JP7228239B2 - How to restore the ground - Google Patents

How to restore the ground Download PDF

Info

Publication number
JP7228239B2
JP7228239B2 JP2019101835A JP2019101835A JP7228239B2 JP 7228239 B2 JP7228239 B2 JP 7228239B2 JP 2019101835 A JP2019101835 A JP 2019101835A JP 2019101835 A JP2019101835 A JP 2019101835A JP 7228239 B2 JP7228239 B2 JP 7228239B2
Authority
JP
Japan
Prior art keywords
diameter
improved
cutting tool
claw
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019101835A
Other languages
Japanese (ja)
Other versions
JP2020197001A (en
Inventor
清治 折戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2019101835A priority Critical patent/JP7228239B2/en
Publication of JP2020197001A publication Critical patent/JP2020197001A/en
Application granted granted Critical
Publication of JP7228239B2 publication Critical patent/JP7228239B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ソイルセメントコラム工法による柱状改良部が構築された地盤の復元方法に関する。 TECHNICAL FIELD The present invention relates to a method for restoring ground on which columnar improvements have been constructed by the soil cement column construction method.

地上に建築物や構造物を施工する際は、その沈み込みを防ぐため、あらかじめ杭打ちや地盤改良を行うことが多く、杭については、鉄製や木製やコンクリート製など、様々な種類が存在しており、その埋め込み方法も様々である。また地盤改良についても様々な技術が開発されており、その一つとしてソイルセメントコラム工法が挙げられる。この工法は、セメント系固化材と水を地中に圧入し、これらを既存の土砂類と混ぜ合わせ、ほぼ円断面の柱状改良部(ソイルセメントコラム)を形成するもので、狭い敷地でも無理なく施工可能で、施工時の騒音や振動も少なく、住宅用途を中心に広く普及している。 When constructing a building or structure on the ground, it is often the case that pile driving and ground improvement are carried out in advance to prevent subsidence, and there are various types of piles such as iron, wood, and concrete. There are various embedding methods. Various technologies have also been developed for soil improvement, one of which is the soil cement column construction method. This construction method involves injecting a cement-based solidification material and water into the ground, mixing them with existing earth and sand, and forming a columnar improvement section (soil cement column) with an almost circular cross section. It can be constructed, produces little noise and vibration during construction, and is widely used mainly in residential applications.

ソイルセメントコラム工法に関する技術開発の例として、後記の特許文献1が挙げられる。この文献では、ソイルセメントコラムの構築、撤去方法が開示されており、構築のほか、撤去も簡単に実施できることを特徴としている。その具体的は、ソイルセメントコラム(以下、コラムと記載)の構築途中において、その中心に鋼管(支持兼ガイド管)を挿入し、これをガイドとして地中に貫入させた攪拌ロッドを回転させながら引き上げると、均一で良質なコラムを構築できる。またコラムの撤去時は、前記の鋼管をガイドとして中空オーガーを埋め込むことで、その先端の切削ビットが逃げることなくコラムを切削し、コラム全体を確実に破壊することができる。 As an example of technological development related to the soil cement column construction method, Patent Document 1 below can be cited. This document discloses a method for constructing and removing a soil cement column, which is characterized by being easy to construct and remove. Specifically, during the construction of a soil cement column (hereinafter referred to as column), a steel pipe (support and guide pipe) is inserted into the center of the column, and using this as a guide, a stirring rod penetrated into the ground is rotated. When pulled up, a uniform and good quality column can be constructed. Also, when removing the column, by embedding the hollow auger using the steel pipe as a guide, the cutting bit at the tip of the auger cuts the column without escaping, and the entire column can be surely destroyed.

次の特許文献2では、ソイルセメント合成杭(ソイルセメントコラム)を造成するための拡幅掘削装置が開示されている。この文献では、ソイルセメント合成杭を造成する際、地盤に拡幅掘削装置と中空管を埋め込んでおり、拡幅掘削装置の先端部を中空管から突出させている。そして拡幅掘削装置から拡径する拡幅掘削翼は、中空管よりも外側に到達し、周辺の地盤を掘削する。また、拡幅掘削装置の先端付近から硬化性注入材を放出し、これを地盤と撹拌することで、ソイルセメント合成杭が順次造成されていく。そして造成後、中空管を残したまま拡幅掘削装置だけを引き上げるため、拡幅掘削翼を縮径させる機能を有している。この縮径は、拡幅掘削翼を揺動軸で支持することで実現しており、揺動軸は、回転軸に対して傾けて取り付けてある。 The following patent document 2 discloses a widening drilling device for building a soil cement composite pile (soil cement column). In this document, when constructing a soil-cement synthetic pile, a widening excavator and a hollow pipe are embedded in the ground, and the tip of the widening excavator protrudes from the hollow pipe. The widening excavation blade, which expands in diameter from the widening excavator, reaches the outside of the hollow pipe and excavates the surrounding ground. In addition, by discharging hardening grout from near the tip of the widening excavator and mixing it with the ground, soil-cement synthetic piles are built one by one. In order to pull up only the widening excavation device while leaving the hollow pipe after construction, it has a function to reduce the diameter of the widening excavation blade. This diameter reduction is achieved by supporting the widened excavation blade with a swing shaft, and the swing shaft is tilted with respect to the rotation shaft.

また、ソイルセメントコラムの撤去に関する技術の例として、特許文献3、4が挙げられる。そのうち特許文献3では、柱状改質部(ソイルセメントコラム)が形成された地盤の復元方法が開示されており、柱状改質部の周囲に環状のケーシングを積層するように複数埋め込み、その後、ケーシングの内部にグラブバケットを差し込み、柱状改質部の破砕と排出を繰り返し、その後、砂利などの埋め戻し材の投入と、その突き固めを繰り返し、最後にケーシングを引き上げて地盤を復元する。この方法では、当初のソイルセメントコラムをほぼ全量撤去できるほか、埋め戻し材を突き固めることで、地盤の緩みを抑制できる。 Moreover, Patent Documents 3 and 4 are listed as examples of techniques related to the removal of soil cement columns. Among them, Patent Document 3 discloses a method for restoring the ground in which a columnar reformed portion (soil cement column) is formed. A grab bucket is inserted into the inside of the pit, and the reformed column is crushed and discharged repeatedly. After that, refilling materials such as gravel are repeatedly put in and tamped down, and finally the casing is pulled up to restore the ground. In this method, almost all of the original soil-cement columns can be removed, and the backfilling material can be tamped down to prevent loosening of the ground.

そして特許文献4では、地中に埋設された柱状改良杭(ソイルセメントコラム)を容易に破砕することができる掘削ヘッドが開示されている。この掘削ヘッドは、回転軸の側周面に螺旋状の掘削翼を設けた構造で、掘削翼の先端には棒状の小型ビットを取り付けてあるほか、掘削翼の外周部には掘削方向に突出する先行爪を取り付けてある。先行爪は、小型ビットよりも先端側に突出しているほか、先行爪の先端の回転半径は、柱状改良杭の半径よりも大きくしてある。その結果、先行爪は、固まっている柱状改良杭を軸として回転するため、掘削ヘッドの芯ずれを防ぐことができ、柱状改良杭が容易に破砕される。 Patent Document 4 discloses an excavation head capable of easily crushing a columnar improved pile (soil cement column) buried in the ground. This excavation head has a structure in which a spiral excavation wing is provided on the side peripheral surface of the rotating shaft. A small rod-shaped bit is attached to the tip of the excavation wing, and the outer periphery of the excavation wing protrudes in the excavation direction. A leading pawl is attached. The leading claw protrudes further toward the tip side than the small bit, and the turning radius of the tip of the leading claw is set larger than the radius of the column-shaped improved pile. As a result, since the leading claw rotates about the solidified improved columnar pile as an axis, it is possible to prevent misalignment of the excavating head and easily crush the improved columnar pile.

特開2012-21310号公報Japanese Unexamined Patent Application Publication No. 2012-21310 特開2005-220512号公報JP 2005-220512 A 特開2017-78261号公報JP 2017-78261 A 特許第6435077号公報Japanese Patent No. 6435077

前記のように柱状改良部は、住宅などの小規模な建築物を中心に普及しており、その破砕に際しても周辺環境を悪化させないよう、騒音や振動をできるだけ抑制する必要がある。また狭隘な場所で破砕作業を行うことも多く、機材の輸送や、作業時の通行障害などにも配慮する必要がある。したがって破砕に用いる機材はできるだけ小型化した上、騒音や振動を抑制可能で、しかもコストダウンの観点から、エネルギー消費を削減できることが望ましい。 As described above, the column-shaped improved part is widely used mainly in small-scale buildings such as houses, and it is necessary to suppress noise and vibration as much as possible so as not to deteriorate the surrounding environment even when crushing it. In addition, crushing work is often performed in confined spaces, and it is necessary to consider transportation of equipment and obstacles to traffic during work. Therefore, it is desirable to reduce the size of the equipment used for crushing as much as possible, suppress noise and vibration, and reduce energy consumption from the viewpoint of cost reduction.

柱状改良部は、その性質上、固まり具合が不均一になることも多い。そのため破砕時、埋め込まれたドリルなどが硬質の領域を避けるように湾曲して大きな芯ずれを生じてしまい、柱状改良部の一部領域が破砕されることなく残存する恐れがある。このような芯ずれを防ぐには、前記の特許文献3のようにケーシングを用いればよいが、ケーシングは柱状改良部よりも大径になるほか、ケーシングの埋め込みや引き上げに手間が掛かり、作業に用いる機材の大型化が避けられず、コストダウンに関しては不利な面がある。 Due to the nature of the improved columnar portion, the degree of compaction is often non-uniform. Therefore, at the time of crushing, the embedded drill or the like bends to avoid the hard region, causing a large misalignment, and there is a possibility that a part of the columnar improved portion remains without being crushed. In order to prevent such misalignment, it is possible to use a casing as in Patent Document 3, but the casing has a larger diameter than the columnar improved portion, and it takes time and effort to embed and pull up the casing, making it difficult to work. It is unavoidable to increase the size of the equipment to be used, and there is a disadvantage in terms of cost reduction.

また特許文献4では、柱状改良杭(柱状改良部)を破砕するだけであり、撤去は行わない。そのためケーシングが不要でコストダウンを実現しやすい。ただしこの技術では、柱状改良杭の横断面全体をほぼ同時に破砕するほか、芯ずれを防ぐため、柱状改良杭の直径を上回る大径の先行爪を用いており、作業時には相応のトルクを加える必要があり、機材が大型化しやすい。このような事情から、柱状改良部の破砕には、一度での破砕量を抑制し、機材の小型化やエネルギー消費の削減などを実現可能な技術が待ち望まれている。 Moreover, in Patent Document 4, only the columnar improved pile (columnar improved portion) is crushed and not removed. As a result, no casing is required, making it easier to reduce costs. However, in this technology, in addition to crushing the entire cross section of the improved columnar pile at almost the same time, to prevent misalignment, a large-diameter pre-claw that exceeds the diameter of the improved columnar pile is used. Therefore, the equipment tends to be large. Under these circumstances, there is a long-awaited technology that can reduce the amount of crushed material at one time, reduce the size of equipment, and reduce energy consumption for crushing the improved columnar part.

本発明はこうした実情を基に開発されたもので、ソイルセメントコラム工法による柱状改良部が構築された後、周辺環境に及ぼす影響を抑制しながら、低コストで原状回復を実現可能な地盤の復元方法の提供を目的としている。 The present invention was developed based on this situation, and after the column improvement part is constructed by the soil cement column construction method, it is possible to restore the ground to its original state at low cost while suppressing the impact on the surrounding environment. The purpose is to provide a method.

前記の課題を解決するための請求項1記載の発明は、柱状改良部を掘削ドリルで破砕する地盤の復元方法であって、前記掘削ドリルは、中心軸の側周面を取り囲む螺旋状の刃具を複数備え、該刃具の外周部近傍には棒状の拡径爪を揺動自在に取り付けてあり、前記拡径爪の一端側は前記刃具で支持され、また他端側は前記中心軸の周方向から半径方向までの範囲で揺動可能としてあり、該中心軸が正転する際、該拡径爪は前記柱状改良部との接触で周方向に倒伏した状態になり、対して該中心軸が逆転する際、該拡径爪は該柱状改良部との接触で半径方向に突出した状態になり、前記刃具の外周部の直径は、前記柱状改良部の直径よりも小さく、また前記拡径爪が半径方向に突出した際、その外縁の直径は、該柱状改良部の直径よりも大きく、前記掘削ドリルを正転させて前記地盤中に埋め込む過程では、前記刃具によって前記柱状改良部の中心付近が破砕され、該掘削ドリルを逆転させて引き上げる過程では、前記拡径爪によって該柱状改良部の外縁側を破砕することを特徴とする地盤の復元方法である。 A first aspect of the invention for solving the above-mentioned problem is a method for restoring ground by crushing a columnar improved portion with an excavation drill, wherein the excavation drill is a helical cutting tool that surrounds the side peripheral surface of the central shaft. A rod-shaped diameter-enlarging claw is oscillatably attached near the outer peripheral portion of the cutting tool, one end side of the diameter-expanding claw is supported by the cutting tool, and the other end side is the circumference of the central axis When the center shaft rotates forward, the diameter-enlarged pawl comes into contact with the improved columnar portion and falls down in the circumferential direction. When the blade is reversed, the diameter-enlarging pawl comes into contact with the improved columnar portion and protrudes in the radial direction, and the diameter of the outer peripheral portion of the cutting tool is smaller than the diameter of the improved columnar portion, and the expanded diameter When the claw protrudes in the radial direction, the diameter of the outer edge thereof is larger than the diameter of the improved columnar portion. In the process of reversing and pulling up the excavating drill after the vicinity thereof has been crushed, the ground restoration method is characterized in that the outer edge side of the improved columnar portion is crushed by the diameter-enlarging claw.

本発明では、比較的小径の掘削ドリルを用いて柱状改良部を破砕することを目的としており、掘削ドリル自体は、従来のアースオーガなどと同様、螺旋状に伸びる刃具が中心軸の側周面を取り囲む構造だが、この刃具は、掘削対象が硬質であることを考慮し、多条ネジのように、複数列で構成される。そして掘削ドリルの先端側は、柱状改良部と向き合うが、その反対側には長尺の駆動軸が接続されており、駆動軸をオーガなどの建設機械で保持することで、掘削ドリルの回転や軸線方向への移動が実現する。なお当然ながら、掘削ドリルを地盤に埋め込む際は、全体を回転させて刃具による掘削を行うが、この回転方向が「正転」となる。 The purpose of the present invention is to crush the improved columnar portion using a relatively small-diameter excavation drill. Considering that the object to be excavated is hard, this cutting tool consists of multiple rows like a multi-threaded screw. The tip side of the excavation drill faces the improved columnar part, and a long drive shaft is connected to the opposite side. Axial movement is achieved. As a matter of course, when the excavating drill is embedded in the ground, the entire drill is rotated and excavation is performed by the cutting tool, and this rotating direction is the "forward rotation".

拡径爪は、螺旋状に伸びる刃具の外周部近傍に組み込む棒状の刃で、その長辺に沿って鋭利な刃を形成する。この刃は、一本の拡径爪に対して一列だけで、その反対側は刃ではなく峰になる。また拡径爪の一端側は、ピンなどを介して刃具の外周部近傍に取り付け、刃具に対して揺動自在としてある。そしてこの揺動の範囲は、中心軸の回転方向を基準として、拡径爪が周方向に沿う状態と、半径方向に突出する状態と、の間の概ね90度に限定し、これを超える範囲については、拡径爪が周囲の部品と接触し、揺動が規制される。なお拡径爪は、刃具の先端付近ではなく、そこからやや後退した箇所に配置する。 The diameter-expansion claw is a bar-shaped blade incorporated in the vicinity of the outer peripheral portion of the spirally extending cutting tool, and forms a sharp blade along its long side. This blade has only one row for one diameter-expanding pawl, and the opposite side becomes a ridge instead of a blade. One end of the diameter-expanding claw is attached to the vicinity of the outer peripheral portion of the cutting tool via a pin or the like so that it can swing relative to the cutting tool. The range of this swing is limited to approximately 90 degrees between the state in which the diameter-enlarging claw extends along the circumferential direction and the state in which the diameter-expanding claw protrudes in the radial direction, with reference to the rotation direction of the central shaft, and the range exceeding this range. As for , the diameter-expanding pawl comes into contact with surrounding parts, and swinging is restricted. Note that the diameter-expanding pawl is arranged not near the tip of the cutting tool, but at a position slightly recessed therefrom.

拡径爪は、外力によって自在に揺動可能であり、地盤(柱状改良部を含む)との接触によって姿勢が変化する。具体的には、掘削ドリルが正転して刃具による破砕が行われる際、拡径爪は地盤との接触で押し倒され、中心軸の周方向に沿う姿勢になる。そのため拡径爪は、刃具の外周部近傍に収納された状態になり、拡径爪はその機能を発揮することがなく、周囲に破砕物が通過するに過ぎない。 The diameter-expanding pawl can be freely swung by an external force, and changes its posture upon contact with the ground (including the columnar improved portion). Specifically, when the excavating drill rotates forward and crushing is performed by the cutting tool, the diameter-expanding claw is pushed down by contact with the ground and assumes a posture along the circumferential direction of the central axis. As a result, the diameter-expansion claw is housed in the vicinity of the outer peripheral portion of the cutting tool, and the diameter-expansion claw does not exhibit its function, and crushed objects merely pass through its surroundings.

刃具が柱状改良部の最下部に到達すると、これまでに刃具が通過した箇所では柱状改良部が小石状に破砕されており、その後、掘削ドリルを円滑に引き上げるため、その回転方向を逆転させる。その際、拡径爪の先端が地盤(柱状改良部を含む)に接触すると、これまでとは逆に拡径爪が引き出されて半径方向に突出するが、その揺動範囲は規制されているため、突出した状態が維持され、まだ破砕されていない柱状改良部に食い込んでいく。 When the cutting tool reaches the lowest part of the improved columnar part, the improved columnar part is crushed into pebbles where the cutting tool has passed so far, and then the direction of rotation is reversed in order to smoothly pull up the excavating drill. At that time, when the tip of the diameter-expansion claw contacts the ground (including the columnar improvement part), the diameter-expansion claw is pulled out and protrudes in the radial direction, but its swing range is regulated. Therefore, the protruding state is maintained, and it bites into the columnar improvement that has not yet been crushed.

螺旋状の刃具の外周部の直径は、その使用が想定される柱状改良部の直径よりも小さくする。したがって、柱状改良部の中心付近に掘削ドリルを配置し、掘削ドリルを徐々に埋め込んでいくと、刃具によって柱状改良部の中心付近だけが破砕されるため、掘削ドリルを駆動するためのトルクを抑制できる。そして掘削ドリルの先端が柱状改良部の最下部に到達すると、掘削ドリルを逆転させながら徐々に引き上げていくが、その際は拡径爪が突出し、刃具よりも外側が破砕される。 The diameter of the outer circumference of the helical cutting tool should be smaller than the diameter of the post refinement for which it is intended to be used. Therefore, if the excavation drill is placed near the center of the improved columnar portion and the excavated drill is gradually embedded, only the vicinity of the center of the improved columnar portion is crushed by the cutting tool, so the torque for driving the excavated drill is suppressed. can. When the tip of the excavating drill reaches the lowest part of the improved columnar portion, the excavating drill is reversed and gradually pulled up.

拡径爪については、地盤との接触で半径方向に突出した際、その外縁の直径が柱状改良部の直径を上回る必要があり、掘削ドリルを逆転させながら引き上げることで、柱状改良部の全体を破砕できる。なお拡径爪は、反力の不均衡による中心軸の屈曲を抑制するため、複数を等角度で配置することが望ましい。そのほか拡径爪は、刃具の先端よりも後退した箇所に配置してある。そのため掘削ドリルを埋め込む際は、柱状改良部の底よりもやや深い位置まで到達させ、柱状改良部の全体を破砕できるようにする。 Regarding the diameter expansion claw, when it protrudes in the radial direction due to contact with the ground, the diameter of the outer edge must exceed the diameter of the improved column. Can be crushed. In order to suppress bending of the central axis due to imbalance in reaction force, it is desirable to arrange a plurality of diameter-expanding claws at equal angles. In addition, the diameter-expanding pawl is arranged at a position recessed from the tip of the cutting tool. Therefore, when burying the excavation drill, it is made to reach a position slightly deeper than the bottom of the columnar improved portion so that the entire columnar improved portion can be crushed.

このように、拡径爪などを備えた掘削ドリルを用いることで、その埋め込みと引き上げの二段階に分割して柱状改良部を破砕するため、作業時のトルクが軽減され、機材の各部を小型化できるほか、動力源となるエンジンのダウンサイジングも可能で、エネルギー消費の削減のほか、騒音や振動の低下が実現する。また拡径爪により、刃具の大きさを抑制できるほか、従来のケーシングなども不要で設備を小型化できるため、狭隘な場所においても、輸送や据え付けなどを無理なく実施できる。なお本発明では、柱状改良部の中心付近と外縁側の二段階に分けて破砕を行うが、この破砕は掘削ドリルの上下一往復だけで実現できるため、作業時間が増大することもない。 In this way, by using excavation drills equipped with diameter-expanding claws, the column-shaped improved part is crushed in two stages, embedding and pulling it up, so the torque during work is reduced and each part of the equipment can be made smaller. In addition, it is possible to downsize the engine that is the power source, reducing energy consumption as well as noise and vibration. In addition, the diameter-expanding jaws can reduce the size of the cutting tool and eliminate the need for conventional casings, making the equipment smaller. In the present invention, crushing is performed in two steps, near the center of the improved columnar portion and on the outer edge side, but this crushing can be achieved by only one up-and-down reciprocation of the excavating drill, so the working time does not increase.

請求項2記載の発明は、掘削ドリルの変位を抑制するためのもので、中心軸の先端付近には、刃具の先端よりも突出した先進軸を設けてあり、該先進軸の端面には、破砕のための先導爪を複数設けてあることを特徴とする。掘削ドリルは、駆動軸を介して地上で保持されており、しかも駆動軸の剛性にも限度があることから、掘削ドリルは、駆動軸の半径方向に容易に変位可能である。そのため柱状改良部の硬さの不均一により、刃具などに作用する反力にも偏りが生じ、やがて掘削ドリルが柱状改良部の中心から大きく変位し、柱状改良部の一部領域を破砕できないことも予想される。これを防ぐため、刃具の先端位置よりも突出した先進軸を設け、それに先導爪を設ける。 The invention according to claim 2 is for suppressing the displacement of the excavating drill, and in the vicinity of the tip of the center shaft is provided an advanced shaft that protrudes beyond the tip of the cutting tool, and the end surface of the advanced shaft is provided with: A plurality of leading claws for crushing are provided. Since the excavation drill is held on the ground through the drive shaft and the rigidity of the drive shaft is limited, the excavation drill can be easily displaced in the radial direction of the drive shaft. Therefore, due to unevenness in the hardness of the improved columnar portion, the reaction force acting on the cutting tool is also biased, and eventually the excavating drill is displaced greatly from the center of the improved columnar portion, making it impossible to crush a part of the improved columnar portion. is also expected. In order to prevent this, a leading shaft projecting from the tip position of the cutting tool is provided, and a leading pawl is provided on it.

先進軸は、中心軸の延長に位置しており、中心軸と一体的に形成することもあれば、別途に製造したものを溶接などで中心軸と一体化することもある。さらに先進軸と中心軸は、同径とすることもあれば、先進軸を先細りの円錐状に仕上げ、破砕物の排出を円滑にすることもある。そして先進軸の端面には、実際に地盤を破砕する先導爪を複数設ける。先導爪は、先進軸の端面に配置可能な寸法の棒状または板状で、その根元を先進軸と強固に一体化する。 The advanced shaft is positioned as an extension of the central shaft, and may be integrally formed with the central shaft, or may be separately manufactured and integrated with the central shaft by welding or the like. Furthermore, the advanced shaft and the central shaft may have the same diameter, or the advanced shaft may be finished in a tapered conical shape to facilitate the discharge of crushed matter. A plurality of leading claws that actually crush the ground are provided on the end face of the leading shaft. The leading pawl is rod-shaped or plate-shaped with a size that can be arranged on the end face of the advanced shaft, and its base is firmly integrated with the advanced shaft.

先進軸および先導爪の回転径は、掘削ドリル全体の回転径と比較してはるかに小さい。そのため掘削ドリルの前進時、先進軸および先導爪の周辺で発生する抵抗も小さくなり、柱状改良部の硬さに偏りがあった場合でも、先進軸は、その影響で芯ずれすることなく直進する。その結果、掘削ドリル全体についても、先進軸をガイドとして芯ずれすることなく直進し、掘削ドリルと柱状改良部の双方の中心が常時一致するため、柱状改良部の全体を残すことなく破砕可能である。 The turning diameter of the leading shaft and leading jaw is much smaller than the turning diameter of the entire drill. Therefore, when the excavation drill moves forward, the resistance generated around the leading shaft and the leading jaw is also reduced, and even if there is uneven hardness in the improved columnar part, the leading shaft moves straight without being misaligned. . As a result, the whole excavation drill moves straight without misalignment using the advanced shaft as a guide, and the center of both the excavation drill and the improved columnar part always coincides, so that the entire improved columnar part can be crushed. be.

請求項3記載の発明は、一連の掘削をより円滑化するためのもので、中心軸および先進軸の内部には、先導爪の周囲に流体を噴射するための流路を設けてあることを特徴とする。先導爪や刃具や拡径爪は、柱状改良部などを破砕する際に大きな摩擦が発生し、駆動のためのトルクが増大するほか、発熱によって部品の摩耗や劣化が促進される。そこで、掘削ドリルの先端付近から液体や気体を噴射することで、摩擦や発熱を緩和することが望ましい。なお流路は、原則として中心軸や先進軸の中心に形成するほか、異物が入り込むことを防ぐため、弁などを組み込むこともできる。 According to the third aspect of the invention, a series of excavations is made smoother, and a flow path is provided inside the center shaft and the leading shaft for injecting fluid around the leading claws. Characterized by The leading claws, cutting tools, and diameter-expanding claws generate a large amount of friction when crushing the improved columnar portion, which increases the torque for driving and accelerates the wear and deterioration of parts due to heat generation. Therefore, it is desirable to reduce friction and heat generation by injecting liquid or gas from near the tip of the excavation drill. In principle, the flow path is formed at the center of the central axis or the advanced axis, and a valve or the like can be incorporated to prevent foreign matter from entering.

請求項1記載の発明のように、柱状改良部を破砕する掘削ドリルは、中心軸を取り囲む螺旋状の刃具と、刃具の外周部近傍に取り付ける拡径爪などで構成し、掘削ドリルを埋め込む際は、刃具によって柱状改良部の中心付近を破砕し、掘削ドリルを引き上げる際は、拡径爪によって柱状改良部の外縁側を破砕する。このように柱状改良部を段階的に破砕することで、埋め込み時と引き上げ時のいずれも、掘削ドリルの駆動に必要となるトルクが軽減され、エネルギー消費の削減のほか、騒音や振動の低下が実現する。 As in the first aspect of the invention, the excavation drill for crushing the improved columnar portion is composed of a helical cutting tool that surrounds the central axis and a diameter-expanding claw attached near the outer periphery of the cutting tool. Crushes near the center of the improved columnar portion with a cutting tool, and crushes the outer edge side of the improved columnar portion with a diameter-expanding claw when pulling up the excavating drill. This gradual fracturing of the columnar improvement reduces the torque required to drive the drill during both embedding and lifting, reducing energy consumption as well as noise and vibration. come true.

また拡径爪により、刃具の大きさを抑制できるほか、従来のケーシングなども不要で、用いる機材が少なく、しかも小型化が可能であり、狭隘な場所においても、輸送や据え付けなどを無理なく実施でき、通行障害も回避しやすい。なお本発明では、掘削ドリルの埋め込み時と引き上げ時の二段階に分けて破砕を行うが、従来から、ドリルの埋め込みと引き上げは不可欠であり、作業時間に大きな差は生じない。そのほか拡径爪の揺動は、掘削ドリルの回転と地盤(柱状改良部を含む)との接触だけで実現するため、リンクなどの作動機構は一切不要で、構造や取り扱いが複雑になることもない。 In addition to reducing the size of the cutting tool with the diameter expansion claw, conventional casings are not required, and less equipment is required. Moreover, it is possible to make it smaller, so it can be easily transported and installed even in cramped spaces. It is easy to avoid traffic obstacles. In the present invention, the crushing is performed in two stages, when the excavation drill is embedded and when it is pulled up. In addition, since the swinging of the diameter expansion claw is realized only by the rotation of the excavation drill and the contact with the ground (including the columnar improvement part), no operating mechanism such as a link is required, and the structure and handling can be complicated. do not have.

請求項2記載の発明のように、中心軸の先端付近には、刃具の先端よりも突出した先進軸を設け、先進軸の端面には、破砕のための先導爪を複数設けることで、掘削ドリルの先端付近では、先進軸と対向する狭い範囲だけを破砕するため、先進軸および先導爪の周辺で発生する抵抗も小さくなり、柱状改良部の硬さに偏りがあった場合でも、先進軸は、その影響で芯ずれすることなく直進する。その結果、掘削ドリル全体についても、先進軸をガイドとして芯ずれすることなく直進し、掘削ドリルと柱状改良部の双方の中心が常時一致するため、柱状改良部の全体を残すことなく破砕可能である。 As in the invention described in claim 2, an advanced shaft protruding from the tip of the cutting tool is provided near the tip of the central shaft, and a plurality of leading claws for crushing are provided on the end surface of the advanced shaft, thereby enabling excavation. In the vicinity of the tip of the drill, only a narrow area facing the advanced shaft is crushed, so the resistance generated around the advanced shaft and the leading claw is also small, and even if there is uneven hardness in the pillar-shaped improvement part, the advanced shaft can be crushed. will go straight without any misalignment due to its influence. As a result, the whole excavation drill moves straight without misalignment using the advanced shaft as a guide, and the center of both the excavation drill and the improved columnar part always coincides, so that the entire improved columnar part can be crushed. be.

請求項3記載の発明のように、中心軸および先進軸の内部には、先導爪の周囲に流体を噴射するための流路を設け、破砕時に水などを噴射することで、先導爪や刃具や拡径爪の周辺で生じる摩擦や発熱が緩和される。また、掘削ドリルの駆動に必要となるトルクが軽減され、エネルギー消費の削減のほか、騒音や振動の低下も期待できるほか、各部の摩耗が抑制され、長寿命化が実現する。さらに噴射する流体に各種薬剤を添加することで、地中に残留する有害物質を無害化することもできる。 As in the third aspect of the invention, a flow path for injecting fluid around the leading claws is provided inside the center shaft and the leading shaft, and by injecting water or the like at the time of crushing, the leading claws and the cutting tool can Friction and heat generated around the diameter expansion claw are alleviated. In addition, the torque required to drive the excavation drill is reduced, which can be expected to reduce energy consumption, noise and vibration. Furthermore, by adding various chemicals to the jetted fluid, harmful substances remaining in the ground can be rendered harmless.

本発明による地盤の復元方法の流れを示す図で、図の左側は掘削ドリルが埋め込まれる段階で、図の右側は掘削ドリルが引き上げられる段階である。FIG. 2 is a diagram showing the flow of the ground restoration method according to the present invention, in which the left side of the figure shows the step of embedding the excavation drill, and the right side of the figure shows the stage of pulling up the excavation drill. 図1の掘削ドリルの詳細を示す図である。Figure 2 shows a detail of the drill of Figure 1;

図1は、本発明による地盤Gの復元方法の流れを示し、地盤Gには柱状改良部Cが形成されている。柱状改良部Cは、一般にソイルセメントコラム工法と呼ばれる技術で形成されたソイルセメントコラムであり、セメント系固化材と既存の土砂類を混ぜ合わせ、円柱状に凝固させたもので、鉄筋や鉄骨などは組み込まれていない。なお柱状改良部Cの外側には、既存の土砂類がそのまま残っている。 FIG. 1 shows the flow of the restoration method of the ground G according to the present invention, and the ground G is formed with a columnar improvement portion C. As shown in FIG. Column-shaped improved part C is a soil cement column formed by a technique generally called the soil cement column construction method, which is made by mixing a cement-based solidification material with existing earth and sand, solidifying it into a columnar shape, and reinforcing bars, steel frames, etc. is not included. In addition, the existing earth and sand remains as it is on the outside of the columnar improved portion C.

この柱状改良部Cを破砕するため、掘削ドリル11を用いる。掘削ドリル11は、中心に伸びる丸棒状の中心軸15と、中心軸15の側周面を取り囲む螺旋状の刃具16で構成されるが、刃具16は、三条ネジと同様、同形の三枚を等角度で配置してある。そして刃具16の先端は鋭利に仕上げてあり、そこに円柱状のビット17を一体化してあり、破砕を効率よく行うことができる。ただし刃具16の外周部の直径は、柱状改良部Cの直径よりも小さく、刃具16だけでは柱状改良部Cの破砕を完了することができない。 An excavation drill 11 is used to crush the improved columnar portion C. As shown in FIG. The excavation drill 11 is composed of a round-bar-shaped center shaft 15 extending from the center and a spiral cutting tool 16 surrounding the side peripheral surface of the center shaft 15. The cutting tool 16 has three pieces of the same shape, similar to the three-start screw. They are arranged at equal angles. The tip of the cutting tool 16 is sharpened, and a cylindrical bit 17 is integrated therewith, so that crushing can be efficiently performed. However, the diameter of the outer peripheral portion of the cutting tool 16 is smaller than the diameter of the improved columnar portion C, and the crushing of the improved columnar portion C cannot be completed with the cutting tool 16 alone.

刃具16の外周部近傍には、コの字状のホルダ23を一体化してあり、その中に棒状の拡径爪22が収容されている。拡径爪22の一端側は、ホルダ23に対して揺動自在に取り付けてあり、その揺動範囲は概ね90度である。そのため拡径爪22の他端側は、刃具16の外周部に沿うこともあれば、半径方向に突出することもある。 A U-shaped holder 23 is integrated in the vicinity of the outer peripheral portion of the cutting tool 16, and a rod-shaped enlarged diameter claw 22 is accommodated therein. One end side of the enlarged diameter claw 22 is attached to the holder 23 so as to be swingable, and the swinging range is approximately 90 degrees. Therefore, the other end side of the enlarged diameter pawl 22 may extend along the outer peripheral portion of the cutting tool 16 or protrude in the radial direction.

掘削ドリル11の中心軸15の上部は、ジョイント43を介して駆動軸41に接続されている。駆動軸41は、掘削ドリル11を吊り下げるための軸で、駆動軸41の上部は保持具42に差し込んである。そして保持具42には駆動モータ44が組み込まれており、駆動軸41を自在に回転させることができ、さらに保持具42は、各種建設機械(図示は省略)に組み込まれ、上下に移動可能となっており、掘削ドリル11の埋め込みと引き上げを実現している。なおこれらの機材を輸送する際は、ジョイント43で掘削ドリル11と駆動軸41を切り離すほか、保持具42から駆動軸41を抜き取り、占有空間をできるだけ小さくする。 An upper portion of the central shaft 15 of the excavating drill 11 is connected to the drive shaft 41 via a joint 43 . The drive shaft 41 is a shaft for suspending the excavation drill 11 , and the upper portion of the drive shaft 41 is inserted into the holder 42 . A drive motor 44 is incorporated in the holder 42, and the drive shaft 41 can be freely rotated. Further, the holder 42 is incorporated in various construction machines (not shown) and can move up and down. This realizes embedding and pulling up of the excavation drill 11 . When transporting these equipment, the excavating drill 11 and the drive shaft 41 are separated by the joint 43, and the drive shaft 41 is removed from the holder 42 to reduce the space occupied as much as possible.

中心軸15の先端には、先進軸31が接続されている。この図では、中心軸15と先進軸31が切れ目なく一体化しており、刃具16の先端よりも下方の範囲を先進軸31と称している。さらに先進軸31の端面には、先のビット17と同様、円柱状の先導爪32を溶接で一体化してあり、これが柱状改良部Cの中心を破砕する最前線になる。そして先導爪32で破砕された箇所に先進軸31が嵌まり込むことで、掘削ドリル11の芯ずれが規制される。 A leading shaft 31 is connected to the tip of the central shaft 15 . In this figure, the center shaft 15 and the leading shaft 31 are seamlessly integrated, and the range below the tip of the cutting tool 16 is called the leading shaft 31 . Furthermore, a cylindrical leading claw 32 is integrally welded to the end face of the leading shaft 31 in the same manner as the bit 17 described above. By fitting the advanced shaft 31 into the portion crushed by the leading claw 32, misalignment of the excavating drill 11 is regulated.

掘削ドリル11の中心には、トンネル状の流路18が貫通しており、この流路18を用い、先導爪32の近傍に水などの流体Fを噴射することで、破砕時の摩擦や発熱を緩和することができる。そして流体Fは、地上の配管49から供給されるため、駆動軸41の中心にも流路48を形成してあり、駆動軸41の上部には、配管49との接続のため、継手45を組み込んであり、ジョイント43についても内部に流路を確保してある。なお噴射された流体Fは、破砕物の隙間を抜けて刃具16や拡径爪22にも到達し、そこでの摩擦や発熱も緩和される。 A tunnel-shaped flow path 18 penetrates through the center of the excavating drill 11, and by using this flow path 18 to inject a fluid F such as water near the leading claw 32, friction and heat generation during crushing are reduced. can be mitigated. Since the fluid F is supplied from a pipe 49 on the ground, a flow path 48 is also formed in the center of the drive shaft 41, and a joint 45 is provided above the drive shaft 41 for connection with the pipe 49. The joint 43 is also incorporated, and a flow path is secured inside. The jetted fluid F passes through the gaps between the crushed objects and reaches the cutting tool 16 and the diameter-enlarging claw 22, thereby reducing friction and heat generation there.

図1の左側には、掘削ドリル11を埋め込んでいき、柱状改良部Cの中心部を破砕する段階を描いてあり、掘削ドリル11と柱状改良部Cの双方の中心と一致させた後、保持具42によって掘削ドリル11を右回転(正転)させながら、地盤Gに埋め込んでいく。埋め込みの初期段階では、先導爪32だけが柱状改良部Cに接触し、ごく狭い範囲だけが破砕され、そこに先進軸31が嵌まり込むことで掘削ドリル11の芯ずれを防ぎ、その後、刃具16の先端やビット17と接触した範囲が破砕される。なお破砕されて小石状になった柱状改良部Cは、刃具16の上面に載るが、その大半は地上に排出されることなく、地盤G中に残留する。 On the left side of FIG. 1, the stage of embedding the excavation drill 11 and crushing the center portion of the columnar improvement portion C is depicted, and after matching the center of both the excavation drill 11 and the columnar improvement portion C, it is held. The excavating drill 11 is embedded in the ground G while being rotated clockwise (normally) by the tool 42 . At the initial stage of embedding, only the leading claw 32 comes into contact with the improved columnar portion C, and only a very narrow range is crushed. The tip of 16 and the range in contact with bit 17 are crushed. Although the improved columnar portion C crushed into pebbles is placed on the upper surface of the cutting tool 16, most of it remains in the ground G without being discharged to the ground.

掘削ドリル11を埋め込む際は、周囲との接触により、拡径爪22は周方向に倒伏した状態になる。そのため拡径爪22は、刃具16の外周部から大きく突出することもなく、この段階では破砕に関与しない。ただし、刃具16の先端が柱状改良部Cの最下部を突破した後は、図1の右側に描くように、これまでとは逆に掘削ドリル11を左回転(逆転)させながら徐々に引き上げていく。その際、拡径爪22が周辺との接触で半径方向に突出し、拡径爪22によって柱状改良部Cの外縁側を破砕していく。突出した拡径爪22の外縁の直径は、柱状改良部Cの直径よりも大きいため、柱状改良部Cを完全に破砕することができる。なお破砕された柱状改良部Cは、小石状になって残留するが、周辺の地盤Gと混ざり合い、原状回復が実現する。 When the excavating drill 11 is embedded, the diameter-expansion claw 22 falls down in the circumferential direction due to contact with the surroundings. Therefore, the enlarged diameter claw 22 does not protrude greatly from the outer peripheral portion of the cutting tool 16 and does not participate in crushing at this stage. However, after the tip of the cutting tool 16 breaks through the lowermost portion of the improved columnar portion C, as depicted on the right side of FIG. go. At that time, the diameter-enlarging claws 22 protrude in the radial direction due to contact with the periphery, and the diameter-enlarging claws 22 crush the outer edge side of the improved columnar portion C. As shown in FIG. Since the diameter of the outer edge of the projecting enlarged diameter claw 22 is larger than the diameter of the improved columnar portion C, the improved columnar portion C can be completely crushed. Although the crushed improved columnar portion C remains in the form of pebbles, it is mixed with the surrounding ground G and restored to its original state.

図2は、図1の掘削ドリル11の詳細を示している。中心軸15の上部には、図1のジョイント43を組み込むため、やや小径のシャンク19を形成してある。また中心軸15のうち、刃具16の先端よりも下の部位を先進軸31と称しており、その端面に三個の先導爪32を取り付けてある。さらに先進軸31の端面の中央には流路18が到達しているが、流路18内への異物の入り込みを防ぐため、弁38を取り付けてある。弁38は、流路18の内圧が上昇した場合に開放されるが、外部の圧力が高まった際は、流路18を閉止する。 FIG. 2 shows details of the drill 11 of FIG. A slightly smaller diameter shank 19 is formed on the upper portion of the central shaft 15 in order to incorporate the joint 43 of FIG. A portion of the central shaft 15 below the tip of the cutting tool 16 is called a leading shaft 31, and three leading claws 32 are attached to the end face thereof. Furthermore, the flow path 18 reaches the center of the end face of the advanced shaft 31, and a valve 38 is attached to prevent foreign matter from entering the flow path 18. As shown in FIG. The valve 38 opens when the internal pressure of the channel 18 increases, but closes the channel 18 when the external pressure increases.

拡径爪22は棒状で、その対向する側端面のうち一方は、鋭利なクサビ状に仕上げた前面26で、他方の側端面は鋭利ではない背面27としてあり、前面26が刃に相当しており、背面27が峰に相当しており、前面26で地盤Gや柱状改良部Cを破砕する。また刃具16の外周部には、コの字状のホルダ23を一体化してあり、ホルダ23を貫くピン24により、拡径爪22は揺動自在に取り付けられている。加えてホルダ23との関係により、拡径爪22は、刃具16の外周部の後端側に向けて倒伏可能だが、その反対の先端側には倒伏不能である。 The enlarged diameter pawl 22 is rod-shaped, and one of its opposed side end faces is a sharp wedge-shaped front face 26, and the other side end face is a not sharp back face 27, and the front face 26 corresponds to a blade. The rear surface 27 corresponds to a ridge, and the front surface 26 crushes the ground G and the columnar improvement portion C. A U-shaped holder 23 is integrated with the outer peripheral portion of the cutting tool 16, and a pin 24 penetrating the holder 23 attaches the diameter-expanding pawl 22 so as to be swingable. In addition, due to the relationship with the holder 23, the enlarged diameter claw 22 can be laid down toward the rear end side of the outer peripheral portion of the cutting tool 16, but cannot be laid down toward the opposite tip side.

そのため掘削ドリル11が正転する際は、拡径爪22の背面27が柱状改良部Cなどに接触し、拡径爪22は、刃具16の外周部に沿うように倒伏することから、拡径爪22が柱状改良部Cなどを破砕することはない。対して掘削ドリル11が逆転する際は、拡径爪22の前面26が地盤Gや柱状改良部Cに接触するため、拡径爪22の先端付近が押し出され、ピン24を支点として変位し始めるが、やがて拡径爪22はホルダ23と接触することから、拡径爪22は半径方向に突出した状態を維持する。加えて掘削ドリル11が逆転する際は、拡径爪22の前面26が地盤Gや柱状改良部Cと対向し、これらが破砕されていく。 Therefore, when the excavating drill 11 rotates forward, the rear surface 27 of the diameter-enlarging claw 22 contacts the columnar improved portion C or the like, and the diameter-expanding claw 22 falls down along the outer peripheral portion of the cutting tool 16. The claws 22 do not crush the improved columnar portion C or the like. On the other hand, when the excavating drill 11 is reversed, the front surface 26 of the diameter-enlarging claw 22 comes into contact with the ground G and the columnar improved portion C, so that the vicinity of the tip of the diameter-expanding claw 22 is pushed out and begins to be displaced with the pin 24 as a fulcrum. However, since the enlarged diameter claw 22 eventually comes into contact with the holder 23, the enlarged diameter claw 22 maintains the radially projecting state. In addition, when the excavating drill 11 is reversed, the front surface 26 of the diameter-enlarging claw 22 faces the ground G and the columnar improved portion C, and these are crushed.

11 掘削ドリル
15 中心軸
16 刃具
17 ビット
18 流路
19 シャンク
22 拡径爪
23 ホルダ
24 ピン
26 前面(拡径爪の)
27 背面(拡径爪の)
31 先進軸
32 先導爪
38 弁
41 駆動軸
42 保持具
43 ジョイント
44 駆動モータ
45 継手
48 流路
49 配管
F 流体
C 柱状改良部(ソイルセメントコラム)
G 地盤
11 drilling drill 15 center shaft 16 cutting tool 17 bit 18 flow path 19 shank 22 diameter expansion claw 23 holder 24 pin 26 front surface (diameter expansion claw)
27 back (of expanding claw)
31 advanced shaft 32 leading pawl 38 valve 41 drive shaft 42 holder 43 joint 44 drive motor 45 joint 48 flow path 49 pipe F fluid C columnar improvement part (soil cement column)
G Ground

Claims (3)

