JP3735225B2 - Method of driving steel pipe piles into bedrock - Google Patents

Method of driving steel pipe piles into bedrock Download PDF

Info

Publication number
JP3735225B2
JP3735225B2 JP35581399A JP35581399A JP3735225B2 JP 3735225 B2 JP3735225 B2 JP 3735225B2 JP 35581399 A JP35581399 A JP 35581399A JP 35581399 A JP35581399 A JP 35581399A JP 3735225 B2 JP3735225 B2 JP 3735225B2
Authority
JP
Japan
Prior art keywords
pile
tip
air
bedrock
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35581399A
Other languages
Japanese (ja)
Other versions
JP2001172970A (en
Inventor
裕生 盛高
拓也 斉藤
英之 木田
章 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP35581399A priority Critical patent/JP3735225B2/en
Publication of JP2001172970A publication Critical patent/JP2001172970A/en
Application granted granted Critical
Publication of JP3735225B2 publication Critical patent/JP3735225B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Placing Or Removing Of Piles Or Sheet Piles, Or Accessories Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、岩盤への杭の打込み工法に関するものである。
【0002】
【従来の技術】
従来の岩盤への杭の打込み工法は、回転ビットにより岩盤を切削して杭径より大きい径の孔を先行掘削し、この孔に杭を差し込んでグラウト材で固定する工法や、既製杭をジェット水やバイブロハンマーにより直接岩盤に打ち込む工法がある。
【0003】
後者の工法、つまり既製杭を直接岩盤に打ち込む工法は、工程が少ないため前者の工法よりも有利である。この工法には、例えば、特開平8−100425号に開示のものがある。しかし、この特開平8−100425号の工法では、岩盤のさく孔のために用いられるジェット水の圧力が約100MPa以上の超高圧ジェット水を使用し、また杭先端には多数の超高圧ジェットノズルを設置しなければならないため特殊な設備構成となり、かつ高額な設備費を要する。
【0004】
一方、バイブロハンマーを用いて既設杭を直接岩盤に打ち込む工法がある。この工法はバイブロハンマーの振動打撃力で岩盤を粉砕しながら杭の打設を行なうものであるため、効率よく杭を打ち込むには、粉砕した岩粉(ズリ)を排除しながら行なう必要がある。
【0005】
すなわち、バイブロハンマーによる振動打撃力で岩盤を粉砕しながら杭の打設を行なう場合、粉砕した岩盤をそのままにしておくと、粉状の岩盤がクッション材となってハンマーの打撃エネルギーを吸収してしまい、岩盤への打撃エネルギーの伝達効率が著るしく低下してしまうため、粉砕した岩盤は速やかに排除しなければならない。
【0006】
出願人は先に粉砕した岩盤を速やかに排除する手段を採り入れた岩盤への杭の打込み工法を特開平11―71758号で開示している。
この工法の要旨は、図12に示すように、岩盤2へ打込む杭1の杭内の水位9を杭外水位10より高くして、この水頭差ΔHによる圧力差により打込み中の杭内水9aを杭内周間隙14から杭先端を通して杭外周隙間15に水流を生じさせ、粉砕された粉状のズリ16を水流に混入して排除し、常にバイブロハンマー6の打撃力を直接新鮮な岩盤に伝達するようにしたことを特徴とするものである。
【0007】
また、杭1の先端部12は打込み対象岩盤2より硬い金属で且つ杭1の板厚と同じかまたは杭の板厚以上の板厚とした先端シュー12を設け杭先端が磨耗して岩盤2の粉砕能力が低下することがないようにしている。なお、岩盤中に杭を打ち込んだ後は岩盤2と杭1の内外周の隙間14,15にグラウト材19を充填して杭1を岩盤2に定着させている。
【0008】
【発明が解決しようとする課題】
前記従来技術に述べた特開平11―71758号による岩盤への杭の打込み工法は、粉砕した岩盤2のズリ16を速やかに排除する手段として、杭内に注水した水9aの水頭差ΔHによる水流を利用したものであり、特別の装置を用いることなく自然エネルギーを利用した極めて簡単な構成で目的を達成できるものである。
【0009】
この工法は杭1内に注水した杭内水位9と杭外水位10に十分な差が得られる条件では、水頭差ΔHによって杭先端部11に杭内周間隙14から杭外周隙間15に向って適当な水流が得られ、バイブロハンマー6で粉砕した杭先端部のズリ16を水流に混入して排出でき、岩盤2へのバイブロハンマー6の打撃エネルギーを効率よく伝達して杭1の打込みを円滑にする効果を発揮できるが、杭1の貫入が進み十分な水頭差ΔHが得られなくなると水流が弱くなってズリ16の排出が困難になる課題があった。
また、杭先端部の先端シュー12の内外周面と岩盤の掘削壁面との隙間14,15が狭い場合、流路が不足して円滑な水流を妨げる場合があった。
【0010】
本発明は上記特開平11―71758号に係る岩盤への杭の打込み工法を改良したもので、前記課題を解消し、粉砕した杭先端部のズリを確実に排出して岩盤へのバイブロハンマーの打撃エネルギーを効率よく伝達して、杭の打込みをさらに円滑にすることを目的としたものである
【0011】
【課題を解決するための手段】
上記目的を達成するため、本発明では以下の構成を要旨とする。請求項1記載の発明では、開端鋼管杭からなる杭1の先端部11に厚肉硬金属からなる先端シュー12を一体的に設け、かつ長手方向に沿って杭先端部11にエアまたはグラウト材を送る注入管3を固定した杭1を岩盤2上に建て込み、この杭1の内部に注水して杭内の水位9を杭外の水位10より高くした状態を維持しつつ、同時に前記注入管3をエア供給装置8に接続して杭先端部11にエアを送りながらバイブロハンマー6をセットした杭により粉砕した岩粉(ズリ)16を排出しながら前記鋼管杭1を岩盤2中に打込み、杭1を所定深さに貫入した後、杭1と岩盤2の隙間にグラウト材19を注入充填し、前記エアを送る工程においては、エア供給装置8から杭先端部11に送るエアを杭外間隙15へ排出させることにより、水位9と水位10との水頭差ΔHにより杭内から杭外へ向かう水流の勢いを助長させ、前記粉砕した岩粉(ズリ)16を排出する。
【0012】
また、請求項2記載の発明は、請求項1記載の発明において、少なくとも前記水頭差ΔHがより小さくなって水流の勢いが減じた場合に、前記エアリフトによるエアの排出を実行する。
【0013】
また、請求項3記載の発明は、開端鋼管杭からなる杭1の先端部11に、周方向複数箇所に上下方向に溝18を形成した厚肉硬金属からなる先端シュー12を一体的に設けた杭1を岩盤2上に建て込み、この杭1の内部に注水して杭内の水位9を杭外の水位10より高くした状態を維持しつつ、バイブロハンマー6をセットした杭により粉砕した岩粉(ズリ)16を排出しながら前記鋼管杭1を岩盤2中に打込み、杭1を所定深さに貫入した後、杭1と岩盤2の隙間にグラウト材19を注入充填し、先端シュー12の周方向複数箇所に上下方向に形成した溝18は、隣り合う溝の傾斜の向きが反対方向になるように傾斜させたことを特徴とする。
【0014】
(作用)
すなわち、本発明の要点は、杭1の長手方向に沿って杭先端部11にエアを送る注入管3を固定しておき、バイブロハンマー6により杭先端の岩盤2に振動を与えて掘削する際、エア供給装置8から注入管3にエアを送り杭先端部11から放散させて気泡17を生じさせることによって、エアリフトの作用で杭1と掘削孔の隙間からズリ16を浮上排出させるものである。
【0015】
このエアリフト作用の追加により、杭内の水位9と杭外の水位10の水頭差ΔHが小さく杭先端部11の杭内から杭外に流れる水流が弱くてもズリ16を円滑に排出させることができる。
【0016】
なお、エアを送る注入管3は杭の貫入完了後にグラウト材19を充填する際の注入管を兼用することができる。
【0017】
また、杭先端の硬金属で製作した先端シュー12を鋼管杭の板厚より厚くし、先端シュー12の周方向複数箇所に上下方向に溝18を形成すると、杭先端部の先端シュー12の内外周面と岩盤の掘削壁面の隙間が狭くて流水を妨げる場合においても溝18が流路となって円滑な水流を確保でき、ズリ16の排出を確実にできる。
【0018】
なお、溝18は上下方向に垂直にしてもよいが、これを傾斜させると図8(c)に示すように溝18から排出されたズリ16が溝18内に落下して塞ぐことがない。
【0019】
また、溝18を傾斜させる場合は、隣り合う溝の傾斜の向きが反対方向になるようにすると、バイブロハンマー6で杭1の打込み中に杭1が回転することを防ぐことができる。
【0020】
【発明の実施の形態】
以下本発明の実施の形態を図を参照して説明する。
図1は請求項1に係る発明の実施形態を示したものであって、岩盤2の水底地盤に鋼管杭(以下杭という)1を打込み施工している状況の例を示す。この例は水中に打込まれる杭を対象としているが、陸上に設置されるものでもほぼ同様に適用できる。
【0021】
本発明に用いる杭1は、先端を開放した開端杭としたもので、杭先端部11は、図2に示すようにマンガン鋼や耐摩耗鋼等の硬金属を使用し、杭1の板厚より厚肉とした先端シュー12を溶接によって一体的に設け、杭1の打込み時の岩盤粉砕時の衝撃荷重に対する耐久性を備えるようにしている。
【0022】
また、本発明の杭1には、先端部11の杭外周間隙15にズリを浮上排出させるエアリフトの作用を生じさせるための気泡17を供給する注入管3が杭内の長手方向に沿って配設してあり、注入管3の先端部は杭の外面に貫通する注入孔4に接続しており、上端は杭の外に設置されるコンプレッサーやエアポンプ等のエア供給装置8とエアホース8aで接続している。エアを送る注入管3は、杭1の打込み完了後に、杭1と掘削孔との内周間隙14、外周間隙15にグラウト材19を充填するための注入管と兼用することができる。図3は杭内の注入管3の配置を示したもので、杭内周間隙14にグラウト注入管3bが2本、杭外周間隙15にグラウトする注入管3bが2本配置されており、エア注入管3aは杭外周間隙用グラウト注入管3bの2本を兼用して用いる。
なお、この注入管3は本数を増減したり、また杭の外周に沿わせて配設してもよい。
【0023】
以上の如き構造とした杭1を岩盤上に建て込んだ後、杭1の上端にバイブロハンマー6をセットし、揚水ポンプ7で揚水した水をホース7aで杭内に注水して杭内の水位9を杭外の水位10より高くして水頭差ΔHを維持しながらエア供給装置8よりエア注入管3aに空気を送り注入孔4から杭外周間隙15に気泡17を放散させつつバイブロハンマー6を駆動して杭先端部11の岩盤2に縦振動等の振動を加える。
【0024】
その結果、杭1は先端シュー12で岩盤2を粉砕しながら貫入し、杭先端部11に発生する岩粉(ズリ)16は杭内水位9と杭外水位10の水頭差ΔHによって内から外に向かう水流(矢印)によって杭外周間隙15を通って排出される。この際、杭外周間隙15にエアー注入管3aから気泡17を放散させることにより、エアリフトの作用でズリ16の浮上排出を助勢する。このエアリフトは杭の貫入が進み杭内と杭外の水頭差ΔHが小さくなって水流の勢いが減じた場合においても作用する。
【0025】
なお、杭の貫入が終わったらエア注入管3aのエア供給装置8を切離し、エア注入管3a、グラウト注入管3bをグラウトポンプ(図示省略)に接続して杭内周間隙14と杭外周間隙15にセメントミルクやモルタル等のグラウト材19を注入・充填して硬化させ、杭1と岩盤2を定着させる。図9は杭1と岩盤2を定着した完成断面である。
【0026】
本発明における杭の先端部の細部についてさらに説明を加える。図4および図5〜図8は杭先端部11の内面における注入管3と先端シュー12の配置および各部の詳細を示したものである。
前記注入管3は打込み中の損傷防止のためにプロテクター5で保護する。このプロテクター5は打込み抵抗とならないようにできるだけコンパクトなものとする必要があるため、図5に示すような山型鋼または溝型鋼を用いる。プロテクター5は、図4に示すように、千鳥状の断続溶接5bで杭1に固定し、プロテクターの先端5aは、図4Cに示すように、斜め状にするとともに若干張り出させプロテクター外面が掘削面と接触しないようにして摩擦カットする。
【0027】
また、プロテクター先端5aは、図7のように注入管3の配設側(管内)に出口を設けたグラウト注入管3bでは、出口から間隔をおいて硬金属の板5cをテーパー状に積み重ね、隅肉溶接して注入管出口部を保護するようにしてもよい。この場合もプロテクター先端5aは張り出させる。
【0028】
図4および図8は請求項2に係る杭先端シューの実施形態を示したものである。
