KR20050098035A - Thermal conductivity silicone rubber composite with carnbone nano tube - Google Patents
Thermal conductivity silicone rubber composite with carnbone nano tube Download PDFInfo
- Publication number
- KR20050098035A KR20050098035A KR1020040023232A KR20040023232A KR20050098035A KR 20050098035 A KR20050098035 A KR 20050098035A KR 1020040023232 A KR1020040023232 A KR 1020040023232A KR 20040023232 A KR20040023232 A KR 20040023232A KR 20050098035 A KR20050098035 A KR 20050098035A
- Authority
- KR
- South Korea
- Prior art keywords
- silicone rubber
- thermally conductive
- rubber composition
- weight
- thermal conductivity
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L83/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
- C08L83/04—Polysiloxanes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/04—Carbon
- C08K3/041—Carbon nanotubes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/0008—Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
- C08K5/0025—Crosslinking or vulcanising agents; including accelerators
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/14—Peroxides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/001—Conductive additives
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Nanotechnology (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
본 발명은 25℃에서의 점도가 1,000,000mPa.s 이상인 오가노폴리실록산 검, 열전도성이 우수한 미립자; 탄소나노튜브, 흑연, 알루미나, 산화티타늄의 충전제및 유기과산화물 경화제를 포함하는 열전도성 실리콘 고무 조성물에 관한 것이다.The present invention is an organopolysiloxane gum having a viscosity of at least 1,000,000 mPa · s at 25 ° C., fine particles having excellent thermal conductivity; A thermally conductive silicone rubber composition comprising a carbon nanotube, graphite, alumina, a filler of titanium oxide, and an organic peroxide curing agent.
Description
본 발명은 열전도성이 우수한 실리콘 고무 조성물과 그 제조방법에 관한 것이다. 더욱 상세하게는 열전도성이 우수한 소량의 탄소나노튜브와 흑연의 첨가로 열전도성이 우수한 실리콘 고무 조성물, 열전도성 실리콘 고무 제조방법에 관한 것이다, 실리콘 고무는 사용온도범위가 넓고 내열성 내후성이 탁월하기 때문에 열전도성 고무로 사용된다. 지금까지 다수의 열전도성 실리콘 고무 조성물에 제안되었다. 예를 들면, 액상실리콘 고무에 알루미나 미세분말을 배합한 것(특허 공개번호 특1996-0041280), 액상실리콘 고무에 산화아연, 알루미나, 질화알루미나 분말을 배합한 것(미국특허 6,114,429) 및 부가반응 경화성 열전도성 실리콘 고무 조성물(특허 공개번호 특2001-0063954)등이 알려져 있다. 그러나 이러한 조성물로 제조되는 열전도성 실리콘 고무조성물은 고가의 액상실리콘의 사용과 열전도성 충전제의 함량이 높아야 하고 이액형 타입으로 구성되어 있으며, 이로 인해 실리콘 고무 조성물의 취급성 및 성형성이 악화된다는 단점이 있다. 따라서 경제성과 기능성이 우수한 열가류형 오가노폴리실록산 검과 열전도성이 우수한 탄소나노튜브와 그라파이드의 혼합분말로 이루어진 열전도성 실리콘 고무 조성물 및 열전도성 실리콘 고무의 제조방법에 관한 것이다.The present invention relates to a silicone rubber composition excellent in thermal conductivity and a method of manufacturing the same. More specifically, the present invention relates to a silicone rubber composition having excellent thermal conductivity and a method of manufacturing a thermally conductive silicone rubber by adding a small amount of carbon nanotubes and graphite having excellent thermal conductivity.Since silicone rubber has a wide temperature range for use and excellent weather resistance, Used as a thermally conductive rubber. So far it has been proposed in many thermally conductive silicone rubber compositions. For example, a mixture of alumina fine powder in liquid silicone rubber (Patent Publication No. 1996-0041280), a mixture of zinc oxide, alumina, and alumina nitride powder in liquid silicone rubber (US Pat. No. 6,114,429) and addition reaction curability Thermally conductive silicone rubber compositions (Patent Publication No. 2001-0063954) and the like are known. However, the thermally conductive silicone rubber composition prepared from such a composition requires the use of expensive liquid silicone and high content of the thermally conductive filler and is composed of a two-component type, which deteriorates the handleability and formability of the silicone rubber composition. There is this. Accordingly, the present invention relates to a thermally conductive silicone rubber composition and a thermally conductive silicone rubber composition comprising a mixture of a thermally curable organopolysiloxane gum having excellent economics and functionality and carbon nanotubes and graphite having excellent thermal conductivity.
본 발명의 목적은 열전도성이 우수한 충전제과 탄소나노튜브를 소량 함유하는 혼합분말을 첨가하여 열전도성이 우수하고 취급성과 성형성이 우수한 열전도성 실리콘 고무 조성물을 제공하는 것이다.An object of the present invention is to provide a thermally conductive silicone rubber composition having excellent thermal conductivity, excellent handleability and moldability by adding a filler having excellent thermal conductivity and a mixed powder containing a small amount of carbon nanotubes.