柱状改良部(C)を掘削ドリル(11)で破砕する地盤(G)の復元方法であって、
前記掘削ドリル(11)は、中心軸(15)の側周面を取り囲む螺旋状の刃具(16)を複数備え、該刃具(16)の外周部近傍には棒状の拡径爪(22)を揺動自在に取り付けてあり、
前記拡径爪(22)の一端側は前記刃具(16)で支持され、また他端側は前記中心軸(15)の周方向から半径方向までの範囲で揺動可能としてあり、該中心軸(15)が正転する際、該拡径爪(22)は前記柱状改良部(C)との接触で周方向に倒伏した状態になり、対して該中心軸(15)が逆転する際、該拡径爪(22)は該柱状改良部(C)との接触で半径方向に突出した状態になり、
前記刃具(16)の外周部の直径は、前記柱状改良部(C)の直径よりも小さく、また前記拡径爪(22)が半径方向に突出した際、その外縁の直径は、該柱状改良部(C)の直径よりも大きく、
前記掘削ドリル(11)を正転させて前記地盤(G)中に埋め込む過程では、前記刃具(16)によって前記柱状改良部(C)の中心付近が破砕され、該掘削ドリル(11)を逆転させて引き上げる過程では、前記拡径爪(22)によって該柱状改良部(C)の外縁側を破砕することを特徴とする地盤の復元方法。
A method for restoring a ground (G) by crushing a columnar improvement part (C) with an excavation drill (11),
The excavation drill (11) is provided with a plurality of spiral cutting tools (16) surrounding the side peripheral surface of the central shaft (15), and rod-shaped enlarged diameter claws (22) are provided in the vicinity of the outer peripheral part of the cutting tools (16). It is attached so that it can swing freely,
One end of the diameter-expanding claw (22) is supported by the cutting tool (16), and the other end is capable of swinging in a range from the circumferential direction to the radial direction of the central shaft (15). When (15) rotates forward, the enlarged diameter pawl (22) comes into contact with the improved columnar portion (C) and falls down in the circumferential direction. The enlarged diameter claw (22) comes into a state of protruding in the radial direction upon contact with the improved columnar portion (C),
The diameter of the outer peripheral portion of the cutting tool (16) is smaller than the diameter of the improved columnar portion (C). larger than the diameter of part (C),
In the process of rotating the excavating drill (11) forward and embedding it in the ground (G), the vicinity of the center of the improved columnar portion (C) is crushed by the cutting tool (16), and the excavating drill (11) is reversed. A ground restoration method characterized by crushing the outer edge side of the columnar improved portion (C) with the diameter-enlarging claw (22) in the process of pulling up and pulling up.
前記中心軸(15)の先端付近には、前記刃具(16)の先端よりも突出した先進軸(31)を設けてあり、該先進軸(31)の端面には、破砕のための先導爪(32)を複数設けてあることを特徴とする請求項1記載の地盤の復元方法。 Near the tip of the central shaft (15), an advanced shaft (31) projecting beyond the tip of the cutting tool (16) is provided. 2. The ground restoration method according to claim 1, wherein a plurality of (32) are provided. 前記中心軸(15)および前記先進軸(31)の内部には、前記先導爪(32)の周囲に流体を噴射するための流路(18)を設けてあることを特徴とする請求項2記載の地盤の復元方法。 2. A channel (18) for injecting fluid around the leading claw (32) is provided inside the central shaft (15) and the leading shaft (31). Described ground restoration method.
JP2019101835A 2019-05-30 2019-05-30 How to restore the ground Active JP7228239B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019101835A JP7228239B2 (en) 2019-05-30 2019-05-30 How to restore the ground

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019101835A JP7228239B2 (en) 2019-05-30 2019-05-30 How to restore the ground

Publications (2)

Publication Number Publication Date
JP2020197001A JP2020197001A (en) 2020-12-10
JP7228239B2 true JP7228239B2 (en) 2023-02-24

Family

ID=73649818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019101835A Active JP7228239B2 (en) 2019-05-30 2019-05-30 How to restore the ground

Country Status (1)

Country Link
JP (1) JP7228239B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002212950A (en) 2001-01-16 2002-07-31 Yakushin:Kk Pile drive method for earth retaining pile and screw head used for this method
JP2007120154A (en) 2005-10-28 2007-05-17 Miwa Sangyo Kk Foundation pile erection method
JP2007162216A (en) 2005-12-09 2007-06-28 Nippon Hume Corp Excavating head for burying prefabricated pile
JP2008169603A (en) 2007-01-11 2008-07-24 Hannan Kiso Koji Kk Rock auger, and method of breaking down reinforced concrete such as existing pile by using the same
JP2011214366A (en) 2010-04-02 2011-10-27 Takenaka Komuten Co Ltd Construction management method of foot protection bulb and extensive excavator used for the method
JP2013019249A (en) 2011-07-14 2013-01-31 Chiyoda Geotech Co Ltd Rotating buried pile, burying construction method thereof, and underground burial structure flotation suppression device
JP2016061019A (en) 2014-09-16 2016-04-25 株式会社高橋重機 Method for removing underground buried pile and device for removing underground buried pile
JP2017025534A (en) 2015-07-21 2017-02-02 株式会社高橋重機 Underground pile removal method and underground pile removal device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002212950A (en) 2001-01-16 2002-07-31 Yakushin:Kk Pile drive method for earth retaining pile and screw head used for this method
JP2007120154A (en) 2005-10-28 2007-05-17 Miwa Sangyo Kk Foundation pile erection method
JP2007162216A (en) 2005-12-09 2007-06-28 Nippon Hume Corp Excavating head for burying prefabricated pile
JP2008169603A (en) 2007-01-11 2008-07-24 Hannan Kiso Koji Kk Rock auger, and method of breaking down reinforced concrete such as existing pile by using the same
JP2011214366A (en) 2010-04-02 2011-10-27 Takenaka Komuten Co Ltd Construction management method of foot protection bulb and extensive excavator used for the method
JP2013019249A (en) 2011-07-14 2013-01-31 Chiyoda Geotech Co Ltd Rotating buried pile, burying construction method thereof, and underground burial structure flotation suppression device
JP2016061019A (en) 2014-09-16 2016-04-25 株式会社高橋重機 Method for removing underground buried pile and device for removing underground buried pile
JP2017025534A (en) 2015-07-21 2017-02-02 株式会社高橋重機 Underground pile removal method and underground pile removal device

Also Published As

Publication number Publication date
JP2020197001A (en) 2020-12-10

Similar Documents

Publication Publication Date Title
JP5835628B2 (en) Cutter bucket for new pile construction method.
JP2014218817A (en) Earth auger and method for removing underground obstacle
JP2008255694A (en) Excavator for pile construction and construction method of pile
CN105862737A (en) Arc buckling type inverted-Y-shaped pile manufacturing equipment
JP2009256999A (en) Pile extracting construction method for existing hollow pile
JP5808153B2 (en) How to construct a retaining wall
CN105862827A (en) Treating machine for buckled cross pile foundation
CN105951754A (en) Arc insertion herringbone pile foundation reinforcing equipment
JP7228239B2 (en) How to restore the ground
JP2007332559A (en) Removal method for existing underground pile
CN105839631A (en) Arc lock buckling cross-shaped pile foundation reinforcing equipment
CN105839630A (en) Arc insertion buckling herringbone pile foundation reinforcing equipment
CN105862798A (en) X-shaped insertion buckling pile forming machine
JP4566770B2 (en) Ground improvement device and ground improvement method
JP6505640B2 (en) Propulsion pipe laying device, propulsion pipe laying method, and existing pipe renewal method
JP2006083573A (en) All casing method and its apparatus
JP2020026709A (en) Ring-shaped front end fitting
KR20220119321A (en) Driving rod for forming reinforced part of piles
KR101715348B1 (en) piling apparatus of scrow pile
JP2007162275A (en) Method of removing existing concrete pile
JPH09217575A (en) Drilling construction method and drilling device
KR20210117910A (en) Order wall installation device and order wall installation method for constructing ground drilling and order wall using ground excavator at the same time
JP2017197909A (en) Drilling/agitation head for installing steel pipe soil cement pile
JP5303352B2 (en) Removal method of existing concrete piles
JP2006009468A (en) Driving method of inner excavation type steel pipe sheet pile and the steel pipe sheet pile used therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220324

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230206

R150 Certificate of patent or registration of utility model

Ref document number: 7228239

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150