JP2009068086A - Electrically conductive composite powder and method for producing the same - Google Patents

Electrically conductive composite powder and method for producing the same Download PDF

Info

Publication number
JP2009068086A
JP2009068086A JP2007239093A JP2007239093A JP2009068086A JP 2009068086 A JP2009068086 A JP 2009068086A JP 2007239093 A JP2007239093 A JP 2007239093A JP 2007239093 A JP2007239093 A JP 2007239093A JP 2009068086 A JP2009068086 A JP 2009068086A
Authority
JP
Japan
Prior art keywords
mass
alloy
phase
composite powder
conductive composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007239093A
Other languages
Japanese (ja)
Inventor
Seiji Ishida
清二 石田
Ryosuke Kainuma
亮介 貝沼
Ikuo Onuma
郁雄 大沼
Yoshikazu Takaku
佳和 高久
Takuro Saegusa
拓朗 三枝
Kosuke Sakurai
康祐 櫻井
Hirohisa Omoto
寛久 大元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Dowa Holdings Co Ltd
Original Assignee
Tohoku University NUC
Dowa Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Dowa Holdings Co Ltd filed Critical Tohoku University NUC
Priority to JP2007239093A priority Critical patent/JP2009068086A/en
Publication of JP2009068086A publication Critical patent/JP2009068086A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide electrically conductive composite powder which is usable as an electrically conductive filler material for electrically conductive paste, and is inexpensively and easily producible by reducing the amount of use of silver, and to provide a method for producing the same. <P>SOLUTION: The molten metal of an Ag-Cu-X alloy composed of Ag, Cu and X (wherein, X is Ni, Fe or Co) and having a composition in two phase regions of liquid phases in the ternary system is atomized to be rapidly cooled, thereby electrically conductive composite powder is produced which has at least either structure where a fine dispersed phase of a Cu-X based alloy is dispersed into an Ag matrix or structure where a core part composed of a Cu-X-rich phase is surrounded by an Ag-rich phase. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、導電性複合粉末およびその製造方法に関し、特に、導電性ペーストに使用する導電性複合粉末およびその製造方法に関する。   The present invention relates to a conductive composite powder and a method for producing the same, and particularly relates to a conductive composite powder used for a conductive paste and a method for producing the same.

従来、積層コンデンサの内部電極、回路基板の導体パターン、太陽電池やフラットパネルディスプレイ(FPD)用基板の電極や回路などの電子部品に使用する導電性ペーストとして、銀粉をガラスフリットとともに有機ビヒクル中に加えて混練することによって製造される導電性ペーストが使用されている。   Conventionally, silver powder is put together with glass frit in an organic vehicle as a conductive paste used for internal electrodes of multilayer capacitors, conductor patterns of circuit boards, electrodes of solar cells and flat panel display (FPD) boards, and circuits. In addition, a conductive paste produced by kneading is used.

近年、FPDの生産量の著しい増大に伴い、その電極材料などに使用される導電性ペーストの使用量も著しく増大し、その導電性フィラー材料として使用される銀粉の使用量も著しく増大している。そのため、銀の価格が高騰したり、資源の枯渇が懸念されており、銀粉に代わる新しい導電性フィラー材料を開発することが望まれている。   In recent years, with a significant increase in the production amount of FPD, the amount of conductive paste used for the electrode material and the like has also increased significantly, and the amount of silver powder used as the conductive filler material has also increased significantly. . For this reason, there is a concern that the price of silver will rise or that resources will be depleted, and it is desired to develop a new conductive filler material that can replace silver powder.

このような新しい導電性フィラー材料の一つとして、銅やニッケルなどの微粉末の表面に銀をコートした銀コート導電性粉末が提案されている(例えば、特許文献1参照)。   As one of such new conductive filler materials, a silver-coated conductive powder in which silver is coated on the surface of a fine powder such as copper or nickel has been proposed (for example, see Patent Document 1).

特許第3766161号公報(段落番号0028−0039)Japanese Patent No. 3766161 (paragraph number 0028-0039)

しかし、特許文献1の方法では、母体となる金属粉末を作製した後に、その金属粉末の表面に無電解めっきによって銀をコートする複数の工程が必要になるため、製造プロセスが煩雑であり、コストも高くなるという問題がある。そのため、銀粉と比べて大幅な省資源化を図ることができるだけでなく、製造プロセスの大幅な簡略化によるコストダウンも図ることができる導電性フィラー材料を開発することが望まれている。   However, in the method of Patent Document 1, since a plurality of steps of coating the surface of the metal powder by electroless plating is necessary after the metal powder as the base is manufactured, the manufacturing process is complicated and costly There is a problem that it becomes higher. Therefore, it is desired to develop a conductive filler material that not only can save resources significantly compared to silver powder, but also can reduce costs by greatly simplifying the manufacturing process.

したがって、本発明は、このような従来の問題点に鑑み、導電性ペースト用の導電性フィラー材料として使用することができるとともに、銀の使用量を削減して安価且つ容易に製造することができる、導電性複合粉末およびその製造方法を提供することを目的とする。   Therefore, the present invention can be used as a conductive filler material for a conductive paste in view of such conventional problems, and can be manufactured inexpensively and easily by reducing the amount of silver used. An object of the present invention is to provide a conductive composite powder and a method for producing the same.

本発明者らは、上記課題を解決するために鋭意研究した結果、AgとCuとX(XはNi、FeまたはCo)とからなり、三元系において液相の二相領域内の組成を有するAg−Cu−X合金の溶湯を噴霧して急冷して、Agマトリックス中にCu−X基合金の微細な分散相が分散した組織およびCu−Xリッチ相からなるコア部がAgリッチ相によって取り囲まれた組織の少なくとも一方の組織を有する導電性複合粉末を製造することにより、導電性ペースト用の導電性フィラー材料として使用することができるとともに、銀の使用量を削減して安価且つ容易に製造することができる、導電性複合粉末およびその製造方法を提供することができることを見出し、本発明を完成するに至った。   As a result of diligent research to solve the above problems, the inventors of the present invention are composed of Ag, Cu, and X (X is Ni, Fe, or Co), and the composition in the two-phase region of the liquid phase in the ternary system. The molten Ag-Cu-X alloy is sprayed and rapidly cooled, and the Ag-rich phase has a structure in which the fine dispersed phase of the Cu-X-based alloy is dispersed in the Ag matrix and the core portion made of the Cu-X-rich phase. By producing a conductive composite powder having at least one of the surrounded structures, it can be used as a conductive filler material for conductive paste, and the amount of silver used can be reduced and cheaply and easily. It has been found that a conductive composite powder and a method for producing the same can be provided, and the present invention has been completed.

すなわち、本発明による導電性複合粉末の製造方法は、AgとCuとX(XはNi、FeまたはCo)とからなり、三元系において液相の二相領域内の組成を有するAg−Cu−X合金の溶湯を噴霧して急冷して、Agマトリックス中にCu−X基合金の微細な分散相が分散した組織およびCu−Xリッチ相からなるコア部がAgリッチ相によって取り囲まれた組織の少なくとも一方の組織を有する導電性複合粉末を製造することを特徴とする。   That is, the method for producing a conductive composite powder according to the present invention comprises Ag, Cu, and X (X is Ni, Fe, or Co), and has a composition in a liquid phase two-phase region in a ternary system. A structure in which a fine dispersed phase of a Cu-X based alloy is dispersed in an Ag matrix and a core part composed of a Cu-X rich phase surrounded by the Ag rich phase by spraying a molten metal of -X alloy A conductive composite powder having at least one of the following structures is produced.

この導電性複合粉末の製造方法において、Ag−Cu−X合金が、3.6〜96.8質量%のAgと0.1〜40.0質量%のCuと0.1〜96.2質量%のNiとからなるAg−Cu−Ni合金、20.0質量%を超え且つ96.8質量%以下のAgと0.1〜40.0質量%のCuと1.0〜96.0質量%のFeとからなるAg−Cu−Fe合金、あるいは、20.0質量%を超え且つ96.8質量%以下のAgと0.1〜40.0質量%のCuと1.1〜96.2質量%のCoとからなるAg−Cu−Co合金であるのが好ましい。   In this method for producing a conductive composite powder, the Ag—Cu—X alloy contains 3.6 to 96.8% by mass of Ag, 0.1 to 40.0% by mass of Cu, and 0.1 to 96.2% by mass. Ag-Cu-Ni alloy composed of 2% Ni, more than 20.0% by mass and up to 96.8% by mass Ag, 0.1-40.0% by mass Cu and 1.0-96.0% by mass % Ag-Cu-Fe alloy, or more than 20.0 mass% and not more than 96.8 mass% Ag, 0.1-40.0 mass% Cu, and 1.1-96. An Ag—Cu—Co alloy composed of 2 mass% Co is preferable.

また、本発明による導電性複合粉末は、AgとCuとX(XはNi、FeまたはCo)とからなるAg−Cu−X合金粉末であり、三元系において液相の二相領域内の組成を有し、Agマトリックス中にCu−X基合金の微細な分散相が分散した組織およびCu−Xリッチ相からなるコア部がAgリッチ相によって取り囲まれた組織の少なくとも一方の組織を有することを特徴とする。   The conductive composite powder according to the present invention is an Ag-Cu-X alloy powder composed of Ag, Cu, and X (X is Ni, Fe, or Co), and is in a two-phase region of a liquid phase in a ternary system. The composition has a structure in which a fine dispersed phase of a Cu-X-based alloy is dispersed in an Ag matrix and a core portion composed of a Cu-X rich phase is surrounded by an Ag rich phase. It is characterized by.

この導電性複合粉末において、Ag−Cu−X合金粉末が、3.6〜96.8質量%のAgと0.1〜40.0質量%のCuと0.1〜96.2質量%のNiとからなるAg−Cu−Ni合金、20.0質量%を超え且つ96.8質量%以下のAgと0.1〜40.0質量%のCuと1.0〜96.0質量%のFeとからなるAg−Cu−Fe合金、あるいは、20.0質量%を超え且つ96.8質量%以下のAgと0.1〜40.0質量%のCuと1.1〜96.2質量%のCoとからなるAg−Cu−Co合金であるのが好ましい。   In this conductive composite powder, the Ag—Cu—X alloy powder comprises 3.6 to 96.8% by mass of Ag, 0.1 to 40.0% by mass of Cu, and 0.1 to 96.2% by mass. Ag—Cu—Ni alloy composed of Ni, more than 20.0% by mass and up to 96.8% by mass of Ag, 0.1 to 40.0% by mass of Cu, and 1.0 to 96.0% by mass of Ni Ag—Cu—Fe alloy composed of Fe, or more than 20.0 mass% and not more than 96.8 mass% of Ag, 0.1 to 40.0 mass% of Cu, and 1.1 to 96.2 mass An Ag—Cu—Co alloy composed of% Co is preferable.

本発明によれば、導電性ペースト用の導電性フィラー材料として使用することができるとともに、銀の使用量を削減して安価且つ容易に製造することができる、導電性複合粉末およびその製造方法を提供することができる。   According to the present invention, there is provided a conductive composite powder that can be used as a conductive filler material for a conductive paste, and can be manufactured inexpensively and easily by reducing the amount of silver used, and a method for manufacturing the same. Can be provided.

本発明による導電性複合粉末の製造方法の実施の形態では、AgとCuとX(XはNi、FeまたはCo)とからなり、三元系において液相の二相領域内の組成を有するAg−Cu−X合金の溶湯を、ガスアトマイズ法により急冷微粉化することによって、Agマトリックス中にCu−X基合金の微細な分散相が分散した組織(以下「分散型組織」という)およびCu−Xリッチ相からなるコア部が(耐酸化性に富み且つ高導電率を有する)Agリッチ相によって取り囲まれた組織(粒径数10μmのCu−X合金微粒子の表面が厚さ数μmのAgで覆われた二重構造の組織(以下「卵型分離組織」という))の少なくとも一方の組織を有する導電性複合粉末を製造する。なお、ガスアトマイズ法による急冷では、例えば、通常のアトマイズ装置における冷却速度にすればよい。   In the embodiment of the method for producing a conductive composite powder according to the present invention, Ag is composed of Ag, Cu and X (X is Ni, Fe or Co), and has a composition in a liquid phase two-phase region in a ternary system. A structure in which a fine dispersed phase of a Cu—X based alloy is dispersed in an Ag matrix (hereinafter referred to as “dispersed structure”) and Cu—X by rapidly cooling and pulverizing the molten Cu—X alloy by a gas atomization method. The structure (the surface of the Cu-X alloy fine particles having a particle diameter of several tens of μm is covered with Ag having a thickness of several μm, and the core portion made of the rich phase is surrounded by the Ag rich phase (which has high oxidation resistance and high conductivity). A conductive composite powder having at least one tissue of a broken double structure (hereinafter referred to as “egg-type separated tissue”) is produced. In the rapid cooling by the gas atomizing method, for example, the cooling rate in a normal atomizing apparatus may be used.

この導電性複合粉末の製造方法において、Ag−Cu−X合金が、3.6〜96.8質量%のAgと0.1〜40.0質量%のCuと0.1〜96.2質量%のNiとからなるAg−Cu−Ni合金、20.0質量%を超え且つ96.8質量%以下のAgと0.1〜40.0質量%のCuと1.0〜96.0質量%のFeとからなるAg−Cu−Fe合金、あるいは、20.0質量%を超え且つ96.8質量%以下のAgと0.1〜40.0質量%のCuと1.1〜96.2質量%のCoとからなるAg−Cu−Co合金であるのが好ましい。   In this method for producing a conductive composite powder, the Ag—Cu—X alloy contains 3.6 to 96.8% by mass of Ag, 0.1 to 40.0% by mass of Cu, and 0.1 to 96.2% by mass. Ag-Cu-Ni alloy composed of 2% Ni, more than 20.0% by mass and up to 96.8% by mass Ag, 0.1-40.0% by mass Cu and 1.0-96.0% by mass % Ag-Cu-Fe alloy, or more than 20.0 mass% and not more than 96.8 mass% Ag, 0.1-40.0 mass% Cu, and 1.1-96. An Ag—Cu—Co alloy composed of 2 mass% Co is preferable.

Ag−Cu−Ni合金の場合には、Ag含有量が3.6質量%未満であると、Ag量が少な過ぎてAgが分散できなくなり、96.8質量%を越えると、Ag量が多過ぎてAgの固溶体になってしまう。また、Cu含有量が1.0質量%未満であると、Ag−Niの液相の二相分離領域になって導電性が低下し、40.0質量%を越えると、Ag−Cu−Niの三元系における液相の二相分離領域から外れてしまう。また、Ni含有量が0.1質量%未満であると、Ni量が少な過ぎてAgの固溶体になり、96.2質量%を超えると、Ni量が多過ぎてAgが分散できなくなってしまう。   In the case of an Ag—Cu—Ni alloy, if the Ag content is less than 3.6% by mass, the Ag content is too small to disperse Ag, and if it exceeds 96.8% by mass, the Ag content is large. After that, it becomes a solid solution of Ag. Further, if the Cu content is less than 1.0% by mass, it becomes a two-phase separation region of the liquid phase of Ag—Ni, and the conductivity is lowered. If it exceeds 40.0% by mass, the Ag—Cu—Ni Of the liquid phase in the ternary system. Further, when the Ni content is less than 0.1% by mass, the Ni content is too small to form a solid solution of Ag. When the Ni content exceeds 96.2% by mass, the Ni content is excessive and Ag cannot be dispersed. .

Ag−Cu−Fe合金の場合には、Ag含有量が20.0質量未満であると、Ag量が少な過ぎてAgが分散できなくなり、96.8質量%を超えると、Ag量が多過ぎてAgの固溶体になってしまう。また、Cu含有量が1.0質量%未満であると、Ag−Feの液相の二相分離領域になって導電性が低下し、40.0質量%を超えると、Ag−Cu−Feの三元系における液相の二相分離領域から外れてしまう。また、Fe含有量が1.0質量%未満であると、Fe量が少な過ぎてAgの固溶体になり、96.0質量%を超えると、Fe量が多過ぎてAgが分散できなくなってしまう。   In the case of an Ag—Cu—Fe alloy, if the Ag content is less than 20.0 mass, the Ag content is too small to disperse Ag, and if it exceeds 96.8 mass%, the Ag content is too large. It becomes a solid solution of Ag. Moreover, when Cu content is less than 1.0 mass%, it will become a two-phase separation area | region of the liquid phase of Ag-Fe, and electroconductivity will fall, and when it exceeds 40.0 mass%, it will be Ag-Cu-Fe. Of the liquid phase in the ternary system. Further, when the Fe content is less than 1.0% by mass, the Fe content is too small to be a solid solution of Ag, and when it exceeds 96.0% by mass, the Fe content is too large to disperse Ag. .

Ag−Cu−Co合金の場合には、Ag含有量が20%質量未満であると、Ag量が少な過ぎてAgが分散できなくなり、96.8質量%を超えると、Ag量が多過ぎてAgの固溶体になってしまう。また、Cu含有量が0.1%未満であると、Ag−Coの液相の二相分離領域となって導電性が低下し、40.0質量%を超えると、Ag−Cu−Coの三元系における液相の二相分離領域から外れてしまう。また、Co含有量が1.1質量%未満であると、Co量が少な過ぎてAgの固溶体になり、96.2質量%を超えると、Co量が多過ぎてAgが分散できなくなってしまう。   In the case of an Ag-Cu-Co alloy, if the Ag content is less than 20% by mass, the Ag content is too small to disperse Ag, and if it exceeds 96.8% by mass, the Ag content is too large. It becomes a solid solution of Ag. Further, when the Cu content is less than 0.1%, it becomes a two-phase separation region of the liquid phase of Ag—Co, and the conductivity is reduced. When the Cu content exceeds 40.0% by mass, the Ag—Cu—Co The liquid phase in the ternary system deviates from the two-phase separation region. Further, if the Co content is less than 1.1% by mass, the Co content is too small to form a solid solution of Ag, and if it exceeds 96.2% by mass, the Co content is too large to disperse Ag. .

本発明による導電性複合粉末の製造方法の実施の形態によって製造される導電性複合粉末は、AgとCuとX(XはNi、FeまたはCo)の液相の二相分離を示す合金組成から得られる導電性複合粉末である。   The conductive composite powder manufactured by the embodiment of the method for manufacturing the conductive composite powder according to the present invention is obtained from an alloy composition showing two-phase separation of liquid phases of Ag, Cu and X (X is Ni, Fe or Co). The resulting conductive composite powder.

例えば、Ag−Cu−Ni合金の場合、上述した組成のAg−Cu−Ni合金の溶湯は、1500〜2300℃程度の高温で保持されると、Agの液相とCu−Niの液相に分離した状態になり、高周波で攪拌するとドレッシングを振ったような状態になる。この状態で急冷して凝固させると、マランゴニ効果を示しながら凝固するため、組成や冷却条件によって分散型組織や卵型分離組織の形態になる。得られた導電性複合粉末の表面は、大部分がAg相を有する形態になる。一方、Ag−Cu−Ni合金の溶湯の組成が、高温で保持されたときに単一液相になる組成である場合には、組織の形成過程が異なる。すなわち、単一液相(Ag+Cu+Ni)になる組成のAg−Cu−Ni合金の溶湯を冷却して凝固させると、Ag液相中にCu−Niの固相が初晶として析出凝固し、その冷却凝固中にAg液相も凝固するため、初晶+ラメラーの複合凝固組織(以下「凝固組織」という)になる。   For example, in the case of an Ag—Cu—Ni alloy, if the molten Ag—Cu—Ni alloy having the above-described composition is held at a high temperature of about 1500 to 2300 ° C., the liquid phase of Ag and the liquid phase of Cu—Ni It becomes a separated state, and when it is stirred at a high frequency, it becomes a state where the dressing is shaken. When solidified by rapid cooling in this state, it solidifies while exhibiting the Marangoni effect, so that it becomes a dispersed tissue or egg-shaped separated tissue depending on the composition and cooling conditions. Most of the surface of the obtained conductive composite powder is in a form having an Ag phase. On the other hand, when the composition of the molten Ag-Cu-Ni alloy is a composition that becomes a single liquid phase when held at a high temperature, the formation process of the structure is different. That is, when a molten Ag—Cu—Ni alloy having a composition that becomes a single liquid phase (Ag + Cu + Ni) is cooled and solidified, a solid phase of Cu—Ni is precipitated and solidified as an initial crystal in the Ag liquid phase. Since the Ag liquid phase also solidifies during solidification, it becomes a primary solid + lamellar composite solidified structure (hereinafter referred to as “solidified structure”).

以下、本発明による導電性複合粉末およびその製造方法の実施例について詳細に説明する。   Hereinafter, the Example of the electroconductive composite powder by this invention and its manufacturing method is described in detail.

[実施例1]
Ag−Cu−X基合金として、三元系において液相の二相領域内の組成を有する、76.3質量%のAgと17.3質量%のCuと6.4質量%のNiからなるAg−Cu−Ni合金を用意し、高周波誘導溶解して融液温度1600℃の溶融物(混合溶湯)とした。
[Example 1]
As an Ag-Cu-X base alloy, it has a composition in a two-phase region of a liquid phase in a ternary system, and consists of 76.3% by mass of Ag, 17.3% by mass of Cu and 6.4% by mass of Ni. An Ag—Cu—Ni alloy was prepared and melted at high frequency to obtain a melt (mixed molten metal) having a melt temperature of 1600 ° C.

次に、この溶融物をArガスによる高圧ガスアトマイズ法によってガス圧5MPaで噴霧急冷(凝固)して、平均粒径150μm以下の合金粉末を得た。   Next, this melt was spray-quenched (solidified) at a gas pressure of 5 MPa by a high-pressure gas atomization method using Ar gas to obtain an alloy powder having an average particle size of 150 μm or less.

得られた合金粉末の粒子断面組織を図1の金属顕微鏡写真に示す。図1に示すように、合金粉末の組織は、Agマトリックス中にCu−Ni基合金の多数の微細な分散相が分散した組織(分散型組織)であることがわかった。   The metal cross-sectional structure of the obtained alloy powder is shown in the metal micrograph of FIG. As shown in FIG. 1, the structure of the alloy powder was found to be a structure (dispersed structure) in which many fine dispersed phases of the Cu—Ni-based alloy were dispersed in an Ag matrix.

また、得られた合金粉末を45MPaで直径15mmの円盤状に圧縮成型し、真空雰囲気中において900℃で1分間熱処理した後、氷水中に焼入れして、得られた焼結合金の電気抵抗を四端子法により室温で測定したところ、比抵抗は2.40μΩ・cmであった。   Further, the obtained alloy powder is compression-molded into a disk shape having a diameter of 15 mm at 45 MPa, heat-treated at 900 ° C. for 1 minute in a vacuum atmosphere, and then quenched in ice water. When measured at room temperature by the four probe method, the specific resistance was 2.40 μΩ · cm.

[実施例2]
Ag−Cu−X基合金として、三元系において液相の二相領域内の組成を有する、24.1質量%のAgと19.0質量%のCuと56.9質量%のNiからなるAg−Cu−Ni合金を使用した以外は、実施例1と同様の方法によって、平均粒径150μm以下の合金粉末を得た。得られた合金粉末は、実施例1と同様の分散型組織を有し、実施例1と同様の方法により測定した比抵抗は11.5μΩ・cmであった。
[Example 2]
As an Ag-Cu-X-based alloy, it is composed of 24.1% by mass of Ag, 19.0% by mass of Cu and 56.9% by mass of Ni having a composition in a liquid phase two-phase region in a ternary system. An alloy powder having an average particle size of 150 μm or less was obtained in the same manner as in Example 1 except that an Ag—Cu—Ni alloy was used. The obtained alloy powder had the same dispersive structure as in Example 1, and the specific resistance measured by the same method as in Example 1 was 11.5 μΩ · cm.

[実施例3]
Ag−Cu−X基合金として、三元系において液相の二相領域内の組成を有する、16.6質量%のAgと24.5質量%のCuと58.9質量%のNiからなるAg−Cu−Ni合金を使用した以外は、実施例1と同様の方法によって、平均粒径150μm以下の合金粉末を得た。得られた合金粉末は、実施例1と同様の分散型組織を有し、実施例1と同様の方法により測定した比抵抗は12.3μΩ・cmであった。
[Example 3]
As an Ag-Cu-X-based alloy, it is composed of 16.6% by mass of Ag, 24.5% by mass of Cu and 58.9% by mass of Ni having a composition in a liquid phase two-phase region in a ternary system. An alloy powder having an average particle size of 150 μm or less was obtained in the same manner as in Example 1 except that an Ag—Cu—Ni alloy was used. The obtained alloy powder had the same dispersive structure as in Example 1, and the specific resistance measured by the same method as in Example 1 was 12.3 μΩ · cm.

[実施例4]
Ag−Cu−X基合金として、三元系において液相の二相領域内の組成を有する、37.4質量%のAgと22.0質量%のCuと40.6質量%のNiからなるAg−Cu−Ni合金を使用した以外は、実施例1と同様の方法によって、平均粒径150μm以下の合金粉末を得た。
[Example 4]
As an Ag-Cu-X base alloy, it is composed of 37.4% by mass of Ag, 22.0% by mass of Cu and 40.6% by mass of Ni having a composition in a liquid phase two-phase region in a ternary system. An alloy powder having an average particle size of 150 μm or less was obtained in the same manner as in Example 1 except that an Ag—Cu—Ni alloy was used.

得られた合金粉末の粒子断面組織を図2の金属顕微鏡写真に示す。図2に示すように、合金粉末の組織は、コア部(中心部)がCu−Niリッチ相によって形成され、コア部を取り囲む外周部がAgリッチ相によって形成されて、二相に明確に分離された組織(卵型分離組織)と、実施例1と同様の分散型組織であることがわかった。なお、卵型分離組織と分散型組織の割合は90%:10%であった。また、実施例1と同様の方法により測定した比抵抗は5.28μΩ・cmであった。   The metal cross-sectional structure of the obtained alloy powder is shown in the metal micrograph of FIG. As shown in FIG. 2, the structure of the alloy powder is clearly separated into two phases in which the core portion (center portion) is formed by the Cu—Ni rich phase and the outer peripheral portion surrounding the core portion is formed by the Ag rich phase. It was found that the obtained tissue (egg-shaped separated tissue) and the same dispersed type tissue as in Example 1 were obtained. The ratio between the egg-shaped separated tissue and the dispersed tissue was 90%: 10%. The specific resistance measured by the same method as in Example 1 was 5.28 μΩ · cm.

[実施例5]
Ag−Cu−X基合金として、三元系において液相の二相領域内の組成を有する、59.1質量%のAgと19.4質量%のCuと21.5質量%のNiからなるAg−Cu−Ni合金を使用した以外は、実施例1と同様の方法によって、平均粒径150μm以下の合金粉末を得た。得られた合金粉末は、実施例4と同様の卵型分離組織と実施例1と同様の分散型組織(卵型分離組織と分散型組織の割合は50%:50%)を有し、実施例1と同様の方法により測定した比抵抗は4.27μΩ・cmであった。
[Example 5]
As an Ag-Cu-X-based alloy, it is composed of 59.1% by mass of Ag, 19.4% by mass of Cu and 21.5% by mass of Ni having a composition in a liquid phase two-phase region in a ternary system. An alloy powder having an average particle size of 150 μm or less was obtained in the same manner as in Example 1 except that an Ag—Cu—Ni alloy was used. The obtained alloy powder had an egg-shaped separated structure similar to that in Example 4 and a dispersed structure similar to that in Example 1 (the ratio between the egg-shaped separated structure and the dispersed structure was 50%: 50%). The specific resistance measured by the same method as in Example 1 was 4.27 μΩ · cm.

[比較例1]
Ag−Cu−X基合金として、三元系において液相の二相領域外の組成を有する、16.3質量%のAgと48.1質量%のCuと35.6質量%のNiからなるAg−Cu−Ni合金を使用した以外は、実施例1と同様の方法によって、平均粒径150μm以下の合金粉末を得た。
[Comparative Example 1]
As an Ag-Cu-X-based alloy, it is composed of 16.3% by mass of Ag, 48.1% by mass of Cu, and 35.6% by mass of Ni having a composition outside the two-phase region of the liquid phase in the ternary system. An alloy powder having an average particle size of 150 μm or less was obtained in the same manner as in Example 1 except that an Ag—Cu—Ni alloy was used.

得られた合金粉末の粒子断面組織を図3の金属顕微鏡写真に示す。図3に示すように、合金粉末の組織は、Cu−Ni初晶とAg相とCu−Ni相が層状に折り重なるように形成される凝固組織になることがわかった。また、実施例1と同様の方法により測定した比抵抗は22.3μΩ・cmであった。   The metal cross-sectional structure of the obtained alloy powder is shown in the metal micrograph of FIG. As shown in FIG. 3, it was found that the structure of the alloy powder was a solidified structure formed so that the Cu—Ni primary crystal, the Ag phase, and the Cu—Ni phase were folded in layers. The specific resistance measured by the same method as in Example 1 was 22.3 μΩ · cm.

なお、このような凝固組織の合金粉末の表面には、Cu−Ni相またはAg相が形成され、このような合金粉末を導電性ペースト用の導電性粉末として使用すると、Agのコネクト部が制限されて、良好な特性を得ることができない。また、この合金粉末の表面も凝固組織であり、酸化し易い。一方、実施例1〜5のように、三元系において液相の二相領域内の組成の合金粉末では、表面がAgリッチ相になり、圧紛成型し易い。   A Cu-Ni phase or an Ag phase is formed on the surface of the alloy powder having such a solidified structure. When such an alloy powder is used as a conductive powder for a conductive paste, the Ag connecting portion is limited. Therefore, good characteristics cannot be obtained. Further, the surface of the alloy powder is also a solidified structure and is easily oxidized. On the other hand, as in Examples 1 to 5, the alloy powder having a composition in the two-phase region of the liquid phase in the ternary system has an Ag rich phase on the surface and is easy to be compacted.

[比較例2]
Ag−Cu−X基合金として、三元系において液相の二相領域外の組成を有する、42.6質量%のAgと41.9質量%のCuと15.5質量%のNiからなるAg−Cu−Ni合金を使用した以外は、実施例1と同様の方法によって、平均粒径150μm以下の合金粉末を得た。得られた合金粉末は、比較例1と同様の凝固組織を有し、実施例1と同様の方法により測定した比抵抗は5.56μΩ・cmであった。
[Comparative Example 2]
As an Ag-Cu-X base alloy, it is composed of 42.6% by mass of Ag, 41.9% by mass of Cu and 15.5% by mass of Ni having a composition outside the two-phase region of the liquid phase in the ternary system. An alloy powder having an average particle size of 150 μm or less was obtained in the same manner as in Example 1 except that an Ag—Cu—Ni alloy was used. The obtained alloy powder had the same solidified structure as in Comparative Example 1, and the specific resistance measured by the same method as in Example 1 was 5.56 μΩ · cm.

[比較例3]
Ag−Cu−X基合金として、三元系において液相の二相領域外の組成を有する、16.0質量%のAgと70.9質量%のCuと13.1質量%のNiからなるAg−Cu−Ni合金を使用した以外は、実施例1と同様の方法によって、平均粒径150μm以下の合金粉末を得た。得られた合金粉末は、比較例1と同様の凝固組織を有し、実施例1と同様の方法により測定した比抵抗は11.1μΩ・cmであった。
[Comparative Example 3]
As an Ag-Cu-X base alloy, it is composed of 16.0% by mass of Ag, 70.9% by mass of Cu and 13.1% by mass of Ni having a composition outside the two-phase region of the liquid phase in the ternary system. An alloy powder having an average particle size of 150 μm or less was obtained in the same manner as in Example 1 except that an Ag—Cu—Ni alloy was used. The obtained alloy powder had the same solidified structure as in Comparative Example 1, and the specific resistance measured by the same method as in Example 1 was 11.1 μΩ · cm.

これらの実施例1〜5および比較例1〜3の合金の組成および分析結果を表1に示す。   Table 1 shows the compositions and analysis results of the alloys of Examples 1 to 5 and Comparative Examples 1 to 3.

Figure 2009068086
Figure 2009068086

[実施例6]
Ag−Cu−X基合金として、三元系において液相の二相領域内の組成を有する、20.1質量%のAgと25.5質量%のCuと54.4質量%のCoからなるAg−Cu−Co合金を使用した以外は、実施例1と同様の方法によって、平均粒径150μm以下の合金粉末を得た。得られた合金粉末は、実施例4と同様の卵型分離組織を有し、実施例1と同様の方法により測定した比抵抗は5.80μΩ・cmであった。
[Example 6]
As an Ag-Cu-X-based alloy, it is composed of 20.1% by mass of Ag, 25.5% by mass of Cu and 54.4% by mass of Co having a composition in a two-phase region of a liquid phase in a ternary system. An alloy powder having an average particle size of 150 μm or less was obtained in the same manner as in Example 1 except that an Ag—Cu—Co alloy was used. The obtained alloy powder had the same egg-shaped separated structure as in Example 4, and the specific resistance measured by the same method as in Example 1 was 5.80 μΩ · cm.

[実施例7]
Ag−Cu−X基合金として、三元系において液相の二相領域内の組成を有する、37.3質量%のAgと22.0質量%のCuと40.7質量%のCoからなるAg−Cu−Co合金を使用した以外は、実施例1と同様の方法によって、平均粒径150μm以下の合金粉末を得た。得られた合金粉末は、実施例4と同様の卵型分離組織と実施例1と同様の分散型組織(卵型分離組織と分散型組織の割合は90%:10%)を有し、実施例1と同様の方法により測定した比抵抗は5.28μΩ・cmであった。
[Example 7]
As an Ag-Cu-X-based alloy, it is composed of 37.3 mass% Ag, 22.0 mass% Cu, and 40.7 mass% Co having a composition in a liquid phase two-phase region in a ternary system. An alloy powder having an average particle size of 150 μm or less was obtained in the same manner as in Example 1 except that an Ag—Cu—Co alloy was used. The obtained alloy powder had an egg-shaped separated structure similar to that in Example 4 and a dispersed structure similar to that in Example 1 (the ratio between the egg-shaped separated structure and the dispersed structure was 90%: 10%). The specific resistance measured by the same method as in Example 1 was 5.28 μΩ · cm.

[実施例8]
Ag−Cu−X基合金として、三元系において液相の二相領域内の組成を有する、59.2質量%のAgと19.3質量%のCuと21.5質量%のCoからなるAg−Cu−Co合金を使用した以外は、実施例1と同様の方法によって、平均粒径150μm以下の合金粉末を得た。得られた合金粉末は、実施例4と同様の卵型分離組織と実施例1と同様の分散型組織(卵型分離組織と分散型組織の割合は40%:60%)を有し、実施例1と同様の方法により測定した比抵抗は3.33μΩ・cmであった。
[Example 8]
As an Ag-Cu-X-based alloy, it is composed of 59.2% by mass of Ag, 19.3% by mass of Cu and 21.5% by mass of Co having a composition in the two-phase region of the liquid phase in the ternary system. An alloy powder having an average particle size of 150 μm or less was obtained in the same manner as in Example 1 except that an Ag—Cu—Co alloy was used. The obtained alloy powder had an egg-shaped separated structure similar to that in Example 4 and a dispersed structure similar to that in Example 1 (the ratio between the egg-shaped separated structure and the dispersed structure was 40%: 60%). The specific resistance measured by the same method as in Example 1 was 3.33 μΩ · cm.

[実施例9]
Ag−Cu−X基合金として、三元系において液相の二相領域内の組成を有する、76.3質量%のAgと17.3質量%のCuと6.4質量%のCoからなるAg−Cu−Co合金を使用した以外は、実施例1と同様の方法によって、平均粒径150μm以下の合金粉末を得た。得られた合金粉末は、実施例1と同様の分散型組織(を有し、実施例1と同様の方法により測定した比抵抗は2.66μΩ・cmであった。
[Example 9]
As an Ag-Cu-X-based alloy, it is composed of 76.3% by mass of Ag, 17.3% by mass of Cu and 6.4% by mass of Co having a composition in a two-phase region of a liquid phase in a ternary system. An alloy powder having an average particle size of 150 μm or less was obtained in the same manner as in Example 1 except that an Ag—Cu—Co alloy was used. The obtained alloy powder had the same dispersion type structure as in Example 1 and the specific resistance measured by the same method as in Example 1 was 2.66 μΩ · cm.

[実施例10]
Ag−Cu−X基合金として、三元系において液相の二相領域内の組成を有する、76.6質量%のAgと17.3質量%のCuと6.1質量%のFeからなるAg−Cu−Fe合金を使用した以外は、実施例1と同様の方法によって、平均粒径150μm以下の合金粉末を得た。得られた合金粉末は、実施例1と同様の分散型組織を有し、実施例1と同様の方法により測定した比抵抗は3.08Ω・cmであった。
[Example 10]
As an Ag-Cu-X-based alloy, it is composed of 76.6% by mass of Ag, 17.3% by mass of Cu and 6.1% by mass of Fe having a composition in a liquid phase two-phase region in a ternary system. An alloy powder having an average particle size of 150 μm or less was obtained in the same manner as in Example 1 except that an Ag—Cu—Fe alloy was used. The obtained alloy powder had the same dispersed structure as in Example 1, and the specific resistance measured by the same method as in Example 1 was 3.08 Ω · cm.

[実施例11]
Ag−Cu−X基合金として、三元系において液相の二相領域内の組成を有する、20.1質量%のAgと27.4質量%のCuと52.5質量%のFeからなるAg−Cu−Fe合金を使用した以外は、実施例1と同様の方法によって、平均粒径150μm以下の合金粉末を得た。得られた合金粉末は、実施例4と同様の卵型分離組織と実施例1と同様の分散型組織(卵型分離組織と分散型組織の割合は40%:60%)を有し、実施例1と同様の方法により測定した比抵抗は11.0μΩ・cmであった。
[Example 11]
As an Ag-Cu-X base alloy, it is composed of 20.1% by mass of Ag, 27.4% by mass of Cu and 52.5% by mass of Fe having a composition in a liquid phase two-phase region in a ternary system. An alloy powder having an average particle size of 150 μm or less was obtained in the same manner as in Example 1 except that an Ag—Cu—Fe alloy was used. The obtained alloy powder had an egg-shaped separated structure similar to that in Example 4 and a dispersed structure similar to that in Example 1 (the ratio between the egg-shaped separated structure and the dispersed structure was 40%: 60%). The specific resistance measured by the same method as in Example 1 was 11.0 μΩ · cm.

[実施例12]
Ag−Cu−X基合金として、三元系において液相の二相領域内の組成を有する、59.8質量%のAgと19.6質量%のCuと20.6質量%のFeからなるAg−Cu−Fe合金を使用した以外は、実施例1と同様の方法によって、平均粒径150μm以下の合金粉末を得た。得られた合金粉末は、実施例4と同様の卵型分離組織と実施例1と同様の分散型組織(卵型分離組織と分散型組織の割合は50%:50%)を有し、実施例1と同様の方法により測定した比抵抗は3.97μΩ・cmであった。
[Example 12]
As an Ag-Cu-X-based alloy, it is composed of 59.8% by mass of Ag, 19.6% by mass of Cu and 20.6% by mass of Fe having a composition in a liquid phase two-phase region in a ternary system. An alloy powder having an average particle size of 150 μm or less was obtained in the same manner as in Example 1 except that an Ag—Cu—Fe alloy was used. The obtained alloy powder had an egg-shaped separated structure similar to that in Example 4 and a dispersed structure similar to that in Example 1 (the ratio between the egg-shaped separated structure and the dispersed structure was 50%: 50%). The specific resistance measured by the same method as in Example 1 was 3.97 μΩ · cm.

[実施例13]
Ag−Cu−X基合金として、三元系において液相の二相領域内の組成を有する、48.9質量%のAgと32.9質量%のCuと18.2質量%のFeからなるAg−Cu−Fe合金を使用した以外は、実施例1と同様の方法によって、平均粒径150μm以下の合金粉末を得た。得られた合金粉末は、実施例4と同様の卵型分離組織と実施例1と同様の分散型組織(卵型分離組織と分散型組織の割合は50%:50%)を有し、実施例1と同様の方法により測定した比抵抗は2.45μΩ・cmであった。
[Example 13]
As an Ag-Cu-X-based alloy, it is composed of 48.9% by mass of Ag, 32.9% by mass of Cu and 18.2% by mass of Fe having a composition in a liquid phase two-phase region in a ternary system. An alloy powder having an average particle size of 150 μm or less was obtained in the same manner as in Example 1 except that an Ag—Cu—Fe alloy was used. The obtained alloy powder had an egg-shaped separated structure similar to that in Example 4 and a dispersed structure similar to that in Example 1 (the ratio between the egg-shaped separated structure and the dispersed structure was 50%: 50%). The specific resistance measured by the same method as in Example 1 was 2.45 μΩ · cm.

[実施例14]
Ag−Cu−X基合金として、三元系において液相の二相領域内の組成を有する、38.1質量%のAgと22.4質量%のCuと39.5質量%のFeからなるAg−Cu−Fe合金を使用した以外は、実施例1と同様の方法によって、平均粒径150μm以下の合金粉末を得た。得られた合金粉末は、実施例4と同様の卵型分離組織を有し、実施例1と同様の方法により測定した比抵抗は3.47μΩ・cmであった。
[Example 14]
As an Ag-Cu-X-based alloy, it is composed of 38.1% by mass of Ag, 22.4% by mass of Cu and 39.5% by mass of Fe having a composition in a liquid phase two-phase region in a ternary system. An alloy powder having an average particle size of 150 μm or less was obtained in the same manner as in Example 1 except that an Ag—Cu—Fe alloy was used. The obtained alloy powder had the same egg-shaped separated structure as in Example 4, and the specific resistance measured by the same method as in Example 1 was 3.47 μΩ · cm.

これらの実施例6〜14の合金の組成および分析結果を表2に示す。

Figure 2009068086
Table 2 shows the compositions and analysis results of the alloys of Examples 6 to 14.
Figure 2009068086

実施例1で得られた合金粉末の粒子断面組織の金属顕微鏡写真である。2 is a metallographic micrograph of a grain cross-sectional structure of the alloy powder obtained in Example 1. FIG. 実施例4で得られた合金粉末の粒子断面組織の金属顕微鏡写真である。4 is a metallographic micrograph of a particle cross-sectional structure of the alloy powder obtained in Example 4. 比較例1で得られた合金粉末の粒子断面組織の金属顕微鏡写真である。2 is a metallographic micrograph of the cross-sectional structure of the alloy powder obtained in Comparative Example 1.

Claims (8)

AgとCuとX(XはNi、FeまたはCo)とからなり、三元系において液相の二相領域内の組成を有するAg−Cu−X合金の溶湯を噴霧して急冷して、Agマトリックス中にCu−X基合金の微細な分散相が分散した組織およびCu−Xリッチ相からなるコア部がAgリッチ相によって取り囲まれた組織の少なくとも一方の組織を有する導電性複合粉末を製造することを特徴とする、導電性複合粉末の製造方法。 Ag, Cu, and X (X is Ni, Fe, or Co), and in a ternary system, a molten Ag—Cu—X alloy having a composition in a liquid phase two-phase region is sprayed and rapidly cooled to obtain Ag. A conductive composite powder having a structure in which a fine dispersed phase of a Cu-X based alloy is dispersed in a matrix and a structure in which a core portion composed of a Cu-X rich phase is surrounded by an Ag rich phase is manufactured. A method for producing a conductive composite powder, wherein 前記Ag−Cu−X合金が、3.6〜96.8質量%のAgと、0.1〜40.0質量%のCuと、0.1〜96.2質量%のNiとからなるAg−Cu−Ni合金であることを特徴とする、請求項1に記載の導電性複合粉末の製造方法。 The Ag—Cu—X alloy is composed of 3.6 to 96.8% by mass of Ag, 0.1 to 40.0% by mass of Cu, and 0.1 to 96.2% by mass of Ni. The method for producing a conductive composite powder according to claim 1, wherein the method is a Cu—Ni alloy. 前記Ag−Cu−X合金が、20.0質量%を超え且つ96.8質量%以下のAgと、0.1〜40.0質量%のCuと、1.0〜96.0質量%のFeとからなるAg−Cu−Fe合金であることを特徴とする、請求項1に記載の導電性複合粉末の製造方法。 The Ag-Cu-X alloy is more than 20.0% by mass and 96.8% by mass or less of Ag, 0.1 to 40.0% by mass of Cu, and 1.0 to 96.0% by mass of Ag. It is an Ag-Cu-Fe alloy which consists of Fe, The manufacturing method of the electroconductive composite powder of Claim 1 characterized by the above-mentioned. 前記Ag−Cu−X合金が、20.0質量%を超え且つ96.8質量%以下のAgと、0.1〜40.0質量%のCuと、1.1〜96.2質量%のCoとからなるAg−Cu−Co合金であることを特徴とする、請求項1に記載の導電性複合粉末の製造方法。 The Ag-Cu-X alloy is more than 20.0% by mass and 96.8% by mass or less of Ag, 0.1 to 40.0% by mass of Cu, and 1.1 to 96.2% by mass of Ag. The method for producing a conductive composite powder according to claim 1, which is an Ag—Cu—Co alloy made of Co. AgとCuとX(XはNi、FeまたはCo)とからなるAg−Cu−X合金粉末であり、三元系において液相の二相領域内の組成を有し、Agマトリックス中にCu−X基合金の微細な分散相が分散した組織およびCu−Xリッチ相からなるコア部がAgリッチ相によって取り囲まれた組織の少なくとも一方の組織を有することを特徴とする、導電性複合粉末。 Ag-Cu-X alloy powder composed of Ag, Cu and X (X is Ni, Fe or Co), and has a composition in a liquid phase two-phase region in a ternary system, and Cu-- A conductive composite powder characterized in that it has at least one of a structure in which a fine dispersed phase of an X-base alloy is dispersed and a core part composed of a Cu-X rich phase surrounded by an Ag rich phase. 前記Ag−Cu−X合金粉末が、3.6〜96.8質量%のAgと、0.1〜40.0質量%のCuと、0.1〜96.2質量%のNiとからなるAg−Cu−Ni合金であることを特徴とする、請求項5に記載の導電性複合粉末。 The said Ag-Cu-X alloy powder consists of 3.6-96.8 mass% Ag, 0.1-40.0 mass% Cu, and 0.1-96.2 mass% Ni. The conductive composite powder according to claim 5, which is an Ag-Cu-Ni alloy. 前記Ag−Cu−X合金粉末が、20.0質量%を超え且つ96.8質量%以下のAgと、0.1〜40.0質量%のCuと、1.0〜96.0質量%のFeとからなるAg−Cu−Fe合金であることを特徴とする、請求項5に記載の導電性複合粉末。 The Ag-Cu-X alloy powder is more than 20.0% by mass and 96.8% by mass or less of Ag, 0.1 to 40.0% by mass of Cu, and 1.0 to 96.0% by mass. The conductive composite powder according to claim 5, which is an Ag—Cu—Fe alloy composed of Fe. 前記Ag−Cu−X合金粉末が、20.0質量%を超え且つ96.8質量%以下のAgと、0.1〜40.0質量%のCuと、1.1〜96.2質量%のCoとからなるAg−Cu−Co合金であることを特徴とする、請求項5に記載の導電性複合粉末。
The Ag-Cu-X alloy powder is more than 20.0% by mass and 96.8% by mass or less of Ag, 0.1 to 40.0% by mass of Cu, and 1.1 to 96.2% by mass. The conductive composite powder according to claim 5, which is an Ag—Cu—Co alloy composed of Co.
JP2007239093A 2007-09-14 2007-09-14 Electrically conductive composite powder and method for producing the same Pending JP2009068086A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007239093A JP2009068086A (en) 2007-09-14 2007-09-14 Electrically conductive composite powder and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007239093A JP2009068086A (en) 2007-09-14 2007-09-14 Electrically conductive composite powder and method for producing the same

Publications (1)

Publication Number Publication Date
JP2009068086A true JP2009068086A (en) 2009-04-02

Family

ID=40604654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007239093A Pending JP2009068086A (en) 2007-09-14 2007-09-14 Electrically conductive composite powder and method for producing the same

Country Status (1)

Country Link
JP (1) JP2009068086A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102873324A (en) * 2012-10-17 2013-01-16 厦门大学 Covering-type copper-nickel-silver composite powder and preparation method thereof
CN105598467A (en) * 2016-01-20 2016-05-25 哈尔滨工业大学深圳研究生院 High-temperature-resistant silver-coated and nickel-coated copper conductive powder of core-shell structure and preparation method thereof
WO2020105688A1 (en) * 2018-11-22 2020-05-28 株式会社カネカ Multicomponent metal compound

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03245404A (en) * 1990-02-23 1991-11-01 Asahi Chem Ind Co Ltd Silver alloy conductive paste and conductor using same paste
JPH1192805A (en) * 1997-09-17 1999-04-06 Sumitomo Metal Mining Co Ltd Copper alloy powder and its production
JP2003197032A (en) * 2001-12-25 2003-07-11 Teikoku Tsushin Kogyo Co Ltd Conductive paste

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03245404A (en) * 1990-02-23 1991-11-01 Asahi Chem Ind Co Ltd Silver alloy conductive paste and conductor using same paste
JPH1192805A (en) * 1997-09-17 1999-04-06 Sumitomo Metal Mining Co Ltd Copper alloy powder and its production
JP2003197032A (en) * 2001-12-25 2003-07-11 Teikoku Tsushin Kogyo Co Ltd Conductive paste

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102873324A (en) * 2012-10-17 2013-01-16 厦门大学 Covering-type copper-nickel-silver composite powder and preparation method thereof
CN105598467A (en) * 2016-01-20 2016-05-25 哈尔滨工业大学深圳研究生院 High-temperature-resistant silver-coated and nickel-coated copper conductive powder of core-shell structure and preparation method thereof
WO2020105688A1 (en) * 2018-11-22 2020-05-28 株式会社カネカ Multicomponent metal compound

Similar Documents

Publication Publication Date Title
JP6100978B1 (en) Graphene reinforced copper-based composite contact material and method for producing the same
JP6126066B2 (en) Electrical contact material and manufacturing method thereof
CN103489665B (en) The preparation method of high breaking low-voltage electrical apparatus contact material, the preparation method of high breaking low-voltage electrical apparatus composite contact material
JP5124734B2 (en) Electrode material for vacuum circuit breaker and manufacturing method thereof
JPWO2006109573A1 (en) Conductive filler and solder material
CN103695682B (en) A kind of silver oxide contact material and preparation method and products thereof with strengthening substrate performance additive
CN106169386A (en) For the preparation method containing the electrical contact material of plating Ag CNTs
CN111468719B (en) Silver tin oxide sheet-shaped electrical contact and preparation method thereof
CN105742083A (en) Composite electric contact material with carbon nanotube enhancement, and preparation process thereof
CN109500391A (en) A kind of preparation method of high ductility silver zinc oxide contact material
CN102044347B (en) Preparation method and products of silver-copper-nickel-ceramic alloy contact material with high welding resistance
JP2009068086A (en) Electrically conductive composite powder and method for producing the same
CN105200262A (en) Preparation method of silver-based flaky electric contact material high in stannic oxide content
JP2003168321A (en) Copper alloy powder for conductive paste
TWI442415B (en) Conductive paste composition
CN111468718B (en) Silver copper oxide sheet-shaped electric contact and preparation method thereof
CN1033524C (en) Silver-tase alloy electric probe material
CN109593981A (en) A kind of preparation method for the sliver oxidized tin contactor materials improving ingot blank agglutinating property
CN104588672A (en) Preparation method of in-situ doped copper-bearing tin oxide powder and silver tin oxide material
CN111463046B (en) Silver zinc oxide sheet-shaped electrical contact and preparation method thereof
JP2001131655A (en) Copper alloy powder for conductive paste
CN113205901A (en) Glass frit, conductive paste and application in preparation of ceramic dielectric filter electrode
CN117127046B (en) SnO (tin oxide)2@In2O3Preparation method of reinforced silver-based composite material
CN109500392A (en) A kind of preparation method for the silver zinc oxide contact material improving ingot blank agglutinating property
CN1328401C (en) High-copper silverless contact for low voltage apparatus material and processing method thereof

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090702

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120319

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121002