction, and in FIG.4 (C), the injection hole 30a is provided so that a direction perpendicular | vertical to the driving direction of a steel pile may become an injection direction. By making the injection direction diagonally outward or horizontal with respect to the steel pile driving direction, a composite pile with a diameter larger than the steel pile diameter (steel pile piled, cut soil particles, and flow It is possible to form a pile) that is integrated with the solidified solidified material and finally formed in the ground, and as a result, a greater support force can be obtained.
[0028]
FIG. 5 is an external view showing another embodiment of the injection nozzle 30. The illustrated injection nozzle 30 includes an injection hole 30a that injects in the horizontal direction, and includes a rotary injection unit that rotates about the axis 30b of the injection nozzle 30 as indicated by an arrow during injection. Therefore, the water or the fluidized solidifying material can be dispersed all around the spray nozzle 30 by rotating the spray nozzle 30 in a horizontal plane while spraying water or the fluidized solidifying material from the spray hole 30a. In addition, the injection hole 30a may face diagonally downward instead of the horizontal direction. Thereby, the stirring range and injection | pouring range of water or a fluidized solidification material can be expanded, and bearing capacity can be increased by the diameter increase of a synthetic pile.
[0029]
FIG. 6 is an external view showing still another embodiment of the injection nozzle 30. The illustrated injection nozzle 30 is provided with two injection holes 30a in the vertical direction and the horizontal direction. The direction of the injection hole 30a may be other than these directions, and may be directed obliquely downward. In this way, by providing a plurality of injection holes with different injection directions in one injection nozzle 30, the agitation and injection range of the water or the fluidized solidified material is expanded, and the supporting force is increased by increasing the diameter of the synthetic pile. be able to.
[0030]
FIG. 7 shows another embodiment of the steel pile of the present invention, and is a schematic partial view near the tip of the steel pile 1. As shown in FIGS. 4 to 6 above, in a given embodiment of the spray nozzle according to the present invention, water or fluidized solidified material can be sprayed in various directions other than the driving direction. Therefore, when water or a fluidized solidifying material is injected so as to hit the outer wall of the steel pile 1 (for example, horizontally or obliquely downward), the water or the fluidized solidified material can be taken into the steel pile 1 inside. An introduction hole (5a) shown in FIG. 7A or an introduction notch (5b) shown in FIG. 7B is provided. Thereby, during construction, there is an effect that a jet is introduced into the steel pile 1 so that the inside of the steel pile 1 is not blocked, and penetration is improved. Further, at the time of stopping, there is an effect that the introduced solidified material forms a solidified body and closes the inside of the tube, and the supporting force is improved.
[0031]
Next, with reference to FIG.8 and FIG.9, the effect of the protrusion 2 in the steel pile of this invention is demonstrated. When the vibratory hammer is driven, a pressure wave P0 is radiated from the surface of the steel pile 1. As shown in FIG. 8 (A), this pressure wave P0 differs depending on the location of the steel pile 1, but is represented as P0 for simplicity. The pressure wave P0 is directly incident on the protrusion 2 with the pressure P, or the pressure wave P0 is reflected by the borehole wall or the like and is incident on the protrusion 2 with the pressure P. If the reflected wave P ′ is generated, the reflected wave P ′ also increases the stirring effect. In addition, as shown in FIG. 8B, when the pressure wave P is incident on the protrusion 2 from the lateral direction to generate a reflected wave P ′, the reflected wave P ′ stirs the soil particles and the fluidized solidifying material. Promoted.
[0032]
For example, in the case of the trapezoidal protrusion 2 as shown in FIG. 9, if the pressure wave (vertical component) P1 is incident on the lower end of the protrusion 2 and reflected to the side to become the pressure wave P1 ′, the area around the pile If the pressure wave (horizontal component) P2 is incident on the lower end of the projection and reflected downward to become the pressure wave P2 ′, the crushing hole drilling force in the pile tip direction is increased. Thus, by attaching the protrusion 2, the flow range of the fluidized solidifying material can be expanded, the peripheral frictional force can be increased, the root consolidation strength of the pile foundation tip can be increased, and the water jet can be attached to the outer periphery of the steel pile. It is possible to protect the piping hose.
[0033]
FIG. 10 is an example of a construction machine layout diagram for explaining a construction method for building and driving a steel pile with projections according to the present invention. A vibro hammer grips the upper part of a steel pile with a chuck device. A vibratory hammer is a device that generates vibration by transmitting the rotational force of a motor to an eccentric member, and its performance is, for example, a motor output of 30 to 500 kW, a vibration frequency of 10 to 60 Hz, and a steel pile chuck mass of 3 to 15 tons. . For example, the steel pile is gripped at two places on the circumference. Further, in the case of a linear steel sheet pile or steel pipe sheet pile formed in a cylindrical shape for a large depth structure, it is gripped by a mechanically interlocked several to several tens of vibratory hammer chuck devices and lifted by a crane.
[0034]
In addition, the injection nozzle (not shown) attached near the front-end | tip of a steel pile functions as a water jet cutter which injects high-pressure water (for example, fresh water) of a pressure of 3-15 Mpa, for example, in combination with a vibro hammer when driving a pile. To do. In addition, in the fluidized solid material injection method used to solidify the pile tip and increase the ground strength of the peripheral surface of the pile, the fluidized solidified material is driven from the injection nozzle at a pressure of about 15 Mpa or less while driving the vibrator hammer. Spray. In addition, in the construction method of this invention mentioned later, the process of stopping the drive of a vibro hammer and injecting a fluid solidification material is also included. The piping hose is connected to a grout (fluidized solidifying material) pump and a water jet cutter device via a switching valve.
[0035]
FIG. 11 is a schematic process diagram for explaining each process in an example of a steel pile construction method according to the present invention. Although this process figure has shown about the steel pile 1 with a protrusion in this invention mentioned above, the steel pipe sheet pile with a protrusion arrange | positioned in the column shape which is another Example of this invention (shown in FIG. 13 mentioned later) and a steel sheet pile The same applies to. However, when the driving depth is very deep, the lower pile, the middle pile, and the upper pile are driven while being sequentially welded, but the description of the welding process is omitted.
[0036]
Referring to FIG. 11, the first step is a steel pile driving step. Water jet is ejected from the ejection nozzle 30, and the mass of the steel pile 1 and the vibro hammer is allowed to self-sediment, for example, about 5D to 10D (D is the outer diameter of the steel pile), and then the vibro hammer is operated. Placing continuously. The continuous casting speed is, for example, 100 cm / min. The driving speed into the support layer is, for example, about 60 cm / min or less. The confirmation of the support layer is done based on the geological survey results and cross-sectional view of the geological survey conducted in advance, and when the pile tip approaches the presumed support layer, the entire load of the vibrator hammer is deposited on the pile, and the driving speed and driving resistance are checked. (For example, a load current in the case of an electric vibratory hammer) is read.
[0037]
After the tip of the steel pile 1 passes through the interface between the intermediate layer and the support layer (support layer depth), the steel pile 1 is stopped at the driving excavation depth. In the illustrated example, the driving excavation depth is set at a position about 2.0D deeper than the support layer depth. Here, the water jet is stopped. The vibratory hammer may be temporarily stopped, but may be kept operating for the subsequent second step.
[0038]
The second step is a fluidized solid material vibration stirring step. The switching valve of the pipe to each tank of water and the fluidized solidifying material in FIG. 10 described above is operated to switch to the fluidized solidifying material flow path. Cement is supplied from a cement silo, and other injecting materials are blended to prepare a fluidized solidifying material (cement milk or the like) having a W / C of 50% to 150%. The injection of such a fluidized solidified material is started at an injection pressure of about 15 Mpa or less at maximum, and the vibro hammer is operated to pull up the steel pile 1 to the lifting depth. In the example shown in the figure, it is pulled up to a position shallower by about 1.0D than the depth of the support layer.
[0039]
Further, in the third step, the steel pile 1 is driven from the pulling depth to the fixing depth while jetting the fluidized solidified material. In the illustrated example, the fixing depth is about 1.0 D deeper than the support layer depth and shallower than the driving depth of the first step. The moving speed of the steel pile 1 in that case is about 50-200 cm / min.
[0040]
Said 2nd and 3rd continuous process may be performed only once, and may be repeated in multiple times according to conditions, such as the hardness of a ground. In the case of a hard ground, it is preferable to repeat appropriately for the stirring of the ground. In the repetition process of the second and third processes, either a fluidized solidifying material or water (that is, a water jet) may be injected. Thereby, the bulb | bulb with which the solidified body was expanded can be formed reliably in the steel pile front-end | tip, and a front-end | tip support force can be increased.
[0041]
Then, whether the second and third steps are performed only once or repeatedly, the vibro hammer is stopped after the steel pile 1 is stopped at the fixing depth by the third step performed last. Thereafter, while the steel pile 1 is stopped at the fixing depth, the fluidized solidified material is sprayed for a predetermined time as a rooting step. Process control is based on grout pump pressure gauge and flow meter.
[0042]
Next, an injection nozzle drawing process is performed. First, the injection nozzle 30 is detached from the steel pile 1 together with the pipe hose 31. Thereafter, the upper end portion of the pipe hose 31 is lifted by the main crane of the base machine, and the injection nozzle 30 is pulled out at a predetermined speed, for example, 50 to 200 cm / min. At this time, the spray nozzle 30 is pulled out while spraying the fluidized solidifying material. The injection is stopped when the injection nozzle 30 is pulled out to a predetermined ratio, for example, 90% with respect to the driving depth. By pulling out the injection nozzle while injecting the fluidized solidified material, a solidified body of the fluidized solidified material is formed on the outside of the steel pile 1, thereby increasing the peripheral frictional force.
[0043]
In each of the first to third steps, the steel pile may be driven or pulled out while changing either or both of the injection pressure or the injection amount of water or the fluidized solidifying material.
[0044]
FIG. 12 is a cross-sectional view of a pile foundation (synthetic pile) formed by the steel pile construction method according to the present invention. According to this construction method, a substantially root-like soil cement solidified body 200 having a diameter expanded as compared with the steel pile 1 is formed at the tip of the pile. The depth of the lower end of the soil cement solidified body 200 reaches the driving depth or more. That is, the portion corresponding to the tooth root of the root-like soil cement solidified body 200 is securely embedded in the support layer. It should be noted that the expression of the root shape is figurative and may not necessarily have a clear root shape depending on the ground conditions and construction conditions. In any case, reliable incorporation into the support layer is realized. Moreover, a fluid solidification material is also inject | poured inside the steel pile 1 by the 2nd process (fluid solidification material vibration stirring process), and finally becomes a part of soil cement solidification body 200. FIG. The upper end of the soil cement column inside the steel pile 1 reaches above the pulling depth because of the fluidized solidified material injected in the root-setting step. Thereby, the pile front-end | tip of the steel pile 1 is obstruct | occluded.
[0045]
Finally, the steel pile in the present invention includes a large number of straight steel sheet piles and a pile of sheet piles (steel pipe sheet piles) formed of a large number of steel pipes. FIG. 13 shows a steel pipe sheet pile foundation 100 that is an aggregate of the steel pipe sheet piles 10. A plurality of protrusions 2 are welded to the outer surfaces near the tips of the steel pipe sheet piles 10 constituting the steel pipe sheet pile foundation 100, respectively.
[0046]
【The invention's effect】
According to the steel pile of the present invention, the agitation effect of the soil particles and the fluidized solidified material around the tip of the pile is increased by the protrusion, and after solidification, the function is exhibited as a soil cement synthetic pile expanded from the steel pile diameter. As a result, the vertical supporting force from the ground is remarkably improved as compared with the case where a steel pipe without protrusions is used. Depending on the conditions, it may be improved by a factor of 2 or more.
[0047]
Moreover, according to the construction method of the steel pile of this invention, in the said 1st-3rd process, a fluid solidification material is sprayed from the steel pipe outer side and / or inner side vicinity, and a root-like cement solidified body is made to the pile front-end | tip. While being formed, the solidified body of the fluidized solidifying material can be filled to a certain level inside the steel pipe. As a result, the closed bulb of the soil cement solidified body having an enlarged diameter can be reliably formed at the tip of the steel pile, and the supporting force is increased.
[Brief description of the drawings]
1A and 1B are a front view (upper view) and a bottom view (lower view), respectively, schematically showing an example of a steel pile 1 according to the present invention.
FIG. 2 is an external view of another embodiment of the steel pile of the present invention to which an injection nozzle and a vibro hammer are attached.
3 (A) to (I) show the presence or absence of protrusions 2 provided on the outer surface of the pile, the inner surface of the pile, or the inner and outer surfaces of the pile, and the spiral protrusions on the outer surface or the inner surface of the steel pile 1; It is a figure which shows the various modifications which combined.
FIGS. 4A to 4C are external views showing various embodiments of the injection nozzle. FIGS.
FIG. 5 is an external view showing another embodiment of the injection nozzle.
FIG. 6 is an external view showing still another embodiment of the injection nozzle.
FIG. 7 shows another embodiment of the steel pile, and is a schematic partial view near the tip of the steel pile.
FIG. 8 is a front view and a top view of a steel pile with protrusions according to the present invention.
FIG. 9 is a front view of a steel pile having trapezoidal protrusions.
FIG. 10 is a diagram showing an example of the arrangement of construction machines in the steel pile construction method of the present invention.
FIG. 11 is a process diagram for explaining each process of the steel pile construction method of the present invention.
FIG. 12 is a ground sectional view showing a state of a pile foundation (synthetic pile) formed by the steel pile construction method according to the present invention.
FIG. 13 is a view showing a steel pipe sheet pile that is an aggregate of steel pipes with protrusions.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Steel pile 2 Protrusion 3 Through-hole 4 Spiral protrusion 5a Introduction hole 5b Introduction notch 10 Steel pipe sheet pile 30 Injection nozzle 30a Injection hole 30b Injection nozzle shaft 31 Pipe hose 100 Steel pipe sheet pile foundation 200 Soil cement solidified body

Claims (11)

バイブロハンマと水又は流動性固化材の噴射とを用いて打ち込まれる鋼杭であって、前記鋼杭の杭先端付近における杭外面若しくは杭内面又は杭内外両面に設けた前記鋼杭の打込方向に平行な板面をもつ平板状の突起と、前記突起を取り付けた部分における杭外面若しくは杭内面又は杭内外両面に設けた螺旋状突起とを有すると共に、前記鋼杭の杭先端付近における杭外面若しくは杭内面又は杭内外両面に水又は流動性固化材を噴射する1又は複数の噴射ノズルを装着したことを特徴とする鋼杭。 A steel pile driven using a vibro hammer and water or a fluidized solidifying material jet, in the direction of driving the steel pile provided on the outer surface of the pile or the inner surface of the pile or both the inner and outer surfaces of the pile near the tip of the steel pile A flat protrusion having a parallel plate surface, and a spiral protrusion provided on the outer surface of the pile or the inner surface of the pile or both the inner and outer surfaces of the pile at the portion to which the protrusion is attached, and the outer surface of the pile near the pile tip of the steel pile or A steel pile having one or more injection nozzles for injecting water or a fluidized solidifying material on the inner surface of the pile or on both the inner and outer sides of the pile. 前記噴射ノズルが着脱可能であることを特徴とする請求項1に記載の鋼杭。  The steel pile according to claim 1, wherein the spray nozzle is detachable. 前記噴射ノズルによる噴射方向が、前記鋼杭の打込方向と該打込方向に対して垂直な方向との間のいずれかの方向であることを特徴とする請求項1又は2に記載の鋼杭。  3. The steel according to claim 1, wherein an injection direction by the injection nozzle is any direction between a driving direction of the steel pile and a direction perpendicular to the driving direction. Pile. 前記噴射ノズルの少なくとも1つが、自転しつつ噴射するための回転噴射手段を有することを特徴とする請求項1〜3のいずれかに記載の鋼杭。  The steel pile according to any one of claims 1 to 3, wherein at least one of the injection nozzles has a rotary injection means for injecting while rotating. 前記噴射ノズルの少なくとも1つが、噴射方向のそれぞれ異なる複数の噴射孔を具備することを特徴とする請求項1〜4のいずれかに記載の鋼杭。  The steel pile according to any one of claims 1 to 4, wherein at least one of the injection nozzles includes a plurality of injection holes having different injection directions. 前記鋼杭の杭外面に装着された前記噴射ノズルから噴射される水又は流動性固化材を前記鋼杭の内側へ取り入れるための導入孔若しくは導入切欠きを該鋼杭に穿設したことを特徴とする請求項1〜5のいずれかに記載の鋼杭。  The steel pile is provided with an introduction hole or an introduction notch for taking water or a fluidized solidified material injected from the injection nozzle attached to the outer surface of the steel pile into the inside of the steel pile. The steel pile according to any one of claims 1 to 5. 請求項1〜6のいずれかに記載の鋼杭を地盤に打ち込む施工方法において、バイブロハンマを用いかつ水又は流動性固化材を噴射しつつ前記鋼杭を地盤に打ち込むことを特徴とする鋼杭の施工方法。  A construction method for driving the steel pile according to any one of claims 1 to 6 into the ground, wherein the steel pile is driven into the ground using a vibro hammer and spraying water or a fluidized solidifying material. Construction method. 水を噴射しつつ前記鋼杭を支持層まで打ち込む第1工程と、
水又は流動性固化材を噴射しつつ前記鋼杭を引き抜く第2工程と、
水又は流動性固化材を噴射しつつ前記支持層まで再度前記鋼杭を打ち込む第3工程とを含み、
連続する前記第2及び第3工程を1又は複数回行うことを特徴とする請求項7に記載の鋼杭の施工方法。
A first step of driving the steel pile to the support layer while spraying water;
A second step of pulling out the steel pile while injecting water or a fluidized solidifying material;
A third step of driving the steel pile again to the support layer while injecting water or a fluidized solidifying material,
The construction method for a steel pile according to claim 7, wherein the continuous second and third steps are performed one or more times.
前記第3工程における前記鋼杭の打込深度が、前記第1工程における該鋼杭の打込深度よりも浅いことを特徴とする請求項8に記載の鋼杭の施工方法。  The method for constructing a steel pile according to claim 8, wherein a driving depth of the steel pile in the third step is shallower than a driving depth of the steel pile in the first step. 前記第1〜第3工程の各工程において、水又は流動性固化材の噴射圧力又は噴射量のいずれか又は双方を変化させつつ前記鋼杭を打ち込み又は引き抜くことを特徴とする請求項7〜9のいずれかに記載の鋼杭の施工方法。  In each of the first to third steps, the steel pile is driven or pulled out while changing either or both of the injection pressure or the injection amount of water or the fluidized solidifying material. The construction method of the steel pile in any one of. 前記鋼杭の打ち込みが完了した後、流動性固化材を噴射しつつ前記噴射ノズルを引き上げることを特徴とする請求項7〜10のいずれかに記載の鋼杭の施工方法。  The method for constructing a steel pile according to any one of claims 7 to 10, wherein after the driving of the steel pile is completed, the injection nozzle is pulled up while injecting a fluidized solidifying material.
JP2003058302A 2003-03-05 2003-03-05 Steel pile and its construction method Expired - Lifetime JP3850802B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003058302A JP3850802B2 (en) 2003-03-05 2003-03-05 Steel pile and its construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003058302A JP3850802B2 (en) 2003-03-05 2003-03-05 Steel pile and its construction method

Publications (2)

Publication Number Publication Date
JP2004270157A JP2004270157A (en) 2004-09-30
JP3850802B2 true JP3850802B2 (en) 2006-11-29

Family

ID=33121440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003058302A Expired - Lifetime JP3850802B2 (en) 2003-03-05 2003-03-05 Steel pile and its construction method

Country Status (1)

Country Link
JP (1) JP3850802B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011125710A1 (en) * 2010-04-01 2011-10-13 新日本製鐵株式会社 Steel pile driving method involving degassing process
KR101558931B1 (en) * 2013-10-11 2015-10-12 재단법인 포항산업과학연구원 File with enhanced tensile resistances

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4491274B2 (en) * 2004-05-12 2010-06-30 新日本製鐵株式会社 Steel pile construction management method
JP5181239B2 (en) * 2008-05-19 2013-04-10 新日鐵住金株式会社 Steel pipe pile and construction method of steel pipe pile
JP5783894B2 (en) * 2011-12-19 2015-09-24 新日鐵住金株式会社 Tip-expanded pile
JP5890677B2 (en) * 2011-12-19 2016-03-22 新日鐵住金株式会社 Steel pile construction method
JP5867301B2 (en) * 2012-06-12 2016-02-24 新日鐵住金株式会社 Pipe pile and its construction method
JP2014109190A (en) * 2013-06-17 2014-06-12 Oak:Kk Foot protection method for steel pile
WO2014203858A1 (en) * 2013-06-19 2014-12-24 新日鐵住金株式会社 Steel-pipe pile and steel-pipe pile construction method
JP6529226B2 (en) * 2014-07-28 2019-06-12 大成建設株式会社 Pile driving method and the pile
JP6043378B2 (en) * 2015-02-16 2016-12-14 調和工業株式会社 Conduit pulling device, conduit pulling method and pile driving method
JP6560922B2 (en) * 2015-07-27 2019-08-14 株式会社技研製作所 Steel pipe pile, steel pipe pile press-in method and steel pipe pile continuous wall
KR101841250B1 (en) * 2017-02-02 2018-03-22 이엑스티 주식회사 Construction method of non-displacement pile by gelled soil
JP6947206B2 (en) * 2018-08-30 2021-10-13 Jfeスチール株式会社 Construction method of steel pipe pile
JP6943272B2 (en) * 2018-08-30 2021-09-29 Jfeスチール株式会社 Construction method of steel pipe pile, steel pipe pile
JP6943273B2 (en) * 2018-08-30 2021-09-29 Jfeスチール株式会社 Construction method of steel pipe pile
JP7569049B2 (en) 2020-10-26 2024-10-17 日本製鉄株式会社 Steel sheet piles and their installation methods
CN113653053A (en) * 2021-09-02 2021-11-16 厦门大学 Fluidization drag reduction pile pulling device easy to recover

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011125710A1 (en) * 2010-04-01 2011-10-13 新日本製鐵株式会社 Steel pile driving method involving degassing process
JP2011214340A (en) * 2010-04-01 2011-10-27 Nippon Steel Corp Steel pile driving method involving degassing process
KR101558931B1 (en) * 2013-10-11 2015-10-12 재단법인 포항산업과학연구원 File with enhanced tensile resistances

Also Published As

Publication number Publication date
JP2004270157A (en) 2004-09-30

Similar Documents

Publication Publication Date Title
JP3850802B2 (en) Steel pile and its construction method
JP5181239B2 (en) Steel pipe pile and construction method of steel pipe pile
JP5167302B2 (en) Steel pile placing method including deaeration process
JP2017095880A (en) Construction method of steel pipe pile
CN103233469A (en) Process and device for rotating and extending pile and slurry feed device
JP3752560B2 (en) Basic structure for constructing a new building in an existing basement and its construction method
JPS5985028A (en) Steel pipe pile and laying work thereof
JP3735225B2 (en) Method of driving steel pipe piles into bedrock
JP2019039140A (en) Method for constructing ground improvement body and method for constructing pile
JP2019019647A (en) Method for constructing pile
JP3213240B2 (en) Support pile reinforcement structure of existing structure and its reinforcement method
CN203129143U (en) Static pressure jet flow piling wall forming equipment
JP2008031772A (en) Construction method of precast pile, and cover for use in the construction method
JP3672478B2 (en) Double-structure solidified pile with tubular steel and its construction method
JP6746342B2 (en) Structural support structure and pile foundation structure reinforcement method
JPH09317373A (en) Method of shaft construction
JP3217038B2 (en) Ground drilling equipment and method of forming cylindrical underground structure
JP3450725B2 (en) Ground improvement method
JP4615841B2 (en) Synthetic pile construction method and synthetic pile
JPH1150443A (en) Underground consolidated body construction device and construction method thereof
KR101008012B1 (en) Ground improving method running parallel ground solidification and excavation replacement
JP2002097639A (en) Pile burying method and jig
CN210712824U (en) Reinforced composite pile based on miniature pile
JP7248873B2 (en) Crushed stone pile combine construction method
KR102270555B1 (en) Method for reinforcing ground using grouting bead and helical pile

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040728

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040729

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20060202

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20060215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060815

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060830

R150 Certificate of patent or registration of utility model

Ref document number: 3850802

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090908

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130908

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130908

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130908

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term