杭先端シュー12は、杭1の板厚より厚肉の硬金属を用いるが、図4、図8に示すように周方向の複数箇所に上下方向に溝18を形成する。この溝18は、杭内から杭外への水の流れを円滑にし、ズリ16の排出を促進するために設けるものである。すなわち、杭1の先端シュー12は、岩盤2を粉砕して岩盤中に貫入していくが初期状態では岩盤2の掘削壁との間隙が狭く水流が妨げられやすい。このため先端シュー12の周面に流路を設けて水流が滞ることがないようにしたものである。なお、この溝18は先端シュー12の内外の両面に杭1の板厚より厚い部分に施せばよい。また、溝18は先端シュー12の上下に渡って形成すればよいが垂直にすると(a)に示すように溝内にズリ16が入り込んで閉塞することがあるため(b)のように傾斜させて形成した方が望ましい。
【0029】
傾斜させる場合、溝の向きを同方向に揃えると杭1が打込み中に回転しやすくなるため、隣り合う溝18、18の傾斜の向きが反対方向になるように、すなわち隣り合う溝18,18の上下方向の一端側が互いに離反すると共に他端側が互いに接近する方向または一端側が互いに接近すると共に他端側が互いに離反する方向に配置された一対の溝18,18を周方向に等角度間隔を置いて設けるようにするとよい。
【0030】
本発明を実施する場合、請求項1記載の発明と請求項2の発明をそれぞれ単独または組合わせて行うことができる。即ち、(1)杭の先端シュー12に溝18を形成せずに杭内水位9と杭外水位10の水頭差ΔHによる水流によって杭外周間隙15からズリ16を排出する際、注入管3による気泡を放散してエアリフト作用を生じさせてズリ排出を助勢する実施形態。(2)先端シュー12に溝18を形成した杭1を用い、注入管3によるエア供給(エアリフト作用)を用いないでズリ16を排出する実施形態。(3)先端シュー12に溝18を形成した杭1を用い、かつ、注入管3による気泡を放散してエアリフト作用を生じさせてズリ排出を助勢する実施形態とすることができる。
【0031】
(実施例)
本発明によって外径800mm、32m長の鋼管杭1を一軸圧縮強度64N/mm(64MPa)の安山岩からなる水深20m海底岩盤2に8m打込む場合の杭1の諸元および施工装置の一例を示すと以下のとおりである。
(1)打設する鋼管杭1は直径800mm、肉厚19mm、長さ32mのSKK400の鋼管杭で先端部11に肉厚40mm幅100mmのマンガン鋼の先端シュー12を溶接し、先端シュー12の内面と外面の周方向には間隔をおいて、30°傾斜で 幅15mm、深さ10mmの溝18を複数形成した。
【0032】
杭内面に添わせて配設した注入管3は25A鋼管4本で、杭内周間隙14と外周間隙15のグラウト注入管3bとしてそれぞれ2本ずつ使用する。この内、杭外周間隙グラウト注入用の2本をエア注入管3aに兼用使用した。プロテクター5はL90×90mmの山型鋼を使用し、プロテクター先端5aは斜め状およびテーパー状に形成した。
【0033】
(2)杭の打ち込みに使用したバイブロハンマー6は偏心モーメント49kN・m、振動数1,100cpm、起振力約690kNを使用した。また、揚水能力1.3立方米/分の揚水ポンプ7とエア供給装置(コンプレッサー)を使用した。
(3)施工方法
杭1を建て込み、揚水ポンプ7を始動させ杭頂部から溢れ出る程度に杭内に給水した後、バイブロハンマー6を杭頭部に装着し始動させ、杭内水位9と杭外水位10の水頭差ΔH=12mで打込み開始した。
当初、水頭差ΔHが十分あるため杭先端部の破砕した粉状の岩盤(ズリ)16は杭内からの流水のみで排出されていたが杭の貫入が進み、水頭差ΔH=6m頃になると水流が弱まり、ズリ16の排出が滞り杭の貫入が円滑にいかなくなった。そこで、コンプレッサー8を運転開始し、エア注入管3aに空気を送り杭先端部の外周間隙15から気泡17を放散させてエアリフトを併用した結果、杭1を岩盤2の所定の貫入深さである8mまで円滑に打ち込む事ができた。なお、この例における最終の水頭差ΔHは4mであった。
その後、杭の内外周と掘削岩盤の間隙14、15にモルタルのグラウト材19を注入・充填して完了した。
【0034】
(適用例)
図10は本発明を水中に設置されるジャケット20の杭1に適用する場合の例を示したものである。この場合の施工方法は水底の岩盤2上に設置したジャケット20のレグ21内に前記構造の杭1を差込んで岩盤2上に建て込み、杭1内に揚水ポンプ7で水を注入し、注入管3にエア供給装置8を接続してクレーン船22で吊下げたバイブロハンマー6を杭頭部に装着して打込みを開始する。打込み時は杭内の水位9を杭外の水位10より高くした状態を維持し、杭先端部11から気泡17を放散させながらバイブロハンマー6を駆動して水流とエアリフトによるズリ16の排出を行いながら杭を貫入する。
【0035】
図11は岩盤2の上方に軟弱土砂の堆積層23がある陸上杭打ちの場合に本発明を適用する例を示したものである。このような場合は堆積層23の部分にズリ16の排出路を確保する必要があるため間隙25を設ける。この間隙25は事前に堆積層23の区間に杭の外径より大きいケーシング管24を設置し、内部の土砂を掘り上げて形成する。また、陸上施工の場合は杭内に注水するための注水用ピット26および排出するズリと水を受け入れる排出用ピット26を設ける。
その他の施工手段は前述と同様とすればよい。なお、本発明に係る鋼管杭は鉛直杭の他、斜杭も対象とする。
【0036】
なお、前記各実施形態のように、エアを送る注入管3は、杭の貫入完了後にグラウト材19を充填する際の注入管を兼用とすると経済的である。
【0037】
【発明の効果】
本発明の岩盤への杭の打込み工法によると次の効果がある。
杭1の長手方向に沿って杭先端部11にエアを送る注入管3を固定しておき、バイブロハンマー6により杭先端の岩盤2に振動を与えて掘削する際、エア供給装置8から注入管3にエアを送り杭先端部11から放散させて気泡17を生じさせることによってエアリフトの作用で杭1と掘削孔の隙間からズリ16を浮上排出させることができ、杭内水位9と杭外水位10の水頭差ΔHが小さく杭先端部11の杭内から杭外に流れる水流が弱くてもズリ16の浮上排出を助勢することができる。
また、杭先端の硬金属で製作した先端シュー12を鋼管杭の板厚より厚くし、先端シュー12の周方向複数箇所に上下方向に溝18を形成することにより、杭先端部の先端シュー12の内外周面と岩盤の掘削壁面の隙間が狭くて流水を妨げる場合においても、溝18が流路となって円滑な水流を確保でき、ズリ16の排出を確実にできる。
なお、溝は上下方向に傾斜させるようにすると、ズリが溝内に入り難く流路を塞ぐことがない。また、溝を傾斜させる場合は、隣り合う溝の傾斜の向きが反対方向になるようにすると、バイブロハンマーで杭の打込み中に杭1が回転することを防ぐことができる。
このように岩盤を掘削する際発生するズリを速やかに排出できるため、バイブロハンマーの打撃エネルギーを岩盤に効率良く伝達でき、そのため円滑に岩盤中に杭を打込むことができる。
【図面の簡単な説明】
【図1】本発明に係る第1実施形態の説明図で岩盤への杭の打込み中の概略縦断面図である(プロテクタを省略した)。
【図2】図1のイ部詳細であり、杭先端部を拡大した縦断面図である。
【図3】図1のA−A断面図であり、杭先端部の横断面面図である。
【図4】杭先端部の内側を示す縦断斜視図である。
【図5】図4のB−B断面図であり、注入管とプロテクターとの関係を示す図である。
【図6】図4のC−C断面図であり、注入管プロテクター先端部を示す図である。
【図7】図4のD−D断面である。
【図8】(a)は図4のE−E断面図で、杭先端シュー溝を示した図であり、(b)およびは(c)は杭先端部内側の傾斜溝の配列状態とズリの排出作用の説明図である。
【図9】本発明により岩盤中に固定された杭の横断面図である。
【図10】本発明を適用して岩盤上にジャケットを固定する杭を打込み中の形態を示す一部縦断側面図である。
【図11】岩盤の上に堆積層がある場合の施工形態を示す縦断面図である。
【図12】従来の工法形態を示す縦断面図である。
【符号の説明】
1 杭(鋼管杭)
2 岩盤
3 注入管
3a エア注入管
3b グラウト注入管
4 注入孔
5 プロテクター
5a プロテクター先端
5b 断続溶接
5c 硬金属
6 バイブロハンマー
7 揚水ポンプ
7a ホース
8 エア供給装置(コンプレッサー)
8a エアホース
8b 圧縮空気
9 杭内水位
9a 杭内水
10 杭外水位
ΔH 水頭差
11 杭先端部
12 杭の先端シュー(高硬度鋼材)
13 溶接部
14 杭内周間隙
15 杭外周間隙
16 粉状の岩粉(ズリ)
17 気泡
18 溝
19 グラウト材
20 ジャケット
21 レグ
22 クレーン船
23 堆積土砂
24 ケーシング管
25 間隙
26 ピット
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for driving a pile into a rock mass.
[0002]
[Prior art]
The conventional method of driving piles into bedrock is to cut the bedrock with a rotating bit and excavate a hole with a diameter larger than the pile diameter, insert the pile into this hole and fix it with grout material, or jet ready-made piles. There is a method of driving directly into the bedrock with water or a vibro hammer.
[0003]
The latter method, that is, a method in which a ready-made pile is directly driven into the bedrock, is advantageous over the former method because of fewer steps. As this construction method, for example, there is one disclosed in JP-A-8-100500. However, in the method disclosed in Japanese Patent Laid-Open No. 8-100195, the pressure of the jet water used for drilling the rock is about 100 MPa or more, and a large number of ultra-high pressure jet nozzles are used at the tip of the pile. Since it has to be installed, it has a special equipment configuration and requires high equipment costs.
[0004]
On the other hand, there is a method of driving an existing pile directly into the rock using a vibro hammer. Since this method involves driving a pile while crushing the rock mass with the vibration hammering force of a vibro hammer, it is necessary to eliminate the crushed rock powder (sludge) in order to drive the pile efficiently.
[0005]
In other words, when piles are laid while pulverizing the rock mass with the vibration impact force of a vibro hammer, if the crushed rock mass is left as it is, the powdered rock mass becomes a cushioning material that absorbs the hammering energy. Consequently, the transmission efficiency of the striking energy to the bedrock is significantly reduced, and the crushed bedrock must be promptly removed.
[0006]
The applicant discloses in Japanese Patent Application Laid-Open No. 11-71758 a method for driving a pile into a rock mass that incorporates means for quickly removing the previously crushed rock mass.
The gist of this construction method is as shown in FIG. 12, in which the water level 9 in the pile of the pile 1 to be driven into the rock mass 2 is made higher than the water level 10 outside the pile, and the water in the pile being driven by the pressure difference due to this water head difference ΔH. 9a is caused to flow through the pile inner peripheral gap 14 through the pile tip to the pile outer peripheral gap 15, and the ground powder 16 is removed by mixing it into the water flow. It is characterized in that it is communicated to.
