JP3850725B2 - Conductive paste - Google Patents

Conductive paste Download PDF

Info

Publication number
JP3850725B2
JP3850725B2 JP2001391475A JP2001391475A JP3850725B2 JP 3850725 B2 JP3850725 B2 JP 3850725B2 JP 2001391475 A JP2001391475 A JP 2001391475A JP 2001391475 A JP2001391475 A JP 2001391475A JP 3850725 B2 JP3850725 B2 JP 3850725B2
Authority
JP
Japan
Prior art keywords
alloy
silver
copper
nickel
conductive paste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001391475A
Other languages
Japanese (ja)
Other versions
JP2003197032A (en
Inventor
浩二 三井
雄也 平山
啓史 鈴木
Original Assignee
帝国通信工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 帝国通信工業株式会社 filed Critical 帝国通信工業株式会社
Priority to JP2001391475A priority Critical patent/JP3850725B2/en
Publication of JP2003197032A publication Critical patent/JP2003197032A/en
Application granted granted Critical
Publication of JP3850725B2 publication Critical patent/JP3850725B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、耐マイグレーション性及び耐腐食性に優れた導電ペーストに関するものである。
【0002】
【従来の技術】
従来、スクリーン印刷やスルーホール形成等に利用される導電ペーストとして、銀粉を有機バインダーに分散してなる導電ペーストがあった。しかしながら導電粉として銀粉のみを使用した導電ペーストは高温多湿の雰囲気中でマイグレーションを生じ易いという問題点があった。ここでマイグレーションとは、一対の導電体の間に水分が存在する状態で電圧を印加した場合、電気化学反応により正電位の導電体側で銀がイオン化し、負電位の導電体側に移動して析出する現象を言う。
【0003】
そこで上記欠点を防止するため、導電粉として銀と銅の合金を粉末とした導電粉を用いることが行なわれている。即ち金属粉末表面の酸化が少なくて良好な導電性を保つことはできるが耐マイグレーション性に劣る貴金属である銀と、金属粉末表面の酸化が進行して電気抵抗が漸増していくが耐マイグレーション性に優れる卑金属である銅とを合金化することで、それぞれの長所を生かし、金属粉末表面の酸化が少なくて良好な導電性を保つことができ且つ耐マイグレーション性にも優れる導電粉が用いられている。
【0004】
しかしながら上記銀と銅の合金からなる導電粉を用いた導電ペーストにおいてもマイグレーションは生じるので導電ペーストの使用場所や使用方法によっては耐マイグレーション性が十分とは言えず、さらに耐マイグレーション性を向上した導電ペーストが要望されていた。
【0005】
【発明が解決しようとする課題】
本発明は上述の点に鑑みてなされたものでありその目的は、銀と銅の合金粉末を用いた導電ペーストよりもさらに耐マイグレーション性を向上できる導電ペーストを提供することにある。
【0006】
【課題を解決するための手段】
本願発明者が導電ペーストに使用する銀と銅の合金を分析したところ、合金中の銀と銅の分散性があまり良くないことを見い出した。即ち図1に示すように合金(Ag−Cu=70:30(重量%))を拡大して見ると、合金の銀(白い部分)中に銅の塊部分(黒い部分)が比較的大きい塊として存在している部分があり、このことが耐マイグレーション性の向上を阻害していると考えられる。そこで本願発明者は、銀と銅の合金の分散性を向上させるために、前記合金中に少量のニッケルを加え、これによって銀と銅の分散性を向上して耐マイグレーション性の向上を図った。即ち図2に示すように銀と銅にニッケルを加えた三元合金(Ag−Cu−Ni=70:29.5:0.5(重量%))を拡大して見ると、銅の塊部分が小さくなって分散性が向上していることが分かる。そこで本願発明は、銀と銅とニッケルからなる合金粉体を有機バインダーに分散して導電ペーストを構成した。
【0007】
ここで前記合金粉体中の銀と銅とニッケルの配合割合は実験により、耐マイグレーション性の向上を図ると共に接触抵抗値を低く押えるため、銀と銅に対してニッケルを0.3〜2.0重量%添加することとした。
【0008】
また銀と銅の配合割合は、銀の量が多すぎると耐マイグレーション性が阻害され、銅の量が多すぎると導電性の点から回路パターン等に使用する導電ペーストとして適当でなく、これらのことから銀は90〜60重量%の範囲、銅は39.7〜8.0重量%の範囲が好ましい。
【0009】
また導電ペースト中の合金粉体と有機バインダーの配合割合は、導電ペーストとしての導電性等の通常の機能を発揮するために、合金粉体70〜90重量部に対して有機バインダー5〜25重量部程度であることが好ましい。
【0010】
従って以下の合金粉体組成と導電ペースト組成の条件を満足する導電ペーストが好適である。
〔合金粉体組成〕
Ag:90〜60重量%
Cu:39.7〜8.0重量%
Ni:2.0〜0.3重量%
〔導電ペースト組成〕
合金粉体:70〜90重量部
樹脂(有機バインダー、例えばフェノール系):5〜25重量部
溶剤(例えばカルビトール系):5〜25重量部
なお溶剤については、必要とされる導電ペーストの粘度に応じて、上記配合割合に限定されず、何れの配合割合であっても良い。
【0011】
【発明の実施の形態】
以下合金粉体として銀・銅にニッケルを混合して三元合金としたものを用いる理由と、ニッケルの配合割合を上記条件に限定した理由とを実施の形態とともに説明する。
〔銀・銅にニッケルを混合して三元合金とした理由〕
本願発明者は、合金粉体として銀粉のみを使用した導電ペーストと、銀・銅合金粉を使用した導電ペーストと、銀・銅・ニッケル合金粉を使用した導電ペーストとについて、それぞれの導電ペーストの耐マイグレーション性を測定するウォータードロップ試験を行ない比較した。
【0012】
試料として以下の三種類の導電ペーストを用いた。