본 발명은 오가노폴리실록산 검, 열전도성 충전제, 및 유기과산화물 경화제를 포함하는 열전도성 실리콘 고무 조성물에 관한 것이다.The present invention relates to a thermally conductive silicone rubber composition comprising an organopolysiloxane gum, a thermally conductive filler, and an organic peroxide curing agent.
본 발명의 열전도성 실리콘 고무의 실리콘 고무의 종류와 경화 방법에 대한 제한은 없다. 열전도성 고무 조성물에 사용될 수 있는 실리콘 고무는 밀러블(millable)유형의 실리콘 검, 액상 실리콘으로 크게 나눌 수 있으며, 실리콘 고무의 경화반응은 실리콘 고무의 구조에 따라 하이드록실화반응, 축합반응, 부가반응, 또는 라디칼반응일 수 있다.There is no restriction on the type and curing method of the silicone rubber of the thermally conductive silicone rubber of the present invention. Silicone rubbers that can be used in the thermally conductive rubber composition can be broadly divided into millable type silicone gum and liquid silicone, and the curing reaction of the silicone rubber is dependent on hydroxylation, condensation and addition depending on the structure of the silicone rubber. Reaction, or radical reaction.
오가노폴리실록산 검은 유기 과산화물-경화성 밀러블(millable)유형의 오가노폴리실록산 검을 사용할 수 있으며 요구되어지는 특성에 따라 오가노실록산 검은 화학 구조가 다른 디메틸실리콘 고무, 저온에서도 탄성을 유지할 수 있는 메틸페닐실리콘 고무, 내열성, 내한성, 내방사선성을 가지는 메틸비닐실리콘 고무, 내유성을 가지고 있는 불소실리콘 고무 등을 사용할 수 있다.Organopolysiloxane gum An organic peroxide-curable millable type organopolysiloxane gum can be used, and the dimethylsilicone rubber with different organosiloxane gum chemical structures depending on the required properties, methylphenylsilicone rubber that can maintain elasticity even at low temperatures And methylvinyl silicone rubber having heat resistance, cold resistance, and radiation resistance, and fluorosilicone rubber having oil resistance can be used.
열전도성 충전제는 생성된 실리콘 고무에 열전도성을 부여하며, 예를 들어 알루미늄 분말, 구리분말, 은 분말, 금 분말, 니켈분말, 규소분말, 니켈분말, 철분말, 지르코늄분말, 아연분말 및 기타 금속분말을 사용할 수 있으며 알루미나, 산화 마그네슘, 산화 아연, 산화 베릴륨, 수산화 알루미늄, 산화 티탄, 산화 크롬, 산화 철 및 기타 산화금속분말을 사용할수 있으며 질화붕소분말, 질화 알루미늄분말, 질화티탄분말, 질화 규소분말 및 기타 질화 금속분말이 사용될 수 있으며 붕소 카바이드 분말,규소 카바이드 분말 및 기타 금속 카바이드 분말이 사용될 수 있으며 탄화규소, 탄화붕소 및 기타 탄화물이 사용될 수 있다. 그라파이트, 카본블랙, 탄소나노튜브 및 기타 탄소 계열의 분말을 사용할 수 있다. 전술한 분말들은 단독으로 또는 둘 이상의 분말의 혼합물로서 열전도성 충전제로 사용할 수 있다. 열전도성 충전제의 평균 입도에 대한 제한은 없지만, 0.1 내지 150㎛가 바람직하다. 평균 입도가 0.1㎛ 이하일 경우는 분산성이 떨어지며, 평균 입도가 150㎛이상이 되면 열전도성이 떨어지게 된다. 또한 흑연 분말을 열전도성 충전제로서 사용하는 경우, 천연인상흑연, 또는 인조인상흑연이 열전도성 분말로 사용 될 수 있으며, 평균 입자 크기가 0.1 내지 50㎛가 바람직하다. 열전도성 충전제가 흑연 분말일 경우 5내지 800중량%로 사용 할 수 있다. 흑연의 함량이 5중량% 이하에서는 열전도성의 효과가 떨어지게 되며 800중량% 이상의 함량에서는 조성물의 가공성이 떨어지게 된다. 탄소나노튜브 분말을 열전도성 충전제로서 사용하는 경우 탄소나노튜브 분말을 0.5내지 100중량%로 구성된다. 탄소나노튜브 분말의 양은 1 내지 30중량%가 바람직하다. 본 발명에서 사용되는 탄소나노튜브는 수 내지 수백 nm의 직경과 수 내지 수백 ㎛의 길이를 가진 비등방성의 소재이며, 바람직하게는 단일벽 탄소나노튜브, 또는 다층벽 탄소나노튜브를 들 수 있다. 탄소나노튜브는 역학적으로도 견고하며(강철의 100배), 화학적인 안정성도 뛰어나고, 열전도도 또한 2000W/mK로서 우수하며, 속이 비어 있는 특성으로 인해 일반적인 탄소재료인 흑연이나 탄소섬유 등에 비해 낮은 밀도를 가진다. 본 발명에서는 다층벽 탄소나노튜브(SWNT : single-wall nanotube)와 다층벽 탄소나노튜브(MWNT : multi-wall nanotube)등이 사용될 수 있다. 열전도성 충전제로 사용되는 탄소나노튜브는 직경이 0.5 내지 500nm이고 길이가 수백 ㎛가 바람직하다. 이산화티타늄 분말을 열전도성 충전제로 사용하는 경우, 평균 입자크기가 0.1㎛ 내지 30㎛의 이산화티타늄 분말을 1내지 400중량%로 구성된다. 또한 알루미나 분말을 열전도성 충전제로 사용하는 경우, 평균입자크기가 1㎛ 내지 30㎛의 알루미나 분말을 1 내지 400중량%로 구성된다. 전술한 분말들은 단독으로 또는 둘 이상의 분말의 혼합물로서 열전도성 충전제로 사용할 수 있다. 가류제는 유기 과산화물로 0.1내지 10중량%로 사용된다. 가류제가 0.1중량% 이하에서는 조성물의 물성을 급격히 떨어뜨리게 되며, 10중량% 이상에서는 조성물의 경도가 높아지며, 가교시간의 조절이 어렵게된다. 유기과산화물의 예로는 2,5-디메틸-2,5-디(t-부틸퍼옥시)헥산, p-메틸 벤조일 퍼옥사이드, t-부틸 퍼벤조에이트, o-메틸 벤조일 퍼옥사이드, 다이큐밀퍼옥사이드, m-메틸 베노일 퍼옥사이드 및 벤조일 퍼옥사이드이다. 또한 이런 유기과산화물은 실리콘오일을 단독으로, 또는 실리콘오일과 미세분말상의 실리카계 충전제를 동시에 포함하는 것을 특징으로 한다.Thermally conductive fillers impart thermal conductivity to the resulting silicone rubber, for example aluminum powder, copper powder, silver powder, gold powder, nickel powder, silicon powder, nickel powder, iron powder, zirconium powder, zinc powder and other metals. Powders can be used, and alumina, magnesium oxide, zinc oxide, beryllium oxide, aluminum hydroxide, titanium oxide, chromium oxide, iron oxide and other metal oxide powders can be used, and boron nitride powder, aluminum nitride powder, titanium nitride powder and silicon nitride Powders and other metal nitride powders can be used, boron carbide powders, silicon carbide powders and other metal carbide powders can be used, and silicon carbide, boron carbide and other carbides can be used. Graphite, carbon black, carbon nanotubes and other carbon based powders can be used. The aforementioned powders may be used alone or as a mixture of two or more powders as a thermally conductive filler. There is no restriction on the average particle size of the thermally conductive filler, but 0.1 to 150 mu m is preferred. When the average particle size is 0.1 μm or less, the dispersibility is inferior, and when the average particle size is 150 μm or more, the thermal conductivity becomes poor. In addition, when graphite powder is used as the thermally conductive filler, natural graphite or artificial graphite may be used as the thermally conductive powder, and an average particle size of 0.1 to 50 µm is preferable. When the thermally conductive filler is graphite powder, it can be used at 5 to 800% by weight. When the content of graphite is less than 5% by weight, the thermal conductivity is inferior, and at a content of 800% by weight or more, the composition is inferior. When the carbon nanotube powder is used as the thermally conductive filler, the carbon nanotube powder is composed of 0.5 to 100% by weight. The amount of carbon nanotube powder is preferably 1 to 30% by weight. The carbon nanotubes used in the present invention are anisotropic materials having diameters of several to several hundred nm and lengths of several to several hundred μm, and preferably single-walled carbon nanotubes or multi-walled carbon nanotubes. Carbon nanotubes are mechanically strong (100 times of steel), have excellent chemical stability, and have excellent thermal conductivity of 2000 W / mK. Due to their hollow nature, carbon nanotubes have lower density than general carbon materials such as graphite or carbon fiber. Has In the present invention, multilayer wall carbon nanotubes (SWNT: single-wall nanotube) and multilayer wall carbon nanotubes (MWNT: multi-wall nanotube) may be used. The carbon nanotubes used as the thermally conductive fillers preferably have a diameter of 0.5 to 500 nm and a length of several hundred μm. When titanium dioxide powder is used as the thermally conductive filler, the titanium dioxide powder having an average particle size of 0.1 µm to 30 µm is composed of 1 to 400% by weight. In addition, when the alumina powder is used as the thermally conductive filler, the alumina powder having an average particle size of 1 μm to 30 μm is composed of 1 to 400 wt%. The aforementioned powders may be used alone or as a mixture of two or more powders as a thermally conductive filler. The vulcanizing agent is used at 0.1 to 10% by weight of organic peroxide. If the vulcanizing agent is less than 0.1% by weight, the physical properties of the composition are drastically degraded. If the vulcanizing agent is more than 10% by weight, the hardness of the composition is increased, and the crosslinking time is difficult to control. Examples of organic peroxides include 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, p-methyl benzoyl peroxide, t-butyl perbenzoate, o-methyl benzoyl peroxide, dicumyl peroxide , m-methyl benoyl peroxide and benzoyl peroxide. In addition, such an organic peroxide is characterized in that it contains silicon oil alone, or at the same time containing a silicon oil and a fine powder silica-based filler.
[실시예]EXAMPLE
실시예를 참조하여 본 발명의 구체적인 제조방법 및 효과를 나타내지만, 본 발명의 범주가 그것에 의해 한정되는 것은 아니다. 또한, 열전도성 실리콘 고무 조성물의 특징은 하기 방식으로 측정하였다.Although the specific manufacturing method and effect of this invention are shown with reference to an Example, the scope of the present invention is not limited by it. In addition, the characteristics of the thermally conductive silicone rubber composition were measured in the following manner.
[실리콘 고무의 열전도성][Thermal Conductivity of Silicone Rubber]
실리콘 고무의 열전도성을 핫 디스크 법 열전도율 측정기(Hot-disk Method Thermal Analyzer), 모델 TPA-501교[교토 일렉트로닉스 매뉴팩처링 컴퍼니, 리미티드(Kyoto Electric Manufacturing Co., Ltd)에서 시판]을 사용하여 비정상법 열원법을 이용하여 측정한다.Unsteady heat source using silicone rubber thermal conductivity using Hot-disk Method Thermal Analyzer, Model TPA-501 Kyo (commercially available from Kyoto Electronics Manufacturing Co., Ltd.) Measure using the method.
[열전도성 실리콘 고무의 경도][Hardness of Thermally Conductive Silicone Rubber]
열전도성 실리콘 고무 조성물의 경도는 ASTM D 1415에 상세히 설명된 바와 같이 IRHD를 사용하여 측정하였다.The hardness of the thermally conductive silicone rubber composition was measured using IRHD as detailed in ASTM D 1415.
[실시예 1]Example 1
유기과산화물-경화성 밀러블(millable)유형의 열전도성 실리콘 고무 조성물에서 주성분으로 사용되는 오가노폴리실록산 검 100중량%에 열전도성 충전제로서 평균입자 크기가 10㎛인 흑연을 50중량%, 가류제로서 유기과산화물 2,5-디메틸-2,5-디(t-부틸퍼옥시)헥산 1중량%를 롤로 배합하고 혼련하여 균일화하였다. 한편 칼렌더 롤을 이용하여 실리콘 고무조성물을 두께가 2nm가 되도록 분출하고 나서 160℃에서 4분간 경화시키고 건조기 200℃로 4시간 후경화를 거쳐 휘발분을 제거하였다. 열전도성 실리콘 고무 조성물의 특성은 표 1에 기재되어 있다.100% by weight of organopolysiloxane gum used as a main component in the organic peroxide-curable millable type thermally conductive silicone rubber composition, 50% by weight of graphite having an average particle size of 10 μm as a thermally conductive filler and organic as a vulcanizing agent. 1% by weight of peroxide 2,5-dimethyl-2,5-di (t-butylperoxy) hexane was blended into a roll, kneaded and homogenized. On the other hand, using a calender roll, the silicone rubber composition was spouted to a thickness of 2 nm, then cured at 160 ° C. for 4 minutes, and after curing for 4 hours at 200 ° C., the volatiles were removed. The properties of the thermally conductive silicone rubber composition are listed in Table 1.
[비교 실시예 1]Comparative Example 1
실시예 1에서 사용한 흑연분말을 50중량% 대신에 70중량%를 넣고 실시예 1에서와 동일한 방식으로 실리콘 고무 조성물을 제조하였다. 실리콘 고무 조성물의 특징은 하기 표 1에 나타낸다.The silicone rubber composition was prepared in the same manner as in Example 1 with 70 wt% of the graphite powder used in Example 1 instead of 50 wt%. The characteristics of the silicone rubber composition are shown in Table 1 below.
[비교 실시예 2]Comparative Example 2
실시예 1에서 사용한 흑연분말을 50중량% 대신에 100중량%를 넣고 실시예 1에서와 동일한 방식으로 실리콘 고무 조성물을 제조하였다. 실리콘 고무 조성물의 특징은 하기 표 1에 나타낸다.The silicone rubber composition was prepared in the same manner as in Example 1 with 100 wt% of the graphite powder used in Example 1 instead of 50 wt%. The characteristics of the silicone rubber composition are shown in Table 1 below.
[비교 실시예 3]Comparative Example 3
실시예 1에서 사용한 흑연분말을 50중량% 대신에 150중량%를 넣고 실시예 1에서와 동일한 방식으로 실리콘 고무 조성물을 제조하였다. 실리콘 고무 조성물의 특징은 하기 표 1에 나타낸다.The silicone rubber composition was prepared in the same manner as in Example 1 with 150 wt% of the graphite powder used in Example 1 instead of 50 wt%. The characteristics of the silicone rubber composition are shown in Table 1 below.
[실시예 2]Example 2
유기과산화물-경화성 밀러블(millable) 유형의 열전도성 실리콘 고무 조성물에서 주성분으로 사용되는 오가노폴리실록산 검 100중량%에 열전도성 충전제로서 직경 0.5내지 500nm이고 길이가 수백 ㎛인 탄소나노튜브 분말을 1중량%, 가류제로서 유기과산화물 2,5-디메틸-2,5-디(t-부틸퍼옥시)헥산 1중량%를 롤로 배합하고 혼련하여 균일화하였다. 한편 칼렌더 롤을 이용하여 실리콘 고무조성물을 두께가 2mm가 되도록 분출하고 나서 160℃에서 4분간 경화시키고 건조기 200℃로 4시간 후경화를 거쳐 휘발분을 제거하였다. 열전도성 실리콘 고무 조성물의 특성은 표 1에 기재되어 있다.100% by weight of organopolysiloxane gum, which is used as a main component in the organic peroxide-curable millable type thermally conductive silicone rubber composition, is a thermally conductive filler containing 0.5 to 500 nm in diameter and several hundred μm in length of carbon nanotube powder. % And 1% by weight of organic peroxide 2,5-dimethyl-2,5-di (t-butylperoxy) hexane as a vulcanizing agent were mixed with a roll, kneaded and homogenized. On the other hand, using a calender roll, the silicone rubber composition was spouted to a thickness of 2 mm, then cured at 160 ° C. for 4 minutes, and after curing for 4 hours at 200 ° C., the volatiles were removed. The properties of the thermally conductive silicone rubber composition are listed in Table 1.
[비교 실시예 4]Comparative Example 4
실시예 2에서 사용한 탄소나노튜브 분말을 1중량% 대신에 3중량%를 넣고 실시예 2에서와 동일한 방식으로 실리콘 고무 조성물을 제조하였다. 실리콘 고무 소성물의 특징은 하기 표 1에 나타낸다.3 wt% of the carbon nanotube powder used in Example 2 was added instead of 1 wt% to prepare a silicone rubber composition in the same manner as in Example 2. The characteristics of the silicone rubber fired product are shown in Table 1 below.
[비교 실시예 5]Comparative Example 5
실시예 2에서 사용한 탄소나노튜브분말을 1중량% 대신에 5중량%를 넣고 실시예 2에서와 동일한 방식으로 실리콘 고무 조성물을 제조하였다. 실리콘 고무 조성물의 특징은 하기 표 2에 나타낸다.The carbon nanotube powder used in Example 2 was added 5% by weight instead of 1% by weight to prepare a silicone rubber composition in the same manner as in Example 2. The characteristics of the silicone rubber composition are shown in Table 2 below.
[비교 실시예 6]Comparative Example 6
실시예 2에서 사용한 탄소나노튜브분말을 1중량% 대신에 10중량%를 넣고 실시예 2에서 동일한 방식으로 실리콘 고무 조성물을 제조하였다. 실리콘 고무 조성물의 특징은 하기 표 1에 나타낸다.The carbon nanotube powder used in Example 2 was added 10% by weight instead of 1% by weight to prepare a silicone rubber composition in the same manner as in Example 2. The characteristics of the silicone rubber composition are shown in Table 1 below.
[실시예 3]Example 3
유기과산화물-경화성 밀러블(millable) 유형의 열전도성 실리콘 고무 조성물에서 주성분으로 사용되는 오가노폴리실록산 검 100중량%에 열전도성 충전제로서 평균입자 크기가 10㎛인 흑연 50중량%, 직경 0.5 내지 15nm의 탄소나노튜브 분말을 1중량%, 가류제로서 유기과산화물 2,5-디메틸-2,5-디(t-부틸퍼옥시)헥산 1중량%를 롤로 배합하고 혼련하여 균일화하였다. 한편 칼렌더 롤을 이용하여 실리콘 고무조성물을 두께가 2mm가 되도록 분출하고 나서 160℃에서 4분간 경화시키고 건조기 200℃로 4시간 후경화를 거쳐 휘발분을 제거하였다. 열전도성 실리콘 고무 조성물의 특성은 표 2에 기재되어 있다.100% by weight of the organopolysiloxane gum used as a main component in the organic peroxide-curable millable type thermally conductive silicone rubber composition, 50% by weight of graphite having an average particle size of 10 μm, and a diameter of 0.5 to 15 nm. 1 weight% of carbon nanotube powders and 1 weight% of organic peroxides 2,5-dimethyl-2,5-di (t-butylperoxy) hexane as a vulcanizing agent were mixed with a roll, and kneaded to homogenize. On the other hand, using a calender roll, the silicone rubber composition was spouted to a thickness of 2 mm, then cured at 160 ° C. for 4 minutes, and after curing for 4 hours at 200 ° C., the volatiles were removed. The properties of the thermally conductive silicone rubber compositions are listed in Table 2.
[비교 실시예 7]Comparative Example 7
실시예 3에서 사용한 탄소나노튜브 분말을 1중량% 대신에 3중량%를 넣고 실시예 3에서와 동일한 방식으로 실리콘 고무 조성물을 제조하였다. 실리콘 고무 조성물의 특징은 하기 표 2에 나타낸다.3 wt% of the carbon nanotube powder used in Example 3 was added instead of 1 wt% to prepare a silicone rubber composition in the same manner as in Example 3. The characteristics of the silicone rubber composition are shown in Table 2 below.
[비교 실시예 8]Comparative Example 8
실시예 3에서 사용한 탄소나노튜브 분말을 1중량% 대신에 5중량%를 넣고 실시예 3에서와 동일한 방식으로 실리콘 고무 조성물을 제조하였다. 실리콘 고무 조성물의 특징은 하기 표 2에 나타낸다.5 wt% of the carbon nanotube powder used in Example 3 was added instead of 1 wt% to prepare a silicone rubber composition in the same manner as in Example 3. The characteristics of the silicone rubber composition are shown in Table 2 below.
[비교 실시예 9]Comparative Example 9
실시예 3에서 사용한 탄소나노튜브 분말을 1중량% 대신에 10중량%를 넣고 실시예 3에서와 동일한 방식으로 실리콘 고무 조성물을 제조하였다. 실리콘 고무 조성물의 특징은 하기 표 2에 나타낸다.The carbon nanotube powder used in Example 3 was added with 10% by weight instead of 1% by weight to prepare a silicone rubber composition in the same manner as in Example 3. The characteristics of the silicone rubber composition are shown in Table 2 below.
[실시예 4]Example 4
유기과산화물-경화성 밀러블(millable) 유형의 열전도성 실리콘 고무 조성물에서 주성분으로 사용되는 오가노폴리실록산 검 100중량%에 열전도성 충전제로서 평균입자 크기가 10㎛인 흑연 70중량%, 직경 0.5 내지 15nm의 탄소나노튜브 분말을 1중량%, 가류제로서 유기과산화물 2,5-디메틸-2,5-디(t-부틸퍼옥시)헥산 1중량%를 롤로 배합하고 혼련하여 균일화하였다. 한편 칼렌더 롤을 이용하여 실리콘 고무조성물을 두께가 2mm가 되도록 분출하고 나서 160℃에서 4분간 경화시키고 건조기 200℃로 4시간 후경화를 거쳐 휘발분을 제거하였다. 열전도성 실리콘 고무 조성물의 특성은 표 2에 기재되어 있다.100% by weight of the organopolysiloxane gum used as a main component in the organic peroxide-curable millable type thermally conductive silicone rubber composition, 70% by weight of graphite having an average particle size of 10 μm and a diameter of 0.5 to 15 nm. 1 weight% of carbon nanotube powders and 1 weight% of organic peroxides 2,5-dimethyl-2,5-di (t-butylperoxy) hexane as a vulcanizing agent were mixed with a roll, and kneaded to homogenize. On the other hand, using a calender roll, the silicone rubber composition was spouted to a thickness of 2 mm, then cured at 160 ° C. for 4 minutes, and after curing for 4 hours at 200 ° C., the volatiles were removed. The properties of the thermally conductive silicone rubber compositions are listed in Table 2.
[비교 실시예 10]Comparative Example 10
실시예 4에서 사용한 탄소나노튜브분말을 1중량% 대신에 3중량%를 넣고 실시에 4에서와 동일한 방식으로 실리콘 고무 조성물을 제조하였다. 실리콘 고무 조성물의 특징은 하기 표 2에 나타낸다.The carbon nanotube powder used in Example 4 was added 3% by weight instead of 1% by weight to prepare a silicone rubber composition in the same manner as in Example 4. The characteristics of the silicone rubber composition are shown in Table 2 below.
[비교 실시예 11]Comparative Example 11
실시예 4에서 사용한 탄소나노튜브분말을 1중량% 대신에 5중량%를 넣고 실시예 4에서와 동일한 방식으로 실리콘 고무 조성물을 제조하였다. 실리콘 고무 조성물의 특징은 하기 표 2에 나타낸다.The carbon nanotube powder used in Example 4 was added 5% by weight instead of 1% by weight to prepare a silicone rubber composition in the same manner as in Example 4. The characteristics of the silicone rubber composition are shown in Table 2 below.
[비교 실시예 12]Comparative Example 12
실시예 4에서 사용한 탄소나노튜브분말을 1중량% 대신에 10중량%를 넣고 실시예 4에서와 동일한 방식으로 실리콘 고무 조성물을 제조하였다. 실리콘 고무 조성물의 특징은 하기 표 2에 나타낸다.The carbon nanotube powder used in Example 4 was added 10% by weight instead of 1% by weight to prepare a silicone rubber composition in the same manner as in Example 4. The characteristics of the silicone rubber composition are shown in Table 2 below.
[실시예 5]Example 5
유기과산화물-경화성 밀러블(millable) 유형의 열전도성 실리콘 고무 조성물에서 주성분으로 사용되는 오가노폴리실록산 검 100중량%에 열전도성 충전제로서 평균입자 크기가 10㎛인 흑연 100중량%, 직경 0.5 내지 15nm의 성분(B-3)의 탄소나노튜브분말을 1중량%, 가류제로서 유기과산화물 2,5-디메틸-2,5-디(t-부틸퍼옥시)헥산 1중량%를 롤로 배합하고 혼련하여 균일화하였다. 한편 칼렌더 롤을 이용하여 실리콘 고무조성물을 두께가 2mm가 되도록 분출하고 나서 160℃에서 4분간 경화시키고 건조기 200℃로 4시간 후경화를 거쳐 휘발분을 제거하였다. 열전도성 실리콘 고무 조성물의 특성은 표 3에 기재되어 있다.100% by weight of organopolysiloxane gum used as a main component in the organic peroxide-curable millable type thermally conductive silicone rubber composition, 100% by weight of graphite having an average particle size of 10 μm, and a diameter of 0.5 to 15 nm as a thermally conductive filler. 1% by weight of carbon nanotube powder of component (B-3) and 1% by weight of organic peroxide 2,5-dimethyl-2,5-di (t-butylperoxy) hexane as a vulcanizing agent were mixed with a roll and kneaded to homogenize. It was. On the other hand, using a calender roll, the silicone rubber composition was spouted to a thickness of 2 mm, then cured at 160 ° C. for 4 minutes, and after curing for 4 hours at 200 ° C., the volatiles were removed. The properties of the thermally conductive silicone rubber compositions are listed in Table 3.
[비교 실시예 13]Comparative Example 13
실시예 5에서 사용한 탄소나노튜브 분말을 1중량% 대신에 3중량%를 넣고 실시예 5에서와 동일한 방식으로 실리콘 고무 조성물을 제조하였다. 실리콘 고무 조성물의 특징은 하기 표 3에 나타낸다.3 wt% of the carbon nanotube powder used in Example 5 was added instead of 1 wt% to prepare a silicone rubber composition in the same manner as in Example 5. The characteristics of the silicone rubber composition are shown in Table 3 below.
[비교 실시예 14]Comparative Example 14
실시예 5에서 사용한 탄소나노튜브분말을 1중량% 대신에 5중량%를 넣고 실시예 5에서 와 동일한 방식으로 실리콘 고무 조성물을 제조하였다. 실리콘 고무 조성물의 특징은 하기 표 3에 나타낸다.The carbon nanotube powder used in Example 5 was added 5% by weight instead of 1% by weight to prepare a silicone rubber composition in the same manner as in Example 5. The characteristics of the silicone rubber composition are shown in Table 3 below.
[비교 실시예 15]Comparative Example 15
실시예 5에서 사용한 탄소나노튜브분말을 1중량% 대신에 10중량%를 넣고 실시예 5에서와 동일한 방식으로 실리콘 고무 조성물을 제조하였다. 실리콘 고무 조성물의 특징은 하기 표 3에 나타낸다.The carbon nanotube powder used in Example 5 was added to 10% by weight instead of 1% by weight to prepare a silicone rubber composition in the same manner as in Example 5. The characteristics of the silicone rubber composition are shown in Table 3 below.
상기 결과와 같이 열전도성 충전제가 단독분말로 사용되었을 때 보다 흑연과 탄소나노튜브의 혼합분말을 사용했을 때 열전도율의 효과를 극대화 시킬수 있다. 열전도율의 효과를 극대화 시키기 위해서는 일정한 흑연함량에 탄소나노튜브 분말이 3중량% 이상을 사용하는 것이 바람직하다.As a result, when the thermally conductive filler is used as a single powder, the effect of thermal conductivity can be maximized when a mixed powder of graphite and carbon nanotubes is used. In order to maximize the effect of thermal conductivity, it is preferable to use 3% by weight or more of carbon nanotube powder in a constant graphite content.
위에서 설명한 바와 같이 본 발명에서 사용한 CNT(carbone nanotube)를 열전도성 첨가제로 첨가할 경우 기존에 사용해온 열전도성 물질의 첨가량에 비해 소량으로도 열전도성이 크게 향상되므로 열전도성 실리콘 고무 조성물의 취급성 및 성형성, 그리고 열전도성 향상에 크게 기여한다. As described above, when the CNT (carbone nanotube) used in the present invention is added as a thermally conductive additive, the thermal conductivity is greatly improved even with a small amount compared to the conventionally added amount of the thermally conductive material. It greatly contributes to the improvement of moldability and thermal conductivity.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020040023232A KR20050098035A (en) | 2004-04-06 | 2004-04-06 | Thermal conductivity silicone rubber composite with carnbone nano tube |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020040023232A KR20050098035A (en) | 2004-04-06 | 2004-04-06 | Thermal conductivity silicone rubber composite with carnbone nano tube |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20050098035A true KR20050098035A (en) | 2005-10-11 |
Family
ID=37277615
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020040023232A KR20050098035A (en) | 2004-04-06 | 2004-04-06 | Thermal conductivity silicone rubber composite with carnbone nano tube |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20050098035A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20060017268A (en) * | 2004-08-20 | 2006-02-23 | 삼성에스디아이 주식회사 | A method for preparing an electron emission source, the electron emission source and an electron emission device comprising the same |
KR100686612B1 (en) * | 2005-04-14 | 2007-02-26 | 주식회사 이엠씨플러스 | Conductive silicone compound including carbon nanotubes |
CN110713721A (en) * | 2019-10-09 | 2020-01-21 | 苏州欣天新精密机械有限公司 | Preparation method of high-thermal-conductivity silicone rubber |
KR102171410B1 (en) * | 2019-11-19 | 2020-10-28 | (주)산과들 | Thermal Conductive filler inculding carbon nanotube and Polymer compositions inculding thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5221575A (en) * | 1990-10-30 | 1993-06-22 | Shin-Etsu Chemical Co. Ltd. | Thermally conductive sheet |
US5908897A (en) * | 1995-06-21 | 1999-06-01 | Dow Corning Toray Silicone Co., Ltd. | Silicone rubber composition |
JP2000302970A (en) * | 1999-04-19 | 2000-10-31 | Suzuki Sogyo Co Ltd | Thermally conductive silicone rubber composition, its molding product and it applied product |
KR20010049722A (en) * | 1999-07-07 | 2001-06-15 | 카나가와 치히로 | Heat-Resistant, Thermal-Conductive Silicone Rubber Composite Sheets and Process for Preparing the Same |
KR20040031602A (en) * | 2002-10-04 | 2004-04-13 | 신에쓰 가가꾸 고교 가부시끼가이샤 | Thermal-Conductive Silicone Rubber Composite Sheets |
-
2004
- 2004-04-06 KR KR1020040023232A patent/KR20050098035A/en not_active Application Discontinuation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5221575A (en) * | 1990-10-30 | 1993-06-22 | Shin-Etsu Chemical Co. Ltd. | Thermally conductive sheet |
US5908897A (en) * | 1995-06-21 | 1999-06-01 | Dow Corning Toray Silicone Co., Ltd. | Silicone rubber composition |
JP2000302970A (en) * | 1999-04-19 | 2000-10-31 | Suzuki Sogyo Co Ltd | Thermally conductive silicone rubber composition, its molding product and it applied product |
KR20010049722A (en) * | 1999-07-07 | 2001-06-15 | 카나가와 치히로 | Heat-Resistant, Thermal-Conductive Silicone Rubber Composite Sheets and Process for Preparing the Same |
KR20040031602A (en) * | 2002-10-04 | 2004-04-13 | 신에쓰 가가꾸 고교 가부시끼가이샤 | Thermal-Conductive Silicone Rubber Composite Sheets |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20060017268A (en) * | 2004-08-20 | 2006-02-23 | 삼성에스디아이 주식회사 | A method for preparing an electron emission source, the electron emission source and an electron emission device comprising the same |
KR100686612B1 (en) * | 2005-04-14 | 2007-02-26 | 주식회사 이엠씨플러스 | Conductive silicone compound including carbon nanotubes |
CN110713721A (en) * | 2019-10-09 | 2020-01-21 | 苏州欣天新精密机械有限公司 | Preparation method of high-thermal-conductivity silicone rubber |
KR102171410B1 (en) * | 2019-11-19 | 2020-10-28 | (주)산과들 | Thermal Conductive filler inculding carbon nanotube and Polymer compositions inculding thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5328150B2 (en) | Carbon nanotube reinforced polymer nanocomposite | |
Bokobza et al. | Blends of carbon blacks and multiwall carbon nanotubes as reinforcing fillers for hydrocarbon rubbers | |
Kim et al. | Effects of surface modification on rheological and mechanical properties of CNT/epoxy composites | |
Chen et al. | Tribological behavior of carbon-nanotube-filled PTFE composites | |
Bokobza et al. | On the use of carbon nanotubes as reinforcing fillers for elastomeric materials | |
EP2094772B1 (en) | Thermally conducting and electrically insulating moldable compositions and methods of manufacture thereof | |
Seo et al. | A Kinetic Study on the Thermal Degradation of Multi‐Walled Carbon Nanotubes‐Reinforced Poly (propylene) Composites | |
KR20120001726A (en) | Uv-curable, wear resistant and antistatic coating filled with carbon nanotubes | |
KR20130100327A (en) | Polymer compositions comprising poly(arylether ketone)s and graphene materials | |
WO2009052110A3 (en) | Coating for improved carbon nanotube conductivity | |
KR20090118606A (en) | Conductive coating composition containing multiwall carbon nanotube | |
CN112585210B (en) | Resin composition and molded article | |
Sadej et al. | Photocurable acrylate-based composites with enhanced thermal conductivity containing boron and silicon nitrides | |
WO2017169482A1 (en) | Thermoplastic resin composition and method for producing thermoplastic resin composition | |
Sabet et al. | Properties and characterization of ethylene-vinyl acetate filled with carbon nanotube | |
JP2005200620A (en) | Thermoplastic resin composition and thermoplastic resin molded product | |
Sekhar et al. | Mechanical, thermal, and rheological studies of phenolic resin modified with intercalated graphite prepared via liquid phase intercalation | |
Prolongo et al. | Heat dissipation on electrical conductor composites by combination of carbon nanotubes and graphene nanoplatelets | |
Krishnamurthy et al. | Dynamic mechanical behavior, solvent resistance and thermal degradation of nitrile rubber composites with carbon black‐halloysite nanotube hybrid fillers | |
KR20050098035A (en) | Thermal conductivity silicone rubber composite with carnbone nano tube | |
Khobragade et al. | Effect of multilayered nanostructures on the physico‐mechanical properties of ethylene vinyl acetate‐based hybrid nanocomposites | |
Liu et al. | Enhancement of surface and bulk mechanical properties of polycarbonate through the incorporation of raw MWNTs—using the twin-screw extruder mixed technique | |
KR101661155B1 (en) | Rubber composite of tyre tread comprising carbon nano tube | |
JP2010144112A (en) | Parts for fuel | |
JP5446555B2 (en) | Method for increasing elongation of polyarylene sulfide resin, and polyarylene sulfide molded article |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E601 | Decision to refuse application |