JP2003197032A - Conductive paste - Google Patents

Conductive paste

Info

Publication number
JP2003197032A
JP2003197032A JP2001391475A JP2001391475A JP2003197032A JP 2003197032 A JP2003197032 A JP 2003197032A JP 2001391475 A JP2001391475 A JP 2001391475A JP 2001391475 A JP2001391475 A JP 2001391475A JP 2003197032 A JP2003197032 A JP 2003197032A
Authority
JP
Japan
Prior art keywords
silver
copper
conductive paste
nickel
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001391475A
Other languages
Japanese (ja)
Other versions
JP3850725B2 (en
Inventor
Koji Mitsui
浩二 三井
Takeya Hirayama
雄也 平山
Hiroshi Suzuki
啓史 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teikoku Tsushin Kogyo Co Ltd
Original Assignee
Teikoku Tsushin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teikoku Tsushin Kogyo Co Ltd filed Critical Teikoku Tsushin Kogyo Co Ltd
Priority to JP2001391475A priority Critical patent/JP3850725B2/en
Publication of JP2003197032A publication Critical patent/JP2003197032A/en
Application granted granted Critical
Publication of JP3850725B2 publication Critical patent/JP3850725B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a conductive paste capable of improving migration resistance further than a conductive paste using alloyed powder of silver and copper. <P>SOLUTION: The conductive paste is composed by dispersing an alloyed powder body comprising silver, copper and nickel in an organic binder. It is preferable that an addition rate of the nickel with respect to the silver and copper is 0.3-2 wt.% from an aspect of improving the migration resistance and suppressing a contact resistance value. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、耐マイグレーショ
ン性及び耐腐食性に優れた導電ペーストに関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a conductive paste having excellent migration resistance and corrosion resistance.

【0002】[0002]

【従来の技術】従来、スクリーン印刷やスルーホール形
成等に利用される導電ペーストとして、銀粉を有機バイ
ンダーに分散してなる導電ペーストがあった。しかしな
がら導電粉として銀粉のみを使用した導電ペーストは高
温多湿の雰囲気中でマイグレーションを生じ易いという
問題点があった。ここでマイグレーションとは、一対の
導電体の間に水分が存在する状態で電圧を印加した場
合、電気化学反応により正電位の導電体側で銀がイオン
化し、負電位の導電体側に移動して析出する現象を言
う。
2. Description of the Related Art Conventionally, as a conductive paste used for screen printing, through hole formation, etc., there has been a conductive paste prepared by dispersing silver powder in an organic binder. However, the conductive paste using only silver powder as the conductive powder has a problem that migration easily occurs in a hot and humid atmosphere. Here, migration means that when a voltage is applied in the presence of water between a pair of conductors, silver is ionized on the positive potential conductor side by an electrochemical reaction and moves to the negative potential conductor side to deposit. Say the phenomenon.

【0003】そこで上記欠点を防止するため、導電粉と
して銀と銅の合金を粉末とした導電粉を用いることが行
なわれている。即ち金属粉末表面の酸化が少なくて良好
な導電性を保つことはできるが耐マイグレーション性に
劣る貴金属である銀と、金属粉末表面の酸化が進行して
電気抵抗が漸増していくが耐マイグレーション性に優れ
る卑金属である銅とを合金化することで、それぞれの長
所を生かし、金属粉末表面の酸化が少なくて良好な導電
性を保つことができ且つ耐マイグレーション性にも優れ
る導電粉が用いられている。
Therefore, in order to prevent the above drawbacks, conductive powder made of a powder of an alloy of silver and copper is used as the conductive powder. That is, there is little oxidation on the surface of the metal powder, and good conductivity can be maintained, but silver, which is a noble metal with poor migration resistance, and oxidation of the surface of the metal powder progresses, but electrical resistance gradually increases. By alloying with copper, which is a superior base metal, the advantages of each are utilized, and the conductive powder that is excellent in migration resistance and can maintain good conductivity with little oxidation of the metal powder surface is used. There is.