[0007]
Further, the tip 12 of the pile 1 is provided with a tip shoe 12 made of a metal harder than the target rock 2 and having a thickness equal to or greater than the thickness of the pile 1, and the tip of the pile is worn and the bedrock 2 is worn. The crushing ability of the slag is not lowered. In addition, after driving the pile into the rock mass, the grout material 19 is filled in the gaps 14 and 15 between the inner and outer circumferences of the rock mass 2 and the pile 1 to fix the pile 1 to the rock mass 2.
[0008]
[Problems to be solved by the invention]
The method of driving a pile into a rock mass according to Japanese Patent Laid-Open No. 11-71758 described in the above-mentioned prior art is a means of quickly eliminating the gap 16 of the crushed rock mass 2 due to a water flow difference ΔH of water 9a injected into the pile. The object can be achieved with a very simple configuration using natural energy without using a special device.
[0009]
In this method, under the condition that a sufficient difference is obtained between the water level 9 in the pile poured into the pile 1 and the water level 10 outside the pile, the head head 11 is moved from the pile inner peripheral gap 14 to the pile outer peripheral gap 15 by the water head difference ΔH. Appropriate water flow is obtained, and the pile 16 smashed by the vibro hammer 6 can be mixed and discharged into the water flow, and the impact energy of the vibro hammer 6 to the bedrock 2 can be efficiently transmitted to smoothly drive the pile 1 However, when the penetration of the pile 1 proceeds and a sufficient water head difference ΔH cannot be obtained, the water flow becomes weak and the discharge of the slip 16 is difficult.
In addition, when the gaps 14 and 15 between the inner and outer peripheral surfaces of the tip shoe 12 at the tip of the pile and the excavation wall surface of the rock mass are narrow, there is a case where the flow path is insufficient to prevent a smooth water flow.
[0010]
The present invention is an improvement of the pile driving method to the rock according to the above-mentioned Japanese Patent Application Laid-Open No. 11-71758, which solves the above-mentioned problem, reliably discharges the crushed pile tip and removes the vibro hammer to the rock. The purpose is to transmit the impact energy efficiently and make the driving of the pile smoother. [0011]
[Means for Solving the Problems]
In order to achieve the above object, the present invention is summarized as follows. In the first aspect of the present invention, a tip shoe 12 made of a thick hard metal is integrally provided at the tip portion 11 of the pile 1 made of an open-end steel pipe pile, and air or grout material is attached to the pile tip portion 11 along the longitudinal direction. The pile 1 to which the injection pipe 3 is sent is built on the bedrock 2 and water is poured into the pile 1 to maintain the water level 9 in the pile higher than the water level 10 outside the pile while simultaneously injecting the injection. The steel pipe pile 1 is driven into the rock mass 2 while discharging the rock powder (sludge) 16 crushed by the pile set with the vibro hammer 6 while sending the air to the pile tip 11 by connecting the pipe 3 to the air supply device 11. In the process of injecting and filling the grout material 19 into the gap between the pile 1 and the rock mass 2 after penetrating the pile 1 to a predetermined depth, and sending the air, the air sent from the air supply device 8 to the pile tip 11 is piled. By discharging to the outer gap 15, the water level 9 To promote the momentum of the water flow directed from the pile to the pile outside by hydraulic head difference ΔH between the water level 10, to discharge the rock flour (shear) 16 described above pulverization.
[0012]
According to a second aspect of the invention, in the first aspect of the invention, at least when the water head difference ΔH becomes smaller and the momentum of the water flow decreases, the air is discharged by the air lift.
[0013]
Further, the invention described in claim 3 is provided integrally with a tip shoe 12 made of a thick hard metal in which grooves 18 are vertically formed at a plurality of circumferential positions at the tip portion 11 of the pile 1 made of an open end steel pipe pile. The pile 1 was built on the bedrock 2 and water was poured into the pile 1 to maintain the water level 9 in the pile higher than the water level 10 outside the pile, and pulverized by the pile with the vibro hammer 6 set. The steel pipe pile 1 is driven into the rock mass 2 while discharging the rock dust 16 and the pile 1 is penetrated to a predetermined depth, and then a grout material 19 is injected and filled into the gap between the pile 1 and the rock mass 2 to form a tip shoe. The grooves 18 formed in the vertical direction at a plurality of 12 circumferential directions are characterized in that they are inclined so that the inclination directions of adjacent grooves are opposite to each other.
[0014]
(Function)
That is, the gist of the present invention is that when the excavation pipe 3 for sending air to the pile tip 11 along the longitudinal direction of the pile 1 is fixed and the rock 2 at the tip of the pile is vibrated by the vibro hammer 6 for excavation. Then, air is sent from the air supply device 8 to the injection pipe 3 and diffused from the pile tip 11 to generate bubbles 17 so that the gap 16 is levitated and discharged from the gap between the pile 1 and the excavation hole by the action of the air lift. .
[0015]
By adding this air lift action, even if the water head difference ΔH between the water level 9 in the pile and the water level 10 outside the pile is small and the water flow flowing from the inside of the pile at the pile tip 11 is weak, the slip 16 can be discharged smoothly. it can.
[0016]
In addition, the injection tube 3 for sending air can also serve as an injection tube for filling the grout material 19 after completion of the penetration of the pile.
[0017]
Further, when the tip shoe 12 made of hard metal at the tip of the pile is made thicker than the thickness of the steel pipe pile and grooves 18 are formed in a plurality of locations in the circumferential direction of the tip shoe 12 in the vertical direction, the inside and outside of the tip shoe 12 at the tip of the pile Even when the gap between the circumferential surface and the excavation wall surface of the rock is narrow and obstructs running water, the groove 18 serves as a flow path to ensure a smooth water flow, and the discharge of the slip 16 can be ensured.
[0018]
The groove 18 may be perpendicular to the vertical direction. However, if the groove 18 is inclined, the gap 16 discharged from the groove 18 does not fall into the groove 18 and is blocked as shown in FIG.
[0019]
Further, when the grooves 18 are inclined, the piles 1 can be prevented from rotating while the piles 1 are driven by the vibro hammer 6 if the inclination directions of the adjacent grooves are opposite to each other.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 shows an embodiment of the invention according to claim 1 and shows an example of a situation in which a steel pipe pile (hereinafter referred to as a pile) 1 is driven into a waterbed ground of a rock mass 2. This example is intended for piles that are driven into the water, but can also be applied to those installed on land.
[0021]
The pile 1 used in the present invention is an open-ended pile whose tip is opened, and the pile tip 11 is made of a hard metal such as manganese steel or wear-resistant steel as shown in FIG. A thicker tip shoe 12 is integrally provided by welding so as to have durability against an impact load at the time of rock crushing when the pile 1 is driven.
[0022]
Further, in the pile 1 of the present invention, an injection pipe 3 for supplying air bubbles 17 for causing an airlift action to lift and discharge the gap to the pile outer peripheral gap 15 of the tip portion 11 is arranged along the longitudinal direction in the pile. The tip of the injection pipe 3 is connected to an injection hole 4 penetrating the outer surface of the pile, and the upper end is connected to an air supply device 8 such as a compressor or an air pump installed outside the pile by an air hose 8a. is doing. The injection pipe 3 for sending air can also be used as an injection pipe for filling the grout material 19 in the inner circumferential gap 14 and the outer circumferential gap 15 between the pile 1 and the excavation hole after the pile 1 has been driven. FIG. 3 shows the arrangement of the injection pipes 3 in the pile. In the pile inner peripheral gap 14, two grout injection pipes 3b and two injection pipes 3b grouted in the pile outer peripheral gap 15 are arranged. The injection pipe 3a is used also as two of the grout injection pipes 3b for the pile outer periphery gap.
The number of the injection pipes 3 may be increased or decreased, or may be arranged along the outer periphery of the pile.
[0023]
After the pile 1 having the above structure is built on the bedrock, a vibro hammer 6 is set on the upper end of the pile 1, and the water pumped up by the pump 7 is poured into the pile by the hose 7a, and the water level in the pile is set. 9 is made higher than the water level 10 outside the pile and the head difference ΔH is maintained, air is sent from the air supply device 8 to the air injection pipe 3a, and bubbles 17 are diffused from the injection hole 4 to the pile outer periphery gap 15 while the vibrator hammer 6 is Drive to apply vibration such as longitudinal vibration to the bedrock 2 of the pile tip 11.
[0024]
As a result, the pile 1 penetrates while crushing the rock mass 2 with the tip shoe 12, and the rock powder (sludge) 16 generated at the pile tip 11 is removed from the inside by the head difference ΔH between the water level 9 in the pile and the water level 10 outside the pile. It is discharged through the pile outer periphery gap 15 by the water flow (arrow) toward At this time, bubbles 17 are diffused from the air injection pipe 3a to the pile outer peripheral gap 15, thereby assisting the floating discharge of the slit 16 by the action of the air lift. This air lift works even when the penetration of the pile progresses and the water head difference ΔH between the pile and the outside of the pile becomes small and the momentum of the water flow decreases.
[0025]
When the penetration of the pile is finished, the air supply device 8 of the air injection pipe 3a is disconnected, and the air injection pipe 3a and the grout injection pipe 3b are connected to a grout pump (not shown), and the pile inner peripheral gap 14 and the pile outer peripheral gap 15 are connected. Then, grout material 19 such as cement milk or mortar is poured and filled to be hardened, and the pile 1 and the bedrock 2 are fixed. FIG. 9 is a completed cross section in which the pile 1 and the bedrock 2 are fixed.
[0026]
The details of the tip of the pile in the present invention will be further described. 4 and 5 to 8 show the arrangement of the injection tube 3 and the tip shoe 12 on the inner surface of the pile tip portion 11 and details of each portion.
The injection tube 3 is protected by a protector 5 to prevent damage during driving. Since this protector 5 needs to be as compact as possible so as not to cause driving resistance, angle steel or groove steel as shown in FIG. 5 is used. As shown in FIG. 4, the protector 5 is fixed to the pile 1 by zigzag intermittent welding 5b, and the tip 5a of the protector is inclined and slightly overhanged as shown in FIG. 4C. Friction cut without touching the surface.
[0027]
Further, in the grout injection pipe 3b provided with an outlet on the side where the injection pipe 3 is disposed (inside the pipe) as shown in FIG. 7, the protector tip 5a is stacked with a taper of hard metal plates 5c spaced from the outlet, Fillet welding may be performed to protect the outlet portion of the injection pipe. Also in this case, the protector tip 5a is projected.
[0028]
4 and 8 show an embodiment of a pile tip shoe according to claim 2.
The pile tip shoe 12 uses a hard metal that is thicker than the thickness of the pile 1, but as shown in FIGS. 4 and 8, grooves 18 are formed vertically in a plurality of locations in the circumferential direction. This groove 18 is provided to facilitate the flow of water from the inside of the pile to the outside of the pile and to promote the discharge of the slip 16. That is, the tip shoe 12 of the pile 1 crushes the rock mass 2 and penetrates into the rock mass, but in the initial state, the gap between the excavation wall of the rock mass 2 is narrow and water flow is likely to be hindered. For this reason, a flow path is provided on the peripheral surface of the tip shoe 12 so that the water flow does not stagnate. In addition, what is necessary is just to make this groove | channel 18 in the part thicker than the plate | board thickness of the pile 1 on both the inside and outside of the front-end | tip shoe 12. The groove 18 may be formed over the top and bottom of the tip shoe 12. However, if the groove 18 is vertical, the groove 16 may enter and close the groove as shown in (a), and the groove 18 is inclined as shown in (b). It is desirable to form it.
[0029]
In the case of inclining, if the direction of the grooves is aligned in the same direction, the pile 1 can be easily rotated during driving, so that the direction of the inclination of the adjacent grooves 18 and 18 is opposite, that is, the adjacent grooves 18 and 18. A pair of grooves 18, 18 arranged in a direction in which one end side in the vertical direction is separated from each other and the other end side is close to each other, or in a direction in which one end side is close to each other and the other end side is separated from each other, are equiangularly spaced in the circumferential direction. It is good to provide it.
[0030]
When practicing the present invention, the invention of claim 1 and the invention of claim 2 can be carried out singly or in combination. That is, (1) When the gap 16 is discharged from the pile outer peripheral gap 15 by the water flow due to the water head difference ΔH between the water level 9 in the pile and the water level 10 outside the pile without forming the groove 18 in the tip shoe 12 of the pile, the injection pipe 3 An embodiment in which air bubbles are dissipated to generate an air lift action to assist the displacement discharge. (2) Embodiment which uses the pile 1 which formed the groove | channel 18 in the front-end | tip shoe 12, and discharges | emits the slip 16 without using the air supply (air lift effect | action) by the injection pipe 3. FIG. (3) An embodiment in which the pile 1 in which the groove 18 is formed in the tip shoe 12 is used and air bubbles are diffused to generate an air lift action to assist the slip discharge is provided.
[0031]
(Example)
An example of the pile 1 and an example of a construction device when a steel pipe pile 1 having an outer diameter of 800 mm and a length of 32 m according to the present invention is driven 8 m into a seabed rock bed 20 m in depth composed of andesite with a uniaxial compressive strength of 64 N / mm (64 MPa) is shown. And as follows.
(1) The steel pipe pile 1 to be placed is an SKK400 steel pipe pile having a diameter of 800 mm, a wall thickness of 19 mm, and a length of 32 m. A manganese steel tip shoe 12 having a thickness of 40 mm and a width of 100 mm is welded to the tip portion 11. A plurality of grooves 18 having a width of 15 mm and a depth of 10 mm were formed at an interval of 30 ° with an interval in the circumferential direction between the inner surface and the outer surface.
[0032]
The injection pipes 3 arranged along the inner surface of the pile are four 25A steel pipes, and two pipes are used as grout injection pipes 3b for the inner circumferential gap 14 and the outer circumferential gap 15, respectively. Of these, two for outer circumferential gap grout injection of the pile were also used as the air injection pipe 3a. The protector 5 was L90 × 90 mm angle steel, and the protector tip 5a was formed in an oblique shape and a tapered shape.
[0033]
(2) The vibro hammer 6 used for driving the pile used an eccentric moment of 49 kN · m, a frequency of 1,100 cpm, and an excitation force of about 690 kN. Moreover, the pump 7 and the air supply device (compressor) of the pumping capacity 1.3 cubic rice / min were used.
(3) Construction method After the pile 1 is built, the pump 7 is started and water is fed into the pile to the extent that it overflows from the top of the pile, and then the vibro hammer 6 is attached to the pile head and started. Driving was started at a water head difference ΔH = 12 m at the outside water level 10.
Initially, because the head difference ΔH is sufficient, the crushed powdery rock mass (slack) 16 at the tip of the pile was discharged only with running water from the inside of the pile, but the penetration of the pile progressed, and when the head difference ΔH = about 6 m. The water flow was weakened and the drainage 16 was stagnant, preventing the piles from penetrating smoothly. Therefore, the compressor 8 is started to operate, air is sent to the air injection pipe 3a, air bubbles 17 are diffused from the outer peripheral gap 15 of the pile tip, and the air lift is used together. As a result, the pile 1 has a predetermined penetration depth of the bedrock 2. I was able to drive smoothly up to 8m. In this example, the final water head difference ΔH was 4 m.
After that, the mortar grout material 19 was injected and filled in the gaps 14 and 15 between the inner and outer peripheries of the pile and the excavated bedrock.
[0034]
(Application example)
FIG. 10 shows an example in which the present invention is applied to the pile 1 of the jacket 20 installed in water. The construction method in this case is to insert the pile 1 of the above structure into the leg 21 of the jacket 20 installed on the bedrock 2 on the bottom of the water and build it on the bedrock 2 and inject water into the pile 1 with the pump 7. The air supply device 8 is connected to the injection pipe 3 and the vibro hammer 6 suspended by the crane ship 22 is attached to the pile head to start driving. At the time of driving, the water level 9 in the pile is maintained higher than the water level 10 outside the pile, and the vibrator 16 is driven while the bubbles 17 are dissipated from the tip 11 of the pile to discharge the slip 16 by the water flow and air lift. While penetrating the pile.
[0035]
FIG. 11 shows an example in which the present invention is applied in the case of land pile driving in which a sediment layer 23 of soft earth and sand is above the bedrock 2. In such a case, since it is necessary to secure a discharge path for the gap 16 in the deposited layer 23, the gap 25 is provided. The gap 25 is formed in advance by installing a casing pipe 24 larger than the outer diameter of the pile in the section of the deposited layer 23 and digging up the inner soil. In the case of construction on land, a water injection pit 26 for injecting water into the pile and a discharge pit 26 for receiving the drain and water to be discharged are provided.
Other construction means may be the same as described above. In addition, the steel pipe pile concerning this invention also makes a slant pile other than a vertical pile.
[0036]
In addition, as the said each embodiment, it is economical if the injection pipe 3 which sends air uses the injection pipe at the time of filling the grout material 19 after completion of penetration of a pile.
[0037]
【The invention's effect】
According to the method of driving a pile into the bedrock of the present invention, the following effects are obtained.
When the injection pipe 3 for sending air to the pile tip 11 is fixed along the longitudinal direction of the pile 1 and excavating the rock 2 at the tip of the pile with the vibro hammer 6, excavation pipe from the air supply device 8 3, air is dissipated from the tip 11 of the pile and air bubbles 17 are generated, so that the gap 16 can be levitated and discharged from the gap between the pile 1 and the excavation hole by the action of the air lift. Even if the water head difference ΔH of 10 is small and the water flow flowing from the inside of the pile tip 11 to the outside of the pile is weak, it is possible to assist the floating discharge of the slip 16.
Further, the tip shoe 12 made of hard metal at the tip of the pile is made thicker than the plate thickness of the steel pipe pile, and grooves 18 are formed in a plurality of circumferential directions of the tip shoe 12 in the vertical direction, thereby the tip shoe 12 at the tip of the pile. Even when the gap between the inner and outer peripheral surfaces of the rock and the rock excavation wall surface is narrow and hinders the flow of water, the groove 18 serves as a flow path to ensure a smooth water flow, and the discharge of the slip 16 can be ensured.
Note that if the groove is inclined in the vertical direction, it is difficult for the slip to enter the groove and the channel is not blocked. Moreover, when making a groove | channel incline, if the direction of the inclination of an adjacent groove | channel is made into the opposite direction, it can prevent that the pile 1 rotates during driving of a pile with a vibro hammer.
In this way, since the gap generated when excavating the rock mass can be quickly discharged, the impact energy of the vibro hammer can be efficiently transmitted to the rock mass, so that the pile can be driven smoothly into the rock mass.
[Brief description of the drawings]
FIG. 1 is an explanatory view of a first embodiment according to the present invention and is a schematic longitudinal sectional view during pile driving into a rock mass (a protector is omitted).
FIG. 2 is a detailed cross-sectional view of a portion of FIG. 1 and an enlarged tip end portion of the pile.
FIG. 3 is a cross-sectional view taken along the line AA in FIG.
FIG. 4 is a vertical perspective view showing the inside of the pile tip.
5 is a cross-sectional view taken along the line BB in FIG. 4, showing the relationship between the injection tube and the protector.
6 is a cross-sectional view taken along the line CC of FIG. 4 and shows a distal end portion of an injection tube protector.
7 is a cross-sectional view taken along the line DD of FIG.
8A is a cross-sectional view taken along the line E-E in FIG. 4 and shows a pile tip shoe groove, and FIGS. 8B and 8C show an arrangement state and a gap of inclined grooves inside the pile tip portion. FIG.
FIG. 9 is a cross-sectional view of a pile fixed in a rock according to the present invention.
FIG. 10 is a partially longitudinal side view showing a form in which a pile for fixing a jacket on a rock mass is being driven by applying the present invention.
FIG. 11 is a longitudinal sectional view showing a construction form in the case where there is a deposited layer on the rock.
FIG. 12 is a longitudinal sectional view showing a conventional construction method.
[Explanation of symbols]
1 pile (steel pipe pile)
2 Rock Mass 3 Injection Pipe 3a Air Injection Pipe 3b Grout Injection Pipe 4 Injection Hole 5 Protector 5a Protector Tip 5b Intermittent Welding 5c Hard Metal 6 Vibro Hammer 7 Pump Pump 7a Hose 8 Air Supply Device (Compressor)
8a Air hose 8b Compressed air 9 Pile water level 9a Pile water 10 Pile water level ΔH Head difference 11 Pile tip 12 Pile tip shoe (high hardness steel)
13 Welded part 14 Pile inner peripheral gap 15 Pile outer peripheral gap 16 Powdered rock powder (slipping)
17 Air bubbles 18 Groove 19 Grout material 20 Jacket 21 Leg 22 Crane ship 23 Sediment sediment 24 Casing tube 25 Clearance 26 Pit

Claims (3)

開端鋼管杭からなる杭1の先端部11に厚肉硬金属からなる先端シュー12を一体的に設け、かつ長手方向に沿って杭先端部11にエアまたはグラウト材を送る注入管3を固定した杭1を岩盤2上に建て込み、この杭1の内部に注水して杭内の水位9を杭外の水位10より高くした状態を維持しつつ、同時に前記注入管3をエア供給装置8に接続して杭先端部11にエアを送りながらバイブロハンマー6をセットした杭により粉砕した岩粉(ズリ)16を排出しながら前記鋼管杭1を岩盤2中に打込み、杭1を所定深さに貫入した後、杭1と岩盤2の隙間にグラウト材19を注入充填し、
前記エアを送る工程においては、エア供給装置8から杭先端部11に送るエアを杭外間隙15へ排出させることにより、水位9と水位10との水頭差ΔHにより杭内から杭外へ向かう水流の勢いを助長させ、前記粉砕した岩粉(ズリ)16を排出すること
を特徴とする岩盤への鋼管杭の打込み工法。
A tip shoe 12 made of thick hard metal is integrally provided at the tip 11 of the pile 1 made of an open-end steel pipe pile, and the injection tube 3 for sending air or grout material to the pile tip 11 along the longitudinal direction is fixed. The pile 1 is built on the bedrock 2 and water is poured into the pile 1 so that the water level 9 in the pile is maintained higher than the water level 10 outside the pile, and at the same time the injection pipe 3 is connected to the air supply device 8. The steel pipe pile 1 is driven into the bedrock 2 while discharging the rock powder (sludge) 16 crushed by the pile with the vibro hammer 6 set while sending air to the pile tip 11 and the pile 1 is brought to a predetermined depth. After penetrating, the grout material 19 is injected and filled in the gap between the pile 1 and the bedrock 2,
In the step of sending air, the air flow from the inside of the pile toward the outside of the pile is caused by the water head difference ΔH between the water level 9 and the water level 10 by discharging the air sent from the air supply device 8 to the pile tip 11 to the gap 15 outside the pile. A method for driving a steel pipe pile into a rock mass, which promotes the momentum and discharges the crushed rock powder 16.
少なくとも前記水頭差ΔHがより小さくなって水流の勢いが減じた場合に、前記エアリフトによるエアの排出を実行すること  At least when the water head difference ΔH is smaller and the momentum of the water flow is reduced, air is discharged by the air lift.
を特徴とする請求項1記載の岩盤への鋼管杭の打込み工法。  A method for driving a steel pipe pile into a rock mass according to claim 1.
開端鋼管杭からなる杭1の先端部11に、周方向複数箇所に上下方向に溝18を形成した厚肉硬金属からなる先端シュー12を一体的に設けた杭1を岩盤2上に建て込み、この杭1の内部に注水して杭内の水位9を杭外の水位10より高くした状態を維持しつつ、バイブロハンマー6をセットした杭により粉砕した岩粉(ズリ)16を排出しながら前記鋼管杭1を岩盤2中に打込み、杭1を所定深さに貫入した後、杭1と岩盤2の隙間にグラウト材19を注入充填し、先端シュー12の周方向複数箇所に上下方向に形成した溝18は、隣り合う溝の傾斜の向きが反対方向になるように傾斜させたことを特徴とする岩盤への鋼管杭の打込み工法。A pile 1 in which a tip shoe 12 made of a thick hard metal is integrally provided on the bedrock 2 at the tip 11 of the pile 1 made of an open-end steel pipe pile is integrally provided with a tip shoe 12 made of a thick hard metal having grooves 18 vertically formed at a plurality of circumferential directions. While pouring water into the inside of this pile 1 and maintaining the state where the water level 9 in the pile is higher than the water level 10 outside the pile, while discharging rock powder (sludge) 16 crushed by the pile on which the vibro hammer 6 is set After the steel pipe pile 1 is driven into the bedrock 2 and the pile 1 is penetrated to a predetermined depth, the grout material 19 is injected and filled in the gap between the pile 1 and the bedrock 2, and the tip shoe 12 is vertically moved at a plurality of locations in the circumferential direction. The formed groove 18 is inclined so that the direction of inclination of adjacent grooves is opposite to that of the steel pipe pile.
JP35581399A 1999-12-15 1999-12-15 Method of driving steel pipe piles into bedrock Expired - Fee Related JP3735225B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35581399A JP3735225B2 (en) 1999-12-15 1999-12-15 Method of driving steel pipe piles into bedrock

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35581399A JP3735225B2 (en) 1999-12-15 1999-12-15 Method of driving steel pipe piles into bedrock

Publications (2)

Publication Number Publication Date
JP2001172970A JP2001172970A (en) 2001-06-26
JP3735225B2 true JP3735225B2 (en) 2006-01-18

Family

ID=18445889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35581399A Expired - Fee Related JP3735225B2 (en) 1999-12-15 1999-12-15 Method of driving steel pipe piles into bedrock

Country Status (1)

Country Link
JP (1) JP3735225B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3898564B2 (en) * 2002-05-10 2007-03-28 株式会社白石 Earth removing device and earth removing method using air lift effect
JP3796487B2 (en) * 2003-04-28 2006-07-12 東日本旅客鉄道株式会社 Pile material driving method and pile material driving device
JP4491274B2 (en) * 2004-05-12 2010-06-30 新日本製鐵株式会社 Steel pile construction management method
JP4560560B2 (en) * 2008-03-03 2010-10-13 中国電力株式会社 Pile construction method
JP6515289B2 (en) * 2015-10-05 2019-05-22 日本製鉄株式会社 Penetration resistance reduction device, penetration structure of steel pipe pile, and construction method of steel pipe pile
JP6630560B2 (en) * 2015-12-14 2020-01-15 東亜建設工業株式会社 Piling method for bedrock
JP6981606B2 (en) * 2017-04-04 2021-12-15 東亜建設工業株式会社 Pile driving method on bedrock
JP7290105B2 (en) * 2019-12-24 2023-06-13 Jfeスチール株式会社 continuous wall construction method
CN113006165B (en) * 2021-03-05 2022-07-29 广州市市政集团有限公司 Bored concrete pile surpasses irritates monitoring device
CN113186903A (en) * 2021-06-10 2021-07-30 河南中城建设集团股份有限公司 Combined pile structure and construction method for treating insufficient bearing capacity of deep foundation pit construction pile by adopting combined pile structure

Also Published As

Publication number Publication date
JP2001172970A (en) 2001-06-26

Similar Documents

Publication Publication Date Title
JP3735225B2 (en) Method of driving steel pipe piles into bedrock
JP3850802B2 (en) Steel pile and its construction method
JP3468724B2 (en) Method and device for placing concrete pile and enlarged head
KR102464394B1 (en) Driving rod for forming reinforced part of piles
US12000106B2 (en) Apparatuses for constructing displacement aggregate piers
JP3428917B2 (en) Auger screw and excavation method using it
JP3602998B2 (en) Tunnel construction method and tunnel
JPH1171758A (en) Method for driving pile to rock mass
CN104153356B (en) The constructing device of concrete-pile and construction method thereof
JP3217038B2 (en) Ground drilling equipment and method of forming cylindrical underground structure
JP3673158B2 (en) Pile embedding method and jig
JP2001152453A (en) Device and method for pressing-in pile
JP4781195B2 (en) Driving method for driving material and driving material for preceding excavation
JPH09302654A (en) Construction method and device for driving steel pipe pile
KR100538739B1 (en) Pile for sheet-pile wall and construction method using that
JP2006009468A (en) Driving method of inner excavation type steel pipe sheet pile and the steel pipe sheet pile used therefor
JP6216526B2 (en) Steel pipe head attachment
JP7308006B2 (en) tunnel excavation method
JP6947206B2 (en) Construction method of steel pipe pile
CN210194622U (en) Pile feeding auxiliary device
JP7228239B2 (en) How to restore the ground
WO2024119331A1 (en) Bucket foundation with resistance reduction system, and cutter suction penetration installation method
JP3957245B2 (en) Water pressure platen construction method
JP2548870B2 (en) In-place drilling equipment
JP2002256790A (en) Method and device for filling drilled hole based on grout material injection via down-the-hole drill

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051011

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051021

R151 Written notification of patent or utility model registration

Ref document number: 3735225

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081028

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101028

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101028

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101028

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111028

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121028

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131028

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131028

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131028

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131028

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131028

Year of fee payment: 8

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131028

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131028

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees