JP3847022B2 - Thermally conductive elastomer composition, molded product thereof and laminate thereof - Google Patents

Thermally conductive elastomer composition, molded product thereof and laminate thereof Download PDF

Info

Publication number
JP3847022B2
JP3847022B2 JP11143499A JP11143499A JP3847022B2 JP 3847022 B2 JP3847022 B2 JP 3847022B2 JP 11143499 A JP11143499 A JP 11143499A JP 11143499 A JP11143499 A JP 11143499A JP 3847022 B2 JP3847022 B2 JP 3847022B2
Authority
JP
Japan
Prior art keywords
soft magnetic
conductive elastomer
magnetic ferrite
thermal conductivity
thermally conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11143499A
Other languages
Japanese (ja)
Other versions
JP2000302970A (en
Inventor
幹育 中西
Original Assignee
鈴木総業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 鈴木総業株式会社 filed Critical 鈴木総業株式会社
Priority to JP11143499A priority Critical patent/JP3847022B2/en
Publication of JP2000302970A publication Critical patent/JP2000302970A/en
Application granted granted Critical
Publication of JP3847022B2 publication Critical patent/JP3847022B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、放熱材料として各種電気および電子機器の構成材料として適用することができるほか、磁性材料としても使用できる熱伝導性シリコーンゴム組成物に関する。また、本発明は、上記熱伝導性シリコーンゴム組成物を硬化させた熱伝導性シリコーンゴム成形体と、熱伝導性シリコーンゴム組成物のシート状硬化物に銅箔層を積層させた熱伝導性シリコーンゴム応用品に関する。
【0002】
【従来の技術】
各種の電気および電子機器においては、発熱性部品から発生される熱を効率よく放熱することが、誤作動を防止したり、製品寿命を延ばしたりする上で重要である。このような放熱材料として、熱伝導性に優れると共に電気絶縁性にも優れたものが望まれており、基材となるシリコーンゴムに熱伝導性充填材を配合したシリコーンゴム組成物が多数提案されている(特公平6−55891号、特公平6−38460号、特公平7−91468号等)。
【0003】
【発明が解決しようとする課題】
一般に、シリコーンゴムの熱伝導性を高めようとする場合、熱伝導性充填材の配合量を増加させる方法が採られる。しかし、この場合には、シリコーンゴム成形体が、水気がなくて乾いたような状態となり、表面の平滑性が失われてしまうという問題があるほか、従来一般に用いられている熱伝導性充填材は比較的高価であるため、配合量の増加がコストアップの要因となってしまうという問題がある。
【0004】
また、電子機器等の小型化、薄肉化の要請に応えるためには、上記シリコーンゴム成形体もより薄い成形体にする必要がある。しかし、十分な放熱性を付与できる量の熱伝導性充填材を配合した場合、例えば薄いシート状のような成形体を製造することは困難である。さらに、場合によっては、シリコーンゴム成形体が磁性材料として機能することも望まれることがあるが、従来一般に用いられている熱伝導性充填材ではかかる要望を満たすことができない。
【0005】
そこで、本発明者は、先に、熱伝導性および電気絶縁性が優れており、成形が容易で、しかも得られる成形体の表面平滑性も優れており、さらに比較的安価で、かつ磁性材料としても使用できる熱伝導性エラストマー組成物を提供することを目的として、シリコーンゴムにフェライトを配合した熱伝導性シリコーンゴム組成物を発明し、特許出願した(特願平9−284079号)。そして、本発明は、その改良に係るもので、目的とするところは、やみくもに高熱伝導率を求めるのではなく、適度な熱伝導率、例えば普及帯域として膨大な需要が潜在すると予想される0.9〜1.0W/K・m辺りの熱伝導率を普及価格に見合う低コストで実現し得る、熱伝導性シリコーンゴム組成物を提供すること、および該組成物の硬化物からなる成形体、並びに該組成物のシート状硬化物と銅箔層との積層とからなる応用品を提供することにある。ちなみに、軟磁性フェライトは従来一般に用いられている熱伝導性充填材に比べて遙かに低価格で入手することができ、熱伝導性シリコーンゴム組成物を安価に製造し得る可能性がある。
【0006】
【課題を解決するための手段】
本発明者は、上記本発明の目的を達成すべく鋭意研究した結果、次のようなことを知見し、フェライトのなかでも軟磁性フェライト、軟磁性フェライトのなかでもNi−Zn系の軟磁性フェライトを主たる熱伝導性充填材に用いたら、という着眼により本発明を完成したものである。すなわち、軟磁性フェライトには、いわゆるCu−Zn系、Ni−Zn系あるいはMn−Mg系のものがあるが、これらを熱伝導性シリコーンゴム組成物への熱伝導性充填材として実際に用いてみたところ、種々の得失、挙動があり、一様に使えるものではなかったのである。まず、熱伝導率に関してであるが、Mn−Mg系を用いたものが0.62W/K・m、Ni−Zn系が0.59W/K・m、Cu−Zn系が0.52W/K・mと、Mn−Mg系を用いたものが一番熱伝導率に優れるとの知見を得た。この際、これら軟磁性フェライトを硬化機構が付加型のシリコーンゴム材料に配合すると、部分的に未硬化ないし硬化不十分な箇所が生じる、いわゆる硬化阻害が起こることを発見し、上記各種の軟磁性フェライトの中でも、Mn−Mg系は硬化阻害を起こす危険があり、Ni−Zn系とCu−Zn系とは硬化阻害を起こし難いものであることを知見した。そして、均質な製品組成物を得るという点で、これら軟磁性フェライトの分散性も問題となるが、Mn−Mg系では多くが凝集したまま残り、Cu−Zn系では若干が凝集して残ることがあり、Ni−Zn系では凝集せず均一に分散することを知見した。つまり、上記の各種軟磁性フェライトにおいて、それぞれその熱伝導率、硬化阻害性、分散性などに差異があり、Ni−Zn系は、熱伝導性シリコーンゴム組成物の熱伝導性充填材として用いるに相応しい、そこそこの熱伝導性と、硬化阻害を起こし難い特性と、優れた分散性とを兼ね揃えたものであることを知見した。さらにまた、熱伝導性の向上のために、Ni−Zn系軟磁性フェライトと共に軟磁性フェライトより熱伝導率の高い充填材を配合できること、該軟磁性フェライトより熱伝導率の高い充填材として金属ケイ素がコスト、熱伝導率等の各点から好ましいことを知見し、また、Ni−Zn系軟磁性フェライトの形状が粒径30〜40μmであることがシリコーンゴム材料への分散性、硬化阻害の抑制の各点からより好ましいことを知見した。また、Ni−Zn系軟磁性フェライト自体が電磁波吸収性を有するものであり、これを熱伝導性充填材として用いた熱伝導性シリコーンゴム組成物にもその効果を期待するのであるが、熱伝導性シリコーンゴム組成物としての電磁波吸収性を一層高めるために、Ni−Zn系軟磁性フェライトと共にカーボンナノチューブやカーボンマイクロコイルを配合できることを知見した。
【0007】
すなわち、本発明は、上記の目的を達成するために、次の熱伝導性シリコーンゴム組成物およびその成形体並びにその応用品を提供する。
【0008】
(1)シリコーンゴムまたはシリコーンゲルに、Ni−Zn系軟磁性フェライトと、軟磁性フェライトより熱伝導率の高い充填材として金属ケイ素に加えて、カーボンナノチューブおよびカーボンマイクロコイルのいずれか一方または双方が配合されていることを特徴とする熱伝導性エラストマー組成物。
【0009】
(2)Ni−Zn系軟磁性フェライトが、粒径3〜40μmの球状である(1)記載の熱伝導性エラストマー組成物。