【0004】しかしながら上記銀と銅の合金からなる導
電粉を用いた導電ペーストにおいてもマイグレーション
は生じるので導電ペーストの使用場所や使用方法によっ
ては耐マイグレーション性が十分とは言えず、さらに耐
マイグレーション性を向上した導電ペーストが要望され
ていた。
However, since migration also occurs in the conductive paste using the conductive powder made of the above-mentioned silver-copper alloy, it cannot be said that the migration resistance is sufficient depending on the location and method of use of the conductive paste, and the migration resistance is further improved. Improved conductive pastes have been desired.

【0005】[0005]

【発明が解決しようとする課題】本発明は上述の点に鑑
みてなされたものでありその目的は、銀と銅の合金粉末
を用いた導電ペーストよりもさらに耐マイグレーション
性を向上できる導電ペーストを提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above points, and an object thereof is to provide a conductive paste which can further improve migration resistance as compared with a conductive paste using an alloy powder of silver and copper. To provide.

【0006】[0006]

【課題を解決するための手段】本願発明者が導電ペース
トに使用する銀と銅の合金を分析したところ、合金中の
銀と銅の分散性があまり良くないことを見い出した。即
ち図1に示すように合金(Ag−Cu=70:30(重
量%))を拡大して見ると、合金の銀(白い部分)中に
銅の塊部分(黒い部分)が比較的大きい塊として存在し
ている部分があり、このことが耐マイグレーション性の
向上を阻害していると考えられる。そこで本願発明者
は、銀と銅の合金の分散性を向上させるために、前記合
金中に少量のニッケルを加え、これによって銀と銅の分
散性を向上して耐マイグレーション性の向上を図った。
即ち図2に示すように銀と銅にニッケルを加えた三元合
金(Ag−Cu−Ni=70:29.5:0.5(重量
%))を拡大して見ると、銅の塊部分が小さくなって分
散性が向上していることが分かる。そこで本願発明は、
銀と銅とニッケルからなる合金粉体を有機バインダーに
分散して導電ペーストを構成した。
When the inventors of the present invention analyzed the alloy of silver and copper used in the conductive paste, they found that the dispersibility of silver and copper in the alloy was not very good. That is, when the alloy (Ag-Cu = 70: 30 (% by weight)) is magnified and viewed as shown in FIG. 1, a lump of copper (black) is relatively large in the silver (white) of the alloy. Exists, which is considered to hinder the improvement of migration resistance. Therefore, in order to improve the dispersibility of the alloy of silver and copper, the inventor of the present application added a small amount of nickel to the alloy, thereby improving the dispersibility of silver and copper and improving the migration resistance. .
That is, as shown in FIG. 2, when a ternary alloy in which nickel is added to silver and copper (Ag-Cu-Ni = 70: 29.5: 0.5 (wt%)) is enlarged and seen, a lump portion of copper It can be seen that is smaller and the dispersibility is improved. Therefore, the present invention is
An alloy powder composed of silver, copper and nickel was dispersed in an organic binder to form a conductive paste.

【0007】ここで前記合金粉体中の銀と銅とニッケル
の配合割合は実験によれば、銀と銅に対してニッケルを
0.3〜2.0重量%添加することが耐マイグレーショ
ン性の向上を図ると共に接触抵抗値を低く押える上で好
ましい。
According to an experiment, the mixing ratio of silver, copper and nickel in the alloy powder is 0.3 to 2.0% by weight of nickel with respect to silver and copper in order to obtain the migration resistance. It is preferable for improving the contact resistance and suppressing the contact resistance.

【0008】また銀と銅の配合割合は、銀の量が多すぎ
ると耐マイグレーション性が阻害され、銅の量が多すぎ
ると導電性の点から回路パターン等に使用する導電ペー
ストとして適当でなく、これらのことから銀は90〜6
0重量%の範囲、銅は39.7〜8.0重量%の範囲が
好ましい。
[0008] Further, the mixing ratio of silver and copper is not suitable as a conductive paste used for a circuit pattern or the like from the viewpoint of conductivity when too much silver impairs migration resistance and too much copper. From these things, silver is 90-6
The range of 0% by weight and the range of 39.7 to 8.0% by weight of copper are preferable.

【0009】また導電ペースト中の合金粉体と有機バイ
ンダーの配合割合は、導電ペーストとしての導電性等の
通常の機能を発揮するために、合金粉体70〜90重量
部に対して有機バインダー5〜25重量部程度であるこ
とが好ましい。
Further, the mixing ratio of the alloy powder and the organic binder in the conductive paste is such that the organic binder is added to 70 to 90 parts by weight of the alloy powder in order to exhibit normal functions such as conductivity as the conductive paste. It is preferably about 25 parts by weight.

【0010】従って以下の合金粉体組成と導電ペースト
組成の条件を満足する導電ペーストが好適である。 〔合金粉体組成〕 Ag:90〜60重量% Cu:39.7〜8.0重量% Ni:2.0〜0.3重量% 〔導電ペースト組成〕 合金粉体:70〜90重量部 樹脂(有機バインダー、例えばフェノール系):5〜2
5重量部 溶剤(例えばカルビトール系):5〜25重量部 なお溶剤については、必要とされる導電ペーストの粘度
に応じて、上記配合割合に限定されず、何れの配合割合
であっても良い。
Therefore, a conductive paste that satisfies the following alloy powder composition and conductive paste composition conditions is suitable. [Alloy powder composition] Ag: 90-60 wt% Cu: 39.7-8.0 wt% Ni: 2.0-0.3 wt% [Conductive paste composition] Alloy powder: 70-90 wt% Resin (Organic binder, for example, phenolic): 5-2
5 parts by weight solvent (for example, carbitol-based): 5 to 25 parts by weight It should be noted that the solvent is not limited to the above-mentioned mixing ratio depending on the viscosity of the conductive paste required, and may be any mixing ratio. .

【0011】[0011]

【発明の実施の形態】以下合金粉体として銀・銅にニッ
ケルを混合して三元合金としたものを用いる理由と、ニ
ッケルの配合割合を上記条件に限定した理由とを実施の
形態とともに説明する。 〔銀・銅にニッケルを混合して三元合金とした理由〕本
願発明者は、合金粉体として銀粉のみを使用した導電ペ
ーストと、銀・銅合金粉を使用した導電ペーストと、銀
・銅・ニッケル合金粉を使用した導電ペーストとについ
て、それぞれの導電ペーストの耐マイグレーション性を
測定するウォータードロップ試験を行ない比較した。
BEST MODE FOR CARRYING OUT THE INVENTION The reason why an alloy powder made of a ternary alloy by mixing nickel with silver / copper is used and the reason why the mixing ratio of nickel is limited to the above conditions will be described together with the embodiments. To do. [Reason for mixing ternary alloy with nickel in silver / copper] The inventor of the present application has found that a conductive paste using only silver powder as alloy powder, a conductive paste using silver / copper alloy powder, and silver / copper A water drop test for measuring the migration resistance of each conductive paste was performed for comparison with the conductive paste using nickel alloy powder.

【0012】試料として以下の三種類の導電ペーストを
用いた。 試料:合金粉末組成(重量%)Ag−Cu−Ni=80:19.5:0.5 導電ペースト組成 合金粉体:70重量部 樹脂(フェノール系):17.5重量部 溶剤(カルビトール系):12.5重量部 合金粉体の外形状態 粉径:1〜40μm(平均粒径10μm) 形状:フレーク状 試料:合金粉末組成(重量%)Ag−Cu=80:20 導電ペースト組成 試料と同じ 合金粉体の外形状態 試料と同じ 試料:金属粉末組成(重量%)Ag=100 導電ペースト組成 試料と同じ 合金粉体の外形状態 試料と同じ
The following three kinds of conductive pastes were used as samples. Sample: Alloy powder composition (wt%) Ag-Cu-Ni = 80: 19.5: 0.5 Conductive paste composition Alloy powder: 70 parts by weight Resin (phenolic): 17.5 parts by weight Solvent (carbitol-based) ): 12.5 parts by weight External shape of alloy powder Powder diameter: 1 to 40 μm (average particle diameter 10 μm) Shape: Flake sample: Alloy powder composition (wt%) Ag-Cu = 80: 20 Conductive paste composition Same external shape of alloy powder Same as sample Sample: Metal powder composition (wt%) Ag = 100 Conductive paste composition Same as sample External shape of alloy powder Same as sample

【0013】そして上記各試料,,に対して同一
条件でウォータードロップ試験を行なった。試験方法
は、基板(ポリエチレンテレフタレートフイルム(PE
Tフイルム))上に所定のギャップを隔てて二つのパタ
ーンP1,P2をスクリーン印刷によって形成し(厚み
0.01mm)、両者間に所定電圧(DC5V)を印加
し、ギャップ部分に水を落としてから短絡するまでの時
間を測定するものである。これを各試料,,につ
いてギャップ間隔を0.15〜0.5mmの範囲で変化
しながら、それぞれの短絡時間を測定した。その結果を
図3に示す。
A water drop test was conducted on each of the above samples under the same conditions. The test method is the substrate (polyethylene terephthalate film (PE
Two patterns P1 and P2 are formed on the T film)) with a predetermined gap therebetween by screen printing (thickness 0.01 mm), and a predetermined voltage (DC5V) is applied between them to drop water in the gap. It measures the time from to short circuit. For each sample, the short circuit time was measured while changing the gap interval in the range of 0.15 to 0.5 mm. The result is shown in FIG.

【0014】同図に示すようにニッケルを混合した導電
ペーストである試料は、他の試料,に比べて何れ
のギャップ間隔の場合でも短絡時間が長くなることがわ
かり、このことから耐マイグレーション性が向上するこ
とが分かる。
As shown in the figure, the sample which is a conductive paste mixed with nickel has a short circuit time longer than that of the other samples regardless of the gap intervals. You can see that it will improve.

【0015】〔ニッケルの配合割合を2.0〜0.3重
量%に限定した理由〕本願発明者は、合金粉体として銀
・銅合金と、銀・銅・ニッケル合金とについて、それぞ
れの合金中の銀と銅の配合割合を変えたもの、及びニッ
ケルの配合割合を変えたものについての耐マイグレーシ
ョン性を測定するウォータードロップ試験を行ない比較
した。なお用いた試料は何れも導電ペーストではなく、
その元となる合金そのものである。
[Reasons for Limiting the Mixing Ratio of Nickel to 2.0 to 0.3% by Weight] The inventor of the present invention has prepared alloy powders of silver / copper alloy and silver / copper / nickel alloy, respectively. A water drop test was performed to measure the migration resistance of the one in which the mixing ratio of silver and copper was changed and the one in which the mixing ratio of nickel was changed, and the results were compared. The samples used were not conductive pastes,
It is the alloy itself that is the source.

【0016】試料:合金組成:Ag−Cuで、銀と銅
の配合割合(重量%)を100〜0の範囲にわたって変
更したものを5種類 試料:合金組成:Ag−Cu−Niで、Niの配合割
合(重量%)を0.2とした上で、銀と銅の配合割合
(重量%)を99.8〜0の範囲にわたって変更したも
のを5種類 試料:金属組成:Ag−Cu−Niで、Niの配合割
合(重量%)を0.5とした上で、銀と銅の配合割合
(重量%)を99.5〜0の範囲にわたって変更したも
のを5種類
Specimen: Alloy composition: Ag-Cu, 5 kinds of which the blending ratio (wt%) of silver and copper was changed in the range of 100 to 0 Specimen: Alloy composition: Ag-Cu-Ni, Ni 5 kinds of samples in which the mixing ratio (wt%) was changed to 0.2 and the mixing ratio (wt%) of silver and copper was changed in the range of 99.8 to 0 Sample: Metal composition: Ag-Cu-Ni Then, 5 kinds of Ni (0.5% by weight) were used, and the mixing ratio (wt%) of silver and copper was changed in the range of 99.5-0.

【0017】そして上記各試料,,に対して同一
条件でウォータードロップ試験を行なった。試験方法
は、基板上に二つの板状の合金板(縦×横×厚み=20
×10×3mm)を隙間1mm離して基台(PETフイ
ルム)上に設置し、前記隙間部分に水道水を約1cc垂
らし、両合金板間にDC5Vの電圧を印加して短絡する
までの時間を測定するものである。その結果を図4に示
す。
Then, a water drop test was conducted on each of the above samples under the same conditions. The test method is two plate-shaped alloy plates (length x width x thickness = 20) on the substrate.
X 10 x 3 mm) is installed on the base (PET film) with a gap of 1 mm, tap water is hung down to the gap by about 1 cc, and a time of applying a voltage of DC 5 V between both alloy plates and short-circuiting is taken. It is something to measure. The result is shown in FIG.

【0018】同図に示すように銀と銅の配合割合が何れ
の場合においても、ニッケルを0.5重量%混合した合
金は、ニッケルを全く混合しなかった合金及びニッケル
を0.2重量%だけ混合した合金に比べて短絡時間が長
くなり、耐マイグレーション性が向上した。一方ニッケ
ルを0.2重量%だけ混合したものは耐マイグレーショ
ン性の向上が見られず、少なくともニッケルを0.3重
量%以上混合した場合に耐マイグレーション性が向上す
ることが分かった。
As shown in the figure, no matter what the mixing ratio of silver and copper is, an alloy containing 0.5% by weight of nickel is an alloy containing no nickel and 0.2% by weight of nickel. The short-circuit time was longer and the migration resistance was improved as compared with the alloys mixed only with each other. On the other hand, it was found that the mixture of nickel in an amount of 0.2% by weight did not show an improvement in migration resistance, and the mixture of nickel at least in an amount of 0.3% by weight or more improved the migration resistance.

【0019】なおニッケルの配合割合を0.5重量%以
上に増やしていった場合、銀と銅が何れの配合割合であ
っても、その短絡時間は前記試料の短絡時間よりも長
くなった。このことからニッケルの配合割合は0.3重
量%以上であれば耐マイグレーション性の向上を期待で
きることが分かった。
When the blending ratio of nickel was increased to 0.5% by weight or more, the short circuit time was longer than that of the sample regardless of the blending ratio of silver and copper. From this, it was found that the improvement of migration resistance can be expected if the mixing ratio of nickel is 0.3% by weight or more.

【0020】しかしながらニッケルの混合割合を多くし
すぎると、露出面での接触抵抗値が増大し、この点から
ニッケルの混合割合を制限する必要がある。即ち本願発
明者は、銀・銅・ニッケル合金中のニッケルの量の異な
るものを4種類用意し、高湿度槽においてそれぞれの接
触抵抗値を経時的に測定した。用意した試料は以下の通
りである。
However, if the mixing ratio of nickel is too large, the contact resistance value on the exposed surface increases, and from this point, it is necessary to limit the mixing ratio of nickel. That is, the inventor of the present application prepared four kinds of silver / copper / nickel alloys having different amounts of nickel, and measured the contact resistance values of each in a high humidity tank over time. The prepared samples are as follows.

【0021】試料−1:合金組成(重量%):Ag−
Cu−Ni=60:39.5:0.5のもの 試料−2:合金組成(重量%):Ag−Cu−Ni=
80:19.5:0.5のもの 試料−3:合金組成(重量%):Ag−Cu−Ni=
80:18.0:2.0のもの 試料−4:合金組成(重量%):Ag−Cu−Ni=
80:17.5:2.5のもの
Sample-1: Alloy composition (% by weight): Ag-
Cu-Ni = 60: 39.5: 0.5 Sample-2: Alloy composition (% by weight): Ag-Cu-Ni =
80: 19.5: 0.5 Sample-3: Alloy composition (wt%): Ag-Cu-Ni =
Sample with 80: 18.0: 2.0-4: Alloy composition (wt%): Ag-Cu-Ni =
80: 17.5: 2.5

【0022】そしてこれら試料−1〜4にかかる合金
を温度40℃、湿度90〜95%の高湿度槽内に放置
し、経時的にそれぞれの接触抵抗値を測定した。測定方
法は図6に示すように、合金板10の表面に接触子20
の接触部分21を20gの接触圧で接触し、前記接触点
と金属板10の端辺間Lの抵抗値を測定する方法を用い
た。接触子20としてはリン青銅に銀メッキを施し接触
部分21の球面の半径が0.5mmのものを用いた。測
定結果を図5に示す。
The alloys of Samples 1 to 4 were allowed to stand in a high humidity tank having a temperature of 40 ° C. and a humidity of 90 to 95%, and their contact resistance values were measured over time. As shown in FIG. 6, the measuring method is as follows:
The contacting portion 21 was contacted with a contacting pressure of 20 g, and the resistance value between the contact point and the end side L of the metal plate 10 was measured. As the contact 20, a phosphor bronze plated with silver and a contact portion 21 having a spherical radius of 0.5 mm was used. The measurement result is shown in FIG.

【0023】同図の試料−1,−2に示すように、
銀と銅の混合割合を変えても接触抵抗値の変化はほとん
どなかったが、試料−2,3,4に示すように、ニッ
ケルの含有量を変化すると接触抵抗値が変化した。そし
てニッケルの含有量が2.5重量%になると、接触抵抗
値の経時的変化が大きくなり、この合金を用いた導電ペ
ーストに実用上の問題が生じる。この現象は以下のよう
に考えられる。即ちニッケルは酸化し易いが、このニッ
ケルの含有量が2重量%を越えると、ニッケルが合金表
面に浮き出し易くなり、この結果合金の接触抵抗値が大
きくなるものと考えられる。従って接触抵抗値の観点か
ら合金に含有するニッケルの量は2.0重量%以下が望
ましい。
As shown in Samples-1 and -2 of FIG.
Although the contact resistance value hardly changed even when the mixing ratio of silver and copper was changed, as shown in Samples 2, 3 and 4, the contact resistance value changed when the nickel content was changed. When the nickel content is 2.5% by weight, the change in contact resistance value over time becomes large, which causes a practical problem in the conductive paste using this alloy. This phenomenon is considered as follows. That is, nickel is likely to be oxidized, but when the content of nickel exceeds 2% by weight, nickel is likely to be raised on the alloy surface, and as a result, the contact resistance value of the alloy is increased. Therefore, from the viewpoint of the contact resistance value, the amount of nickel contained in the alloy is preferably 2.0% by weight or less.

【0024】以上本発明の実施形態を説明したが、本発
明は上記実施形態に限定されるものではなく、特許請求
の範囲、及び明細書と図面に記載された技術的思想の範
囲内において種々の変形が可能である。
Although the embodiments of the present invention have been described above, the present invention is not limited to the above embodiments, and various modifications are possible within the scope of the claims and the technical idea described in the specification and drawings. Can be modified.

【0025】[0025]

【発明の効果】以上詳細に説明したように本発明によれ
ば、銀と銅の合金粉末を用いた導電ペーストよりもさら
に耐マイグレーション性を向上した導電ペーストを提供
できる。
As described in detail above, according to the present invention, it is possible to provide a conductive paste having further improved migration resistance as compared with a conductive paste using an alloy powder of silver and copper.

【図面の簡単な説明】[Brief description of drawings]

【図1】銀・銅合金の拡大図である。FIG. 1 is an enlarged view of a silver / copper alloy.

【図2】銀・銅・ニッケル合金の拡大図である。FIG. 2 is an enlarged view of a silver / copper / nickel alloy.

【図3】各種導電ペーストのウォータードロップ試験の
結果を示す図である。
FIG. 3 is a diagram showing results of water drop tests of various conductive pastes.

【図4】各種合金のウォータードロップ試験の結果を示
す図である。
FIG. 4 is a diagram showing results of water drop tests of various alloys.

【図5】各種合金の接触抵抗値の経時的変化測定図であ
る。
FIG. 5 is a diagram for measuring changes with time in contact resistance values of various alloys.

【図6】図5に示す接触抵抗値の測定方法を示す図であ
る。
6 is a diagram showing a method for measuring the contact resistance value shown in FIG.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鈴木 啓史 神奈川県川崎市中原区苅宿335番地 帝国 通信工業株式会社内 Fターム(参考) 5G301 DA03 DA06 DA10 DA42 DA55 DD01    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Hiroshi Suzuki             335 Kayajuku, Nakahara-ku, Kawasaki City, Kanagawa Prefecture             Communication Industry Co., Ltd. F-term (reference) 5G301 DA03 DA06 DA10 DA42 DA55                       DD01

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 銀と銅とニッケルからなる合金粉体を有
機バインダーに分散してなることを特徴とする導電ペー
スト。
1. A conductive paste comprising an alloy powder composed of silver, copper and nickel dispersed in an organic binder.
【請求項2】 前記合金粉体中の銀と銅に対するニッケ
ルの配合割合は、ニッケル0.3〜2.0重量%である
ことを特徴とする請求項1記載の導電ペースト。
2. The conductive paste according to claim 1, wherein a mixing ratio of nickel to silver and copper in the alloy powder is 0.3 to 2.0% by weight of nickel.
JP2001391475A 2001-12-25 2001-12-25 Conductive paste Expired - Fee Related JP3850725B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001391475A JP3850725B2 (en) 2001-12-25 2001-12-25 Conductive paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001391475A JP3850725B2 (en) 2001-12-25 2001-12-25 Conductive paste

Publications (2)

Publication Number Publication Date
JP2003197032A true JP2003197032A (en) 2003-07-11
JP3850725B2 JP3850725B2 (en) 2006-11-29

Family

ID=27599056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001391475A Expired - Fee Related JP3850725B2 (en) 2001-12-25 2001-12-25 Conductive paste

Country Status (1)

Country Link
JP (1) JP3850725B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009068086A (en) * 2007-09-14 2009-04-02 Tohoku Univ Electrically conductive composite powder and method for producing the same
CN101892399A (en) * 2010-05-14 2010-11-24 上海集强金属工业有限公司 Silver-based alloy layer and silver-based alloy layer composite material and preparation method and application

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009068086A (en) * 2007-09-14 2009-04-02 Tohoku Univ Electrically conductive composite powder and method for producing the same
CN101892399A (en) * 2010-05-14 2010-11-24 上海集强金属工业有限公司 Silver-based alloy layer and silver-based alloy layer composite material and preparation method and application
CN101892399B (en) * 2010-05-14 2012-05-02 上海集强金属工业有限公司 Silver-based alloy layer and silver-based alloy layer composite material and preparation method and application

Also Published As

Publication number Publication date
JP3850725B2 (en) 2006-11-29

Similar Documents

Publication Publication Date Title
EP1560227A1 (en) Conductive paste
JP4972955B2 (en) Conductive paste and printed wiring board using the same
KR100678533B1 (en) Conductive powder and method for preparing the same
JPS6355807A (en) Conducting paste
JP2009282003A (en) Contact member
KR20050054461A (en) Thick film conductor compositions for use in membrane switch applications
JP2008097949A (en) Conductive paste
Hsiang et al. Rheological behaviors of silver conductive pastes with ethyl cellulose
JP3879749B2 (en) Conductive powder and method for producing the same
JP2003197032A (en) Conductive paste
TW200410453A (en) Contact terminal with doped coating
JP2006196246A (en) Conductive paste and wiring circuit board using it
JPS642618B2 (en)
Goh et al. Studies on electrodeposition behavior of Sn–Bi alloys in plating baths modified by hydroquinone and gelatin
TW201701299A (en) Cu paste composition for forming thick film conductor, and thick film conductor
JP2000231828A (en) Conductive paste
Yamashita et al. Improvement in high-temperature degradation by isotropic conductive adhesives including Ag–Sn alloy fillers
JP2000133043A (en) Conductive composition for improving contact resistance
CN100552846C (en) A kind of multiple copper-based electrical contact alloy material
KR102641071B1 (en) Conductive paste composition and uses thereof
Rajiv et al. Corrosion characteristics of cobalt-silicon nitride electro composites in various corrosive environments
JP3783788B2 (en) Manufacturing method of conductive paste and electric circuit forming substrate
Xu et al. Evaluating electrochemical migration behavior of sintered nano-Ag: factors of bias voltage, electrode spacing, sinter process parameters, and NaCl concentration
JPS60260663A (en) Electrically conductive paste
JPS58103565A (en) Electrically conductive paint

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040513

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060705

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060830

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130908

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees