JP2005200620A - Thermoplastic resin composition and thermoplastic resin molded product - Google Patents

Thermoplastic resin composition and thermoplastic resin molded product Download PDF

Info

Publication number
JP2005200620A
JP2005200620A JP2004014182A JP2004014182A JP2005200620A JP 2005200620 A JP2005200620 A JP 2005200620A JP 2004014182 A JP2004014182 A JP 2004014182A JP 2004014182 A JP2004014182 A JP 2004014182A JP 2005200620 A JP2005200620 A JP 2005200620A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
vapor
resin composition
carbon fiber
ketjen black
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004014182A
Other languages
Japanese (ja)
Inventor
Takeshi Oba
丈司 大場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2004014182A priority Critical patent/JP2005200620A/en
Priority to PCT/JP2004/018653 priority patent/WO2005056685A1/en
Publication of JP2005200620A publication Critical patent/JP2005200620A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0221Organic resins; Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0226Composites in the form of mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0234Carbonaceous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0239Organic resins; Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0243Composites in the form of mixtures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Polymers & Plastics (AREA)
  • Composite Materials (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a recyclable thermoplastic resin composition excellent in conductivity, mechanical strength, flexibility, durability and surface smoothness, and also to provide a thermoplastic resin molded product prepared from the above composition. <P>SOLUTION: The thermoplastic resin composition comprises a thermoplastic resin, Ketchen black or carbon nanotubes and vapor-deposition carbon fibers. The thermoplastic resin molded product is prepared by molding the above composition. The above thermoplastic resin composition contains highly conductive Ketchen black or carbon nanotubes to give a molded product with high conductivity even with a small amount of the conductive material. Since the amount of the conductive material can be suppressed, the molding property of the composition is not deteriorated and the molded product with excellent flexibility is prepared. Further, vapor-deposition carbon fibers with small diameters are used to form a network to enhance the conductivity of the molded product, and to improve the strength, flexibility and durability as well. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、導電性、強度、柔軟性、耐久性、表面平滑性に優れ、リサイクル可能な燃料電池セパレータ用途に適した熱可塑性樹脂組成物と、この熱可塑性樹脂組成物を成形してなる熱可塑性樹脂成形品とに関する。   The present invention relates to a thermoplastic resin composition excellent in conductivity, strength, flexibility, durability, and surface smoothness and suitable for recyclable fuel cell separator applications, and a heat formed by molding this thermoplastic resin composition. The present invention relates to a plastic resin molded product.

従来、燃料電池セパレータは、黒鉛又は樹脂を含浸させた黒鉛の切削加工により作製されてきたが、切削加工によるものでは、表面に複雑な燃料ガス流路や冷却水流路を形成するための加工コストが高いという欠点があった。そのため、切削加工によらないモールド成形可能なセパレータとして、金属材料を主材としたセパレータや、樹脂に多量の黒鉛等の導電性フィラーを配合してプレス成形したセパレータなどが提案されている。このうち、金属材料を主材としたセパレータは、錆の発生やイオンの溶出による燃料電池出力や長期耐久性の低下などの問題があるため、近年は樹脂系材料の検討が多くなされている。   Conventionally, fuel cell separators have been manufactured by cutting graphite or graphite impregnated with resin. However, in the case of cutting, the processing cost for forming a complicated fuel gas passage or cooling water passage on the surface is required. There was a drawback that it was expensive. Therefore, as a separator that can be molded without using a cutting process, a separator made of a metal material as a main material, a separator that is formed by press-molding a resin with a large amount of conductive filler such as graphite, and the like have been proposed. Among these, separators mainly made of metal materials have problems such as fuel cell output and long-term durability degradation due to generation of rust and ion elution, and in recent years, many studies have been made on resin-based materials.

導電性フィラーを配合した樹脂を用いてセパレータをモールド成形する方法としては、次のような方法が提案されている。
(1)フェノール樹脂に炭素材料を添加してモールド成形した後に炭化焼成する方法(特開2001−143719)
(2)樹脂に多量(樹脂100重量部に対して200重量部以上)の炭素粉末を添加して顆粒状の複合材料を得、これを成形する方法(特開2000−182630)
(3)熱硬化性樹脂に多量(樹脂100重量部に対して250重量部以上)の炭素粉末を混合した複合材料をプレス成形する方法(特開2002−63913)
(4)熱可塑性樹脂にチョップした炭素繊維とカーボンナノチューブを混合した材料を射出成形する方法(特開2002−97375)
The following method has been proposed as a method of molding a separator using a resin containing a conductive filler.
(1) A method in which a carbon material is added to a phenol resin and molded and then carbonized and fired (Japanese Patent Laid-Open No. 2001-143719)
(2) A method of forming a granular composite material by adding a large amount of carbon powder (200 parts by weight or more with respect to 100 parts by weight of the resin) to the resin, and molding this (JP-A-2000-182630)
(3) A method of press-molding a composite material in which a large amount (250 parts by weight or more with respect to 100 parts by weight of resin) of carbon powder is mixed with a thermosetting resin (Japanese Patent Laid-Open No. 2002-63913)
(4) A method of injection molding a material obtained by mixing carbon fibers chopped into a thermoplastic resin and carbon nanotubes (Japanese Patent Laid-Open No. 2002-97375)

特開2001−143719号公報JP 2001-143719 A 特開2000−182630号公報JP 2000-182630 A 特開2002−63913号公報JP 2002-63913 A 特開2002−97375号公報JP 2002-97375 A

しかしながら、特開2001−143719に記載される方法では、成形後に炭化焼成する必要があり、黒鉛化工程での寸法収縮が避けられない上、収縮時の歪が残りやすいという問題点がある。特開2000−182630に記載される方法では、樹脂に多量の炭素粉末を添加するために材料の柔軟性が著しく損なわれ、少しの変形でも割れやすいという問題点がある。特開2002−63913に記載される方法では、熱硬化性樹脂を用いるために、材料のリサイクルが困難であるという問題点がある上に、成形時間が長く、成形性に劣るという問題点がある。特開2002−97375に記載される方法では、チョップした炭素繊維を用いるため、成形品の表面平滑性が損なわれやすいという問題点がある。   However, in the method described in JP-A-2001-143719, it is necessary to perform carbonization firing after molding, and there is a problem that dimensional shrinkage in the graphitization process is unavoidable and strain at the time of shrinkage tends to remain. In the method described in JP-A-2000-182630, since a large amount of carbon powder is added to the resin, the flexibility of the material is remarkably impaired, and there is a problem that even a slight deformation is easy to break. In the method described in JP-A-2002-63913, since a thermosetting resin is used, there is a problem that it is difficult to recycle the material, and there is a problem that the molding time is long and the moldability is inferior. . In the method described in JP-A-2002-97375, since chopped carbon fiber is used, there is a problem that the surface smoothness of the molded product is easily impaired.

本発明は上記従来の問題点を解決し、導電性、強度、柔軟性、耐久性、表面平滑性に優れ、かつリサイクル可能な、燃料電池セパレータ用途に適した熱可塑性樹脂組成物と、この熱可塑性樹脂組成物を成形してなる熱可塑性樹脂成形品とを提供することを目的とする。   The present invention solves the above-mentioned conventional problems, is excellent in conductivity, strength, flexibility, durability, surface smoothness, and is recyclable, and a thermoplastic resin composition suitable for fuel cell separator applications, and this heat It aims at providing the thermoplastic resin molded product formed by shape | molding a plastic resin composition.

本発明の第1の熱可塑性樹脂組成物は、熱可塑性樹脂、ケッチェンブラック及び気相成長炭素繊維を含むことを特徴とする。ケッチェンブラックと気相成長炭素繊維とを併用添加した熱可塑性樹脂組成物であれば、導電性、強度、柔軟性、耐久性、表面平滑性に優れた熱可塑性樹脂成形品を提供することができる。また、熱可塑性樹脂組成物であれば、リサイクルも容易である。   The 1st thermoplastic resin composition of this invention is characterized by including a thermoplastic resin, Ketjen black, and a vapor growth carbon fiber. If it is a thermoplastic resin composition to which ketjen black and vapor-grown carbon fiber are added in combination, it is possible to provide a thermoplastic resin molded article excellent in conductivity, strength, flexibility, durability, and surface smoothness. it can. Moreover, if it is a thermoplastic resin composition, recycling is also easy.

本発明の第1の熱可塑性樹脂組成物においては、熱可塑性樹脂、ケッチェンブラック及び気相成長炭素繊維の合計に対して、ケッチェンブラックの配合量が5〜30重量%、気相成長炭素繊維の配合量が10〜60重量%、特に、ケッチェンブラックの配合量が10〜25重量%、気相成長炭素繊維の配合量が25〜50重量%であることが好ましく、また、気相成長炭素繊維としては繊維径が50〜200nmのものが好ましい。   In the first thermoplastic resin composition of the present invention, the blending amount of ketjen black is 5 to 30% by weight with respect to the total of the thermoplastic resin, ketjen black and vapor-grown carbon fiber, and vapor-grown carbon. The fiber content is preferably 10 to 60% by weight, in particular, the ketjen black content is preferably 10 to 25% by weight, and the vapor-grown carbon fiber content is preferably 25 to 50% by weight. The growth carbon fiber preferably has a fiber diameter of 50 to 200 nm.

本発明の第2の熱可塑性樹脂組成物は、熱可塑性樹脂、カーボンナノチューブ及び気相成長炭素繊維を含むことを特徴とする。カーボンナノチューブと気相成長炭素繊維とを併用添加した熱可塑性樹脂組成物であれば、導電性、強度、柔軟性、耐久性、表面平滑性に優れた熱可塑性樹脂成形品を提供することができる。また、熱可塑性樹脂組成物であれば、リサイクルも容易である。   The 2nd thermoplastic resin composition of this invention is characterized by including a thermoplastic resin, a carbon nanotube, and a vapor growth carbon fiber. A thermoplastic resin composition having both carbon nanotubes and vapor-grown carbon fibers added together can provide a thermoplastic resin molded article excellent in conductivity, strength, flexibility, durability, and surface smoothness. . Moreover, if it is a thermoplastic resin composition, recycling is also easy.

本発明の第2の熱可塑性樹脂組成物においては、熱可塑性樹脂、カーボンナノチューブ及び気相成長炭素繊維の合計に対して、カーボンナノチューブの配合量が1〜20重量%、気相成長炭素繊維の配合量が10〜70重量%、特に、カーボンナノチューブの配合量が4〜10重量%、気相成長炭素繊維の配合量が30〜70重量%であることが好ましく、また、カーボンナノチューブとしては繊維径が1〜50nmのものが好ましく、気相成長炭素繊維としては繊維径が50〜200nmのものが好ましい。   In the 2nd thermoplastic resin composition of this invention, the compounding quantity of a carbon nanotube is 1 to 20 weight% with respect to the sum total of a thermoplastic resin, a carbon nanotube, and a vapor growth carbon fiber, vapor growth carbon fiber of The blending amount is 10 to 70% by weight, in particular, the blending amount of the carbon nanotube is preferably 4 to 10% by weight, and the blending amount of the vapor growth carbon fiber is preferably 30 to 70% by weight. Those having a diameter of 1 to 50 nm are preferable, and vapor-grown carbon fibers having a fiber diameter of 50 to 200 nm are preferable.

本発明の熱可塑性樹脂組成物において、熱可塑性樹脂としては、ポリプロピレン、ポリフッ化ビニリデン、ポリフェニレンサルファイド、ポリフェニレンオキサイド、ポリアミドイミド、ポリエーテルエーテルケトン、ポリサルホン、ポリエーテルサルホン及びポリエーテルイミドよりなる群から選ばれる1種又は2種以上が好適に用いられ、ポリプロピレン又はポリフェニレンサルファイドが特に好適に用いられる。   In the thermoplastic resin composition of the present invention, the thermoplastic resin is selected from the group consisting of polypropylene, polyvinylidene fluoride, polyphenylene sulfide, polyphenylene oxide, polyamideimide, polyetheretherketone, polysulfone, polyethersulfone, and polyetherimide. One or two or more selected are preferably used, and polypropylene or polyphenylene sulfide is particularly preferably used.

本発明の熱可塑性樹脂成形品は、このような本発明の熱可塑性樹脂組成物を成形してなるものであり、導電性、強度、柔軟性、耐久性、表面平滑性に優れ、しかもリサイクルも容易である。また、本発明の熱可塑性樹脂成形品は、特に燃料電池セパレータとして有用である。   The thermoplastic resin molded article of the present invention is formed by molding such a thermoplastic resin composition of the present invention, and is excellent in conductivity, strength, flexibility, durability, surface smoothness, and recycling. Easy. The thermoplastic resin molded article of the present invention is particularly useful as a fuel cell separator.

本発明によれば、導電性、強度、柔軟性、耐久性、表面平滑性に優れ、かつリサイクル可能な、燃料電池セパレータ用途に適した熱可塑性樹脂組成物と、この熱可塑性樹脂組成物を成形してなる熱可塑性樹脂成形品が提供される。   According to the present invention, a thermoplastic resin composition excellent in conductivity, strength, flexibility, durability, surface smoothness, and recyclable and suitable for fuel cell separator use, and molding the thermoplastic resin composition A thermoplastic resin molded article is provided.

以下に本発明の熱可塑性樹脂組成物及び熱可塑性樹脂成形品の実施の形態を詳細に説明する。   Embodiments of the thermoplastic resin composition and the thermoplastic resin molded article of the present invention will be described in detail below.

本発明の熱可塑性樹脂組成物には、第1の態様及び第2の態様がある。即ち、本発明の第1の熱可塑性樹脂組成物は、熱可塑性樹脂、ケッチェンブラック及び気相成長炭素繊維を含むものであり、一方、本発明の第2の熱可塑性樹脂組成物は、熱可塑性樹脂、カーボンナノチューブ及び気相成長炭素繊維を含むものである。   The thermoplastic resin composition of the present invention has a first aspect and a second aspect. That is, the first thermoplastic resin composition of the present invention includes a thermoplastic resin, ketjen black, and vapor grown carbon fiber, while the second thermoplastic resin composition of the present invention includes a thermal resin. It contains a plastic resin, carbon nanotubes, and vapor grown carbon fibers.

本発明の熱可塑性樹脂組成物に用いる熱可塑性樹脂としては、特に制限はないが、ポリプロピレン、ポリフッ化ビニリデン、ポリフェニレンサルファイド、ポリフェニレンオキサイド、ポリアミドイミド、ポリエーテルエーテルケトン、ポリサルホン、ポリエーテルサルホン及びポリエーテルイミドよりなる群から選ばれる1種、又は2種以上のブレンド物が挙げられる。これらのうち化学的安定性の点から、ポリプロピレン及びポリフェニレンサルファイドが好ましい。   The thermoplastic resin used in the thermoplastic resin composition of the present invention is not particularly limited, but polypropylene, polyvinylidene fluoride, polyphenylene sulfide, polyphenylene oxide, polyamideimide, polyether ether ketone, polysulfone, polyether sulfone and poly One type selected from the group consisting of ether imides, or a blend of two or more types may be mentioned. Of these, polypropylene and polyphenylene sulfide are preferable from the viewpoint of chemical stability.

本発明の第1の熱可塑性樹脂組成物に用いるケッチェンブラックは、カーボンブラックの1種であり、従来のカーボンブラックに比べて導電性の高いカーボンブラックである。ケッチェンブラックの優れた性能は、ケッチェンブラックが他のカーボンブラックとは異なり、中空シェル構造を有することによるものである。ケッチェンブラックの代表的な種類としては、ケッチェンブラックEC、ケッチェンブラックEC−600JD等があり、各々、次のような性状を示す。   The ketjen black used in the first thermoplastic resin composition of the present invention is a kind of carbon black and is a carbon black having higher conductivity than conventional carbon black. The excellent performance of ketjen black is due to the fact that ketjen black has a hollow shell structure unlike other carbon blacks. Typical types of ketjen black include ketjen black EC, ketjen black EC-600JD, etc., and each exhibits the following properties.

Figure 2005200620
Figure 2005200620

一方、本発明の第2の熱可塑性樹脂組成物にかかわるカーボンナノチューブ(CNT)は、炭素原子が筒状に結合した巨大分子であり、高い導電性を有する。通常のグラファイトは、蜂の巣状に結合した炭素原子が平面状に広がった層(グラフェンシート)が積み重なってできているが、CNTはグラフェンシートが円筒状に丸まった構造をしており、グラフェンシート1層が筒状になったものを単層CNT(SWNT)、2層以上が同心円状に筒状になったものを多層CNT(MWNT)と呼ぶ。また、SWNT及びMWNTの中でも、直径、グラフェンシートの層数、グラフェンシートの巻き方(キラリティー)等の違いにより、さらに細かく分類される場合もある。CNTの製造方法としては、アーク放電法、レーザー蒸発法、CVD法等がある。   On the other hand, the carbon nanotube (CNT) related to the second thermoplastic resin composition of the present invention is a macromolecule in which carbon atoms are bonded in a cylindrical shape, and has high conductivity. Ordinary graphite is formed by stacking layers (graphene sheets) in which carbon atoms bonded in a honeycomb shape spread in a plane, but CNT has a structure in which graphene sheets are rounded into a cylindrical shape. Graphene sheet 1 A layer formed in a cylindrical shape is referred to as a single-walled CNT (SWNT), and a structure in which two or more layers are formed in a concentric cylindrical shape is referred to as a multilayer CNT (MWNT). Further, among SWNTs and MWNTs, they may be further finely classified depending on differences in diameter, the number of graphene sheet layers, how to wind the graphene sheet (chirality), and the like. Examples of CNT manufacturing methods include arc discharge, laser evaporation, and CVD.

本発明の第2の熱可塑性樹脂組成物に用いるCNTは、上記のいずれの製法で製造されたものでもよく、また、SWNT、MWNTのいずれか1種、若しくは2種以上の混合物でもよい。本発明で用いるCNTは、アルペクト比(長さ/径比)が10〜1000程度であることが望ましく、また、繊維径が1〜50nmの範囲にあることが好ましい。   The CNT used in the second thermoplastic resin composition of the present invention may be produced by any of the above-described production methods, and may be any one of SWNT and MWNT, or a mixture of two or more. The CNT used in the present invention preferably has an arpect ratio (length / diameter ratio) of about 10 to 1000, and preferably has a fiber diameter in the range of 1 to 50 nm.

また、本発明の熱可塑性樹脂組成物にかかわる気相成長炭素繊維は、気相成長法により得られる炭素繊維である。気相成長炭素繊維の生成法には、大きく分けて、基板法と流動床法の2種類がある。基板法は、金属触媒を基板に直接添付し、これを炉心管内に設置し、電気炉を用いて高温にした状態で炭化水素ガスを流入させ基板上に炭素繊維を生成させる方法である。この方法では、基板上に炭素繊維が生成され、生成した炭素繊維が炉心内部で長時間反応条件下に置かれるため、繊維径が大きくなる。一方、流動床法は、炭化水素ガスと金属触媒とを共に高温下の炉心内部に流入させ、短時間の反応で炭素繊維を生成させる方法であり、繊維径が比較的小さいものが得られる。   Moreover, the vapor growth carbon fiber related to the thermoplastic resin composition of the present invention is a carbon fiber obtained by a vapor growth method. There are two types of methods for producing vapor-grown carbon fibers: a substrate method and a fluidized bed method. The substrate method is a method in which a metal catalyst is directly attached to a substrate, and this is installed in a furnace core tube, and a hydrocarbon gas is flowed in at a high temperature using an electric furnace to generate carbon fibers on the substrate. In this method, carbon fibers are generated on the substrate, and the generated carbon fibers are left under reaction conditions for a long time inside the core, so that the fiber diameter is increased. On the other hand, the fluidized bed method is a method in which both a hydrocarbon gas and a metal catalyst are caused to flow into the core at a high temperature to generate carbon fibers by a short reaction, and a fiber having a relatively small fiber diameter can be obtained.

本発明で用いる気相成長炭素繊維は、上記いずれの方法により製造されたものであってもよいが、繊維径が50〜200nmの範囲にあることが好ましい。気相成長炭素繊維の繊維径が50nm未満であると、凝集力が大きいために樹脂中の均一な分散が困難であり、200nmを超えると、樹脂と複合化した際に高い導電性が得られ難くなる。なお、気相成長炭素繊維の繊維長さは、通常1〜10μm程度であり、アスペクト比(長さ/径比)は、10〜1000程度であることが好ましい。   The vapor growth carbon fiber used in the present invention may be produced by any of the above methods, but the fiber diameter is preferably in the range of 50 to 200 nm. If the fiber diameter of the vapor-grown carbon fiber is less than 50 nm, the cohesive force is large, so that uniform dispersion in the resin is difficult. If it exceeds 200 nm, high conductivity is obtained when it is combined with the resin. It becomes difficult. In addition, it is preferable that the fiber length of vapor growth carbon fiber is about 1-10 micrometers normally, and an aspect-ratio (length / diameter ratio) is about 10-1000.

このような、繊維径の細い気相成長炭素繊維を用いることにより、炭素繊維同士のネットワークで、得られる成形品の導電性を高めると共に、強度、柔軟性、耐久性を向上させることができる。しかも、このような細径の気相成長炭素繊維を用いるため、得られる成形品の表面平滑性も良好なものとなる。   By using such a vapor-grown carbon fiber having a small fiber diameter, it is possible to increase the conductivity, the strength, the flexibility, and the durability of the obtained molded product through a network of carbon fibers. Moreover, since such a vapor-grown carbon fiber having a small diameter is used, the surface smoothness of the obtained molded product is also good.

本発明の第1の熱可塑性樹脂組成物において、ケッチェンブラック及び気相成長炭素繊維の配合量は、熱可塑性樹脂、ケッチェンブラック及び気相成長炭素繊維の合計に対して、ケッチェンブラックを5〜30重量%、特に10〜25重量%、気相成長炭素繊維を10〜60重量%、特に25〜50重量%とし、ケッチェンブラックと気相成長炭素繊維との合計の配合量は40〜75重量%、特に50〜70重量%とすることが好ましい。ケッチェンブラック及び気相成長炭素繊維の配合量が上記範囲よりも少ないと、各々の添加効果を十分に得ることができず、多いと、成形性、強度等を損なう原因となる。   In the first thermoplastic resin composition of the present invention, the amount of ketjen black and vapor-grown carbon fiber is the same as that of the thermoplastic resin, ketjen black and vapor-grown carbon fiber. 5 to 30% by weight, especially 10 to 25% by weight, vapor-grown carbon fiber is 10 to 60% by weight, especially 25 to 50% by weight, and the total amount of ketjen black and vapor-grown carbon fiber is 40 It is preferable to set it to -75 weight%, especially 50-70 weight%. If the amount of ketjen black and vapor-grown carbon fiber is less than the above range, the effect of each addition cannot be obtained sufficiently, and if it is too large, moldability, strength, etc. are impaired.

本発明の第1の熱可塑性樹脂組成物においては、導電性、強度、柔軟性のバランスに優れた成形品を得るために、ケッチェンブラックと気相成長炭素繊維とを併用しており、ケッチェンブラックと気相成長炭素繊維との配合割合は、気相成長炭素繊維100重量部に対して、ケッチェンブラック10〜300重量部とすることが好ましい。   In the first thermoplastic resin composition of the present invention, ketjen black and vapor-grown carbon fiber are used in combination in order to obtain a molded article having an excellent balance of conductivity, strength and flexibility. The blending ratio of chain black and vapor grown carbon fiber is preferably 10 to 300 parts by weight with respect to 100 parts by weight of vapor grown carbon fiber.

一方、本発明の第2の熱可塑性樹脂組成物において、カーボンナノチューブ及び気相成長炭素繊維の配合量は、熱可塑性樹脂、カーボンナノチューブ及び気相成長炭素繊維の合計に対して、カーボンナノチューブを1〜20重量%、特に4〜10重量%、気相成長炭素繊維を10〜70重量%、特に30〜70重量%とし、カーボンナノチューブと気相成長炭素繊維との合計の配合量は、15〜80重量%、特に30〜75重量%とすることが好ましい。カーボンナノチューブ及び気相成長炭素繊維の配合量が上記範囲よりも少ないと、各々の添加効果を十分に得ることができず、多いと、成形性、強度等を損なう原因となる。   On the other hand, in the second thermoplastic resin composition of the present invention, the compounding amount of the carbon nanotube and the vapor grown carbon fiber is 1 for the total amount of the thermoplastic resin, the carbon nanotube and the vapor grown carbon fiber. -20% by weight, especially 4-10% by weight, vapor-grown carbon fiber is 10-70% by weight, especially 30-70% by weight, and the total amount of carbon nanotubes and vapor-grown carbon fiber is 15-15% It is preferably 80% by weight, particularly 30 to 75% by weight. If the blending amount of the carbon nanotube and the vapor grown carbon fiber is less than the above range, the effect of each addition cannot be obtained sufficiently, and if it is large, the moldability, strength and the like are impaired.

なお、本発明の熱可塑性樹脂組成物には、本発明の効果を損なわない範囲で、ガラス繊維、チタン酸カリウムウィスカ、酸化亜鉛ウィスカ、硼酸アルミニウムウィスカ、アラミド繊維、アルミナ繊維、炭化珪素繊維、セラミック繊維、アスベスト繊維、石コウ繊維及び金属繊維などの繊維状充填剤、ワラストナイト、ゼオライト、セリサイト、カオリン、マイカ、クレー、パイロフィライト、ベントナイト、アスベスト、タルク、アルミナシリケートなどの珪酸塩、アルミナ、酸化珪素、酸化マグネシウム、酸化ジルコニウム、酸化チタン、酸化鉄などの金属酸化物、炭酸カルシウム、炭酸マグネシウム、ドロマイトなどの炭酸塩、硫酸カルシウム、硫酸バリウムなどの硫酸塩、水酸化マグネシウム、水酸化カルシウム、水酸化アルミニウムなどの水酸化物、ガラスビーズ、ガラスフレーク、セラミックビーズ、窒化ホウ素、炭化珪素及びシリカなどの非繊維状充填剤等の1種又は2種以上を配合してもよい。また、より優れた機械的強度を得る目的でこれら繊維状/非繊維状充填剤を、イソシアネート系化合物、有機シラン系化合物、有機チタネート系化合物、有機ボラン系化合物、エポキシ系化合物などのカップリング剤で前処理して使用してもよい。   The thermoplastic resin composition of the present invention includes glass fiber, potassium titanate whisker, zinc oxide whisker, aluminum borate whisker, aramid fiber, alumina fiber, silicon carbide fiber, and ceramic within the range not impairing the effects of the present invention. Fibrous fillers such as fibers, asbestos fibers, masonry fibers and metal fibers, wollastonite, zeolite, sericite, kaolin, mica, clay, pyrophyllite, bentonite, asbestos, talc, alumina silicate, etc. Metal oxides such as alumina, silicon oxide, magnesium oxide, zirconium oxide, titanium oxide and iron oxide, carbonates such as calcium carbonate, magnesium carbonate and dolomite, sulfates such as calcium sulfate and barium sulfate, magnesium hydroxide and hydroxide Calcium, aluminum hydroxide What hydroxide, glass beads, glass flakes, ceramic beads, boron nitride, may be incorporated one or more of such non-fibrous fillers such as silicon carbide and silica. Further, for the purpose of obtaining better mechanical strength, these fibrous / non-fibrous fillers are used as coupling agents such as isocyanate compounds, organic silane compounds, organic titanate compounds, organic borane compounds, epoxy compounds, and the like. It may be used after pretreatment.

更に、本発明の熱可塑性樹脂組成物には、タルク、カオリン、有機リン化合物、ポリエーテルエーテルケトンなどの結晶核剤、次亜リン酸塩などの着色防止剤、ヒンダードフェノール、ヒンダードアミンなどの酸化防止剤、熱安定剤、滑剤、紫外線防止剤、染料や顔料などの着色剤、帯電防止剤などの機能剤を添加することができる。   Furthermore, the thermoplastic resin composition of the present invention includes nucleating agents such as talc, kaolin, organophosphorus compounds, polyether ether ketone, coloring inhibitors such as hypophosphite, oxidations such as hindered phenols and hindered amines. Functional agents such as inhibitors, heat stabilizers, lubricants, UV inhibitors, colorants such as dyes and pigments, and antistatic agents can be added.

本発明の熱可塑性樹脂組成物の製造方法に特に制限は無く、熱可塑性樹脂にケッチェンブラック又はカーボンナノチューブと、気相成長炭素繊維と、その他必要に応じて配合される添加成分を一括してドライブレンドした後、押出機、ニーダー、バンバリーミキサーなどで溶融混練して製造することができる。また、予め熱可塑性樹脂及び気相成長炭素繊維を溶融押出したペレットと、ケッチェンブラック又はカーボンナノチューブと、その他添加成分とを溶融混練して製造してもよいし、熱可塑性樹脂にケッチェンブラック又はカーボンナノチューブを配合してなるマスターバッチと、気相成長炭素繊維及びその他添加成分とを溶融混練して製造してもよい。熱可塑性樹脂に気相成長炭素繊維とケッチェンブラック又はカーボンナノチューブとを均一に分散混練するために、バッチ式の場合はラボプラストミキサを、連続式の場合は2軸押出機による混練等の方法を採用することが好ましい。   The method for producing the thermoplastic resin composition of the present invention is not particularly limited, and ketjen black or carbon nanotubes, vapor-grown carbon fibers, and other additive components blended as necessary are collectively contained in the thermoplastic resin. After dry blending, it can be produced by melt-kneading with an extruder, kneader, Banbury mixer or the like. Further, it may be manufactured by melt-kneading a pellet obtained by melt-extruding a thermoplastic resin and vapor-grown carbon fiber, ketjen black or carbon nanotubes, and other additive components. Or you may manufacture by melt-kneading the masterbatch formed by mix | blending a carbon nanotube, a vapor growth carbon fiber, and another additive component. In order to uniformly disperse and knead vapor-grown carbon fibers and ketjen black or carbon nanotubes in a thermoplastic resin, a method such as kneading with a lab plast mixer in the case of a batch type or a twin screw extruder in the case of a continuous type Is preferably adopted.

本発明の熱可塑性樹脂成形品は、上記熱可塑性樹脂組成物を成形してなるものであり、導電性、強度、柔軟性、耐久性、表面平滑性に優れ、しかもリサイクルも容易である。なお、本発明の熱可塑性樹脂成形品の製造方法に特に制限は無く、射出成形、射出圧縮成形、プレス成形などを用いることができる。この場合、熱可塑性樹脂、ケッチェンブラック又はカーボンナノチューブ、気相成長炭素繊維、及びその他必要に応じて配合される添加成分を一括してドライブレンドした後、そのまま射出成形してもよいし、一旦全成分を溶融押出してペレタイズしてから射出成形してもよい。   The thermoplastic resin molded article of the present invention is formed by molding the thermoplastic resin composition, and is excellent in conductivity, strength, flexibility, durability and surface smoothness, and can be easily recycled. In addition, there is no restriction | limiting in particular in the manufacturing method of the thermoplastic resin molded product of this invention, Injection molding, injection compression molding, press molding, etc. can be used. In this case, the thermoplastic resin, ketjen black or carbon nanotube, vapor-grown carbon fiber, and other additive components blended as necessary may be dry blended together and then directly injection molded, or once All components may be melt extruded and pelletized before injection molding.

本発明の熱可塑性樹脂組成物を成形して得られる成形品としては、燃料電池セパレータが特に好適であるが、その他、導電性や帯電防止機能が要求されるパレット、トレイ、包装材料、基板等に用いることもできる。   As a molded article obtained by molding the thermoplastic resin composition of the present invention, a fuel cell separator is particularly suitable, but in addition, pallets, trays, packaging materials, substrates, etc. that require electrical conductivity and antistatic function. It can also be used.

以下に実施例及び比較例を挙げて、本発明をより具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例により制限されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. However, the present invention is not limited by the following examples unless it exceeds the gist.

なお、以下の実施例及び比較例において、用いた成形材料は以下の通りである。
PPS−1:ポリプラスチックス社製ポリフェニレンサルファイド「フォートロン0220A9」
PPS−2:大日本インキ社製ポリフェニレンサルファイド「LR−03G」
PPS−3:東ソー社製ポリフェニレンサルファイド「サスティールB−100」
PP−1:日本ポリケム社製ポリプロピレン「BC6C」
KB:ライオン社製ケッチェンブラック「EC−600JD」
VGCF:昭和電工社製気相成長炭素繊維「VGCF−R」, 平均繊維径150nm
PP−2及びCNT:ハイペリオン社製PP(ポリプロピレン)/CNT(カーボンナノチューブ)マスターバッチ「MB3020−01」, CNTの平均繊維径10nm
In the following examples and comparative examples, the molding materials used are as follows.
PPS-1: Polyphenylene sulfide “Fortron 0220A9” manufactured by Polyplastics Co., Ltd.
PPS-2: Polyphenylene sulfide “LR-03G” manufactured by Dainippon Ink, Inc.
PPS-3: Polyphenylene sulfide “Sasteel B-100” manufactured by Tosoh Corporation
PP-1: Nippon Polychem Polypropylene "BC6C"
KB: Ketjen Black “EC-600JD” manufactured by Lion
VGCF: Vapor growth carbon fiber “VGCF-R” manufactured by Showa Denko KK, average fiber diameter 150 nm
PP-2 and CNT: PP (polypropylene) / CNT (carbon nanotube) masterbatch “MB3020-01” manufactured by Hyperion, average fiber diameter of CNT: 10 nm

実施例1〜6,比較例1〜2
表2又は表3に示す配合で、東洋精機社製「ラボプラストミルR30」にて各成分を混練して熱可塑性樹脂組成物を製造し、混練後、プレス成形により必要な試験片を作製し、以下の特性評価を行って、結果を表2又は表3に示した。
Examples 1-6, Comparative Examples 1-2
The ingredients shown in Table 2 or Table 3 are used to produce a thermoplastic resin composition by kneading each component with "Lab Plast Mill R30" manufactured by Toyo Seiki Co., Ltd. After kneading, necessary test pieces are produced by press molding. The following characteristic evaluation was performed, and the results are shown in Table 2 or Table 3.

[体積抵抗率]
1mm厚みのシート状試験片について、三菱化学社製「ロレスタ」により、4端針法で測定した。
[Volume resistivity]
The sheet-shaped test piece having a thickness of 1 mm was measured by “Loresta” manufactured by Mitsubishi Chemical Corporation by the four-end needle method.

[曲げ強度及び曲げ歪]
JIS K6911により、強度の指標として曲げ強度を、柔軟性の指標として曲げ歪を測定した。
[Bending strength and bending strain]
According to JIS K6911, bending strength was measured as an index of strength, and bending strain was measured as an index of flexibility.

[耐久性]
耐圧容器に純水100mLと、80mm×10mm×4mmの試験片6個を入れ、150℃で700時間経過後の試験片重量を測定し、初期重量からの変化率を計算した。
[durability]
100 mL of pure water and 6 test pieces of 80 mm × 10 mm × 4 mm were put in a pressure vessel, the weight of the test piece after 700 hours at 150 ° C. was measured, and the rate of change from the initial weight was calculated.

Figure 2005200620
Figure 2005200620

表2より、気相成長炭素繊維のみを用いた比較例1では、曲げ強度と曲げ歪は良いが、体積抵抗率が大きすぎるため、導電性、強度、柔軟性を全て満足する材料にはなっていないのに対して、ケッチェンブラックと気相成長炭素繊維とを併用して配合した実施例1〜3の熱可塑性樹脂組成物によれば、導電性、強度、柔軟性のすべてにおいて優れた特性を示す成形品を得ることができることが分かる。なお、これらの成形品はいずれも表面平滑性についても良好であった。   From Table 2, in Comparative Example 1 using only vapor-grown carbon fiber, the bending strength and bending strain are good, but the volume resistivity is too large, so that it is a material that satisfies all the conductivity, strength, and flexibility. On the other hand, according to the thermoplastic resin compositions of Examples 1 to 3 blended with ketjen black and vapor-grown carbon fiber, the conductivity, strength, and flexibility were all excellent. It turns out that the molded article which shows a characteristic can be obtained. All of these molded articles were good in surface smoothness.

Figure 2005200620
Figure 2005200620

表3より、気相成長炭素繊維のみを用いた比較例2では、曲げ強度と曲げ歪は良いが、体積抵抗率が大きすぎるため、導電性、強度、柔軟性を総て満足する材料にはなっていないことが分かる。これに対して、カーボンナノチューブと気相成長炭素繊維とを併用した実施例4〜6の熱可塑性樹脂組成物によれば、導電性、強度、柔軟性の総てにおいて優れた特性を示す成形品を得ることができることが分かる。   From Table 3, in Comparative Example 2 using only vapor-grown carbon fibers, the bending strength and bending strain are good, but the volume resistivity is too large. I understand that it is not. On the other hand, according to the thermoplastic resin compositions of Examples 4 to 6 in which carbon nanotubes and vapor grown carbon fibers are used in combination, a molded product exhibiting excellent properties in all of conductivity, strength and flexibility. It can be seen that can be obtained.

Claims (14)

熱可塑性樹脂、ケッチェンブラック及び気相成長炭素繊維を含むことを特徴とする熱可塑性樹脂組成物。   A thermoplastic resin composition comprising a thermoplastic resin, ketjen black, and vapor grown carbon fiber. 請求項1において、ケッチェンブラックの配合量が、熱可塑性樹脂、ケッチェンブラック及び気相成長炭素繊維の合計に対して5〜30重量%であり、気相成長炭素繊維の配合量が、熱可塑性樹脂、ケッチェンブラック及び気相成長炭素繊維の合計に対して10〜60重量%であることを特徴とする熱可塑性樹脂組成物。   In Claim 1, the compounding quantity of ketjen black is 5 to 30 weight% with respect to the sum total of a thermoplastic resin, ketjen black, and a vapor growth carbon fiber, and the compounding quantity of a vapor growth carbon fiber is a heat | fever. A thermoplastic resin composition, characterized by being 10 to 60% by weight based on the total of the plastic resin, ketjen black and vapor grown carbon fiber. 請求項2において、ケッチェンブラックの配合量が、熱可塑性樹脂、ケッチェンブラック及び気相成長炭素繊維の合計に対して10〜25重量%であり、気相成長炭素繊維の配合量が、熱可塑性樹脂、ケッチェンブラック及び気相成長炭素繊維の合計に対して25〜50重量%であることを特徴とする熱可塑性樹脂組成物。   In Claim 2, the compounding quantity of ketjen black is 10-25 weight% with respect to the sum total of a thermoplastic resin, ketjen black, and vapor growth carbon fiber, and the compounding quantity of vapor growth carbon fiber is heat | fever. A thermoplastic resin composition characterized by being 25 to 50% by weight based on the total of the plastic resin, ketjen black and vapor grown carbon fiber. 請求項1ないし3のいずれか1項において、気相成長炭素繊維の繊維径が50〜200nmであることを特徴とする熱可塑性樹脂組成物。   The thermoplastic resin composition according to any one of claims 1 to 3, wherein the vapor-grown carbon fiber has a fiber diameter of 50 to 200 nm. 請求項1ないし4のいずれか1項において、熱可塑性樹脂が、ポリプロピレン、ポリフッ化ビニリデン、ポリフェニレンサルファイド、ポリフェニレンオキサイド、ポリアミドイミド、ポリエーテルエーテルケトン、ポリサルホン、ポリエーテルサルホン及びポリエーテルイミドよりなる群から選ばれる1種又は2種以上であることを特徴とする熱可塑性樹脂組成物。   5. The group according to claim 1, wherein the thermoplastic resin is made of polypropylene, polyvinylidene fluoride, polyphenylene sulfide, polyphenylene oxide, polyamideimide, polyetheretherketone, polysulfone, polyethersulfone, and polyetherimide. A thermoplastic resin composition characterized by being one or more selected from the group consisting of: 請求項5において、熱可塑性樹脂がポリプロピレン又はポリフェニレンサルファイドであることを特徴とする熱可塑性樹脂組成物。   6. The thermoplastic resin composition according to claim 5, wherein the thermoplastic resin is polypropylene or polyphenylene sulfide. 熱可塑性樹脂、カーボンナノチューブ及び気相成長炭素繊維を含むことを特徴とする熱可塑性樹脂組成物。   A thermoplastic resin composition comprising a thermoplastic resin, carbon nanotubes, and vapor-grown carbon fibers. 請求項7において、カーボンナノチューブの配合量が、熱可塑性樹脂、カーボンナノチューブ及び気相成長炭素繊維の合計に対して1〜20重量%であり、気相成長炭素繊維の配合量が、熱可塑性樹脂、カーボンナノチューブ及び気相成長炭素繊維の合計に対して10〜70重量%であることを特徴とする熱可塑性樹脂組成物。   In Claim 7, the compounding quantity of a carbon nanotube is 1 to 20 weight% with respect to the sum total of a thermoplastic resin, a carbon nanotube, and a vapor growth carbon fiber, and the compounding quantity of a vapor growth carbon fiber is a thermoplastic resin. The thermoplastic resin composition is characterized by being 10 to 70% by weight based on the total of carbon nanotubes and vapor-grown carbon fibers. 請求項8において、カーボンナノチューブの配合量が、熱可塑性樹脂、カーボンナノチューブ及び気相成長炭素繊維の合計に対して4〜10重量%であり、気相成長炭素繊維の配合量が、熱可塑性樹脂、カーボンナノチューブ及び気相成長炭素繊維の合計に対して30〜70重量%であることを特徴とする熱可塑性樹脂組成物。   In Claim 8, the compounding quantity of a carbon nanotube is 4 to 10 weight% with respect to the sum total of a thermoplastic resin, a carbon nanotube, and a vapor growth carbon fiber, and the compounding quantity of a vapor growth carbon fiber is a thermoplastic resin. The thermoplastic resin composition is 30 to 70% by weight based on the total of carbon nanotubes and vapor-grown carbon fibers. 請求項7ないし9のいずれか1項において、カーボンナノチューブの繊維径が1〜50nmであり、気相成長炭素繊維の繊維径が50〜200nmであることを特徴とする熱可塑性樹脂組成物。   The thermoplastic resin composition according to any one of claims 7 to 9, wherein the carbon nanotube has a fiber diameter of 1 to 50 nm, and the vapor-grown carbon fiber has a fiber diameter of 50 to 200 nm. 請求項7ないし10のいずれか1項において、熱可塑性樹脂が、ポリプロピレン、ポリフッ化ビニリデン、ポリフェニレンサルファイド、ポリフェニレンオキサイド、ポリアミドイミド、ポリエーテルエーテルケトン、ポリサルホン、ポリエーテルサルホン及びポリエーテルイミドよりなる群から選ばれる1種又は2種以上であることを特徴とする熱可塑性樹脂組成物。   The group according to any one of claims 7 to 10, wherein the thermoplastic resin is composed of polypropylene, polyvinylidene fluoride, polyphenylene sulfide, polyphenylene oxide, polyamideimide, polyetheretherketone, polysulfone, polyethersulfone, and polyetherimide. A thermoplastic resin composition characterized by being one or more selected from the group consisting of: 請求項11において、熱可塑性樹脂がポリプロピレン又はポリフェニレンサルファイドであることを特徴とする熱可塑性樹脂組成物。   The thermoplastic resin composition according to claim 11, wherein the thermoplastic resin is polypropylene or polyphenylene sulfide. 請求項1ないし12のいずれか1項に記載の熱可塑性樹脂組成物を成形して得られることを特徴とする熱可塑性樹脂成形品。   A thermoplastic resin molded article obtained by molding the thermoplastic resin composition according to any one of claims 1 to 12. 請求項13において、燃料電池セパレータであることを特徴とする熱可塑性樹脂成形品。   The thermoplastic resin molded article according to claim 13, which is a fuel cell separator.
JP2004014182A 2003-12-15 2004-01-22 Thermoplastic resin composition and thermoplastic resin molded product Pending JP2005200620A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004014182A JP2005200620A (en) 2003-12-15 2004-01-22 Thermoplastic resin composition and thermoplastic resin molded product
PCT/JP2004/018653 WO2005056685A1 (en) 2003-12-15 2004-12-14 Thermoplastic resin composition and thermoplastic resin molded article

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003416598 2003-12-15
JP2004014182A JP2005200620A (en) 2003-12-15 2004-01-22 Thermoplastic resin composition and thermoplastic resin molded product

Publications (1)

Publication Number Publication Date
JP2005200620A true JP2005200620A (en) 2005-07-28

Family

ID=34680652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004014182A Pending JP2005200620A (en) 2003-12-15 2004-01-22 Thermoplastic resin composition and thermoplastic resin molded product

Country Status (2)

Country Link
JP (1) JP2005200620A (en)
WO (1) WO2005056685A1 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005117178A1 (en) * 2004-05-27 2005-12-08 Showa Denko K.K. Conductive resin composition for fuel cell separator and fuel cell separator
WO2007043472A1 (en) * 2005-10-07 2007-04-19 Prime Polymer Co., Ltd. Resin composition for fuel cell member and fuel cell member
WO2007063984A1 (en) * 2005-12-01 2007-06-07 Kojima Press Industry Co., Ltd. Conductive member containing fiber nanocarbon and contact device using such conductive member
KR100727751B1 (en) 2005-10-28 2007-06-13 제일모직주식회사 Poly phenylenesulfide composition with improved melt strength
US7611643B2 (en) 2004-05-27 2009-11-03 Showa Denko K.K. Electrically conducting resin composition for fuel cell separator and fuel cell separator
WO2010038784A1 (en) * 2008-09-30 2010-04-08 保土谷化学工業株式会社 Composite material containing carbon fiber
JP2013023579A (en) * 2011-07-21 2013-02-04 Tosoh Corp Master batch
WO2013051707A1 (en) * 2011-10-05 2013-04-11 独立行政法人産業技術総合研究所 Carbon nanotube composite material and heat conductor
WO2013153969A1 (en) * 2012-04-09 2013-10-17 リケンテクノス株式会社 Resin composition
KR101500067B1 (en) * 2013-03-29 2015-03-06 현대자동차주식회사 Separator for fuel cell and manufacturing method of the same
US9088026B2 (en) 2010-04-01 2015-07-21 Toyota Jidosha Kabushiki Kaisha Adhesive material for fuel cell and fuel cell
WO2016032307A1 (en) * 2014-08-29 2016-03-03 주식회사 엘지화학 Composite with improved mechanical properties and molded product containing same
JPWO2014002581A1 (en) * 2012-06-27 2016-05-30 クレハエクストロン株式会社 Synthetic resin composition and molded body
US9688897B2 (en) 2011-10-05 2017-06-27 National Institute Of Advanced Industrial Science And Technology Carbon nanotube composite material and thermal conductor
US9748017B2 (en) 2013-09-10 2017-08-29 Riken Technos Corporation Electrically conductive resin composition, and film produced from same
JP2018150414A (en) * 2017-03-10 2018-09-27 国立大学法人京都大学 Hot-pressed molding of chemically modified lignocellulose and method for manufacturing the same
US10113056B2 (en) 2014-08-29 2018-10-30 Lg Chem, Ltd. Composite with improved mechanical properties and molded article including the same
US10767035B2 (en) 2014-10-09 2020-09-08 Riken Technos Corporation Method for producing thermoplastic resin composition film

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5250154B2 (en) * 2010-04-14 2013-07-31 高橋 玄策 Conductive thermoplastic resin composition
US20130082214A1 (en) * 2011-09-16 2013-04-04 Prc-Desoto International, Inc. Conductive sealant compositions
CN111326759B (en) * 2018-12-14 2022-04-22 中国科学院青岛生物能源与过程研究所 Graphite-based conductive composite material used as bipolar plate of proton exchange membrane fuel cell and preparation thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06122785A (en) * 1991-12-10 1994-05-06 Nikkiso Co Ltd Conductive composition, conductive coating material, conductive ink, and electric circuit board
JPH0831231A (en) * 1994-07-19 1996-02-02 Shin Etsu Polymer Co Ltd Conductive mold
JP3608053B2 (en) * 2001-01-16 2005-01-05 昭和電工株式会社 Battery catalyst composition, gas diffusion layer, and fuel cell including these
JP3828521B2 (en) * 2002-08-23 2006-10-04 本田技研工業株式会社 Fuel cell separator

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1755186A4 (en) * 2004-05-27 2011-04-27 Showa Denko Kk Conductive resin composition for fuel cell separator and fuel cell separator
US7611643B2 (en) 2004-05-27 2009-11-03 Showa Denko K.K. Electrically conducting resin composition for fuel cell separator and fuel cell separator
WO2005117178A1 (en) * 2004-05-27 2005-12-08 Showa Denko K.K. Conductive resin composition for fuel cell separator and fuel cell separator
WO2007043472A1 (en) * 2005-10-07 2007-04-19 Prime Polymer Co., Ltd. Resin composition for fuel cell member and fuel cell member
KR100727751B1 (en) 2005-10-28 2007-06-13 제일모직주식회사 Poly phenylenesulfide composition with improved melt strength
WO2007063984A1 (en) * 2005-12-01 2007-06-07 Kojima Press Industry Co., Ltd. Conductive member containing fiber nanocarbon and contact device using such conductive member
JPWO2007063984A1 (en) * 2005-12-01 2009-05-07 小島プレス工業株式会社 Conductive member containing fibrous nanocarbon and contact device using the same
JP5634870B2 (en) * 2008-09-30 2014-12-03 保土谷化学工業株式会社 Composite material containing carbon fiber
WO2010038784A1 (en) * 2008-09-30 2010-04-08 保土谷化学工業株式会社 Composite material containing carbon fiber
CN102227782B (en) * 2008-09-30 2014-03-12 保土谷化学工业株式会社 Composite material containing carbon fiber
US9088026B2 (en) 2010-04-01 2015-07-21 Toyota Jidosha Kabushiki Kaisha Adhesive material for fuel cell and fuel cell
JP2013023579A (en) * 2011-07-21 2013-02-04 Tosoh Corp Master batch
US9688897B2 (en) 2011-10-05 2017-06-27 National Institute Of Advanced Industrial Science And Technology Carbon nanotube composite material and thermal conductor
WO2013051707A1 (en) * 2011-10-05 2013-04-11 独立行政法人産業技術総合研究所 Carbon nanotube composite material and heat conductor
WO2013153969A1 (en) * 2012-04-09 2013-10-17 リケンテクノス株式会社 Resin composition
CN104245852A (en) * 2012-04-09 2014-12-24 理研科技株式会社 Resin composition
US9660271B2 (en) 2012-04-09 2017-05-23 Riken Technos Corporation Resin composition
JPWO2014002581A1 (en) * 2012-06-27 2016-05-30 クレハエクストロン株式会社 Synthetic resin composition and molded body
KR101500067B1 (en) * 2013-03-29 2015-03-06 현대자동차주식회사 Separator for fuel cell and manufacturing method of the same
US9472815B2 (en) 2013-03-29 2016-10-18 Hyundai Motor Company Separator for fuel cell and method for manufacturing the same
US9748017B2 (en) 2013-09-10 2017-08-29 Riken Technos Corporation Electrically conductive resin composition, and film produced from same
WO2016032307A1 (en) * 2014-08-29 2016-03-03 주식회사 엘지화학 Composite with improved mechanical properties and molded product containing same
US10113056B2 (en) 2014-08-29 2018-10-30 Lg Chem, Ltd. Composite with improved mechanical properties and molded article including the same
US10626252B2 (en) 2014-08-29 2020-04-21 Lg Chem, Ltd. Composite with improved mechanical properties and molded article including the same
US10767035B2 (en) 2014-10-09 2020-09-08 Riken Technos Corporation Method for producing thermoplastic resin composition film
JP2018150414A (en) * 2017-03-10 2018-09-27 国立大学法人京都大学 Hot-pressed molding of chemically modified lignocellulose and method for manufacturing the same
JP7024953B2 (en) 2017-03-10 2022-02-24 国立大学法人京都大学 Thermal pressure molded product of chemically modified lignocellulosic and its manufacturing method

Also Published As

Publication number Publication date
WO2005056685A1 (en) 2005-06-23

Similar Documents

Publication Publication Date Title
JP2005200620A (en) Thermoplastic resin composition and thermoplastic resin molded product
US8419979B2 (en) Thermoplastic resin composition having electrical conductivity, wear resistance and high heat resistance
EP2627700B1 (en) Polymer compositions comprising poly(arylether ketone)s and graphene materials
JP2008528768A (en) Conductive composition and method for producing the same
JP2006265315A (en) Composite material
US7955699B2 (en) Composite material
US20090281227A1 (en) Polymer Composition Suitable for Electrostatic Discharge Applications
JP4725118B2 (en) Conductive polyamide resin composition
JP2007154100A (en) Electroconductive agent for resin, electroconductive resin composition and its roduction method
KR100927702B1 (en) Electrically insulating high thermal conductive resin composition
JP2012057151A (en) Resin composition and electrically insulating part obtained from the same
US20090226712A1 (en) Recycled composite material
JP2006028313A (en) Carbon fiber-reinforced thermoplastic resin compound and method for producing the same
JP2007277475A (en) Thermoplastic resin composition and thermoplastic resin molded product
JP3851997B2 (en) COMPOSITE MATERIAL COMPOSITION AND COMPOSITE MATERIAL MOLDED BODY
JP2010144112A (en) Parts for fuel
WO2006095821A1 (en) Thermoplastic resin composition and thermoplastic resin molded article
KR20140080115A (en) Electrically conductive thermoplastic resin composition with excellent thermal conductivity and reduced anisotropy in thermal conductivity
JP4599211B2 (en) Thermoplastic resin composition, process for producing the same, and molded article thereof
JP2007018850A (en) Separator for fuel cell
JP2024513073A (en) Antistatic polyamide composition and articles containing the same
JP2007018852A (en) Separator for fuel cell
WO2018143224A1 (en) Resin compound and molded product of resin compound
JP5919004B2 (en) Polyphenylene sulfide-based resin composition and molded products based on the resin composition
JPH0715063B2 (en) Pitch-based carbon fiber reinforced polyphenylene sulfide resin composition