【0010】
(3)金属ケイ素の配合量がNi−Zn系軟磁性フェライト100重量部に対して10〜100重量部であることを特徴とする(1)又は(2)記載の熱伝導性エラストマー組成物。
【0011】
(4)カーボンナノチューブやカーボンマイクロコイルの配合量が、組成物総重量に対して0.05〜10重量%であることを特徴とする(1)〜(3)のいずれか一つに記載
の熱伝導性エラストマー組成物。
【0012】
(6)上記(1)〜(4)のいずれか一つに記載の熱伝導性エラストマー組成物の硬化物からなることを特徴とする熱伝導性エラストマー成形。
【0013】
(7)上記(1)〜(4)のいずれか一つに記載の熱伝導性エラストマー組成物のシート状硬化物に銅箔層を積層してなることを特徴とする熱伝導性エラストマー積層体。
【0014】
【発明の実施の形態】
本発明の組成物で用いるシリコーンゴムとしては、従来から知られ、市販されている種々のシリコーンゴムを適宜選択して用いることができる。例えば、加熱硬化型あるいは常温硬化型のもの、硬化機構が縮合型あるいは付加型のものなど、いずれも用いることができる。また、ケイ素原子に結合する基も特に限定されるものではなく、その例として、メチル基、エチル基、プロピル基等のアルキル基、シクロペンチル基、シクロヘキシル基等のシクロアルキル基、ビニル基、アリル基等のアルケニル基、フェニル基、トリル基等のアリール基のほか、これらの基の水素原子が部分的に他の原子または結合基で置換されたものを挙げることができる。上記各種のシリコーンゴムの中でも、硬化機構が付加型のものを用いた場合には、副生成物が生成されず、熱伝導性シリコーンゴム組成物の基材としての優位性がある他、本発明の効果の一つである硬化阻害抑制効果が一層顕著となる。
【0015】
本発明の組成物で用いるシリコーンゴムはゲル状態のものでもよく、例えば、硬化後におけるJISK2207−1980(50g荷重)の針入度が5〜200のものを用いることができる。この程度の柔らかさのシリコーンゴムを用いると、成形体として用いるときの密着性で有利となる。
【0016】
また、一般に、市販のシリコーンゴムには、充填材、可塑材、その他の添加剤等を含んだ形で市場に出荷されるものがあるが、本発明の組成物では、かかる充填材、可塑材、着色剤、難燃剤、その他の添加剤を含んだシリコーンゴムも、本発明の目的を損なわない範囲内において適宜選択して用いることができる。
【0017】
本発明の組成物で用いるNi−Zn系軟磁性フェライトとしては、従来から知られ、市販されているものを適宜選択して用いることができる。そして、一般に、Ni−Zn系軟磁性フェライトは、Mn−Mg系軟磁性フェライトやCu−Zn系軟磁性フェライトに比べ多少とも高めではあるものの、例えば窒化硼素等のような高熱伝導充填材と比べると遥かに低価格で入手することができる他、他の軟磁性フェライトに比べてより電磁波吸収性を奏し得るという特徴がある。また、この軟磁性フェライトは、その形状が、球状、繊維状、不定形状等の任意の形状のものを用いることができ、その大きさも、必要に応じて適宜選択することができるが、3μm以下の小径になると、多少とも硬化遅延等の硬化阻害の傾向が出始め、また、熱伝導率も低下傾向を示すので、3〜40μm程度の球状であることが好ましく、12〜18μm程度が最適である。Ni−Zn系軟磁性フェライトをかかる大きさ、形状にて用いれば、硬化阻害せず、シリコーンゴム材料への分散性にも優れ、そこそこの熱伝導性が出せる。これ以上の粒径、例えば100μm以上のものを用いると、熱伝導性シリコーンゴム成形体としての平滑性および密着性に劣るようになり、好ましくない。Ni−Zn系軟磁性フェライトの配合量は、必要に応じて適宜設定することができるが、一般に、組成物に十分な熱伝導性を付与し、かつ組成物の良好な成形性を確保するために、組成物総重量に対して20〜80重量%が適当である。
【0018】
本発明の組成物においては、0.9〜1.0W/K・m辺りやそれ以上の熱伝導率を得るために、必要に応じて、熱伝導性を向上させるための成分として、上記Ni−Zn系軟磁性フェライトに加えて、軟磁性フェライトより熱伝導率の高い充填材を配合することができる。この充填材としては、従来から知られ、市販されている種々の高熱伝導率の充填材を適宜選択して用いることができ、その例として、金属ケイ素、窒化アルミニウム、窒化ケイ素、窒化硼素、窒化チタン、窒化ジルコニウムの等の窒化物、酸化アルミニウム、酸化ケイ素、酸化硼素、酸素チタン、酸化ジルコニウム等の酸化物、純鉄等が挙げられる。上記各種の高熱伝導率の充填材の中でも、金属ケイ素がコスト、熱伝導率等の各点から好ましく用いられる。一般に、金属ケイ素は、ケイ砂を炭素等で還元する方法などで製造され、純度99.5%以上のものが化学工業用として多用されており、またかかる化学工業用金属ケイ素をさらに精製する精製方法も種々提案されている。本発明においては、上記化学工業用金属ケイ素あるいはそれをさらに精製した精製品等を適宜選択して用いることができる。また、上記各種の高熱伝導率の充填材は、必要に応じて複数種併用することもできる。また、この高熱伝導率の充填材は、その形状を、必要に応じて球状、繊維状、不定形状等の任意の形状にすることができ、また、その大きさを、必要に応じて適宜設定することができるが、一般に、粒径10〜50μmの球状であることが分散性等向上の点から好ましい。なお、この粒径の範囲でNi−Zn系軟磁性フェライトの粒径と異なる粒径のものを選択すれば、大きな粒の隙間に小さな粒が入り込み粒同士がより密着して接触具合も増すため、熱伝導率を向上させることができる。この高熱伝導率の充填材の配合量は、価格も勘案して必要に応じて適宜設定することができるが、一般に、Ni−Zn系軟磁性フェライト100重量部に対して10〜100重量部であって、かつ、この高熱伝導率の充填材とNi−Zn系軟磁性フェライトの合計量が組成物総重量に対して20〜80重量%であることが適当である。
【0019】
また、上記の本発明の組成物で用いるNi−Zn系軟磁性フェライトおよび/または必要に応じて用いる軟磁性フェライトより熱伝導率の高い充填材は、必要に応じて、シリコーンゴム材料との混合性を一層高めて均一な組成物を一層容易に得るために、その表面をシランカップリング剤で処理することができる。このシランカップリング剤としては、γ−クロロプロピルトリメトキシシラン、ビニルトリクロロシラン、ビニルトリエトキシシラ、ビニルトリメトキシシラン、ビニル・トリス(β−メトキシエトキシ)シラン、γ−メタクリロキシプロピルトリメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、γ−クリシドキシプロピルトリメトキシシラン、γ−メルカプトプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、N−β−(アミノエチル)−γ−アミノプロピルトリメトキシシラン、γ−ユレイドプロピルトリエトキシシラン等を挙げることができる。シランカップリング剤の使用量は、必要に応じて適宜設定することができるが、一般に、Ni−Zn系軟磁性フェライトの重量あるいは軟磁性フェライトより熱伝導率の高い充填材の重量に対して約0.2〜10重量%が好ましい。
【0020】
本発明の組成物においては、上記Ni−Zn系軟磁性フェライト自体が電磁波吸収性を呈するフィラーとして電磁波吸収塗料等に添加されていたりするものであるから、これを熱伝導性充填材として用いた熱伝導性シリコーンゴム組成物にもその効果を期待できるものであるが、必要に応じて、熱伝導性シリコーンゴム組成物としての電磁波吸収性を一層高めるための成分として、上記Ni−Zn系軟磁性フェライトに加えて、あるいは上記Ni−Zn系軟磁性フェライトと軟磁性フェライトより熱伝導率の高い充填材に加えて、カーボンナノチューブあるいはカーボンマイクロコイルを配合することができる。このカーボンナノチューブやカーボンマイクロコイルとしては、公知の種々のカーボンナノチューブやカーボンマイクロコイルを適宜選択して用いることができる。カーボンナノチューブは、一般に、炭素からなる、外径2〜70nmで、長さが直径の102 上である円筒状の中空繊維状のものであって、炭素含有ガスの気相分解反応や、炭素棒、炭素繊維等を用いたアーク放電法等によって得られるものである。また、その末端形状は必ずしも円筒状である必要はなく、例えば円錐状等変形していても差し支えない。さらに、末端は閉じていても開いていてもどちらでも良い。好ましく用いられるカーボンナノチューブの例として、ハイペリオン・カタリシス・インターナショナル社製のGraphiteFibrils・GradesBN(商品名)等が挙げられる。カーボンマイクロコイルは、一般に
、炭素からなる、繊維直径が0.05〜5μm、コイル外径が繊維直径の2〜10倍であり、巻数が10μm当たり5/コイル外径(μm)〜50/コイル外径(μm)であるコイル状繊維のものであって、炭素含有ガスの気相分解反応によって得られるものである。勿論、カーボンナノチューブとカーボンマイクロコイルを併用することもできる。そして、カーボンナノチューブやカーボンマイクロコイルの配合量は、未だこれらの総生産量が少ないこともあって非常に高価であるため、必要に応じて適宜設定することとなるが、一般に、組成物総重量に対して0.05〜10重量%が適当である。
【0021】
本発明の組成物の調製は、上記したシリコーンゴム、Ni−Zn系軟磁性フェライト、必要に応じて配合される軟磁性フェライトより熱伝導率の高い充填材、カーボンナノチューブやカーボンマイクロコイル、本発明の目的を損なわない範囲で配合される各種添加剤などの各成分をヘンシェルミキサー、バンバリー混合機、三本ロール混練機等の公知の混合手段を用いて適宜混合して行うことができる。
【0022】
また、本発明の熱伝導性シリコーンゴム成形体は、通常のゴム成形法を適用して、上記本発明の組成物を硬化させて得ることができる。この成形法としては、それ自体公知の種々のゴム成形法を適宜選択して採用することができるが、その例として、プレス成形、トランスファー成形、押出成形、射出成形、カレンダー成形等が挙げられる。本発明の成形体の形状は、特に限定されるものではなく、用途に応じた所望の形状にすることができる。例えば、シート状にする場合には、厚みが100μm〜2mm程度であることが好ましい。
【0023】
また、本発明の熱伝導性シリコーンゴム応用品は、熱伝導性シリコーンゴム組成物のシート状硬化物に対して、少なくともその表面に銅箔層を積層したものであり、それ自体公知の方法を適宜選択して積層すればよいが、例えば、銅箔にシリコーン系プライマーおよびシリコーン系接着剤を塗布した上で、これに熱伝導性シリコーンゴム組成物のシート状硬化物を重ね、両者をプレスするなどして得ることができる。そして、この熱伝導性シリコーンゴム応用品は、表層の銅箔層を回路パターンにエッチング等して、熱伝導性、放熱性の良いフレキシブルなプリント基板として用いることができる。
【0024】
【実施例】
以下、参考例、実施例および比較例により本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。
【0025】
参考例1
JIS K2207−1980(50g荷重)の針入度が100のシリコーンゲル(東
レ・ダウコーニング・シリコーン(株)製;CF5057(商品名))25重量部と、平均粒径3.6μmの球状のNi−Zn系軟磁性フェライト粉末(パウダーテック社製;Ni−Zn系フェライト微粉)75重量部を、三本ロール混練機にて常温下で混合して組成物を調製し、次いで、得られた組成物を、真空脱泡した後、空気を巻き込まないようガラス板間に流し込み、100℃で30分間加熱プレス成形して、厚さが1mmの成形体を得た。組成物の調製に際して、フェライト粉末は容易に均一に分散され、得られた成形体は、表面にべた付きを残すことなく全体が均一で好適に硬化していた。また、得られた成形体の熱伝導率、針入度および比重等は表1に示すとおりであり、フェライト粉末の分散性は、その調製時の目視により観察した結果を示し、硬化状況は、目視及び触指により評価した結果を示す。
【0026】
参考例2および3
Ni−Zn系軟磁性フェライト粉末の平均粒径が5.2μm(参考例2)または16.0μm(参考例3)であったこと以外は参考例1と同様に操作して、組成物を調製し、それを加熱プレス成形して、厚さが1mmの成形体を得た。組成物の調製に際して、何れも、フェライト粉末は容易に均一に分散され、得られた成形体は、表面にべた付きを残すことなく全体が均一で好適に硬化していた。特に、Ni−Zn系軟磁性フェライト粉末の平均粒径が16.0μm(参考例3)の場合には、シリコーンゲルへの均一分散、および成形体への硬化が早く行われ、一層好適であった。得られた成形体の熱伝導率、針入度、比重、分散状況、および硬化状況は、表1に示すとおりであった。表1から明らかなように、参考例3(Ni−Zn系軟磁性フェライト粉末の平均粒径が16.0μm)の場合は、参考例1および参考例2の場合に比べて、熱伝導率が高く、分散性、硬化状況とも非常に優れるものであった。
【0027】
参考例4
参考例1と同様のシリコーンゲル25重量部、参考例1と同様のNi−Zn系軟磁性フェライト粉末52.5重量部、および平均粒径10μmの球状の金属ケイ素粉末(アドマテックス社製;アドマファインシリコン(商品名))22.5重量部(Ni−Zn系軟磁性フェライト100重量部に対して金属ケイ素粉末43重量部)を原料とし、参考例1と同様に操作して、組成物を調製し、それを加熱プレス成形して、厚さが1mmの成形体を得た。組成物の調製に際して、フェライト粉末および金属ケイ素粉末は均一に分散され、得られた成形体は、表面にべた付きを残すことなく全体が均一で好適に硬化していた。得られた成形体の熱伝導率、針入度、比重、分散状況、および硬化状況は、表1に示すとおりであった。
【0028】
参考例5
Ni−Zn系軟磁性フェライト粉末の平均粒径が16.0μmであったこと以外は参考例4と同様に操作して、組成物を調製し、それを加熱プレス成形して、厚さが1mmの成形体を得た。組成物の調製に際して、フェライト粉末および金属ケイ素粉末は容易に均一に分散され、得られた成形体は、表面にべた付きを残すことなく全体が均一で好適に硬化していた。得られた成形体の熱伝導率、針入度、比重、分散状況、および硬化状況は、表1に示すとおりであった。
【0029】
実施例
前述のカーボンナノチューブを組成物総重量の0.1重量%分更に加えた以外は参考例5と同様に操作して、組成物を調製し、それを加熱プレス成形して、厚さが1mmの成形体を得た。組成物の調製に際して、カーボンナノチューブの分散に多少工夫が必要とされ、また、混練時に原料が急激に増粘するので、後のプレス成形時の成形性に多少とも不利であった。それでも、フェライト粉末および金属ケイ素粉末並びにカーボンナノチューブは、均一に分散され、得られた成形体は、表面にべた付きを残すことなく全体が均一で好適に硬化していた。得られた成形体の熱伝導率、針入度、比重、分散状況、および硬化状況は、表1に示すとおりであった。なお、実施例として例示しないが、カーボンマイクロコイルの場合には混練時の増粘がそれ程でもなかった。
【0030】
参考例6
200μm厚の銅箔に、シリコーンプライマー(東レ・ダウコーニング・シリコーン(株)製;プライマーA(商品名))とシリコーン系接着剤(信越化学工業(株)製;KE−1800T(商品名))とを薄く重ね塗りした上で、参考例5として得られた熱伝導性シリコーンゴム組成物のシート状硬化物たるところの熱伝導性シリコーンゴム成形体の1mm厚シートを重ね、これらを100℃で30分間加熱プレスして、銅箔層を積層してなる熱伝導性シリコーンゴム応用品を得た。この後、常法により銅箔層を適宜な回路パターンにエッチングしたところ、熱伝導性、放熱性の良いフレキシブルなプリント基板が得られた。
【0031】
比較例1
参考例1において、Ni−Zn系軟磁性フェライト粉末に代えて平均粒径6.3μmの球状のMn−Mg系軟磁性フェライト粉末(パウダーテック社製;Mn−Mg系フェライト微粉)を用いたこと以外は参考例1と同様に操作して、組成物を調製し、それを加熱プレス成形して、厚さが1mmの成形体を得た。組成物の調製に際して、混練時間を増してみたにも拘わらず、フェライト粉末の凝集物が多数残存し、混練時の原料温度が50℃に上昇して部分的に硬化し始めたこともあって、プレス成形時の成形性が悪化した。得られた成形体には部分的に未硬化部分があり、全体的に表面にべたつきが残った。また、得られた成形体の熱伝導率、針入度、比重、分散状況、および硬化状況は、表1に示すとおりであった。
【0032】
比較例2
参考例1において、Ni−Zn系軟磁性フェライト粉末に代えて平均粒径6.3μmの球状のCu−Zn系軟磁性フェライト粉末(パウダーテック社製;Cu−Zn系フェライト微粉)を用いたこと以外は参考例1と同様に操作して、組成物を調製し、それを加熱プレス成形して、厚さが1mmの成形体を得た。組成物の調製に際して、フェライト粉末の凝集物が若干残存し、混練時の原料温度が50℃近くに上昇して部分的に硬化し始めたこともあって、プレス成形時の成形性も良くはなかったが、得られた成形体は、全体的に硬化しており、未硬化部分はなく、表面のべたつきもなかった。得られた成形体の熱伝導率、針入度、比重、分散状況、および硬化状況は、表1に示すとおりであった。
【0033】
【表1】

Figure 0003847022
【0034】
なお、表1にて測定した熱伝導率は、京都電子工業社製の迅速熱伝導率計(QTM−500)を用いて測定した。また、表1にて測定した針入度は、JISK2207−1980(50g荷重)に基づき離合社の針入度測定器を用いて測定した。
【0035】
【発明の効果】
本発明によれば、闇雲に高熱伝導率ではないが、適度な熱伝導率、例えば普及帯域として膨大な需要が潜在すると予想される0.9〜1.0W/K・m辺りの熱伝導率を呈することのできる均質な熱伝導性シリコーンゴム組成物、およびその硬化物からなる成形体が、硬化阻害を起こすことなく、作業性良く製造できて、普及価格に見合う低価格で提供される。また、同様にして、熱伝導性、放熱性の良いフレキシブルなプリント基板などの用途に最適な熱伝導性シリコーンゴム応用品が提供される。[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to a thermally conductive silicone rubber composition that can be used as a constituent material for various electric and electronic devices as a heat dissipation material and can also be used as a magnetic material. The present invention also provides a heat conductive silicone rubber molded body obtained by curing the above heat conductive silicone rubber composition, and a heat conductive material obtained by laminating a copper foil layer on a sheet-like cured product of the heat conductive silicone rubber composition. It relates to silicone rubber applied products.
[0002]
[Prior art]
  In various electrical and electronic devices, it is important to efficiently dissipate heat generated from heat-generating components in order to prevent malfunctions and extend product life. As such a heat dissipation material, a material excellent in thermal conductivity and electrical insulation is desired, and many silicone rubber compositions in which a thermal conductive filler is blended with a silicone rubber as a base material have been proposed. (No. 6-55891, No. 6-38460, No. 7-91468, etc.).
[0003]
[Problems to be solved by the invention]
  Generally, when increasing the thermal conductivity of silicone rubber, a method of increasing the blending amount of the thermal conductive filler is employed. However, in this case, there is a problem that the silicone rubber molded body is in a dry state without moisture, and the smoothness of the surface is lost. Is relatively expensive, there is a problem that an increase in the amount of blending causes an increase in cost.
[0004]
  In addition, in order to meet the demand for downsizing and thinning of electronic devices and the like, the silicone rubber molded body needs to be made thinner. However, when a heat conductive filler in an amount capable of imparting sufficient heat dissipation is blended, it is difficult to produce a molded body such as a thin sheet. Further, in some cases, it may be desired that the silicone rubber molded body functions as a magnetic material, but such a demand cannot be satisfied by a heat conductive filler that has been conventionally used.
[0005]
  Therefore, the present inventor previously has excellent thermal conductivity and electrical insulation, is easy to mold, and has excellent surface smoothness of the resulting molded article, and is relatively inexpensive and magnetic material. In order to provide a heat conductive elastomer composition that can be used as a heat conductive silicone rubber composition, a heat conductive silicone rubber composition in which ferrite is mixed with silicone rubber was invented and a patent application was filed (Japanese Patent Application No. 9-284079). The present invention relates to the improvement, and the object is not to seek high thermal conductivity indiscriminately, but it is expected that enormous demand is expected as an appropriate thermal conductivity, for example, a spread zone. Providing a thermally conductive silicone rubber composition capable of realizing a thermal conductivity of about 9 to 1.0 W / K · m at a low cost commensurate with a popular price, and a molded article made of a cured product of the composition In addition, an object of the present invention is to provide an application product comprising a laminate of a sheet-like cured product of the composition and a copper foil layer. Incidentally, soft magnetic ferrite can be obtained at a much lower price than conventionally used thermally conductive fillers, and there is a possibility that a thermally conductive silicone rubber composition can be produced at low cost.
[0006]
[Means for Solving the Problems]
  As a result of diligent research to achieve the object of the present invention, the present inventor has found the following, and among the ferrites, soft magnetic ferrite, and among the soft magnetic ferrites, Ni-Zn based soft magnetic ferrites. The present invention has been completed with a focus on the use of as a main heat-conductive filler. That is, soft magnetic ferrites include so-called Cu—Zn, Ni—Zn, or Mn—Mg, which are actually used as thermally conductive fillers for thermally conductive silicone rubber compositions. As a result, there were various pros and cons and behaviors, and they were not uniformly usable. First, regarding thermal conductivity, those using Mn—Mg system are 0.62 W / K · m, Ni—Zn system is 0.59 W / K · m, and Cu—Zn system is 0.52 W / K. -The knowledge that m and the thing using a Mn-Mg type | system | group were the most excellent in thermal conductivity was acquired. At this time, it was discovered that when these soft magnetic ferrites were blended with an addition type silicone rubber material, so-called curing inhibition occurred, resulting in partially uncured or insufficiently cured portions. Among ferrites, it has been found that the Mn—Mg system has a risk of causing hardening inhibition, and the Ni—Zn system and the Cu—Zn system are difficult to cause hardening inhibition. And, in terms of obtaining a homogeneous product composition, the dispersibility of these soft magnetic ferrites also becomes a problem, but in the Mn-Mg system, much remains aggregated, and in the Cu-Zn system, some remains aggregated. It was found that the Ni—Zn system does not aggregate and disperses uniformly. That is, each of the above-mentioned various soft magnetic ferrites has a difference in thermal conductivity, curing inhibition, dispersibility, etc., and Ni—Zn system is used as a thermally conductive filler for a thermally conductive silicone rubber composition. It was found that it had a suitable thermal conductivity, a property that hardly inhibits curing, and an excellent dispersibility. Furthermore, in order to improve thermal conductivity, a filler having higher thermal conductivity than soft magnetic ferrite can be blended with Ni-Zn soft magnetic ferrite, and metallic silicon is used as a filler having higher thermal conductivity than soft magnetic ferrite. Is preferable from various points such as cost and thermal conductivity, and that the shape of the Ni—Zn-based soft magnetic ferrite has a particle size of 30 to 40 μm suppresses dispersibility in the silicone rubber material and inhibition of curing. From these points, it was found to be more preferable. In addition, Ni—Zn soft magnetic ferrite itself has electromagnetic wave absorptivity, and a heat conductive silicone rubber composition using this as a heat conductive filler is expected to have an effect. In order to further improve the electromagnetic wave absorbability of the conductive silicone rubber composition, it has been found that carbon nanotubes and carbon microcoils can be blended together with the Ni—Zn soft magnetic ferrite.
[0007]
  That is, in order to achieve the above object, the present invention provides the following thermally conductive silicone rubber composition, a molded product thereof and an applied product thereof.
[0008]
  (1) In addition to silicon rubber or silicone gel, Ni-Zn-based soft magnetic ferrite, and metallic silicon as a filler having a higher thermal conductivity than soft magnetic ferrite, either or both of carbon nanotubes and carbon microcoils are contained. A thermally conductive elastomer composition characterized by being blended.
[0009]
  (2) The thermally conductive elastomer composition according to (1), wherein the Ni—Zn-based soft magnetic ferrite is spherical with a particle size of 3 to 40 μm.
[0010]
  (3) Compounding amount of metallic silicon isNi-ZnThe heat conductive elastomer composition according to (1) or (2), characterized in that the amount is 10 to 100 parts by weight with respect to 100 parts by weight of the soft magnetic ferrite.
[0011]
  (4) The amount of the carbon nanotube or carbon microcoil is 0.05 to 10% by weight based on the total weight of the composition, as described in any one of (1) to (3)
Thermally conductive elastomer composition.
[0012]
  (6) A thermally conductive elastomer molding comprising a cured product of the thermally conductive elastomer composition according to any one of (1) to (4) above.
[0013]
  (7) A thermally conductive elastomer laminate comprising a copper foil layer laminated on a sheet-like cured product of the thermally conductive elastomer composition according to any one of (1) to (4) above. .
[0014]
DETAILED DESCRIPTION OF THE INVENTION
  As the silicone rubber used in the composition of the present invention, various silicone rubbers conventionally known and commercially available can be appropriately selected and used. For example, any of a heat curing type or a room temperature curing type, a condensation type or an addition type curing mechanism can be used. In addition, the group bonded to the silicon atom is not particularly limited, and examples thereof include alkyl groups such as methyl group, ethyl group and propyl group, cycloalkyl groups such as cyclopentyl group and cyclohexyl group, vinyl group and allyl group. In addition to aryl groups such as alkenyl groups such as phenyl group and tolyl group, those in which hydrogen atoms of these groups are partially substituted with other atoms or bonding groups can be mentioned. Among the various types of silicone rubbers described above, when an addition-type curing mechanism is used, no by-product is generated, and there is an advantage as a base material for the heat conductive silicone rubber composition. The effect of inhibiting the inhibition of curing, which is one of the effects, becomes even more remarkable.
[0015]
  The silicone rubber used in the composition of the present invention may be in a gel state. For example, a rubber having a penetration of JISK2207-1980 (50 g load) after curing of 5 to 200 can be used. Use of such a soft silicone rubber is advantageous in adhesion when used as a molded body.
[0016]
  In general, some commercially available silicone rubbers are shipped to the market in the form of containing fillers, plasticizers, and other additives. In the composition of the present invention, such fillers, plasticizers are used. Silicone rubber containing a colorant, a flame retardant, and other additives can be appropriately selected and used within a range not impairing the object of the present invention.
[0017]
  As the Ni—Zn soft magnetic ferrite used in the composition of the present invention, a conventionally known and commercially available one can be appropriately selected and used. In general, Ni—Zn-based soft magnetic ferrite is slightly higher than Mn—Mg-based soft magnetic ferrite and Cu—Zn-based soft magnetic ferrite, but compared with a high thermal conductive filler such as boron nitride. In addition to being able to be obtained at a much lower price, it has the characteristics that it can exhibit electromagnetic wave absorption more than other soft magnetic ferrites. The soft magnetic ferrite can be used in any shape such as a spherical shape, a fiber shape, and an indefinite shape, and the size can be selected as needed, but is 3 μm or less. When the diameter becomes smaller, the tendency of inhibition of curing such as curing delay starts to appear, and the thermal conductivity tends to decrease. Therefore, the spherical shape is preferably about 3 to 40 μm, and about 12 to 18 μm is optimal. is there. If Ni—Zn-based soft magnetic ferrite is used in such a size and shape, it does not inhibit curing, is excellent in dispersibility in the silicone rubber material, and can exhibit moderate thermal conductivity. Use of particles having a particle size larger than this, for example, 100 μm or more, is not preferable because the smoothness and adhesion as a thermally conductive silicone rubber molded article are inferior. The blending amount of the Ni—Zn-based soft magnetic ferrite can be appropriately set as necessary. In general, in order to impart sufficient thermal conductivity to the composition and to ensure good moldability of the composition. Furthermore, 20 to 80% by weight is appropriate based on the total weight of the composition.
[0018]
  In the composition of the present invention, in order to obtain a thermal conductivity of about 0.9 to 1.0 W / K · m or more, if necessary, the above Ni is used as a component for improving the thermal conductivity. In addition to the Zn-based soft magnetic ferrite, a filler having higher thermal conductivity than the soft magnetic ferrite can be blended. As this filler, conventionally known and commercially available various high thermal conductivity fillers can be appropriately selected and used. Examples thereof include metal silicon, aluminum nitride, silicon nitride, boron nitride, and nitride. Examples thereof include nitrides such as titanium and zirconium nitride, aluminum oxide, silicon oxide, boron oxide, oxides such as oxygen titanium and zirconium oxide, and pure iron. Among the various fillers having high thermal conductivity, metal silicon is preferably used from various points such as cost and thermal conductivity. In general, metallic silicon is produced by a method of reducing silica sand with carbon or the like, and those having a purity of 99.5% or more are widely used for chemical industry, and purification for further purifying such metallic silicon for chemical industry. Various methods have also been proposed. In the present invention, the above-described metal silicon for chemical industry or a purified product obtained by further purifying it can be appropriately selected and used. Moreover, the said various high heat conductivity filler can also use multiple types together as needed. In addition, this high thermal conductivity filler can be formed into an arbitrary shape such as a spherical shape, a fibrous shape, an indefinite shape, etc., if necessary, and the size can be appropriately set as necessary. In general, a spherical shape having a particle diameter of 10 to 50 μm is preferable from the viewpoint of improving dispersibility and the like. In addition, if a particle having a particle size different from that of the Ni-Zn soft magnetic ferrite is selected within this particle size range, small particles enter the gaps between the large particles, and the particles are more closely adhered to each other, so that the contact condition is also increased. The thermal conductivity can be improved. The blending amount of the high thermal conductivity filler can be appropriately set as necessary in consideration of the price. Generally, it is 10 to 100 parts by weight with respect to 100 parts by weight of the Ni-Zn soft magnetic ferrite. In addition, it is appropriate that the total amount of the high thermal conductivity filler and the Ni—Zn soft magnetic ferrite is 20 to 80% by weight based on the total weight of the composition.
[0019]
  The Ni—Zn soft magnetic ferrite used in the composition of the present invention and / or a filler having a higher thermal conductivity than the soft magnetic ferrite used as needed may be mixed with a silicone rubber material as necessary. The surface can be treated with a silane coupling agent in order to further enhance the properties and more easily obtain a uniform composition. As this silane coupling agent, γ-chloropropyltrimethoxysilane, vinyltrichlorosilane, vinyltriethoxysila, vinyltrimethoxysilane, vinyltris (β-methoxyethoxy) silane, γ-methacryloxypropyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-crisidoxypropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, N-β- (aminoethyl)- γ-aminopropyltrimethoxysilane, γ-ureidopropyltriethoxysilane and the like can be mentioned. The amount of the silane coupling agent used can be appropriately set according to need. Generally, the amount of Ni-Zn based soft magnetic ferrite or about the weight of the filler having higher thermal conductivity than soft magnetic ferrite is used. 0.2-10 weight% is preferable.
[0020]
  In the composition of the present invention, since the Ni-Zn soft magnetic ferrite itself is added to an electromagnetic wave absorbing paint or the like as a filler exhibiting electromagnetic wave absorbability, this was used as a heat conductive filler. Although the effect can be expected from the heat conductive silicone rubber composition, if necessary, the Ni—Zn-based softening agent may be used as a component for further enhancing electromagnetic wave absorption as the heat conductive silicone rubber composition. In addition to the magnetic ferrite, or in addition to the filler having higher thermal conductivity than the Ni-Zn soft magnetic ferrite and soft magnetic ferrite, carbon nanotubes or carbon microcoils can be blended. As the carbon nanotube or carbon microcoil, various known carbon nanotubes or carbon microcoils can be appropriately selected and used. A carbon nanotube is generally a hollow hollow fiber made of carbon and having an outer diameter of 2 to 70 nm and a length of 10 2 on the diameter. It can be obtained by an arc discharge method using carbon fiber or the like. Moreover, the terminal shape does not necessarily need to be cylindrical, and may be deformed, for example, conical. Furthermore, the end may be closed or open. Examples of carbon nanotubes preferably used include Graphite Fibers / GradesBN (trade name) manufactured by Hyperion Catalysis International. Carbon microcoils are generally
The fiber diameter is 0.05 to 5 μm, the coil outer diameter is 2 to 10 times the fiber diameter, and the number of turns is 5 / coil outer diameter (μm) to 50 / coil outer diameter (μm) per 10 μm. It is a certain coil-like fiber, and is obtained by a gas phase decomposition reaction of a carbon-containing gas. Of course, carbon nanotubes and carbon microcoils can be used in combination. The amount of carbon nanotubes and carbon microcoils is still very expensive because they are still small in total production, and should be set as needed. 0.05 to 10% by weight is appropriate.
[0021]
  Preparation of the composition of the present invention includes the above-described silicone rubber, Ni-Zn soft magnetic ferrite, filler having higher thermal conductivity than soft magnetic ferrite blended as necessary, carbon nanotubes and carbon microcoils, and the present invention. Each component such as various additives blended within a range that does not impair the purpose of the above can be appropriately mixed using a known mixing means such as a Henschel mixer, a Banbury mixer, or a three-roll kneader.
[0022]
  Moreover, the heat conductive silicone rubber molding of the present invention can be obtained by applying a normal rubber molding method and curing the composition of the present invention. As this molding method, various publicly known rubber molding methods can be appropriately selected and employed. Examples thereof include press molding, transfer molding, extrusion molding, injection molding, and calendar molding. The shape of the molded body of the present invention is not particularly limited, and can be a desired shape according to the application. For example, when making it into a sheet form, it is preferable that thickness is about 100 micrometers-about 2 mm.
[0023]
  Further, the thermally conductive silicone rubber applied product of the present invention is obtained by laminating a copper foil layer on at least the surface of a sheet-like cured product of a thermally conductive silicone rubber composition, and a method known per se is used. For example, after applying a silicone-based primer and a silicone-based adhesive to a copper foil, a sheet-like cured product of a heat conductive silicone rubber composition is stacked on the copper foil, and both are pressed. Etc. can be obtained. And this heat conductive silicone rubber applied product can be used as a flexible printed board having good heat conductivity and heat dissipation by etching the surface copper foil layer into a circuit pattern.
[0024]
【Example】
  Less than,Reference examples,EXAMPLES The present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to the following examples.
[0025]
  Reference example 1
  Silicone gel with JIS K2207-1980 (50 g load) penetration of 100 (East
25 parts by weight of Dow Corning Silicone Co., Ltd .; CF5057 (trade name) and spherical Ni—Zn soft magnetic ferrite powder having an average particle size of 3.6 μm (manufactured by Powdertech; Ni—Zn ferrite) (Fine powder) 75 parts by weight is mixed at room temperature with a three-roll kneader to prepare a composition, and then the obtained composition is vacuum degassed, and between glass plates so as not to entrain air. Poured and heated and press molded at 100 ° C. for 30 minutes to obtain a molded body having a thickness of 1 mm. At the time of preparing the composition, the ferrite powder was easily and uniformly dispersed, and the obtained molded body was uniform and suitably cured without leaving any stickiness on the surface. Further, the thermal conductivity, penetration, specific gravity and the like of the obtained molded body are as shown in Table 1, and the dispersibility of the ferrite powder shows the result of visual observation at the time of preparation, and the curing situation is The result evaluated visually and by finger is shown.
[0026]
  Reference examples 2 and 3
  The average particle diameter of the Ni—Zn soft magnetic ferrite powder is 5.2 μm (Reference example 2) Or 16.0 μm (Reference example 3Except thatReference example 1In the same manner as described above, a composition was prepared and subjected to hot press molding to obtain a molded body having a thickness of 1 mm. In each preparation of the composition, the ferrite powder was easily and uniformly dispersed, and the obtained molded body was uniform and suitably cured without leaving any stickiness on the surface. In particular, the average particle diameter of the Ni—Zn-based soft magnetic ferrite powder is 16.0 μm (Reference example 3In the case of), uniform dispersion into the silicone gel and curing to the molded body were performed quickly, which was more preferable. Table 1 shows the thermal conductivity, penetration, specific gravity, dispersion state, and curing state of the obtained molded body. As is clear from Table 1,Reference example 3In the case of (the average particle diameter of the Ni—Zn-based soft magnetic ferrite powder is 16.0 μm),Reference example 1andReference example 2Compared with the case of, the thermal conductivity was high, and the dispersibility and the cured state were very excellent.
[0027]
  Reference example 4
  Reference example 125 parts by weight of the same silicone gel,Reference example 152.5 parts by weight of the same Ni—Zn-based soft magnetic ferrite powder and 22.5 parts by weight of spherical metal silicon powder having an average particle size of 10 μm (manufactured by Admatechs; Admafine Silicon (trade name)) (Ni— Using 43 parts by weight of metal silicon powder with respect to 100 parts by weight of Zn-based soft magnetic ferrite as a raw material,Reference example 1In the same manner as described above, a composition was prepared and subjected to hot press molding to obtain a molded body having a thickness of 1 mm. During the preparation of the composition, the ferrite powder and the metal silicon powder were uniformly dispersed, and the obtained molded body was uniform and suitably cured without leaving any stickiness on the surface. Table 1 shows the thermal conductivity, penetration, specific gravity, dispersion state, and curing state of the obtained molded body.
[0028]
  Reference Example 5
  Except that the average particle diameter of the Ni-Zn soft magnetic ferrite powder was 16.0 μmReference example 4In the same manner as described above, a composition was prepared and subjected to hot press molding to obtain a molded body having a thickness of 1 mm. At the time of preparing the composition, the ferrite powder and the metal silicon powder were easily and uniformly dispersed, and the obtained molded body was uniform and suitably cured without leaving any stickiness on the surface. Table 1 shows the thermal conductivity, penetration, specific gravity, dispersion state, and curing state of the obtained molded body.
[0029]
  Example1
  Except for the addition of 0.1% by weight of the total weight of the carbon nanotubes described above,Reference Example 5In the same manner as described above, a composition was prepared and subjected to hot press molding to obtain a molded body having a thickness of 1 mm. In preparation of the composition, some contrivance is required to disperse the carbon nanotubes, and since the raw material suddenly thickens during kneading, it is somewhat disadvantageous for formability during subsequent press molding. Nevertheless, the ferrite powder, the metal silicon powder, and the carbon nanotubes were uniformly dispersed, and the obtained molded body was uniform and suitably cured without leaving any stickiness on the surface. Table 1 shows the thermal conductivity, penetration, specific gravity, dispersion state, and curing state of the obtained molded body. In addition, although not illustrated as an Example, in the case of a carbon microcoil, the viscosity increase at the time of kneading was not so much.
[0030]
  Reference Example 6
  Silicone primer (made by Toray Dow Corning Silicone Co., Ltd .; Primer A (trade name)) and silicone adhesive (made by Shin-Etsu Chemical Co., Ltd .; KE-1800T (trade name)) After thinly coating withReference Example 5A 1 mm thick sheet of a thermally conductive silicone rubber molded body, which is a sheet-like cured product of the thermally conductive silicone rubber composition obtained as described above, is stacked and heated and pressed at 100 ° C. for 30 minutes to laminate a copper foil layer A heat conductive silicone rubber applied product was obtained. Thereafter, when the copper foil layer was etched into an appropriate circuit pattern by a conventional method, a flexible printed board having good thermal conductivity and heat dissipation was obtained.
[0031]
  Comparative Example 1
  Reference example 1Except that a spherical Mn—Mg based soft magnetic ferrite powder (manufactured by Powdertech; Mn—Mg based ferrite fine powder) having an average particle size of 6.3 μm was used instead of the Ni—Zn based soft magnetic ferrite powder.Reference example 1In the same manner as described above, a composition was prepared and subjected to hot press molding to obtain a molded body having a thickness of 1 mm. In the preparation of the composition, despite the fact that the kneading time was increased, many ferrite powder agglomerates remained, and the raw material temperature during kneading increased to 50 ° C., which partially began to cure. The formability during press molding deteriorated. The obtained molded body partly had an uncured part, and the entire surface remained sticky. Further, the thermal conductivity, penetration, specific gravity, dispersion state, and curing state of the obtained molded body were as shown in Table 1.
[0032]
  Comparative Example 2
  Reference example 1Except that a spherical Cu—Zn soft magnetic ferrite powder (Powder Tech Inc .; Cu—Zn ferrite fine powder) having an average particle diameter of 6.3 μm was used instead of the Ni—Zn soft magnetic ferrite powder.Reference example 1In the same manner as described above, a composition was prepared and subjected to hot press molding to obtain a molded body having a thickness of 1 mm. During the preparation of the composition, some of the ferrite powder agglomerates remained, the raw material temperature during kneading increased to nearly 50 ° C. and began to partially cure, and the moldability during press molding was also good. However, the obtained molded body was cured as a whole, there was no uncured portion, and there was no stickiness of the surface. Table 1 shows the thermal conductivity, penetration, specific gravity, dispersion state, and curing state of the obtained molded body.
[0033]
[Table 1]
Figure 0003847022
[0034]
  In addition, the thermal conductivity measured in Table 1 was measured using a rapid thermal conductivity meter (QTM-500) manufactured by Kyoto Electronics Industry Co., Ltd. In addition, the penetration measured in Table 1 was measured using a penetration measuring instrument manufactured by Koseisha based on JISK2207-1980 (50 g load).
[0035]
【The invention's effect】
  According to the present invention, although it is not high thermal conductivity in the dark clouds, moderate thermal conductivity, for example, thermal conductivity around 0.9 to 1.0 W / K · m, where enormous demand is expected to be latent as a spread zone A homogeneous heat-conductive silicone rubber composition capable of exhibiting the above and a molded article made of the cured product thereof can be produced with good workability without causing curing inhibition, and are provided at a low price corresponding to a popular price. Similarly, a thermally conductive silicone rubber applied product that is optimal for applications such as a flexible printed board having good thermal conductivity and heat dissipation is provided.

Claims (6)

シリコーンゴムまたはシリコーンゲルに、Ni−Zn系軟磁性フェライトと、軟磁性フェライトより熱伝導率の高い充填材として金属ケイ素に加えて、カーボンナノチューブおよびカーボンマイクロコイルのいずれか一方または双方が配合されていることを特徴とする熱伝導性エラストマー組成物。  In addition to silicon-silicon rubber or silicone gel, Ni-Zn soft magnetic ferrite and metallic silicon as a filler having higher thermal conductivity than soft magnetic ferrite, either or both of carbon nanotubes and carbon microcoils are blended. A thermally conductive elastomer composition characterized by comprising: Ni−Zn系軟磁性フェライトが、粒径3〜40μmの球状である請求項1記載の熱伝導性エラストマー組成物。  The thermally conductive elastomer composition according to claim 1, wherein the Ni—Zn-based soft magnetic ferrite has a spherical shape with a particle size of 3 to 40 μm. 金属ケイ素の配合量がNi−Zn系軟磁性フェライト100重量部に対して10〜100重量部であることを特徴とする請求項1又は2記載の熱伝導性エラストマー組成物。The thermally conductive elastomer composition according to claim 1 or 2, wherein the compounding amount of metallic silicon is 10 to 100 parts by weight with respect to 100 parts by weight of Ni-Zn soft magnetic ferrite. カーボンナノチューブやカーボンマイクロコイルの配合量が、組成物総重量に対して0.05〜10重量%であることを特徴とする請求項1〜3のいずれか一
つに記載の熱伝導性エラストマー組成物。
The thermally conductive elastomer composition according to any one of claims 1 to 3, wherein the compounding amount of the carbon nanotube or the carbon microcoil is 0.05 to 10% by weight with respect to the total weight of the composition. object.
請求項1〜4のいずれか一つに記載の熱伝導性エラストマー組成物の硬化物からなることを特徴とする熱伝導性エラストマー成形体。  It consists of hardened | cured material of the heat conductive elastomer composition as described in any one of Claims 1-4, The heat conductive elastomer molded object characterized by the above-mentioned. 請求項1〜のいずれか一つに記載の熱伝導性エラストマー組成物のシート状硬化物に銅箔層を積層してなることを特徴とする熱伝導性エラストマー積層体。A heat conductive elastomer laminate comprising a copper foil layer laminated on a sheet-like cured product of the heat conductive elastomer composition according to any one of claims 1 to 4 .
JP11143499A 1999-04-19 1999-04-19 Thermally conductive elastomer composition, molded product thereof and laminate thereof Expired - Fee Related JP3847022B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11143499A JP3847022B2 (en) 1999-04-19 1999-04-19 Thermally conductive elastomer composition, molded product thereof and laminate thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11143499A JP3847022B2 (en) 1999-04-19 1999-04-19 Thermally conductive elastomer composition, molded product thereof and laminate thereof

Publications (2)

Publication Number Publication Date
JP2000302970A JP2000302970A (en) 2000-10-31
JP3847022B2 true JP3847022B2 (en) 2006-11-15

Family

ID=14561105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11143499A Expired - Fee Related JP3847022B2 (en) 1999-04-19 1999-04-19 Thermally conductive elastomer composition, molded product thereof and laminate thereof

Country Status (1)

Country Link
JP (1) JP3847022B2 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100592527B1 (en) * 2002-01-17 2006-06-23 (주)케이에이치 케미컬 Rubber composition comprising carbon nanotubes as reinforcing agent and preparation thereof
KR20050098035A (en) * 2004-04-06 2005-10-11 주식회사 상진미크론 Thermal conductivity silicone rubber composite with carnbone nano tube
JP5474115B2 (en) * 2004-11-29 2014-04-16 昭和電工株式会社 Composition for heat conductive composite material containing carbon material and use thereof
KR100686612B1 (en) 2005-04-14 2007-02-26 주식회사 이엠씨플러스 Conductive silicone compound including carbon nanotubes
JP2007138100A (en) * 2005-11-22 2007-06-07 Shin Etsu Chem Co Ltd High thermal conductivity silicone rubber composition
WO2008046165A2 (en) * 2006-10-18 2008-04-24 Nanocyl S.A. Anti-adhesive and antistatic composition
DE102007025053B4 (en) * 2007-04-20 2020-09-03 Barlog Plastics Gmbh Process for producing a permanently magnetic molded part and a permanent magnetic molded part
US9231239B2 (en) 2007-05-30 2016-01-05 Prologium Holding Inc. Electricity supply element and ceramic separator thereof
US7704438B2 (en) 2008-04-25 2010-04-27 Barlog Plastics Gmbh Process for producing a permanently magnetic molding
KR100999738B1 (en) 2008-11-28 2010-12-08 고려대학교 산학협력단 Polymer ceramic multi-walled carbon nanotube composition for forming heate sink of induction range and method for fabricating the same
JP5776405B2 (en) * 2011-07-22 2015-09-09 東ソー株式会社 Polyarylene sulfide composition
TWI437931B (en) * 2011-12-16 2014-05-11 Prologium Technology Co Ltd Pcb structure
US11089693B2 (en) 2011-12-16 2021-08-10 Prologium Technology Co., Ltd. PCB structure with a silicone layer as adhesive
JP7373709B2 (en) 2019-08-23 2023-11-06 Spiral Tech株式会社 High frequency coil parts, coil parts for wireless power supply, wireless power supply device, and manufacturing method of frequency coil parts
US20220396714A1 (en) * 2021-06-09 2022-12-15 Whirlpool Corporation Coating for a substrate
CN115124764A (en) * 2022-06-10 2022-09-30 安徽建筑大学 Flame-retardant heat-conducting agent for silicone rubber and preparation method thereof
CN115353740B (en) * 2022-08-24 2023-09-12 上海市同仁医院 Polysiloxane material with electromagnetic shielding function and preparation method thereof
CN116396595B (en) * 2023-06-08 2023-08-18 扬州纳力新材料科技有限公司 Polymer film and preparation method and application thereof

Also Published As

Publication number Publication date
JP2000302970A (en) 2000-10-31

Similar Documents

Publication Publication Date Title
JP3847022B2 (en) Thermally conductive elastomer composition, molded product thereof and laminate thereof
JP3543663B2 (en) Thermal conductive silicone rubber composition and method for producing the same
JP5015436B2 (en) Thermally conductive silicone elastomer, thermal conductive medium and thermally conductive silicone elastomer composition
KR102149708B1 (en) Thermal conductive composite silicone rubber sheet
JP2007119588A (en) Thermoconductive silicone rubber composition
JP2002038033A (en) Thermally conductive sheet
JPH11209618A (en) Heat-conductive silicone rubber composition
KR100570249B1 (en) Silicone Rubber Sheet for Heat-Resistant, Thermal-Conductive Thermocompression
JP2010232535A (en) Heat-resistant heat dissipation sheet
JP2002003831A (en) Member for heat radiation
KR20160084808A (en) Thermal conductive silicone composition and cured product, and composite sheet
JP4739009B2 (en) Heat resistant and heat conductive silicone rubber sheet for thermocompression bonding
WO2003095560A1 (en) Curable silicone composition for the production of composite soft magnetic materials, and composite soft magnetic materials
JP2000143808A (en) Heat conductive, electrical insulating silicone gel composition
JP4369594B2 (en) Thermally conductive molded body
JP4068983B2 (en) Thermally conductive sheet
JP2000053864A (en) Heat conductive/electrical insulating silicone rubber composition and silicone gel composition
JP2000063670A (en) Thermally conductive silicone rubber composition and its molded item
JP2000204259A (en) Heat radiation member
JPH11116807A (en) Silicone rubber composition having thermal conductivity and its molding product
JP3944741B2 (en) Electromagnetic wave absorbing heat conductive silicone composition and molded article thereof
JPH0618985B2 (en) Epoxy resin composition
JP2008150438A (en) Silicone composition for sealing semiconductor and semiconductor apparatus using the same
JP3762675B2 (en) Thermal softening sheet
JP6957435B2 (en) Thermally conductive silicone composition and its cured product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060822

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130901

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees