JP4491274B2 - Steel pile construction management method - Google Patents

Steel pile construction management method Download PDF

Info

Publication number
JP4491274B2
JP4491274B2 JP2004141827A JP2004141827A JP4491274B2 JP 4491274 B2 JP4491274 B2 JP 4491274B2 JP 2004141827 A JP2004141827 A JP 2004141827A JP 2004141827 A JP2004141827 A JP 2004141827A JP 4491274 B2 JP4491274 B2 JP 4491274B2
Authority
JP
Japan
Prior art keywords
construction
pile
depth
nozzle
planned
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004141827A
Other languages
Japanese (ja)
Other versions
JP2005325513A (en
Inventor
昌弘 寺田
健二 西海
久男 山下
裕 平嶋
清敏 庭本
健二 高橋
勇吉 鈴木
博康 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Chowa Kogyo Co Ltd
Original Assignee
Nippon Steel Corp
Chowa Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Chowa Kogyo Co Ltd filed Critical Nippon Steel Corp
Priority to JP2004141827A priority Critical patent/JP4491274B2/en
Publication of JP2005325513A publication Critical patent/JP2005325513A/en
Application granted granted Critical
Publication of JP4491274B2 publication Critical patent/JP4491274B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Placing Or Removing Of Piles Or Sheet Piles, Or Accessories Thereof (AREA)

Description

本発明は、バイブロハンマと水噴射を併用して地盤を掘進し、支持層にまで杭を打ち込んだ後、水から切り替えてセメントミルク等の流動性固化材を噴射して根固め部を構築する、高耐力の杭を造成する施工方法において、前記流動性固化材の根固め部への充填を円滑に行うための鋼杭の施工管理方法に関するものである。 The present invention uses a vibratory hammer and water injection in combination to excavate the ground, drive a pile to the support layer, and then switch from water to inject a fluidized solidifying material such as cement milk to construct a rooting part. The present invention relates to a construction management method for steel piles for smoothly filling a rooted portion of the fluidized solidified material in a construction method for creating a high strength pile.

基礎杭等を地盤に打設する施工においては、打撃力は大きいが騒音公害を発生しやすい杭打ち機であるデイーゼルハンマや油圧ハンマに代わって、低騒音のバイブロハンマが多く使用されるようになっている。   Low-noise vibratory hammers are often used instead of diesel hammers and hydraulic hammers, which are pile drivers that have a high striking force but are susceptible to noise pollution. ing.

バイブロハンマと水噴射を併用する工法は、バイブロハンマを施工機械(クレーンなど)で吊下げて杭の上端にチャッキングし、杭に垂直振動及び水平力振動を与えると共に、杭先端から地盤に向けて水を噴射しながら杭を容易に地盤に沈下させるものである。この杭打設方法では低騒音というメリットがある反面、地盤と杭の粘着力、摩擦力が低下する問題があり、これを解決するために杭底部にはセメントミルク等の流動性固化材による根固め部を造成すると共に、杭外周と地盤の間にもセメントミルクの充填が行われる。  In the construction method using both a vibratory hammer and water jet, the vibratory hammer is suspended by a construction machine (crane, etc.) and chucked at the upper end of the pile to give vertical vibration and horizontal force vibration to the pile, while The pile is easily sunk into the ground while spraying. Although this pile driving method has the advantage of low noise, there is a problem that the adhesion and frictional force between the ground and the pile are reduced. To solve this, the root of the pile is made of a fluidized solidifying material such as cement milk. A cemented milk is filled between the outer periphery of the pile and the ground as well as creating a hardened part.

本発明の対象は、バイブロハンマと水噴射を併用する杭の打設施工法において、特に、流動性固化材を噴射ノズルにより噴射して高耐力の杭を造成するための根固め部及び、杭外周への流動性固化材の充填に関する分野の発明であり、その正確な施工管理を可能とする手段に関する発明である。この分野において、流動性固化材の充填量管理方法についての従来技術としては特開平9−137449(特許文献1)と特開2002−348868(特許文献2)がある。   The object of the present invention is a pile placing method that uses both a vibro hammer and water jet, and in particular, a rooting portion for creating a high proof pile by injecting a fluidized solidifying material with a jet nozzle and to the outer periphery of the pile. It is an invention in the field relating to the filling of the fluid solidifying material, and an invention relating to means for enabling accurate construction management. In this field, Japanese Patent Application Laid-Open No. 9-137449 (Patent Document 1) and Japanese Patent Application Laid-Open No. 2002-348868 (Patent Document 2) are known as conventional techniques for the method of managing the filling amount of the fluidized solidifying material.

特開平9−137449に開示の従来技術の概要は、基礎地盤にソイルセメント柱を造成する方法において、掘削深度とセメントミルク注入量を計測する装置、制御する装置などを有し、設定充填量と実測充填量とを比較し、適宜補正しながら注入量の設定を自動で行うことで、施工管理を行う方法である。   The outline of the prior art disclosed in Japanese Patent Application Laid-Open No. 9-137449 is a method for forming a soil cement column on a foundation ground, and has a device for measuring a digging depth and a cement milk injection amount, a device for controlling, etc. This is a method for performing construction management by comparing the measured filling amount and automatically setting the injection amount while appropriately correcting it.

前記の従来技術は、(1)掘削深度とセメントミルク注入量を自動制御するものであるが、基本的に中堀り杭等への適用を前提としており、バイブロハンマとウォータージェットを併用した本発明が対象とするような施工法にはなじまない。   The above prior art (1) automatically controls the digging depth and the cement milk injection amount, but is basically premised on application to a borehole pile or the like, and the present invention using a vibratory hammer and a water jet in combination. It is not compatible with the construction method that is targeted.

(2)セメントミルク注入工程が、本発明で対象とする工法と比較して長い継続時間で行われ、注入量を調整しつつ施工を行うことが可能であることが前提であるが、本発明で対象とする、ウォータージェットと同じ装置を使用して高圧で大流量の注入を行う施工法では、短時間で大きな流量を注入するために流量を調整しつつ注入することが現実的でない。 (2) It is a premise that the cement milk injection step is performed in a longer duration than the method of construction targeted in the present invention, and that the construction can be performed while adjusting the injection amount. In the construction method in which a high flow rate is injected at a high pressure using the same apparatus as the water jet, it is not realistic to adjust the flow rate in order to inject a large flow rate in a short time.

(3)流量の自動制御を行う装置が必要である。本発明では、汎用的な機材・装置のみを用いて施工できることを考えているため、この従来技術では、ソフトウエアと当然に必要とされる人間の操作のみによって行うことができない。 (3) A device that automatically controls the flow rate is required. In the present invention, since it is considered that construction can be performed using only general-purpose equipment / devices, this conventional technique cannot be performed only by software and human operations that are naturally required.

特開2002−348868に開示の技術の概要は、前記特開平9−137449と同様、基礎杭の施工を管理する方法として、計画充填量と実測充填量を表示・比較できる施工管理方法であるが、上に延べたのと同じ欠点を指摘できる。また、セメントミルクの計画充填量と実測充填量の比較は可能であるが、具体的にどのように補正するか等の方法について、特に、本発明が対象とする施工法に適用する場合の計画充填量と実測充填量の比較・補正については明らかでない。
特開平9−137449号公報 特開2002−348868号公報
The outline of the technique disclosed in Japanese Patent Laid-Open No. 2002-348868 is a construction management method capable of displaying and comparing the planned filling amount and the actually measured filling amount as a method of managing the construction of the foundation pile as in the above-mentioned Japanese Patent Laid-Open No. 9-137449. I can point out the same drawbacks that I extended above. In addition, although it is possible to compare the planned filling amount with the actual filling amount of cement milk, the method of how to specifically correct it, in particular, the plan when applied to the construction method targeted by the present invention. It is not clear about the comparison and correction of the filling amount and the actual filling amount.
JP-A-9-137449 JP 2002-348868 A

本発明が対象とするバイブロハンマを用いて水から流動性固化材に切り替えながら杭を地盤に打設する施工方法においては、(1)高品質の根固め部及び杭周面部を築造するため、根固め部と杭の外周に噴射・注入する流動性固化材の量(総量及び各深度における量)の正確な管理が必要になる。   In the construction method in which a pile is placed on the ground while switching from water to a fluidized solidification material using a vibro hammer targeted by the present invention, (1) to build a high-quality root consolidation part and pile peripheral surface part, Accurate management of the amount (total amount and amount at each depth) of the fluidized solidified material to be injected / injected into the outer periphery of the solidified portion and the pile is required.

(2)流動性固化材を掘削のため水の噴射と同じノズルから噴射するために高圧力での噴射となり、施工の過程で逐次注入量をチェックしている時間的余裕がないが、この短時間での正確な管理が要求される。他方、このように、その時点までの流動性固化材の注入量を逐次チェックして修正していては時間を要し、施工能率が低下する。 (2) Since the fluidized solidified material is injected from the same nozzle as the water injection for excavation, the injection is performed at a high pressure, and there is no time to check the sequential injection amount in the construction process. Accurate management in time is required. On the other hand, it takes time to sequentially check and correct the injection amount of the fluidized solidified material up to that point, and the construction efficiency is lowered.

(3)高圧力で流動性固化材の噴射を行うため、流動性固化材を噴射しつつ圧力を調整することが困難であり、噴出圧力一定の下で、計画充填量(総量)を単位時間当りの注入量で除した時間で前記充填過程を丁度終えるというような、噴射時間管理が現実的である。 (3) Since the fluidized solidified material is injected at a high pressure, it is difficult to adjust the pressure while injecting the fluidized solidified material, and the planned filling amount (total amount) is set to a unit time under a constant ejection pressure. It is practical to manage the injection time so that the filling process is completed just after the time divided by the injection amount per hit.

(4)前記のことから、正確な計画噴射時間で充填過程を定速で施工することができれば、流動性固化材の総注入量を正確に管理できるとともに、根固め部の下部から上部に至るまで均質な築造が可能になる。 (4) From the above, if the filling process can be performed at a constant speed with an accurate planned injection time, the total injection amount of the fluidized solidifying material can be managed accurately, and the lower part of the rooting part reaches the upper part. It is possible to build a uniform structure.

従来技術では、前記の問題点を解決できる方法が提案されていなかった。本発明は前記の問題点を解決した鋼杭の施工管理方法を提供することを目的とする。   The prior art has not proposed a method that can solve the above problems. An object of this invention is to provide the construction management method of the steel pile which solved the said problem.

前記の課題を解決するため、本発明は次のように構成する。   In order to solve the above problems, the present invention is configured as follows.

第1の発明は、鋼杭をバイブロハンマを用いて、杭先端部に設置されたホース先端のノズルから水を噴射して打ち込み深度まで打ち込んだ後、前記水を流動性固化材に切り替えて噴射し、前記杭を上下させた後で定着深度に定着し、杭先端部に根固め部を造成する鋼杭の施工方法において、
流動性固化材の充填に必要な時間を所定の一定圧力での単位時間あたり予測流量と計画充填量より算出し、その時間を、根固め部が各深度において下部から上部にかけて流動性固化材の均等な充填量が施されたものになるように杭の上下過程及び定着後の噴射時間に割り振り、その結果工中の各時間におけるノズルの計画深度データを予め算出し、当該ノズルの計画深度データを施工前にパーソナルコンピュータ(PC)に入力し、施工時には前記PCのデスプレイ画面に施工時間と深度をとった座標上に計画施工過程表示曲線として表示し、施工中に計測したノズルの実測深度データを、前記PCに逐次入力すると共に、前記座標上に逐次表示し、
オペレータは前記デスプレイ画面における前記ノズルの実測深度の表示が、前記計画施工過程表示曲線の表示に一致するように杭の上下操作を行う鋼杭の施工管理方法を特徴とする。
In the first invention, a steel pile is injected by using a vibro hammer to inject water from the nozzle at the tip of the hose installed at the tip of the pile to the driving depth, and then the water is switched to a fluidized solid material and injected. In the construction method of the steel pile that is fixed at the fixing depth after raising and lowering the pile, and forming a solidified portion at the tip of the pile,
The time required for filling the fluidized solidified material is calculated from the predicted flow rate per unit time at a predetermined constant pressure and the planned filling amount, and the time is calculated from the bottom to the top of the fluidized solidified material at each depth. allocated into equal upper and lower course of the pile so that the filling amount is what was applied and after fixing the injection time calculated in advance planning depth data of the nozzles in each time resulting in the construction stage, planning depth of the nozzle Data is input to a personal computer (PC) before construction, and at the time of construction, the actual depth of the nozzle measured during construction is displayed on the display screen of the PC as a planned construction process display curve on the coordinates of construction time and depth. Data is sequentially input to the PC and displayed on the coordinates sequentially.
The operator is characterized by a construction management method for steel piles in which the pile is moved up and down so that the display of the measured depth of the nozzle on the display screen matches the display of the planned construction process display curve.

第2の発明は、鋼杭をバイブロハンマを用いて、杭先端部に設置されたホース先端のノズルから水を噴射して打ち込み深度まで打ち込んだ後、前記水を流動性固化材に切り替えて噴射し、前記杭を上下させた後で定着深度に定着し、杭先端部に根固め部を造成し、その後、前記流動性固化材を外周部流動性固化材に切り替えて噴射し、ノズルを先端に有するホースを杭から分離して引き上げつつ、杭の周囲に所定量充填する鋼杭の施工方法において、
流動性固化材の充填に必要な時間を所定の一定圧力での単位時間あたり予測流量と計画充填量より算出し、その時間を、根固め部が各深度において下部から上部にかけて流動性固化材の均等な充填量が施されたものになるように杭の上下過程及び定着後の噴射時間に割り振ると共に、外周部流動性固化材の充填に必要な時間を、単位時間あたり予測流量と計画充填量より算出し、杭の周囲における外周部流動性固化材の均等な充填量が施されたものになるようにホースの引き上げ時の噴射時間に割り振り、その結果工中の各時間におけるノズルの計画深度データを予め算出し、当該ノズルの計画深度データを施工前にパーソナルコンピュータ(PC)に入力し、施工時にはPCのデスプレイ画面に施工時間と深度をとった座標上に計画施工過程表示曲線として表示し、施工中に計測したノズルの実測深度データを、前記PCに逐次入力すると共に、前記座標上に逐次表示し、
オペレータは前記デスプレイ画面における前記ノズルの実測深度の表示が、前記計画施工過程表示曲線に一致するように杭の上下及びホースの引き上げ操作を行う鋼杭の施工管理方法を特徴とする。
According to a second aspect of the present invention, a steel pile is injected using a vibro hammer and water is injected from the nozzle at the tip of the hose installed at the tip of the pile to the driving depth, and then the water is switched to a fluidized solid material and injected. After the pile is moved up and down, it is fixed at the fixing depth, a rooted portion is formed at the tip of the pile, and then the fluidized solidified material is switched to the outer peripheral fluidized solidified material and sprayed, and the nozzle is at the tip. In the construction method of the steel pile that fills a predetermined amount around the pile while separating the hose from the pile and pulling it up,
The time needed to fill the liquidity solidifying material is calculated from the predicted flow rate and plan loading per unit of time at a given constant pressure, the time, fluidity and solidified material from the bottom to the top roots consolidated part at each depth In addition to allocating the pile up and down process and the post-fixing injection time so that an equal amount of filling is applied, the time required for filling the outer peripheral fluidity solidified material is estimated and the planned filling per unit time. calculated from the amount, allocated to the injection time at the pulling of the hose so that those equal loading of the outer peripheral portion liquidity solidifying material around the pile has been applied, the nozzles in each time resulting in the construction stage calculated in advance planning depth data, entered before construction planning depth data of the nozzle to a personal computer (PC), planned construction on coordinates taken construction time and depth Desupurei PC screen at the time of construction Displays as degree display curves, the measured depth data of the nozzle measured during construction, with sequentially input to the PC, sequentially displayed on the coordinate,
The operator is characterized by a construction management method for steel piles in which the display of the measured depth of the nozzle on the display screen matches the planned construction process display curve, and the pile is operated up and down and the hose is pulled up.

第3の発明は、第1又は第2の発明において、更に施工中に流動性固化材、又は、流動性固化材及び外周部流動性固化材の流量を計測すると共に、計測した実測流量データを前記PCへ逐次入力し、実測流量と予測流量のデータの差に基づいて、前記PC内でプログラムが演算して計画施工過程表示曲線を補正表示した補正計画施工過程表示曲線として逐次変更して前記座標上に表示し、オペレータはデスプレイ画面におけるノズルの実測深度の表示が、補正計画施工過程表示曲線に一致するように、杭の上下、又は杭の上下及びホースの引き上げ操作を行うことを特徴とする。 In the first or second invention, the third invention further measures the flow rate of the fluidized solidified material, or the fluidized solidified material and the outer peripheral fluidized solidified material during construction, and the measured flow rate data is measured. sequentially input to the PC, on the basis of the difference between the data measured flow rate and the predicted flow rate, programmed within the PC is sequentially changed plan construction process display curves and arithmetic as modification plan construction process display curve correction display Displayed on the coordinates, the operator performs the up and down of the pile, or the up and down of the pile and the hose lifting so that the display of the measured depth of the nozzle on the display screen matches the correction plan construction process display curve And

本発明で言う曲線とは、折れ直線を表す。   The curve referred to in the present invention represents a broken straight line.

本発明によると、パソコンおよびプログラム以外は、施工機材は標準的な装置を使用でき、特殊な装置を必要としない構成であって、しかも、根固め部と杭の外周に噴射・注入する流動性固化材の量(総量及び各深度における量)の正確な管理が可能であるため,高品質の根固め部及び杭周面部を築造できる。   According to the present invention, except for the personal computer and the program, the construction equipment can use standard equipment, does not require special equipment, and has fluidity to be injected and injected into the outer periphery of the rooting portion and the pile. Accurate management of the amount of solidified material (total amount and amount at each depth) is possible, so that high-quality root consolidation and pile peripheral surfaces can be built.

すなわち、オペレータは施工機械の操作室のデスプレイ画面に表示される杭先端深度の計画値を示すグラフに実測深度を表示するグラフが一致するように操作するだけで、自動的に適正な流動性固化材の注入が可能である。また、流動性固化材は、水の噴射と同じノズルから噴射するために高圧力での噴射となり、施工の過程で逐次注入量をチェックしている時間的余裕がなく、短時間での正確な管理が要求されるが、本発明によるとこの際の迅速かつ正確な注入が可能となり前記の要望に応えるうえ、施工能率が低下しない。   That is, the operator can automatically set the appropriate fluidity solidification by simply operating the graph showing the measured depth to match the graph showing the planned value of the pile tip depth displayed on the display screen of the operation room of the construction machine. Material injection is possible. In addition, the fluidized solidified material is injected at a high pressure because it is injected from the same nozzle as the water injection, and there is no time to check the injection amount sequentially in the construction process, and it is accurate in a short time. Although management is required, according to the present invention, quick and accurate injection is possible at this time, and the above-mentioned demand is met and the construction efficiency is not lowered.

このように本発明によると、流動性固化材の正確な計画噴射時間での充填過程を定速で施工することができ、総注入量を正確に管理できるとともに、根固め部の下部から上部に至るまで均質に築造が可能になる。
As described above, according to the present invention, it is possible to construct the filling process of the fluidized solidified material with an accurate planned injection time at a constant speed, to accurately control the total injection amount, and from the lower part to the upper part of the rooting part. It becomes possible to build evenly.

以下、本発明の実施形態を図を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1(a)、(b)は、本発明の管理方法に適用される鋼杭1の正面図と底面図を示し、図1(c)、(d)は、鋼杭1に沿わして配設した配管ホース2の先端に取り付ける噴射ノズル3の拡大図を示す。該噴射ノズル3は、下向きのノズル4又は下向きと横向きの2つのノズル4、5を有し、各施工での必要に応じどちらかが使用される。図(c)は、下向きの噴射ノズル4から水又は流動性固化材を噴射している態様を示し、図(d)は、下向きと横向きの噴射ノズル4と5から水又は流動性固化材を噴射している態様を示している。   1 (a) and 1 (b) show a front view and a bottom view of a steel pile 1 applied to the management method of the present invention, and FIGS. 1 (c) and (d) are along the steel pile 1. FIG. The enlarged view of the injection nozzle 3 attached to the front-end | tip of the arrange | positioned piping hose 2 is shown. The injection nozzle 3 has a downward nozzle 4 or two nozzles 4 and 5 that are downward and lateral, and one of them is used as required in each construction. Fig. (C) shows a mode in which water or fluidized solidified material is injected from the downward injection nozzle 4, and Fig. (D) shows water or fluidized solidified material from the downward and lateral injection nozzles 4 and 5. The mode which is injecting is shown.

本発明で鋼杭とは、鋼管杭、鋼管矢板、H形鋼杭、直線鋼矢板などを含む意味で用いるが、図には鋼管杭の例を示している。各図に示すように、鋼杭1の先端付近における杭外周には、鋼杭1の地盤との支持力の向上および推進性の向上のため、側面矩形の平板状の突起6が円周上に等間隔で溶接により固着されている。平板状の突起数は杭径によって異なるが,円周上90度間隔の場合を例示する。また、鋼杭の打ち込み深度が深い場合は、下杭、中杭、上杭を順次溶接しながら打ち込みを行うが溶接工程については説明を省略する。   In the present invention, the steel pile is used in the meaning including a steel pipe pile, a steel pipe sheet pile, an H-shaped steel pile, a straight steel sheet pile, etc., but the figure shows an example of the steel pipe pile. As shown in each figure, on the outer periphery of the pile in the vicinity of the tip of the steel pile 1, a rectangular projection 6 having a rectangular side surface is provided on the circumference in order to improve the supporting force of the steel pile 1 and the propulsion. Are fixed by welding at regular intervals. The number of flat projections varies depending on the pile diameter, but the case of 90 ° intervals on the circumference is illustrated. Moreover, when the driving depth of a steel pile is deep, it drives while welding a lower pile, a middle pile, and an upper pile sequentially, but description is abbreviate | omitted about a welding process.

噴射ノズル3も杭先端付近における外周に例えば円周上90度間隔で、着脱手段(図を省略する)で杭に対して着脱可能に取付けられている。噴射ノズル3のこの配置は、外直径Dが600〜900mmの鋼杭1に適し、またノズル径は例えば6〜8mmに設定される。各噴射ノズル3毎に配管ホース2先端が連結されていて、各配管ホース2は鋼杭1の外周に沿って上方に伸びていると共に、配管ホース2を上方に引き上げることで、配管ホース2と一緒に噴射ノズル3は杭先端の着脱部から離脱して、杭外周に沿って上昇し、このとき杭外周に向けて流動性固化材を注入できる。   The injection nozzle 3 is also detachably attached to the pile by an attaching / detaching means (not shown) at an interval of 90 degrees on the circumference, for example, on the outer periphery near the tip of the pile. This arrangement of the injection nozzle 3 is suitable for the steel pile 1 having an outer diameter D of 600 to 900 mm, and the nozzle diameter is set to 6 to 8 mm, for example. A pipe hose 2 tip is connected to each injection nozzle 3, and each pipe hose 2 extends upward along the outer periphery of the steel pile 1, and by pulling the pipe hose 2 upward, Together, the injection nozzle 3 is detached from the attaching / detaching portion at the tip of the pile and ascends along the outer periphery of the pile. At this time, the fluidized solidification material can be injected toward the outer periphery of the pile.

なお、噴射ノズル3は杭に固定されることもある。また、噴射ノズル3からは杭の掘削時には水(ウォータージェット)が噴射されると共に、その後の切り替えで、根固め部の形成と杭周辺摩擦増強に際してセメントミルク等の流動性固化材が高圧力で噴射される。   In addition, the injection nozzle 3 may be fixed to a pile. Moreover, water (water jet) is injected from the injection nozzle 3 during excavation of the pile, and by subsequent switching, a fluidized solidified material such as cement milk is applied at a high pressure when forming a root-solidified portion and increasing friction around the pile. Be injected.

バイブロハンマと水噴射を併用した杭施工方法にあっては、地盤と杭の粘着力、摩擦力が低下する問題があり、これを解決するために前述のように、杭底部には流動性固化材による根固め部を造成すると共に、杭外周と地盤の間にも流動性固化材の充填を行なうのであって、この流動性固化材の充填につき、充填量の簡易で正確な管理方法が望まれているもので、本発明はその管理方法に関し、以下ではこの点を中心に説明する。   In the pile construction method using both a vibro hammer and water jet, there is a problem that the adhesive force and frictional force of the ground and the pile are reduced, and in order to solve this, as described above, the fluidized solidified material at the bottom of the pile In addition to creating a root-solidified part, the fluidized solidifying material is also filled between the outer periphery of the pile and the ground, and a simple and accurate management method of the filling amount is desired for this fluidized solidifying material filling. Therefore, the present invention relates to the management method, and this point will be mainly described below.

図2は、本発明の管理方法で施工された鋼杭1の根固め部7付近の断面図である。地盤の中間層12と支持層17との界面13の僅かに下側の定着深度19の位置で杭先端10が定着されていて、支持層17には杭先端10を支持する根固め部7が流動性固化材11を充填することで造成されている。鋼杭1の下端部内側にも流動性固化材上部14が回り込んでおり、最終的に根固め部セメント固化体の一部となり、このようにしてセメント固化体による拡大された球根が確実に形成される。また、鋼杭1の外周と地盤の中間層12と間にも杭の周辺摩擦力増大のための外周部流動性固化材15が所定の高さまで充填されている。   FIG. 2 is a cross-sectional view of the vicinity of the solidified portion 7 of the steel pile 1 constructed by the management method of the present invention. The pile tip 10 is fixed at a fixing depth 19 slightly below the interface 13 between the intermediate layer 12 and the support layer 17 of the ground, and the support layer 17 has a rooting portion 7 that supports the pile tip 10. It is formed by filling the fluidized solidifying material 11. The upper part 14 of the fluidized solidified material also wraps around the lower end of the steel pile 1 and finally becomes a part of the cemented solidified portion of the rooted portion, thus ensuring that the expanded bulb by the cemented solidified material is present. It is formed. Further, between the outer periphery of the steel pile 1 and the intermediate layer 12 of the ground, the outer peripheral fluidity solidifying material 15 for increasing the peripheral frictional force of the pile is filled to a predetermined height.

次に、鋼杭1を地中に構築するためのバイブロハンマと水噴射を併用した杭施工方法は、細かくは2種類に分けることができ、第1は、概要を図3に示すように、杭底部に流動性固化材による根固め部を造成することで施工が終了するタイプで、第2は、概要を図4に示すように、前記根固め部を造成した後、さらに、杭外周と地盤の間にも流動性固化材を充填するタイプである。なお、図3、図4は、図面の縦方向に鋼杭1の打ち込み深度、横方向に時間を取り、かつ、鋼杭1の打ち込み工程を複数に分けて示すもので、同図には、計画施工過程表示曲線20が鋼杭1の深度と時間経過の関連図として示されているが、これは図5、図6に示す計画施工過程表示曲線20と同じ意味で説明的に示すものである。   Next, the pile construction method using both a vibro hammer and water jet for constructing the steel pile 1 in the ground can be divided into two types. First, as shown in FIG. The construction is completed by creating a root-solidified part with a fluidized solidifying material at the bottom. Second, as shown in the outline of FIG. 4, after the root-solidified part is created, the outer periphery of the pile and the ground This is a type in which a fluidized solidifying material is filled in between. 3 and 4 show the driving depth of the steel pile 1 in the vertical direction of the drawing, the time in the horizontal direction, and the driving process of the steel pile 1 divided into a plurality of steps. The planned construction process display curve 20 is shown as a relationship diagram between the depth of the steel pile 1 and the passage of time. This is illustratively shown in the same meaning as the planned construction process display curve 20 shown in FIGS. is there.

図3によって、第1タイプの杭施工法の概要を説明すると、掘削工程(1)において、水を噴射ノズル3から噴射し、鋼杭1をバイブロハンマの振動と水噴射の力で地盤表面16から支持層17を通過して打ち込み深度18まで質量沈下させながら連続的に打設する。
充填工程(2)において、鋼杭1が打ち込み深度18に達した後、噴射ノズル3からの噴射を水から流動性固化材11に替えて噴射しながら、ノズルが取り付けられている杭をを所定の深度幅で1回ないし数回上下させた後、定着深度19で上下動を止めて所定時間噴射し、所定量の流動性固化材11を充填して根固め部7を造成し、支持層17の位置で鋼杭1を定着させた時点で施工は終了する。この充填工程(2)は、杭径や造成する根固め部の大きさによるが200秒程度というごく短時間で終了する。
The outline of the first type pile construction method will be described with reference to FIG. 3. In the excavation step (1), water is injected from the injection nozzle 3, and the steel pile 1 is moved from the ground surface 16 by vibrated hammer vibration and water injection force. The substrate is continuously driven while passing through the support layer 17 and sinking the mass to a driving depth of 18.
In the filling step (2), after the steel pile 1 reaches the driving depth 18, the injection from the injection nozzle 3 is changed from water to the fluidized solid material 11, and the pile to which the nozzle is attached is specified. After raising or lowering once or several times at a depth range, the vertical movement is stopped at the fixing depth 19 and sprayed for a predetermined time, and a rooted portion 7 is formed by filling a predetermined amount of the fluidized solidifying material 11 to form a support layer. The construction is completed when the steel pile 1 is fixed at the position 17. This filling step (2) is completed in a very short time of about 200 seconds, depending on the pile diameter and the size of the rooting portion to be formed.

図4に示す第2タイプの杭施工法では、第1タイプの根固め部7を造成し、所定の深度に杭を定着させた後、さらに配管ホース2を引き上げる引上げ工程(3)が追加されている。すなわち、配管ホース2を引き上げることで、その先端の噴射ノズル3(図1に示す)を杭先端の固着部から離脱させ、こうして配管ホース2を引上げながら杭外周と地盤の中間層12との間に外周部流動性固化材15を充填し、噴射ノズル3を地盤表面16まで引き上げた時点で施工は終了する。   In the second type pile construction method shown in FIG. 4, after the first type root consolidation portion 7 is formed and the pile is fixed at a predetermined depth, a pulling step (3) for further lifting the piping hose 2 is added. ing. That is, by pulling up the piping hose 2, the injection nozzle 3 (shown in FIG. 1) at the tip thereof is detached from the fixed portion at the tip of the pile, and thus the piping hose 2 is pulled up between the outer periphery of the pile and the ground intermediate layer 12. When the outer peripheral part fluidity solidifying material 15 is filled and the spray nozzle 3 is pulled up to the ground surface 16, the construction is completed.

前記鋼杭1の施工にあたって、高品質の鋼杭築造のためには、根固め部7および杭外周と地盤支持層12の間に流動性固化材の充填が適切な量だけ、かつ簡単な操作で迅速に行なわれる必要がある。   In the construction of the steel pile 1, in order to build a high-quality steel pile, an appropriate amount of fluidized solidifying material is filled between the root consolidation portion 7 and the outer periphery of the pile and the ground support layer 12, and simple operation. Needs to be done quickly.

本発明は、前記の要望を満すようになされたものであり、その概要を説明する。水と流動性固化材の噴射は開始から終了までが、ごく短時間のうちに行なわれることから、流動性固化材も噴射途中での流量調整は基本的に行なわれず、常時一定の圧力で噴射されることを前提としている。この前提の下で、鋼杭1またはノズルの深度とそれに要する時間のみで、流動性固化材の適正充填量を管理できるようにしている。 The present invention has been made to satisfy the above-mentioned demand, and an outline thereof will be described. Since the injection of water and the fluidized solidifying material is performed from the beginning to the end within a very short time, the flow rate of the fluidized solidified material is basically not adjusted during the injection, and is always injected at a constant pressure. It is assumed that Under this premise, the appropriate filling amount of the fluidized solidifying material can be managed only by the depth of the steel pile 1 or the nozzle and the time required for it.

すなわち本発明では、流動性固化材や外周部流動性固化材による充填に必要な時間を、単位時間あたり予測流量と計画充填量より算出し、その時間を、根固め部が各深度において均質となるように上下過程及び定着噴射時間に割り振り、更に施工方法のタイプによっては杭の周囲における外周部流動性固化材の充填が均一になるようにホースの引き上げ時の噴射時間に割り振りし、その結果算出された施工中の各時間におけるノズルの計画深度データを、充填に先立つ水噴射による杭の打ち込み時の計画深度データと共に施工前にパーソナルコンピュータ(以下、PC)に入力し、施工時には、デスプレイ画面に横軸に施工時間、縦軸に鋼杭の先端の打設深度をとった座標グラフ上に計画施工過程表示曲線としてグラフィック表示し、施工中に計測したノズルの実測深度データを、PCに逐次入力すると共に、デスプレイ画面の計画施工過程表示曲線と同座標のグラフに逐次表示し、オペレータは施工機械の操作室でのデスプレイ画面を見ながらノズルの実測深度のグラフ表示が計画施工過程表示曲線を″ならう(一致する)″ように流動性固化材の充填操作、すなわち杭の上下やホースの上昇操作を行なうだけで、適切な流動性固化材の充填が容易に行なえるようにしたものである。 That is, in the present invention, the time required for filling with the fluidized solidified material or the outer peripheral fluidized solidified material is calculated from the predicted flow rate per unit time and the planned filling amount, and the time is determined so that the rooting portion is homogeneous at each depth. As a result, depending on the type of construction method, depending on the type of construction method, it is allocated to the injection time when lifting the hose so that the outer periphery fluidity solidified material is uniformly filled around the pile. The calculated planned depth data of the nozzle at each time during construction is input to a personal computer (hereinafter referred to as PC) before construction along with the planned depth data at the time of pile driving by water injection prior to filling. The horizontal axis indicates the construction time and the vertical axis indicates the steel pile tip placement depth. The actual depth data of the nozzle measured, with sequentially input on your PC, sequentially displays the graph of plan construction process displayed curve and the coordinates of Desupurei screen, the operator of the nozzle while watching the Desupurei screen on the operation room of the construction machine Appropriate fluidity solidification material by filling up the fluidized solidification material, that is, raising and lowering the pile and raising the hose so that the graph display of the measured depth "matches (matches)" the planned construction process display curve. It can be easily filled.

さらに本発明では、施工中に流動性固化材や外周部流動性固化材の流量を計測する流量計からの実測データを前記PCへ逐次入力し、夏、冬など気温変化による流動性固化材の粘度の具合や変化や、配管ホースの径の変化等により、理想の充填状態に初期設定した計画施工過程表示曲線を補正する必要が生じたときは、実測流量と予測流量(以下、計画流量ともいう)のデータから、PC内でプログラムが演算して、即時にその補正量に見合うように計画施工過程表示曲線を補正表示するもので、オペレータは、この場合もデスプレイ画面の補正計画施工過程表示曲線にノズルの実測深度が″ならう(一致する)″ように充填操作を続行することで円滑に流動性固化材や外周部流動性固化材の充填が行なえる。 Furthermore, in the present invention, actual measurement data from a flow meter that measures the flow rate of the fluidized solidified material and the outer peripheral fluidized solidified material during construction is sequentially input to the PC, and the fluidized solidified material due to temperature changes such as summer and winter condition and changes in the viscosity due to changes in the diameter of the hose, when necessary to correct occurs plan construction process display curve initially set the filling state of the ideal, actual flow rate and the predicted flow rate (hereinafter, planned flow both )) , The program calculates in the PC and immediately corrects and displays the planned construction process display curve to match the correction amount. In this case, the operator also displays the corrected planned construction process display on the display screen. By continuing the filling operation so that the actually measured depth of the nozzle is “matched (matched)” with the curve, the fluidized solidified material and the outer peripheral fluidized solidified material can be filled smoothly.

図5は、本発明の鋼杭の施工方法を説明する模式的な工程図(図4の第2タイプをより詳しく示す図)の1例である。また、この図5には、図7、図8に示す管理フローチャート(プログラム)に沿ってPCで演算処理され、デスプレイに表示されるグラフの計画施工過程表示曲線20が組み込まれている。また図6(a)には、計画施工過程表示曲線20が表示されたPCのデスプレイ21が示されている。デスプレイ21は、施工機械の操作室に設置されて、オペレータはノズルの実測深度のグラフ表示(その表示の施工現時点までの経過を示すグラフが実測施工過程表示曲線26である。)が、この計画施工過程表示曲線20に一致するように逐次操作する(詳細は後述)。また、計画施工過程表示曲線20を示すグラフ22において、縦軸23に鋼杭1の先端の打設深度を取り、横軸24に施工時間を採って表示している。 FIG. 5 is an example of a schematic process diagram (a diagram showing the second type of FIG. 4 in more detail) illustrating the construction method of the steel pile of the present invention. Further, FIG. 5 incorporates a planned construction process display curve 20 of a graph which is arithmetically processed by a PC and displayed on a display according to the management flowchart (program) shown in FIGS. FIG. 6A shows a PC display 21 on which a planned construction process display curve 20 is displayed. The display 21 is installed in the operation room of the construction machine, and the operator displays a graph of the measured depth of the nozzle (the graph showing the progress of the display up to the current construction time is the measured construction process display curve 26). The operation is sequentially performed so as to coincide with the construction process display curve 20 (details will be described later). Moreover, in the graph 22 which shows the planned construction process display curve 20, the vertical axis 23 represents the placement depth of the tip of the steel pile 1, and the horizontal axis 24 represents the construction time.

図5を説明する(なお、図3、図4の説明と一部が重複する)と、鋼杭1の施工開始から施工終了までの工程を、(1)掘削工程(ウォータージェット噴射)、(2)充填工程(セメントミルク噴射)、(3)引上げ工程(セメントミルク噴射)に分けて図示している。   When FIG. 5 is described (note that a part of the description of FIGS. 3 and 4 partially overlaps), the steps from the start of construction of the steel pile 1 to the end of the construction are (1) excavation process (water jet injection), ( 2) It is divided into a filling process (cement milk injection) and (3) a pulling process (cement milk injection).

(1)掘削工程は、鋼杭1の打ち込み工程であり、水を噴射ノズル3から噴射し、鋼杭1とバイブロハンマの質量で、例えば5D〜10D(Dは鋼杭の外直径)程度を自重沈下させ、その後バイブロハンマを運転して、振動と水噴射の力で連続的に打設する。連続打設速度は、100cm/分を目安に行われ、支持層17への打ち込み速度は60cm/分程度以下を目安に行われる。   (1) The excavation process is a process of driving the steel pile 1, in which water is injected from the injection nozzle 3, and the weight of the steel pile 1 and the vibro hammer is about 5D to 10D (D is the outer diameter of the steel pile). After that, the vibro hammer is operated and driven continuously by vibration and water jetting force. The continuous casting speed is 100 cm / min as a guide, and the driving speed to the support layer 17 is 60 cm / min or less.

支持層17の確認は事前に行われた地質調査結果や地層断面図で行うほか、予め推定した支持層17に杭先端が近づいたら、バイブロハンマの全荷重を鋼杭1に預け、打ち込み速度と打ち込み抵抗の変化(バイブロハンマの付加抵抗)を読み取ることで行う。   The confirmation of the support layer 17 is done by the geological survey results and the cross section of the geological survey conducted in advance, and when the pile tip approaches the previously estimated support layer 17, the full load of the vibro hammer is deposited in the steel pile 1 and the driving speed and driving This is done by reading the change in resistance (additional resistance of vibratory hammer).

鋼杭1の先端が、中間層12と支持層17の界面(支持層深度)13を通過した後、打ち込み深度(貫入掘削深度とも言う)18のところで打ち込みを止める。図示の例では、打ち込み深度18が支持層18の界面13よりも2.0Dを越える程度深い位置に設定されている。また、打ち込み深度18で噴射ノズル3からの水噴射を停止する。バイブロハンマは、一旦停止してもよいが、引き続く充填工程のため運転したままでもよい。   After the tip of the steel pile 1 has passed through the interface (support layer depth) 13 between the intermediate layer 12 and the support layer 17, the driving is stopped at a drive depth (also referred to as penetration depth). In the illustrated example, the implantation depth 18 is set at a position deeper than the interface 13 of the support layer 18 by more than 2.0D. Further, water injection from the injection nozzle 3 is stopped at the driving depth 18. The vibratory hammer may be temporarily stopped, but may remain in operation for the subsequent filling process.

充填工程(2)は、流動性固化材11の注入と振動撹拌工程である。水と流動性固化材のそれぞれのタンクへの配管の切り替えバルブを操作して、セメントミルク等の流動性固化材11を調整しておく。この流動性固化材11をノズル噴射圧力(噴射圧力とも言う)15MPaで噴射を開始し、バイブロハンマを運転して鋼杭1を、所定の引上げ深度まで引き上げた後、さらに定着深度19まで打ち込む。図示の例では、界面13より1.0D程度深い位置まで打ち込んでいる。その際、鋼杭1の移動速度は、70〜100cm/分程度である。そして、定着深度19にて打ち止めた後、直ちにバイブロハンマを停止する。但し、流動性固化材11は噴射したままである。 The filling step (2) is a flow solidifying material 11 injection and vibration stirring step. The flowable solidifying material 11 such as cement milk is adjusted by operating the switching valve of the pipe to each tank of water and the fluidized solidifying material. The fluidized solidified material 11 is injected at a nozzle injection pressure (also referred to as an injection pressure) of 15 MPa , the vibratory hammer is operated, and the steel pile 1 is pulled up to a predetermined pulling depth, and then driven to a fixing depth 19. In the illustrated example, it is driven to a position about 1.0D deeper than the interface 13. In that case, the moving speed of the steel pile 1 is about 70-100 cm / min. Then, after stopping at the fixing depth 19, the vibrator hammer is immediately stopped. However, the fluidized solidification material 11 remains jetted.

流動性固化材11の充填工程における鋼杭1の上下移動は1回のみ行ってもよく、または、地盤の硬度等の状況に応じて複数回繰り返してもよい。これにより鋼杭先端において、固化体の拡大された球根を確実に形成することができ、先端支持力を増大できる。   The vertical movement of the steel pile 1 in the filling step of the fluidized solidified material 11 may be performed only once, or may be repeated a plurality of times depending on the situation such as the hardness of the ground. Thereby, in the steel pile front-end | tip, the bulb | bulb with which the solidified body was expanded can be formed reliably, and a front-end | tip support force can be increased.

その後、鋼杭1を定着深度19に停止したまま、.所定時間にわたり流動性固化材11を噴射する。例えば、噴射時間は30秒程度、噴射量は1〜4mである。これらの操作により、根固め部7が造成される。 Thereafter, the fluidized solidified material 11 is sprayed over a predetermined time while the steel pile 1 is stopped at the fixing depth 19. For example, the injection time is about 30 seconds and the injection amount is 1 to 4 m 3 . By these operations, the root hardening part 7 is formed.

引き上げ工程(3)は、噴射ノズル3の引き抜き工程であり、外周部流動性固化材15を鋼杭1の周囲に充填する工程である。外周部流動性固化材15は、根固め部7の流動性固化材11よりも粘度の低い材料であり切り替えて噴射される。まず、配管ホース2と共に噴射ノズル3を鋼杭1から離脱させる。その後、配管ホース2の上端部を施工機械のクレーンで吊り上げつつ、噴射ノズル3を所定の速度、例えば170〜200cm/分で引き抜く。このとき、外周部流動性固化材15を噴射しながら噴射ノズル3を引き上げる。そして、噴射ノズル3を鋼杭1の打ち込み深度に対して所定割合、例えば、90%まで引き抜いたところで噴射停止する。このように外周部流動性固化材15を噴射しつつ噴射ノズル3を引き上げることにより、鋼杭1の外側に外周部流動性固化材15の固化体を形成し、地盤の中間層12との摩擦接合が確保される。鋼杭1の外側に形成されるセメント柱の上端は、噴射ノズル3の引き抜き工程において、外周部流動性固化材15の噴射を停止した地点にあり、通常は杭長の90%引き上げたところで噴射を停止する。   The pulling step (3) is a step of pulling out the injection nozzle 3 and is a step of filling the periphery of the steel pile 1 with the outer peripheral fluidity solidifying material 15. The outer peripheral fluidity solidifying material 15 is a material having a viscosity lower than that of the fluidity solidifying material 11 of the root hardening portion 7 and is sprayed by switching. First, the injection nozzle 3 is detached from the steel pile 1 together with the pipe hose 2. Thereafter, the injection nozzle 3 is pulled out at a predetermined speed, for example, 170 to 200 cm / min, while lifting the upper end of the pipe hose 2 with a crane of the construction machine. At this time, the spray nozzle 3 is pulled up while spraying the outer peripheral fluidity solidifying material 15. Then, when the injection nozzle 3 is pulled out to a predetermined ratio, for example, 90%, with respect to the driving depth of the steel pile 1, the injection is stopped. Thus, the solidified body of the outer periphery fluidity solidifying material 15 is formed outside the steel pile 1 by pulling up the injection nozzle 3 while injecting the outer periphery fluidity solidifying material 15, and friction with the intermediate layer 12 of the ground. Bonding is ensured. The upper end of the cement pillar formed on the outer side of the steel pile 1 is at the point where the injection of the outer peripheral fluidity solidifying material 15 is stopped in the drawing process of the injection nozzle 3, and is usually injected when the pile length is raised by 90%. To stop.

前記工程において、噴射ノズル3から一定圧で水又は流動性固化材を噴射させつつ上下動する際の鋼杭1またはノズルの深度を縦軸に取り、それに要する時間を横軸にとって所定の演算処理にてグラフ化したとき、その計画施工過程表示曲線20は図5、図6のように表示される。本発明では、図5の鋼杭打設の施工開始から施工終了までの工程のうち、特に、充填工程(2)と、引上げ工程(3)において、流動性固化材11、15の充填を自動管理する点にあり、これを図5〜図8によってさらに説明する。 In the above process, the vertical axis indicates the depth of the steel pile 1 or the nozzle when moving up and down while spraying water or a fluidized solidified material from the injection nozzle 3 at a constant pressure, and the predetermined time is calculated on the horizontal axis. The planned construction process display curve 20 is displayed as shown in FIG. 5 and FIG. In the present invention, among the steps from the start of construction to the end of construction shown in FIG. 5, particularly in the filling step (2) and the pulling step (3), the filling of the fluidized solidification materials 11 and 15 is automatically performed. This will be further described with reference to FIGS.

図7、図8に示す管理フローチャート(プログラム)25に取り込まれるデータはPC33により演算処理され、図6に部分拡大図示するように計画施工過程表示曲線20、実測施工過程表示曲線26のグラフ22として同図6のデスプレイ21に表示される。すなわち、流動性固化材11、15の充填操作にあたって、水噴射による掘削、セメントミルク等の流動性固化材による充填に必要な時間を単位時間あたり流量と計画充填量より算出し、その時間を、根固め部7の各深度において均質となるように、すなわち各工程において時間と深度の関係が線形となるように、上下過程及び定着噴射時間に割り振る。その結果をPC上で動作する図7、図8に示すプログラム25に入力すると、図6のように、施工機械(クレーン)の操作室に設置されたデスプレイ21の画面に縦軸23に深度、横軸24に施工時間をとった計画施工過程としてグラフィック表示で示される。なお、図6の部分拡大図には、補正計画施工過程表示曲線27が図示されているが、これは流動性固化材の充填条件の変化により、当初の計画施工過程表示曲線20が、施工中に逐次補正され、横軸24の施工の現時点以降に補正計画施工過程表示曲線27として時々刻々と変化して表示されることを意味しており、補正計画施工過程表示曲線27は固定された曲線としてデスプレイ21の画面に表示されるのではない。   The data fetched into the management flowchart (program) 25 shown in FIGS. 7 and 8 is processed by the PC 33, and as a graph 22 of the planned construction process display curve 20 and the measured construction process display curve 26 as shown in a partially enlarged view in FIG. It is displayed on the display 21 in FIG. That is, in the filling operation of the fluidized solidifying material 11, 15, the time required for excavation by water injection, filling with the fluidized solidifying material such as cement milk is calculated from the flow rate per unit time and the planned filling amount, The up and down process and the fixing jetting time are allocated so that the depth becomes uniform at each depth of the root consolidation portion 7, that is, the relationship between time and depth is linear in each step. When the result is input to the program 25 shown in FIG. 7 and FIG. 8 operating on the PC, the depth of the vertical axis 23 is displayed on the screen of the display 21 installed in the operation room of the construction machine (crane) as shown in FIG. The horizontal axis 24 shows the planned construction process with the construction time as a graphic display. In addition, although the correction | amendment plan construction process display curve 27 is illustrated in the partial enlarged view of FIG. 6, this is because the original plan construction process display curve 20 is under construction by the change of the filling conditions of a fluid solidification material. Means that the corrected planned construction process display curve 27 is changed every moment as the corrected planned construction process display curve 27 after the present time of construction on the horizontal axis 24. The corrected planned construction process display curve 27 is a fixed curve. Is not displayed on the screen of the display 21.

施工機械には、深度計測装置が設置されており、計測結果の出力がPC33のプログラム25に逐次入力され、計画施工過程と同座標のグラフにて逐次表示される。オペレータは、デスプレイ21画面に実線でグラフィック表示される計画施工過程表示曲線20に、プロットで表示されるノズルの実測深度(その施工現時点までの経過が実測施工過程表示曲線26)が一致するように、デスプレイ上で視認しながら杭の上下操作を行うことで、流動性固化材の噴射量を考慮したり調整することなく、根固め部や杭外周への流動性固化材計画値通りの充填が可能となる。深度の計測装置には、クレーンのロープの移動量をロータリーエンコーダによって検出する装置や、バイブロハンマに取り付けて地表面との距離を計測するか地表面に設置してバイブロハンマに設置した反射板との距離を計測するレーザー変位計、光波測定器等を用いる。 The construction machine is provided with a depth measuring device, and the output of the measurement result is sequentially input to the program 25 of the PC 33 and is sequentially displayed in a graph having the same coordinates as the planned construction process. The operator matches the planned construction process display curve 20 displayed graphically with a solid line on the display 21 screen so that the measured depth of the nozzle displayed in the plot (the actual construction process display curve 26 is the progress up to the current construction time). By moving the pile up and down while visually recognizing on the display, it is possible to fill the root solidified part and the outer periphery of the pile according to the planned value of the fluidized solidified material without considering or adjusting the injection amount of the fluidized solidified material. It becomes possible. The depth measuring device includes a device that detects the amount of crane rope movement with a rotary encoder, or a distance from the reflector mounted on the vibratory hammer and installed on the vibratory hammer. A laser displacement meter, a light wave measuring device, or the like is used.

流動性固化材11や外周部流動性固化材15を供給する圧力は常時一定に保持されていることから、夏、冬など気温変化による流動性固化材の粘度の変化や、配管ホース2の径の誤差・ノズル孔径の摩耗による拡大等の外乱により、初期設定した計画施工過程表示曲線20に沿った実測施工過程では、理想状態の注入量から外れることが生じる。この不具合に備えて、流動性固化材11や外周部流動性固化材15の時間当りの流量を流量計で常時検知しており、そのデータを図7、図8のプログラムで取り込み演算処理して、図6(b)に2点鎖線で示すように、補正計画施工過程表示曲線27を計画施工過程表示曲線20の傾きを補正して表示する。したがって、オペレータは、デスプレイ21の画面にて、ノズルの実測深度(実測施工過程表示曲線26)が補正計画施工過程表示曲線27と一致するように掘削機械の上下操作を行うことで、流動性固化材の噴射量を考慮したり調整することなく、根固め部や杭外周への流動性固化材の計画値通りの充填が可能となる。
尚、初期設定した計画施工過程表示曲線20は固化材の充填開始後は表示せず、補正計画施工過程表示曲線27のみを表示して、ノズルの実測深度のプロットをこれと一致するように操作しても構わない。
また、要求される施工品質が低い場合などは、固化材の流量は実測せず、計画施工過程表示曲線20のみを表示して、ノズルの実測深度のプロットをこれと一致するように操作することもできるが、根固め部の均一性等が劣ってしまうため、流量を実測し、補正計画施工過程表示曲線27を表示してこれにノズルの実測深度のプロットを一致させる前述の方法の方が好ましい。
Since the pressure for supplying the fluidized solidified material 11 and the outer peripheral fluidized solidified material 15 is always kept constant, the change in the viscosity of the fluidized solidified material due to temperature changes such as summer and winter, and the diameter of the pipe hose 2 In the actually measured construction process along the initially set planned construction process display curve 20, there is a deviation from the injection amount in the ideal state due to a disturbance such as an error in the nozzle hole diameter and an expansion due to wear of the nozzle hole diameter. In preparation for this problem, the flow rate per hour of the fluidized solidified material 11 and the outer peripheral fluidized solidified material 15 is constantly detected by a flow meter, and the data is fetched and processed by the programs of FIGS. , as shown by the two-dot chain line in FIG. 6 (b), and displays the corrected tilt correction plan construction process displayed curve 27 in total E施 Engineering process display curve 20. Therefore, the operator solidifies the fluidity by moving the excavating machine up and down on the screen of the display 21 so that the measured depth of the nozzle (actually measured construction process display curve 26) matches the corrected planned construction process display curve 27. Without considering or adjusting the injection amount of the material, filling of the solidified portion and the outer periphery of the pile according to the planned value of the fluidized solidified material becomes possible.
The initially set planned construction process display curve 20 is not displayed after the start of filling of the solidified material, and only the corrected planned construction process display curve 27 is displayed, and the plot of the measured depth of the nozzle is made to coincide with this. It doesn't matter.
Also, when the required construction quality is low, the flow rate of the solidified material is not measured, and only the planned construction process display curve 20 is displayed, and the plot of the measured depth of the nozzle is operated to match this. However, since the uniformity of the solidified portion is inferior, the above-described method of actually measuring the flow rate, displaying the correction plan execution process display curve 27, and matching the measured depth plot of the nozzle to this is better. preferable.

<実施例>
図9は本発明の実施例を示し、鋼杭1を打ち込むための施工管理方法を実施する場合の施工機械の配置説明図である。バイブロハンマ28は、クレーン等の掘削機械(施工機械ともいう)29から引き出されたロープ30で吊下げられていて、地盤表面16に打設される鋼杭1の上部にチャッキングされる。バイブロハンマ28は、モータの回転を偏心部材に伝達して振動を発生する装置である。鋼杭1またはノズルの深度検出装置31がロータリーエンコーダ31aで構成される場合は、ロープ30の繰り出しを検知するように掘削機械29のビーム32に取り付ける。深度検出装置31を赤外線などを地盤表面16で反射させる距離計31bで構成する場合は、該距離計31bをバイブロハンマ28に取り付けて、該ハンマ28と地盤表面16との距離を検知する。深度検出装置31からのデータをPC33に取り込み、図7、図8のプログラムにもとづいてPC33にて演算処理を行い、その結果を記録すると共に掘削機械29の操作室に設置のデスプレイ21の画面に表示する。
<Example>
FIG. 9 shows an embodiment of the present invention, and is an explanatory view of the arrangement of construction machines when the construction management method for driving the steel pile 1 is carried out. The vibratory hammer 28 is suspended by a rope 30 drawn from an excavating machine (also referred to as construction machine) 29 such as a crane, and is chucked on the upper portion of the steel pile 1 to be driven on the ground surface 16. The vibratory hammer 28 is a device that generates vibration by transmitting rotation of a motor to an eccentric member. When the steel pile 1 or the depth detection device 31 of the nozzle is composed of the rotary encoder 31a, it is attached to the beam 32 of the excavating machine 29 so as to detect the feeding of the rope 30. When the depth detection device 31 is constituted by a distance meter 31 b that reflects infrared rays or the like on the ground surface 16, the distance meter 31 b is attached to the vibrator hammer 28 to detect the distance between the hammer 28 and the ground surface 16. The data from the depth detection device 31 is taken into the PC 33, the calculation processing is performed by the PC 33 based on the programs of FIGS. 7 and 8, and the result is recorded and displayed on the screen of the display 21 installed in the operation room of the excavating machine 29. indicate.

水槽34と流動性固化材槽35から導出されたパイプ36が切り替え弁37と流量計38を介してジェットカッタ39に導かれている。ジェットカッタ39から導出された配管ホース2は鋼杭1の上端に導かれ、さらに杭外周に沿って引下げられており、かつ杭先端付近において、配管ホース2の先端に噴射ノズルが取り付けられている(図示せず)。杭打ち込み時にバイブロハンマ28と併用して、噴射ノズルから高圧水(例えば清水)を噴射させるもので、該噴射ノズルがウォータジェットカッタとして機能する。また、杭先端の根固め部と杭周辺の地盤強度の増大のために利用する薬液注入工法(セメントミルクなどの流動性固化材注入工法)を実施する工程では、バイブロハンマ28を駆動しつつかつ噴射ノズルから例えば、ジェット圧力15MPa程度以下で流動性固化材を噴射する。 A pipe 36 led out from the water tank 34 and the fluidized solidifying material tank 35 is led to a jet cutter 39 via a switching valve 37 and a flow meter 38. The piping hose 2 led out from the jet cutter 39 is guided to the upper end of the steel pile 1 and is further lowered along the outer periphery of the pile, and an injection nozzle is attached to the distal end of the piping hose 2 in the vicinity of the distal end of the pile. (Not shown). A high-pressure water (for example, fresh water) is jetted from the jet nozzle in combination with the vibro hammer 28 when driving the pile, and the jet nozzle functions as a water jet cutter. In addition, in the process of carrying out the chemical solution injection method (fluidized solidifying material injection method such as cement milk) used for increasing the ground strength around the pile tip and the ground around the pile, the vibrator hammer 28 is driven and sprayed. For example, the fluidized solid material is injected from the nozzle at a jet pressure of about 15 MPa or less.

深度検出装置31と流量計38の検出データは、PC33に取り込まれ、プログラムによって演算され、表示、記録される。   The detection data of the depth detection device 31 and the flow meter 38 are taken into the PC 33, calculated by a program, displayed, and recorded.

オペレータは、デスプレイ21の画面に表示される検出結果を見ながら、掘削機械を操作し、この間流動性固化材槽35に収容された流動性固化材が流量計38を経由してジェットカッタ39へ送られ、このとき、デスプレイに表示される計画施工過程表示曲線20のグラフとノズルの実測深度グラフをそれぞれ比較し、計画施工過程表示曲線20と実測施工過程表示曲線26が一致するようにオペレータが掘削機械の操作により杭を上下又はホースを上昇することにより、過不足のない最適状態で流動性固化材を根固め部や杭外周に注入できる。 The operator operates the excavating machine while observing the detection result displayed on the screen of the display 21. During this time, the fluidized solidified material accommodated in the fluidized solidified material tank 35 passes through the flow meter 38 to the jet cutter 39. At this time, the graph of the planned construction process display curve 20 displayed on the display and the measured depth graph of the nozzle are respectively compared, and the operator confirms that the planned construction process display curve 20 and the measured construction process display curve 26 match. By raising and lowering the pile or raising the hose by operating the excavating machine, it is possible to inject the fluidized solidified material into the rooting portion or the outer periphery of the pile in an optimum state without excess or deficiency.

以下に施工の操作順を項目に分けて示す。
[1]事前に、プログラム25に計画施工過程(図7、図8に示す)をインプットし、計測・記録者と操作室内のオペレータ(操作者)に対して表示しておく。
[2]掘削用の水を水槽34から流量計38を経てジェットカッタ39へ送り、配管ホース2へ圧送して噴射ノズルから噴射する。
[3]深度検出装置31で鋼杭1の掘削深度を計測・表示しつつ、計画施工過程に沿ってバイブロハンマ28でつかみ、クレーンで上下操作を行なうことで、鋼杭1を地盤中に打設する。
The construction operation order is divided into items below.
[1] The planned construction process (shown in FIGS. 7 and 8) is input to the program 25 in advance and displayed for the measurement / recorder and the operator (operator) in the operation room.
[2] Water for excavation is sent from the water tank 34 through the flow meter 38 to the jet cutter 39, and is pumped to the pipe hose 2 and jetted from the jet nozzle.
[3] While measuring and displaying the excavation depth of the steel pile 1 with the depth detection device 31, the steel pile 1 is driven into the ground by grasping with the vibrator hammer 28 along the planned construction process and moving up and down with a crane. To do.

[4]鋼杭1の先端が所定の打ち込み深度に達したならば噴射ノズルからの噴射を水から流動性固化材に切り替える。流動性固化材は水槽34とは別の流動性固化材槽35に準備してあり、流量計38の手前の切り替え弁37を切り替えることで、流量計38を経由してジェットカッタ39へ送ることができる。
[5]計画施工過程のグラフに現時点の表示(実測時間,実測深度をX、Y座標とした点)を計画施工工程グラフに載せるように掘削機械29を操作する。
[6]流量計38による計測値が当初計画値と異なっている場合には、PC内でプログラムが演算して計画施工過程のグラフ表示を逐次変更する。
[4] When the tip of the steel pile 1 reaches a predetermined driving depth, the injection from the injection nozzle is switched from water to the fluidized solidified material. The fluidized solidified material is prepared in a fluidized solidified material tank 35 different from the water tank 34, and is sent to the jet cutter 39 via the flowmeter 38 by switching the switching valve 37 in front of the flowmeter 38. Can do.
[5] The excavating machine 29 is operated so that the current display (the point where the actual measurement time and the actual measurement depth are X and Y coordinates) is placed on the planned construction process graph on the planned construction process graph.
[6] When the measured value by the flow meter 38 is different from the originally planned value, the program calculates in the PC and sequentially changes the graph display of the planned construction process.

[7]この表示は、操作室内に同期した表示が常に送られ、操作者は常にその表示に従って操作するだけでよい。
[8]演算による計画施工過程の変更は以下のように行う。
[9]流動性固化材の計画流量よりも実測流量が多く、現時点で予定よりも大量の流動性固化材が注入されている場合は、計画総注入量から実測既注入量を差し引き、残りの実測注入予定量をその時点の流量で除して算出される時間で、残りの施工過程を完了するように、グラフの傾きを大きくする(施工速度を早くする)。
[7] As this display, a synchronized display is always sent to the operation room, and the operator only has to operate according to the display.
[8] The planned construction process is changed by calculation as follows.
[9] If the measured flow rate is larger than the planned flow rate of the fluidized solidified material and a larger amount of fluidized solidified material is injected at the present time than the planned flow rate, the actually measured injected amount is subtracted from the planned total injected amount, and the remaining The slope of the graph is increased (the construction speed is increased) so that the remaining construction process is completed by the time calculated by dividing the actually measured injection amount by the flow rate at that time.

[10]計画よりも実測流量が少ない場合は逆の演算、表示を行う。
[11]グラフ表示に従って最後まで施工を行った時点で、噴射を止め、施工を完了する。
なお、図7、図8のフローチャートに示すように、流動性固化材の切り替えが2回行なわれているが、第1回目の切り替えは水から根固め部形成用の流動性固化材への切り替えであり、第2回目の切り替えは、根固め部よりも粘度が低い杭外部充填用流動性固化材への切り替えである。また、図7における囲い枠40内の工程は請求項1および請求項2記載の杭底部根固め時に対応し、図8における囲い枠41内の工程は請求項2記載の引き上げ工程における杭外周面へ噴射時に対応する。
[10] If the measured flow rate is less than the plan, the reverse calculation and display are performed.
[11] When construction is completed to the end according to the graph display, the injection is stopped and the construction is completed.
As shown in the flowcharts of FIGS. 7 and 8, the fluidized solidification material is switched twice, but the first switching is switching from water to the fluidized solidification material for forming the rooting portion. The second switching is a switch to a fluidized solidification material for pile external filling having a viscosity lower than that of the root-solidified portion. Moreover, the process in the enclosure frame 40 in FIG. 7 respond | corresponds at the time of the pile bottom part consolidation of Claim 1 and Claim 2, and the process in the enclosure frame 41 in FIG. 8 is the pile outer peripheral surface in the raising process of Claim 2. Corresponds to the time of injection.

<実施形態の作用効果>
(1)本発明は、対象とする鋼杭の施工管理特性に合った管理方法となっており、流動性固化材は一定圧を前提しているから、困難な流量調整を要せず、打設のみの操作で管理が可能になる。
(2)本発明は、数十秒単位の短時間で施工が終了する施工においても直感的に操作が可能であるように、視覚で判断ができる(水噴射とバイブロハンマを併用した施工法・流動性固化材を高圧で噴射する施工法では、一旦施工を開始したら中断が好ましくないと共に、数十秒以内での操作が必要なため、オペレータは直感的に操作判断できなければならない)ので、本実施形態の管理方法によりこの条件を確実に実行できる。
<Effects of Embodiment>
(1) The present invention is a management method suitable for the construction management characteristics of the target steel pile, and the fluidized solidified material assumes a constant pressure. Management is possible only by setting.
(2) In the present invention, it is possible to make a visual judgment so that the operation can be intuitively performed even when the construction is completed in a short time of several tens of seconds (construction method / flow using both water jet and vibro hammer) In the construction method in which the high-pressure solidifying material is injected at high pressure, it is not desirable to interrupt the construction once it is started, and it is necessary to operate within several tens of seconds, so the operator must be able to judge the operation intuitively). This condition can be reliably executed by the management method of the embodiment.

(a)、(b)は、本発明の管理方法に適用される鋼杭の正面図と底面図、(c)、(d)は、鋼杭に沿わして配設した配管ホースの先端に取り付ける噴射ノズルの拡大図を示し、図(c)は、下向きの噴射ノズルからの水又は流動性固化材の噴射態様を示し、図(d)は、下向きおよび横向きの噴射ノズルからの噴射態様を示している。(A), (b) is a front view and a bottom view of a steel pile applied to the management method of the present invention, and (c), (d) are at the tip of a piping hose arranged along the steel pile. The enlarged view of the injection nozzle to be attached is shown, FIG. (C) shows the injection mode of water or fluid solidifying material from the downward injection nozzle, and FIG. (D) shows the injection mode from the downward and lateral injection nozzles. Show. 本発明の管理方法で施工された鋼杭の根固め部付近の断面図である。It is sectional drawing of the vicinity of the solidified part of the steel pile constructed by the management method of this invention. バイブロハンマによる杭施工方法の第1タイプの工程の概要図である。It is a schematic diagram of the 1st type process of the pile construction method by a vibro hammer. バイブロハンマによる杭施工方法の第2タイプの工程の概要図である。It is a schematic diagram of the 2nd type process of the pile construction method by a vibro hammer. 本発明の鋼杭の施工方法を説明する模式的な工程図である。It is typical process drawing explaining the construction method of the steel pile of this invention. 計画施工工程と実測施工工程を示すグラフが表示されたPCのデスプレイを示す図である。It is a figure which shows the display of PC by which the graph which shows a plan construction process and a measurement construction process was displayed. 管理フローチャート(プログラム)の前半部の図である。It is a figure of the first half part of a management flowchart (program). 管理フローチャート(プログラム)の後半部の図である。It is a figure of the latter half part of a management flowchart (program). 本発明の施工管理方法の実施例の説明図である。It is explanatory drawing of the Example of the construction management method of this invention.

符号の説明Explanation of symbols

1 鋼杭
2 配管ホース
3 噴射ノズル
4 ノズル
5 ノズル
6 突起
7 根固め部
9 切り替え弁
10 杭先端
11 流動性固化材
12 中間層
13 界面
14 流動性経時固化材
15 外部流動性固化材
16 地盤表面
17 支持層
18 打ち込み深度
19 定着深度
20 計画施工過程表示曲線
21 デスプレイ
22 グラフ
23 縦軸
24 横軸
25 管理フローチャート(プログラム)
26 実測施工過程表示曲線
27 補正計画施工過程表示曲線
28 バイブロハンマ
29 掘削機械(クレーン)
30 ロープ
31 深度検出装置
31a ロータリエンコーダ
31b 距離計
32 ビーム
33 パーソナルコンピュータ(PC)
34 水槽
35 流動性固化材槽
36 パイプ
37 切り替え弁
38 流量計
39 ジェトカッタ
40 囲い枠
41 囲い枠
DESCRIPTION OF SYMBOLS 1 Steel pile 2 Piping hose 3 Injection nozzle 4 Nozzle 5 Nozzle 6 Protrusion 7 Rooting part 9 Switching valve 10 Pile tip
11 Fluidity Solidifying Material 12 Intermediate Layer 13 Interface 14 Fluidity Solidified Material
DESCRIPTION OF SYMBOLS 15 External fluidity solidification material 16 Ground surface 17 Support layer 18 Depth of implantation 19 Depth of fixation 20 Planned construction process display curve 21 Display 22 Graph 23 Vertical axis 24 Horizontal axis 25 Management flowchart (program)
26 Measured construction process display curve 27 Correction plan construction process display curve 28 Vibro hammer 29 Excavator (crane)
30 rope 31 depth detector 31a rotary encoder 31b rangefinder 32 beam
33 Personal computer (PC)
34 Water tank 35 Fluidity solidifying material tank 36 Pipe 37 Switching valve 38 Flow meter 39 Jet cutter 40 Enclosure frame 41 Enclosure frame

Claims (3)

鋼杭をバイブロハンマを用いて、杭先端部に設置されたホース先端のノズルから水を噴射して打ち込み深度まで打ち込んだ後、前記水を流動性固化材に切り替えて噴射し、前記杭を上下させた後で定着深度に定着し、杭先端部に根固め部を造成する鋼杭の施工方法において、
流動性固化材の充填に必要な時間を所定の一定圧力での単位時間あたり予測流量と計画充填量より算出し、その時間を、根固め部が各深度において下部から上部にかけて流動性固化材の均等な充填量が施されたものになるように杭の上下過程及び定着後の噴射時間に割り振り、その結果施工中の各時間におけるノズルの計画深度データを予め算出し、当該ノズルの計画深度データを施工前にパーソナルコンピュータ(PC)に入力し、施工時には前記PCのデスプレイ画面に施工時間と深度をとった座標上に計画施工過程表示曲線として表示し、施工中に計測したノズルの実測深度データを、前記PCに逐次入力すると共に、前記座標上に逐次表示し、
オペレータは前記デスプレイ画面における前記ノズルの実測深度の表示が、前記計画施工過程表示曲線の表示に一致するように杭の上下操作を行うことを特徴とする鋼杭の施工管理方法。
After using a vibro hammer to inject water from a nozzle at the tip of the hose and injecting water to the driving depth, the water is switched to a fluidized solid material and injected to raise and lower the pile. After that, in the construction method of steel piles that settle at the anchoring depth and create a rooted part at the pile tip,
The time required for filling the fluidized solidified material is calculated from the predicted flow rate per unit time at a predetermined constant pressure and the planned filling amount, and the time is calculated from the bottom to the top of the fluidized solidified material at each depth. Allocating the pile up / down process and post-fixing injection time so that the uniform filling amount is applied, as a result, the planned depth data of the nozzle at each time during construction is calculated in advance, and the planned depth data of the nozzle Is input to a personal computer (PC) before construction, and during construction, the measured depth data of the nozzle measured during construction is displayed on the display screen of the PC as a planned construction process display curve on the coordinates of construction time and depth. Are sequentially input to the PC, and sequentially displayed on the coordinates,
The construction management method for steel piles, wherein the operator performs an up / down operation of the piles so that the display of the measured depth of the nozzle on the display screen matches the display of the planned construction process display curve.
鋼杭をバイブロハンマを用いて、杭先端部に設置されたホース先端のノズルから水を噴射して打ち込み深度まで打ち込んだ後、前記水を流動性固化材に切り替えて噴射し、前記杭を上下させた後で定着深度に定着し、杭先端部に根固め部を造成し、その後、前記流動性固化材を外周部流動性固化材に切り替えて噴射し、ノズルを先端に有するホースを杭から分離して引き上げつつ、杭の周囲に所定量充填する鋼杭の施工方法において、
流動性固化材の充填に必要な時間を所定の一定圧力での単位時間あたり予測流量と計画充填量より算出し、その時間を、根固め部が各深度において下部から上部にかけて流動性固化材の均等な充填量が施されたものになるように杭の上下過程及び定着後の噴射時間に割り振ると共に、外周部流動性固化材の充填に必要な時間を、単位時間あたり予測流量と計画充填量より算出し、杭の周囲における外周部流動性固化材の均等な充填量が施されたものになるようにホースの引き上げ時の噴射時間に割り振り、その結果施工中の各時間におけるノズルの計画深度データを予め算出し、当該ノズルの計画深度データを施工前にパーソナルコンピュータ(PC)に入力し、施工時にはPCのデスプレイ画面に施工時間と深度をとった座標上に計画施工過程表示曲線として表示し、施工中に計測したノズルの実測深度データを、前記PCに逐次入力すると共に、前記座標上に逐次表示し、
オペレータは前記デスプレイ画面における前記ノズルの実測深度の表示が、前記計画施工過程表示曲線に一致するように杭の上下及びホースの引き上げ操作を行うことを特徴とする鋼杭の施工管理方法。
After using a vibro hammer to inject water from a nozzle at the tip of the hose and injecting water to the driving depth, the water is switched to a fluidized solid material and injected to raise and lower the pile. After fixing to the fixing depth, a rooted part is formed at the tip of the pile, and then the fluidized solidified material is switched to the outer peripheral fluidized solidified material and sprayed, and the hose having the nozzle at the tip is separated from the pile. In the construction method of steel pile that fills a predetermined amount around the pile while pulling up,
The time required for filling the fluidized solidified material is calculated from the predicted flow rate per unit time at a predetermined constant pressure and the planned filling amount, and the time is calculated from the bottom to the top of the fluidized solidified material at each depth. Allocate the up and down process of the pile and the injection time after fixing so that the uniform filling amount is applied, and the estimated flow rate per unit time and the planned filling amount for the time required for filling the outer periphery fluidity solidified material Calculated and allocated to the injection time when the hose is pulled up so that the outer periphery fluidity solidified material is evenly filled around the pile, and as a result, the planned depth of the nozzle at each time during construction Data is calculated in advance, and the planned depth data of the nozzle is input to a personal computer (PC) before construction. During construction, planned construction is performed on the coordinates obtained by taking the construction time and depth on the PC display screen. Displays as degree display curves, the measured depth data of the nozzle measured during construction, with sequentially input to the PC, sequentially displayed on the coordinate,
The construction management method for steel piles, wherein the operator performs an operation of raising and lowering the piles and raising the hose so that the display of the measured depth of the nozzle on the display screen matches the planned construction process display curve.
請求項1又は2記載の鋼杭の施工管理方法において、更に施工中に流動性固化材、又は、流動性固化材及び外周部流動性固化材の流量を計測すると共に、計測した実測流量データを前記PCへ逐次入力し、実測流量と予測流量のデータの差に基づいて、前記PC内でプログラムが演算して計画施工過程表示曲線を補正表示した補正計画施工過程表示曲線として逐次変更して前記座標上に表示し、オペレータはデスプレイ画面におけるノズルの実測深度の表示が、補正計画施工過程表示曲線に一致するように、杭の上下、又は杭の上下及びホースの引き上げ操作を行うことを特徴とする鋼杭の施工管理方法。 In the construction management method for steel piles according to claim 1 or 2, the flow rate of the fluidized solidified material, or the fluidized solidified material and the outer peripheral fluidized solidified material is further measured during the construction, and the measured flow rate data measured are measured. sequentially input to the PC, on the basis of the difference between the data measured flow rate and the predicted flow rate, programmed within the PC is sequentially changed plan construction process display curves and arithmetic as modification plan construction process display curve correction display Displayed on the coordinates, the operator performs the up and down of the pile, or the up and down of the pile and the hose lifting so that the display of the measured depth of the nozzle on the display screen matches the correction plan construction process display curve Steel pile construction management method.
JP2004141827A 2004-05-12 2004-05-12 Steel pile construction management method Expired - Lifetime JP4491274B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004141827A JP4491274B2 (en) 2004-05-12 2004-05-12 Steel pile construction management method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004141827A JP4491274B2 (en) 2004-05-12 2004-05-12 Steel pile construction management method

Publications (2)

Publication Number Publication Date
JP2005325513A JP2005325513A (en) 2005-11-24
JP4491274B2 true JP4491274B2 (en) 2010-06-30

Family

ID=35472055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004141827A Expired - Lifetime JP4491274B2 (en) 2004-05-12 2004-05-12 Steel pile construction management method

Country Status (1)

Country Link
JP (1) JP4491274B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1033865C2 (en) * 2007-05-16 2008-11-18 Van Leeuwen Harmelen Bv Geb Foundation by vibrating and vibrating.
JP5890677B2 (en) * 2011-12-19 2016-03-22 新日鐵住金株式会社 Steel pile construction method
JP6093923B2 (en) * 2013-06-19 2017-03-15 新日鐵住金株式会社 Steel pipe pile and steel pipe pile construction method
JP6043378B2 (en) * 2015-02-16 2016-12-14 調和工業株式会社 Conduit pulling device, conduit pulling method and pile driving method
JP6535861B2 (en) * 2017-06-27 2019-07-03 調和工業株式会社 Pile placement management system
EP3910113A1 (en) * 2020-05-13 2021-11-17 Ørsted Wind Power A/S A method of installing a foundation and a foundation for a structure
CN113006165B (en) * 2021-03-05 2022-07-29 广州市市政集团有限公司 Bored concrete pile surpasses irritates monitoring device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5760935U (en) * 1980-09-27 1982-04-10
JPS6342810A (en) * 1986-08-08 1988-02-24 佐藤工業株式会社 Method of automatically controlling pc steel material stretching force
JPH1090392A (en) * 1996-09-13 1998-04-10 Taisei Corp Slope-finishing control system
JP2001172970A (en) * 1999-12-15 2001-06-26 Nippon Steel Corp Method for driving steel pipe pile into base rock
JP2001303569A (en) * 2000-04-24 2001-10-31 Nkk Corp Construction method for winged pile
JP2002129561A (en) * 2000-10-23 2002-05-09 Tomec Corp Construction method for driven pile, jointly using vibration and pressure water injection
JP2002242184A (en) * 2001-02-19 2002-08-28 Chowa Kogyo Kk Jet nozzle mounting structure and jet nozzle mounting method
JP2002348868A (en) * 2000-06-12 2002-12-04 Mitani Sekisan Co Ltd Construction method for foot protection layer of pile hole, and device and method for managing execution of work for foundation pile
JP2003213688A (en) * 2002-01-25 2003-07-30 Sanwa Kizai Co Ltd Automatic recording method and device of burying method
JP2004270157A (en) * 2003-03-05 2004-09-30 Nippon Steel Corp Steel pile and construction method for it

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5760935U (en) * 1980-09-27 1982-04-10
JPS6342810A (en) * 1986-08-08 1988-02-24 佐藤工業株式会社 Method of automatically controlling pc steel material stretching force
JPH1090392A (en) * 1996-09-13 1998-04-10 Taisei Corp Slope-finishing control system
JP2001172970A (en) * 1999-12-15 2001-06-26 Nippon Steel Corp Method for driving steel pipe pile into base rock
JP2001303569A (en) * 2000-04-24 2001-10-31 Nkk Corp Construction method for winged pile
JP2002348868A (en) * 2000-06-12 2002-12-04 Mitani Sekisan Co Ltd Construction method for foot protection layer of pile hole, and device and method for managing execution of work for foundation pile
JP2002129561A (en) * 2000-10-23 2002-05-09 Tomec Corp Construction method for driven pile, jointly using vibration and pressure water injection
JP2002242184A (en) * 2001-02-19 2002-08-28 Chowa Kogyo Kk Jet nozzle mounting structure and jet nozzle mounting method
JP2003213688A (en) * 2002-01-25 2003-07-30 Sanwa Kizai Co Ltd Automatic recording method and device of burying method
JP2004270157A (en) * 2003-03-05 2004-09-30 Nippon Steel Corp Steel pile and construction method for it

Also Published As

Publication number Publication date
JP2005325513A (en) 2005-11-24

Similar Documents

Publication Publication Date Title
JP5071858B2 (en) Ready-made pile construction management equipment
JP4491274B2 (en) Steel pile construction management method
JP5074293B2 (en) Construction quality control system for ground improvement
JP3850802B2 (en) Steel pile and its construction method
JPH0227015A (en) Jet grouting method
USRE34576E (en) Casting of structural walls
JP6535862B2 (en) Pile construction method
JP3215634B2 (en) Soft ground improvement machine and soft ground improvement method
CN108755671B (en) Construction method of triaxial mixing pile of water-rich gravel layer
JP2006144387A (en) Structure of caisson
CN110872839B (en) Construction method of conical pile tip tubular pile capable of post-grouting
JP5545622B2 (en) Ground improvement method and ground improvement structure
CN207959196U (en) A kind of three axis high pressure spray of long spire stirs device
JP6431194B2 (en) C. for seismic reinforcement and quality control G. S injection control chart acquisition device
JP6672016B2 (en) Ground improvement method under the existing structure
JP3734976B2 (en) Construction management device and construction management method for Nakabori Root Firming Method
JP5605103B2 (en) Shield machine and attitude control method of shield machine
JP5790846B2 (en) Shield machine and attitude control method of shield machine
JP3755086B2 (en) Automatic control method of ground improvement processing machine equipped with wire type excavation accuracy control device
JPH0676687B2 (en) Cement milk injection amount automatic control device
JP3759235B2 (en) Construction management equipment for medium digging method
JPH0485411A (en) Method for improving ground
JP3842153B2 (en) Shield machine
JP4920116B1 (en) Shallow ground improvement method and apparatus
JP5256186B2 (en) Ground improvement method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100405

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4491274

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140409

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250