Figure 0003850725
【0013】
そして上記各試料▲1▼,▲2▼,▲3▼に対して同一条件でウォータードロップ試験を行なった。試験方法は、基板(ポリエチレンテレフタレートフイルム(PETフイルム))上に所定のギャップを隔てて二つのパターンP1,P2をスクリーン印刷によって形成し(厚み0.01mm)、両者間に所定電圧(DC5V)を印加し、ギャップ部分に水を落としてから短絡するまでの時間を測定するものである。これを各試料▲1▼,▲2▼,▲3▼についてギャップ間隔を0.15〜0.5mmの範囲で変化しながら、それぞれの短絡時間を測定した。その結果を図3に示す。
【0014】
同図に示すようにニッケルを混合した導電ペーストである試料▲1▼は、他の試料▲2▼,▲3▼に比べて何れのギャップ間隔の場合でも短絡時間が長くなることがわかり、このことから耐マイグレーション性が向上することが分かる。
【0015】
〔ニッケルの配合割合を2.0〜0.3重量%に限定した理由〕
本願発明者は、合金粉体として銀・銅合金と、銀・銅・ニッケル合金とについて、それぞれの合金中の銀と銅の配合割合を変えたもの、及びニッケルの配合割合を変えたものについての耐マイグレーション性を測定するウォータードロップ試験を行ない比較した。なお用いた試料は何れも導電ペーストではなく、その元となる合金そのものである。
【0016】
試料▲4▼:合金組成:Ag−Cuで、銀と銅の配合割合(重量%)を100〜0の範囲にわたって変更したものを5種類
試料▲5▼:合金組成:Ag−Cu−Niで、Niの配合割合(重量%)を0.2とした上で、銀と銅の配合割合(重量%)を99.8〜0の範囲にわたって変更したものを5種類
試料▲6▼:金属組成:Ag−Cu−Niで、Niの配合割合(重量%)を0.5とした上で、銀と銅の配合割合(重量%)を99.5〜0の範囲にわたって変更したものを5種類
【0017】
そして上記各試料▲4▼,▲5▼,▲6▼に対して同一条件でウォータードロップ試験を行なった。試験方法は、基板上に二つの板状の合金板(縦×横×厚み=20×10×3mm)を隙間1mm離して基台(PETフイルム)上に設置し、前記隙間部分に水道水を約1cc垂らし、両合金板間にDC5Vの電圧を印加して短絡するまでの時間を測定するものである。その結果を図4に示す。
【0018】
同図に示すように銀と銅の配合割合が何れの場合においても、ニッケルを0.5重量%混合した合金は、ニッケルを全く混合しなかった合金及びニッケルを0.2重量%だけ混合した合金に比べて短絡時間が長くなり、耐マイグレーション性が向上した。一方ニッケルを0.2重量%だけ混合したものは耐マイグレーション性の向上が見られず、少なくともニッケルを0.3重量%以上混合した場合に耐マイグレーション性が向上することが分かった。
【0019】
なおニッケルの配合割合を0.5重量%以上に増やしていった場合、銀と銅が何れの配合割合であっても、その短絡時間は前記試料▲6▼の短絡時間よりも長くなった。このことからニッケルの配合割合は0.3重量%以上であれば耐マイグレーション性の向上を期待できることが分かった。
【0020】
しかしながらニッケルの混合割合を多くしすぎると、露出面での接触抵抗値が増大し、この点からニッケルの混合割合を制限する必要がある。即ち本願発明者は、銀・銅・ニッケル合金中のニッケルの量の異なるものを4種類用意し、高湿度槽においてそれぞれの接触抵抗値を経時的に測定した。用意した試料は以下の通りである。
【0021】
試料▲7▼−1:合金組成(重量%):Ag−Cu−Ni=60:39.5:0.5のもの
試料▲7▼−2:合金組成(重量%):Ag−Cu−Ni=80:19.5:0.5のもの
試料▲7▼−3:合金組成(重量%):Ag−Cu−Ni=80:18.0:2.0のもの
試料▲7▼−4:合金組成(重量%):Ag−Cu−Ni=80:17.5:2.5のもの
【0022】
そしてこれら試料▲7▼−1〜4にかかる合金を温度40℃、湿度90〜95%の高湿度槽内に放置し、経時的にそれぞれの接触抵抗値を測定した。測定方法は図6に示すように、合金板10の表面に接触子20の接触部分21を20gの接触圧で接触し、前記接触点と金属板10の端辺間Lの抵抗値を測定する方法を用いた。接触子20としてはリン青銅に銀メッキを施し接触部分21の球面の半径が0.5mmのものを用いた。測定結果を図5に示す。
【0023】
同図の試料▲7▼−1,▲7▼−2に示すように、銀と銅の混合割合を変えても接触抵抗値の変化はほとんどなかったが、試料▲7▼−2,3,4に示すように、ニッケルの含有量を変化すると接触抵抗値が変化した。そしてニッケルの含有量が2.5重量%になると、接触抵抗値の経時的変化が大きくなり、この合金を用いた導電ペーストに実用上の問題が生じる。この現象は以下のように考えられる。即ちニッケルは酸化し易いが、このニッケルの含有量が2重量%を越えると、ニッケルが合金表面に浮き出し易くなり、この結果合金の接触抵抗値が大きくなるものと考えられる。従って接触抵抗値の観点から合金に含有するニッケルの量は2.0重量%以下が望ましい。
【0024】
以上本発明の実施形態を説明したが、本発明は上記実施形態に限定されるものではなく、特許請求の範囲、及び明細書と図面に記載された技術的思想の範囲内において種々の変形が可能である。
【0025】
【発明の効果】
以上詳細に説明したように本発明によれば、銀と銅の合金粉末を用いた導電ペーストよりもさらに耐マイグレーション性を向上した導電ペーストを提供できる。
【図面の簡単な説明】
【図1】銀・銅合金の拡大図である。
【図2】銀・銅・ニッケル合金の拡大図である。
【図3】各種導電ペーストのウォータードロップ試験の結果を示す図である。
【図4】各種合金のウォータードロップ試験の結果を示す図である。
【図5】各種合金の接触抵抗値の経時的変化測定図である。
【図6】図5に示す接触抵抗値の測定方法を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a conductive paste excellent in migration resistance and corrosion resistance.
[0002]
[Prior art]
Conventionally, there has been a conductive paste formed by dispersing silver powder in an organic binder as a conductive paste used for screen printing or through-hole formation. However, the conductive paste using only silver powder as the conductive powder has a problem that migration tends to occur in a high temperature and high humidity atmosphere. Here, migration means that when a voltage is applied in a state where moisture exists between a pair of conductors, silver is ionized on the positive potential conductor side due to an electrochemical reaction and moves to the negative potential conductor side to precipitate. The phenomenon to be said.
[0003]
Therefore, in order to prevent the above-mentioned drawbacks, it is practiced to use conductive powder made of an alloy of silver and copper as conductive powder. In other words, the metal powder surface has little oxidation and can maintain good conductivity, but the precious metal is inferior in migration resistance, and the metal powder surface oxidation progresses and the electrical resistance gradually increases. By alloying with copper, which is a base metal that excels in resistance, conductive powder is used that takes advantage of each, maintains good conductivity with little oxidation of the metal powder surface, and also has excellent migration resistance Yes.
[0004]
However, migration also occurs in the conductive paste using conductive powder made of the above-mentioned silver and copper alloy, so migration resistance cannot be said to be sufficient depending on the place and method of use of the conductive paste, and further improved migration resistance. A paste was desired.
[0005]
[Problems to be solved by the invention]
This invention is made | formed in view of the above-mentioned point, The objective is to provide the electrically conductive paste which can improve migration resistance further than the electrically conductive paste using the alloy powder of silver and copper.
[0006]
[Means for Solving the Problems]
When the inventor of the present application analyzed an alloy of silver and copper used for the conductive paste, it was found that the dispersibility of silver and copper in the alloy was not so good. That is, when the alloy (Ag—Cu = 70: 30 (wt%)) is enlarged as shown in FIG. 1, a copper mass portion (black portion) is relatively large in the silver (white portion) of the alloy. It is considered that this is hindering the improvement of migration resistance. Therefore, in order to improve the dispersibility of the silver-copper alloy, the inventors of the present application added a small amount of nickel to the alloy, thereby improving the dispersibility of silver and copper and improving the migration resistance. . That is, as shown in FIG. 2, when the ternary alloy (Ag—Cu—Ni = 70: 29.5: 0.5 (% by weight)) in which nickel is added to silver and copper is enlarged, a copper lump portion is obtained. It can be seen that the dispersibility is improved by decreasing. Therefore, in the present invention, an alloy powder made of silver, copper and nickel is dispersed in an organic binder to constitute a conductive paste.
[0007]
Wherein the mixing ratio of silver and copper and nickel of the alloy powder more experiments, for suppressing the contact resistance value with improved migration resistance, the nickel on silver and copper 0.3-2 It was decided to add 0.0% by weight.
[0008]
Moreover, the mixing ratio of silver and copper is not suitable as a conductive paste used for circuit patterns and the like from the viewpoint of conductivity if the amount of silver is too high, and migration resistance is impaired. Therefore, silver is preferably in the range of 90 to 60% by weight, and copper is preferably in the range of 39.7 to 8.0% by weight.
[0009]
In addition, the blending ratio of the alloy powder and the organic binder in the conductive paste is 5 to 25 wt% of the organic binder with respect to 70 to 90 parts by weight of the alloy powder in order to exhibit normal functions such as conductivity as the conductive paste. It is preferable that it is about a part.
[0010]
Accordingly, a conductive paste satisfying the following conditions of the alloy powder composition and the conductive paste composition is preferable.
[Alloy powder composition]
Ag: 90-60% by weight
Cu: 39.7 to 8.0% by weight
Ni: 2.0 to 0.3% by weight
[Conductive paste composition]
Alloy powder: 70 to 90 parts by weight Resin (organic binder, for example, phenol type): 5 to 25 parts by weight Solvent (for example, carbitol type): 5 to 25 parts by weight For the solvent, the required viscosity of the conductive paste Depending on the above, it is not limited to the above-mentioned blending ratio, and any blending ratio may be used.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The reason why a ternary alloy obtained by mixing silver / copper with nickel is used as the alloy powder and the reason why the mixing ratio of nickel is limited to the above conditions will be described together with the embodiment.
[Reason for mixing ternary alloy by mixing nickel into silver and copper]
The inventor of the present application relates to a conductive paste using only silver powder as an alloy powder, a conductive paste using silver / copper alloy powder, and a conductive paste using silver / copper / nickel alloy powder. A water drop test for measuring migration resistance was performed for comparison.
[0012]
The following three types of conductive paste were used as samples.
Figure 0003850725
[0013]
Then, a water drop test was performed on the above samples (1), (2), and (3) under the same conditions. The test method is to form two patterns P1 and P2 on a substrate (polyethylene terephthalate film (PET film)) by screen printing with a predetermined gap (thickness 0.01 mm), and a predetermined voltage (DC5V) between them. It is applied to measure the time from when water is dropped into the gap portion until it is short-circuited. With respect to each sample (1), (2), and (3), the short-circuiting time was measured while changing the gap interval in the range of 0.15 to 0.5 mm. The result is shown in FIG.
[0014]
As shown in the figure, it can be seen that sample (1), which is a conductive paste mixed with nickel, has a shorter short-circuit time at any gap interval than other samples (2) and (3). This shows that the migration resistance is improved.
[0015]
[Reason for limiting the blending ratio of nickel to 2.0 to 0.3% by weight]
The inventor of the present application is about a silver / copper alloy and a silver / copper / nickel alloy as alloy powders, and a mixture ratio of silver and copper in each alloy is changed and a mixture ratio of nickel is changed. A water drop test for measuring the migration resistance of each was performed and compared. Note that the samples used are not conductive pastes, but the alloys themselves.
[0016]
Sample {circle around (4)}: Alloy composition: Ag—Cu, five types of silver and copper blending ratios (% by weight) changed over the range of 100 to 0 (5): Alloy composition: Ag—Cu—Ni 5 types of samples obtained by changing the blending ratio (wt%) of silver and copper over a range of 99.8 to 0 after setting the blending ratio (wt%) of Ni to 0.2 (6): Metal composition : 5 types of Ag-Cu-Ni, in which the mixing ratio (wt%) of Ni is 0.5 and the mixing ratio (wt%) of silver and copper is changed over the range of 99.5-0. [0017]
Then, a water drop test was performed on the above samples (4), (5), and (6) under the same conditions. The test method consists of placing two plate-like alloy plates (length x width x thickness = 20 x 10 x 3 mm) on a substrate on a base (PET film) with a gap of 1 mm, and tap water into the gap. About 1 cc is dropped, and a time until a short circuit is applied by applying a voltage of DC 5 V between both alloy plates is measured. The result is shown in FIG.
[0018]
As shown in the figure, regardless of the mixing ratio of silver and copper, the alloy mixed with 0.5% by weight of nickel was mixed with the alloy that was not mixed with nickel and 0.2% by weight of nickel. Compared to the alloy, the short-circuit time is longer and the migration resistance is improved. On the other hand, when 0.2% by weight of nickel was mixed, the migration resistance was not improved, and it was found that the migration resistance was improved when at least 0.3% by weight of nickel was mixed.
[0019]
When the mixing ratio of nickel was increased to 0.5% by weight or more, the short-circuiting time was longer than the short-circuiting time of the sample (6) regardless of the mixing ratio of silver and copper. From this, it was found that the migration resistance can be expected to be improved if the nickel content is 0.3% by weight or more.
[0020]
However, if the mixing ratio of nickel is increased too much, the contact resistance value on the exposed surface increases, and it is necessary to limit the mixing ratio of nickel from this point. That is, the inventor of the present application prepared four types of nickel having different amounts in the silver / copper / nickel alloy, and measured each contact resistance value over time in a high humidity bath. The prepared samples are as follows.
[0021]
Sample (7) -1: Alloy composition (% by weight): Ag—Cu—Ni = 60: 39.5: 0.5 Sample (7) -2: Alloy composition (% by weight): Ag—Cu—Ni = Sample of 80: 19.5: 0.5 (7) -3: Alloy composition (% by weight): Ag-Cu-Ni = Sample of 80: 18.0: 2.0 (7) -4: Alloy composition (% by weight): Ag—Cu—Ni = 80: 17.5: 2.5
Then, the alloys according to these samples (7) -1 to 4 were left in a high humidity tank having a temperature of 40 ° C. and a humidity of 90 to 95%, and the contact resistance values were measured over time. As shown in FIG. 6, the measurement method is to contact the contact portion 21 of the contact 20 with the surface of the alloy plate 10 with a contact pressure of 20 g, and measure the resistance value between the contact point and the edge L of the metal plate 10. The method was used. As the contact 20, a phosphor bronze with silver plating and a spherical surface of the contact portion 21 having a radius of 0.5 mm was used. The measurement results are shown in FIG.
[0023]
As shown in samples (7) -1 and (7) -2 in the figure, the contact resistance value hardly changed even when the mixing ratio of silver and copper was changed, but samples (7) -2, 3, As shown in FIG. 4, the contact resistance value changed when the nickel content was changed. When the nickel content is 2.5% by weight, the change in contact resistance with time increases, and a practical problem arises in a conductive paste using this alloy. This phenomenon is considered as follows. That is, nickel is easy to oxidize, but if the nickel content exceeds 2% by weight, nickel is likely to float on the alloy surface, and as a result, the contact resistance value of the alloy increases. Therefore, the amount of nickel contained in the alloy is desirably 2.0% by weight or less from the viewpoint of the contact resistance value.
[0024]
Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the technical idea described in the claims and the specification and drawings. Is possible.
[0025]
【The invention's effect】
As described above in detail, according to the present invention, it is possible to provide a conductive paste having further improved migration resistance as compared with a conductive paste using silver and copper alloy powder.
[Brief description of the drawings]
FIG. 1 is an enlarged view of a silver / copper alloy.
FIG. 2 is an enlarged view of a silver / copper / nickel alloy.
FIG. 3 is a diagram showing the results of a water drop test of various conductive pastes.
FIG. 4 is a diagram showing the results of water drop tests of various alloys.
FIG. 5 is a time-dependent change measurement diagram of contact resistance values of various alloys.
6 is a diagram showing a method for measuring the contact resistance value shown in FIG. 5. FIG.

Claims (1)

銀と銅とニッケルからなる合金粉体を有機バインダーに分散してなる導電ペーストであって、前記合金粉体中の銀と銅に対するニッケルの配合割合が、ニッケル0.3〜2.0重量%であることを特徴とする導電ペースト。 A conductive paste in which an alloy powder made of silver, copper and nickel is dispersed in an organic binder, and the mixing ratio of nickel to silver and copper in the alloy powder is 0.3 to 2.0% by weight of nickel. conductive paste, characterized in that it.
JP2001391475A 2001-12-25 2001-12-25 Conductive paste Expired - Fee Related JP3850725B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001391475A JP3850725B2 (en) 2001-12-25 2001-12-25 Conductive paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001391475A JP3850725B2 (en) 2001-12-25 2001-12-25 Conductive paste

Publications (2)

Publication Number Publication Date
JP2003197032A JP2003197032A (en) 2003-07-11
JP3850725B2 true JP3850725B2 (en) 2006-11-29

Family

ID=27599056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001391475A Expired - Fee Related JP3850725B2 (en) 2001-12-25 2001-12-25 Conductive paste

Country Status (1)

Country Link
JP (1) JP3850725B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009068086A (en) * 2007-09-14 2009-04-02 Tohoku Univ Electrically conductive composite powder and method for producing the same
CN101892399B (en) * 2010-05-14 2012-05-02 上海集强金属工业有限公司 Silver-based alloy layer and silver-based alloy layer composite material and preparation method and application

Also Published As

Publication number Publication date
JP2003197032A (en) 2003-07-11

Similar Documents

Publication Publication Date Title
JP4600282B2 (en) Conductive paste
EP1884960B1 (en) Conductive paste and wiring board using it
US4888135A (en) Electrically conductive powder and electrically conductive composition using the same
KR100678533B1 (en) Conductive powder and method for preparing the same
CN101268524A (en) Chip-shaped electronic component
JPS6355807A (en) Conducting paste
JP2008097949A (en) Conductive paste
JP3850725B2 (en) Conductive paste
WO2016186185A1 (en) Cu paste composition for forming thick film conductor, and thick film conductor
JP3299083B2 (en) Method for producing carbon-based conductive paste
JPS6131454A (en) Electrically-conductive copper paste composition
JPH01201486A (en) Ag plated powder for electrically conductive paint having superior migration resistance
JPS5853965A (en) Electrically-conductive coating compound for solid electrolysis condenser
JP2000231828A (en) Conductive paste
JPH1166957A (en) Conductor composition
JP3318299B2 (en) Pb-free low-temperature firing type conductive paint
JP3376717B2 (en) Conductive composition for external electrode of electronic component and ceramic electronic component formed using the same
JPH09282935A (en) Silver-plated copper powder
JPS5968101A (en) Conductive paste
US5828123A (en) Chip resistor and method for producing same
JP2004273254A (en) Conductive paste for low-temperature calcination, and its manufacturing method
JPH06131913A (en) Manufacture of conducting paste
KR20230120716A (en) Conductive paste composition and uses thereof
JPS58103565A (en) Electrically conductive paint
JPS62116744A (en) Phosphor bronze excellent in migration resistance

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040513

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060705

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060830

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130908

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees