WO2010038784A1 - Composite material containing carbon fiber - Google Patents

Composite material containing carbon fiber Download PDF

Info

Publication number
WO2010038784A1
WO2010038784A1 PCT/JP2009/067045 JP2009067045W WO2010038784A1 WO 2010038784 A1 WO2010038784 A1 WO 2010038784A1 JP 2009067045 W JP2009067045 W JP 2009067045W WO 2010038784 A1 WO2010038784 A1 WO 2010038784A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon fiber
composite material
carbon
outer diameter
resin composite
Prior art date
Application number
PCT/JP2009/067045
Other languages
French (fr)
Japanese (ja)
Inventor
佳義 單
淳 鈴木
洋 佐藤
昭二 川島
Original Assignee
保土谷化学工業株式会社
アキレス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 保土谷化学工業株式会社, アキレス株式会社 filed Critical 保土谷化学工業株式会社
Priority to JP2010531884A priority Critical patent/JP5634870B2/en
Priority to CN200980147475.0A priority patent/CN102227782B/en
Publication of WO2010038784A1 publication Critical patent/WO2010038784A1/en
Priority to HK12100825.7A priority patent/HK1160545A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/042Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0003Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular electrical or magnetic properties, e.g. piezoelectric
    • B29K2995/0005Conductive

Definitions

  • the present invention relates to a conductive resin composite material containing a resin material and carbon fiber. More specifically, the present invention has excellent conductivity as compared to conventional resin materials and conductive resin composite materials containing carbon fibers, while exhibiting excellent physical properties during processing and molding.
  • the present invention relates to a conductive resin composite material containing a resin material and carbon fiber, characterized in that the carbon fiber from the resin composite material has low detachability.
  • a conductive resin composite material composed of a resin and a conductive filler has been widely used in the semiconductor field, electrical equipment related field, automobile / aviation field.
  • the main purpose of using such a conductive resin composite material is, for example, protection of semiconductor components from static electricity, prevention of malfunction of precision equipment by blocking electromagnetic waves, prevention of static electricity and heat generation due to friction, etc. Can be mentioned.
  • a method of imparting electrical conductivity to the base resin a method of adding a material that imparts ion conductivity to the resin, or, for example, metal fine particles, metal fibers, carbon fine particles, carbon fibers (acrylic fibers or PAN-based carbon fiber or PITCH-based carbon fiber made by carbonizing pitch (by-products such as petroleum, coal, coal tar, etc.) at a high temperature as a raw material, hereinafter referred to as “general-purpose carbon fiber”.
  • a method of adding a conductive filler such as. Under such circumstances, it is becoming mainstream to impart conductivity using a carbon-based material in terms of performance, environmental problems, and the like.
  • conductivity of about 10 2 ⁇ cm can be obtained by adding, for example, about 30 parts by mass with respect to 100 parts by mass of the resin. However, too much added amount leads to poor fluidity.
  • Patent Document 3 proposes a gas storage material containing two or more groups of carbon fibers having different fiber outer diameter distributions. Combining a group of carbon fibers with a small average outer diameter and a group of carbon fibers with a larger average outer diameter forms an optimal pore structure for obtaining gas adsorption sites and improves the amount of gas stored. It is.
  • the gas storage material disclosed in Patent Document 3 is not a mixture of carbon fiber and resin material, and does not provide a resin material with good conductivity.
  • Patent Document 4 proposes a conductive material in which a first graphite fine fiber and a second graphite fiber having a smaller diameter are contained in a resin binder.
  • the conductive material disclosed in Patent Document 4 is kneaded with a phenolic resin binder and also requires a solvent. Further, the fine graphite fibers used are a mixture of those having an average diameter of 5 to 20 nm and those having an average diameter of 300 to 1000 nm.
  • Patent Document 5 proposes a conductive composition in which carbon fibers having a large average diameter and those having a small average diameter are mixed.
  • the carbon fiber of Patent Document 5 has a mean diameter of 13 ⁇ m and a mean diameter of 7 ⁇ m, and is a general-purpose carbon fiber.
  • JP 2006-306960 A JP 2006-225648 A JP 2005-185951 A JP-A-8-2222025 JP-A-5-32819
  • An object of the present invention is to provide a new conductive resin composite material including a resin material and carbon fiber.
  • an object of the present invention is to provide a conductive resin composite material that has good electrical conductivity while improving break elongation related to moldability and that reduces the loss of carbon fibers from the resin composite material. To do.
  • the present inventors have found that the average fiber outer diameter of the carbon fibers blended in the resin material is more than 20 nm and not more than 300 nm, and the fiber outer diameter distribution is different.
  • the conductive resin composite material containing at least two groups of carbon fibers exhibits good electrical conductivity, and the elongation at break during molding is improved. Also, the carbon fibers can be removed from the conductive resin composite material. It was found to be reduced.
  • there are few examples of industrial production of carbon fibers having an average outer diameter of 20 nm to 300 nm and the present invention has developed a technology for producing carbon fibers having an average outer diameter of 20 nm to 300 nm. It was conceived and completed by mixing two carbon fiber groups having different fiber outer diameter distributions within the range. That is, the present invention has the following configuration.
  • a conductive resin composite material including a base material resin and carbon fibers, the carbon fibers having an average fiber outer diameter of more than 20 nm and not more than 300 nm, including at least two groups of carbon fibers having different fiber outer diameter distributions; and A conductive resin composite material comprising 1 to 11.2 parts by mass of carbon fiber with respect to 100 parts by mass of the base resin.
  • the conductive resin composite material is characterized by being 0.8 or less.
  • the average outer diameter a of the carbon fiber group A is more than 20 nm and not more than 100 nm
  • the average fiber outer diameter b of the carbon fiber group B is more than 100 nm and not more than 300 nm.
  • the conductive resin composite material is substantially mixed and homogenized.
  • the present invention also shows the conductive resin composite material characterized in that the mass abundance ratio of the carbon fiber group A is smaller than the mass abundance ratio of the carbon fiber group B.
  • the present invention further shows the conductive resin composite material, wherein the carbon fiber is a carbon fiber produced by a vapor phase growth method.
  • the carbon fibers form a three-dimensional network-like carbon fiber structure, and the carbon fiber structure has a network structure in which a plurality of granular portions are sterically bonded to each other by the carbon fibers. It is the said conductive resin composite material characterized by the above-mentioned.
  • the present invention further shows the conductive resin composite material, wherein the granular portion has an average equivalent circle outer diameter of 1.3 times or more of an average fiber outer diameter of the carbon fiber.
  • the present invention also shows a conductive resin composite material characterized in that the breaking elongation of the conductive resin composite material is 40% or more.
  • the present invention further provides the conductive resin composite material, wherein a molded product formed using the conductive resin composite material has a surface electrical resistance value of 10 3 to 10 12 ⁇ / ⁇ .
  • the conductive resin composite material of the present invention has excellent conductivity, improved elongation at break, and characteristics in which the carbon fibers are not easily dropped off by blending the above-described carbon fibers with the resin. With such characteristics, the conductive resin composite material can cope with a wide range of molding conditions, and the molding is excellent in crack resistance, so that a conductive material applicable to a wide range of applications can be provided.
  • Such applications include, for example, personal computers, notebook computers, game machines (home game machines, arcade game machines, pachinko machines, slot machines, etc.), display devices (LCD, organic EL, electronic paper, plasma display, projectors, etc.)
  • the power transmission component (represented by the housing of the dielectric coil power transmission device) is exemplified.
  • the conductive resin composite material of the present invention is suitably used for a housing, a cover, and a frame of a digital image information processing apparatus such as a camera barrel or a digital camera.
  • the conductive resin composite material of the present invention is a medical device such as a massage machine or a high oxygen treatment device; a home electric appliance such as an image recorder (so-called DVD recorder), an audio device, and an electronic musical instrument; a pachinko machine or a slot machine. It is also suitable for parts such as game machines such as home robots equipped with precision sensors.
  • the conductive resin composite material of the present invention includes various vehicle parts, batteries, power generation devices, circuit boards, integrated circuit molds, optical disk boards, disk cartridges, optical cards, IC memory cards, connectors, cable couplers, and electronic parts.
  • Transport containers such as IC magazine cases, silicon wafer containers, glass substrate storage containers, magnetic head trays, and carrier tapes
  • antistatic or charge removal parts such as charging rolls for electrophotographic photosensitive devices
  • mechanical parts including mechanical parts for micromachines such as gears, turntables, rotors, and screws).
  • the present invention is a resin molded body obtained by kneading at least two carbon fiber groups having different fiber outer diameter distributions with a resin material. It is desirable that the carbon fiber groups having different fiber outer diameter distributions are manufactured separately and then kneaded into a resin material.
  • the carbon fiber may be mixed at the powder stage or may be added separately to the resin and mixed after kneading.
  • the carbon fiber used in the present invention is not particularly limited as long as it uses at least two carbon fiber groups having different fiber outer diameter distributions as described above.
  • a carbon fiber group having a diameter of more than 20 nm and not more than 100 nm, and a carbon fiber group having a large average outer diameter, those having an average outer diameter of more than 100 nm and not more than 300 nm are combined to make a mixture obtained by substantially mixing and homogenizing the two. It is preferable.
  • the carbon fiber group having a small average outer diameter or only the carbon fiber group having a large average outer diameter is used alone, while maintaining good conductivity, the elongation at break relating to formability is reduced. It is possible to improve and reduce the loss of carbon fibers from the resin composite.
  • the average fiber outer diameter used here is a total of the number of measurement points of the fiber outer diameter of at least three fields of view taken at random with a scanning electron microscope in which the carbon fiber to be measured is set at a magnification of 35,000 times. All the fiber outer diameters that can be measured in each field of view are measured so that the number exceeds 50 points, and the number is averaged.
  • the carbon fiber used in the conductive resin composite material of the present invention can measure the fiber outer diameter of approximately 20 to 50 points per visual field in the method.
  • the conductivity, viscosity, and breakage of a resin molded body obtained by adding carbon fiber are affected by the outer diameter of the carbon fiber.
  • the conductivity tends to improve because the number per unit addition increases as the outer diameter decreases.
  • the viscosity tends to increase as the outer diameter decreases.
  • the manufacturing cost of carbon fiber the manufacturing cost per unit mass increases as the outer diameter decreases. Therefore, the present invention has been conceived to achieve both the properties of the carbon fiber with a small outer diameter and the excellent properties of the thick one by kneading carbon fibers having different outer diameters. It is a thing.
  • carbon fiber group B having a larger average outer diameter when carbon fiber group B having a larger average outer diameter is mixed with carbon fiber group A having a certain average outer diameter, carbon fiber group B alone is in a composite state in which it is roughly dispersed in the matrix resin matrix.
  • the space between the carbon fiber of the carbon fiber group B and the resin can be filled with the carbon fiber of the carbon fiber group A, thereby increasing the electrical contact and improving the conductivity.
  • the carbon fibers of the carbon fiber group B in the carbon fibers of the carbon fiber group A in the gaps in which the carbon fibers of the carbon fiber group B are dispersed the carbon fibers are entangled and mechanical strength such as elongation at break increases (FIG. 1). ).
  • the fracture mechanism of polymer materials is determined by processing conditions and basic structure. Alternatively, the degree of crystallinity, the uniformity of the structure, the orientation, the size and distribution of spherulites, the crystallinity such as the length and distribution of molecular chains, and the presence of physical defects such as scratches and notches in materials.
  • FIG. 1 when there is a cut on the surface, the crack propagates along the molecular chain interface of the amorphous resin structure.
  • the shear stress is received by the carbon fiber, which is a bridging effect, and the propagation speed of the crack is slowed, so that the elongation at break can be improved.
  • the present invention is a method in which a thin carbon fiber is dispersed around a large carbon fiber, so that even when a small amount of a thin carbon fiber is used, excellent elongation is maintained while maintaining excellent conductivity. Has the effect of improving.
  • the carbon fiber used in the present invention is desirably a three-dimensional network structure having an average fiber outer diameter of more than 20 nm and not more than 300 nm.
  • the carbon fiber structure is a carbon fiber structure characterized in that a plurality of the carbon fibers extend to have a granular portion that bonds the carbon fibers to each other.
  • Such a carbon fiber structure is not particularly limited, but can be produced by a chemical vapor deposition method. Note that when the average outer diameter exceeds 300 nm, the number per unit amount decreases, so it is desirable to use an average outer diameter of 300 nm or less.
  • the blending ratio of at least two groups of carbon fibers having different fiber outer diameter distributions is as described above in comparison with the case of using a single group of carbon fibers.
  • the improvement in electrical conductivity, the improvement in elongation at break, and the effect of reducing fiber dropout are obtained, but for example, carbon fiber A with a thinner average fiber outer diameter and carbon fiber B with a larger thickness
  • the ratio can be roughly divided so that the a / b ratio is 0.8 or less, more preferably 0.07 to 0.8, and still more preferably about 0.2 to 0.8. This is because a particularly excellent effect can be expected with such a blending ratio.
  • the vapor phase carbon fiber structure having the network structure further includes a plurality of granular portions, and the plurality of carbon fibers extend independently from the respective granular portions of the plurality of granular portions, respectively, and are three-dimensional as a whole.
  • 3 of the gas-phase carbon fiber is at least partially formed by an aspect in which at least a part of the plurality of gas-phase carbon fibers extending from one granular part is bonded to other granular parts.
  • a vapor-phase carbon fiber structure characterized by having a dimensional network structure is desirable.
  • “extending” the carbon fiber from the granular part simply means that a plurality of carbon fibers are simply connected to the granular part by other binders (including carbon materials).
  • the carbon crystal structural bond that is, the granular portion mainly means a state in which the graphene sheets having the same multilayer structure as the carbon fiber are shared.
  • “exhibiting a three-dimensional expansion as a whole” means that a plurality of carbon fibers extend from one granular part in directions independent of each other, This means a structure in which a plurality of fibers extend in a three-dimensional space from the base point.
  • the average length of the carbon fibers connecting the two granular portions is 3.0 to 20.0 ⁇ m.
  • the “distance between two granular parts” means the length of the carbon fiber that connects from one granular part where the carbon fiber is extended to the adjacent granular part.
  • the distance between the adjacent granular parts is obtained by measuring the distance from the central part of one granular body to the central part of the granular part adjacent thereto. If the average distance between the granular materials is less than 0.5 ⁇ m, the length of the carbon fiber is not sufficient and cannot be sufficiently extended and spread. For example, it is good when dispersed and blended in the base resin. There is a possibility that a conductive path cannot be formed.
  • the average distance exceeds 100 ⁇ m, the carbon fiber structure becomes a relatively large carbon fiber structure, and the base resin is This is because, when dispersed and blended, the viscosity increases, and the dispersibility of the aggregate of carbon fibers with respect to the base resin may be lowered.
  • a more preferable average distance between the granular parts is preferably about 2.0 to 50 ⁇ m, and more preferably about 3.0 to 20 ⁇ m.
  • the carbon fiber used in the present invention preferably has a standard deviation of the fiber outer diameter (nm) distribution of 25 to 40, particularly preferably 30 to 40.
  • a conductive resin composite material using carbon fibers having a standard deviation of 25 to 40 exhibits a breaking elongation of 30% or more
  • carbon fibers having a standard deviation of 30 to 40 exhibits a break elongation of 50% or more. This is because, in the carbon fiber having the three-dimensional network structure as described above that is preferably used in the present invention, the carbon fiber having a thick fiber outer diameter in the variation of the fiber outer diameter defined by the standard deviation range and It is considered that the carbon fiber having a thin outer diameter has a complementary effect on the elongation at break of the conductive resin composite using the carbon fiber.
  • the carbon fiber having the above average fiber outer diameter and the standard deviation value of the fiber outer diameter can be obtained in one production reaction if it is a batch type in the carbon fiber production method, or if it is a continuous reaction. It may be a carbon fiber obtained as a single continuous period for obtaining an appropriate production amount, or a mixture of carbon fibers obtained in such a manner.
  • the carbon fiber group A and the carbon fiber group B are substantially mixed and homogenized, and the mass ratio of the carbon fibers derived from the carbon fiber group B in the mixture is the carbon fiber group A.
  • a carbon fiber mixture larger than the mass abundance ratio of the derived carbon fiber is also desirable in satisfying the standard deviation range of the distribution of the average fiber outer diameter and the fiber outer diameter.
  • the carbon fiber preferably used in the present invention has the three-dimensional network structure, and has at least partially a network structure of the carbon fiber, not a simple branched structure.
  • the fiber structure has a plurality of granular parts, and a plurality of carbon fibers having a fiber diameter thinner than the average equivalent circular outer diameter of each granular part extend from the granular part, and the granular parts are formed of the carbon fibers. It is formed during the growth process.
  • the granular part which is a connecting part of a plurality of carbon fibers, has the same graphene sheet multilayer structure as that of the carbon fibers, and thus provides a strong bond between the carbon fibers.
  • the average equivalent circular outer diameter of the granular part desirable for stronger bonding is 1.3 times or more, more preferably 1.5 to 5.0 times the average fiber outer diameter of the carbon fiber.
  • a carbon fiber structure in which strong carbon fibers are formed into a three-dimensional network by such strong bonding is retained even when added to the resin by kneading or the like.
  • the granular portion having a larger outer diameter than the carbon fiber exhibits a physical anchoring effect in the resin matrix of the conductive resin composite material, thereby reducing the falling of the carbon fiber from the conductive resin composite material. It is thought that there is.
  • the “average equivalent circular outer diameter of the granular part” means the observed area of the granular part, which is the bonding point between the vapor-phase carbon fibers, and the diameter was determined as one perfect circle. Value. Specifically, the outer shape of the granular portion, which is a bonding point between the vapor-phase carbon fibers, is photographed with an electron microscope or the like, and in this photographed image, the contour of each granular portion is converted into an appropriate image analysis software such as WinRoof (trade name). , Manufactured by Mitani Shoji Co., Ltd.), the area within the contour was determined, and the equivalent circle diameter of each granular portion was calculated and averaged based on the area.
  • WinRoof trade name
  • the three-dimensional network-like carbon fiber structure preferably has an area-based circle equivalent average diameter of 20 to 100 ⁇ m.
  • the area-based circle-equivalent mean diameter is obtained by photographing the outer shape of the carbon fiber structure using an electron microscope or the like, and in this photographed image, the contour of each carbon fiber structure is represented by an appropriate image analysis software such as WinRoof (Trade name, manufactured by Mitani Shoji Co., Ltd.) is used to determine the area within the contour, calculate the equivalent circle diameter of each fiber structure, and average it.
  • This circle-equivalent average diameter is a factor for determining the fiber length of the carbon fiber structure when blended in the resin matrix.
  • the fiber length is there is a possibility that good electrical conductivity may not be obtained in a resin composite material using the same, and on the other hand, if it exceeds 100 ⁇ m, for example, a large increase in viscosity occurs when blended into a resin matrix by kneading or the like. Mixing and dispersion may be difficult or moldability may be deteriorated.
  • the three-dimensional network-like carbon fiber structure has a bulky structure in which carbon fibers are sparsely present from the above structure.
  • the bulk density is 0.001 to 0.05 g. / Cm 3 , more preferably 0.001 to 0.02 g / cm 3 . If the bulk density exceeds 0.05 g / cm 3 , it is difficult to improve the physical properties of the resin by adding a small amount.
  • the three-dimensional network-like carbon fiber structure is preferably formed by bonding carbon fibers present in the three-dimensional network form to each other in a granular portion formed during the growth process.
  • a plurality of granular portions are included in the three-dimensional space, and the carbon fibers existing in the three-dimensional space are bonded to each other in the granular portions formed in the growth process.
  • the electrical characteristics of the structure itself are very excellent.
  • the powder resistance value measured at a constant compression density of 0.8 g / cm 3 is 0.025 ⁇ ⁇ cm or less, more desirably 0.005 to 0.020 ⁇ ⁇ cm is preferable. This is because when the powder resistance value exceeds 0.025 ⁇ ⁇ cm, it is difficult to produce a good conductive composite material when it is made into a composite material with a resin.
  • the three-dimensional network-like carbon fiber structure preferably has high strength and conductivity, and it is desirable that there are few defects in the graphene sheet constituting the carbon fiber.
  • Raman spectroscopy analysis It is desirable that the I D / IG ratio measured by the method is 0.2 or less, more preferably 0.1 or less.
  • the Raman spectroscopic analysis only a peak (G band) around 1580 cm ⁇ 1 appears in large single crystal graphite.
  • a peak (D band) appears in the vicinity of 1360 cm ⁇ 1 due to the fact that the crystal has a finite minute size and lattice defects.
  • the defect here refers to an arrangement of graphene sheets caused by unnecessary atoms entering as an impurity, lack of necessary carbon atoms, or misalignment in the arrangement of graphene sheets constituting an intermediate or the like Incomplete part (lattice defect).
  • the three-dimensional network-like carbon fiber has a combustion start temperature in air of 700 ° C. or higher, more preferably 750 to 900 ° C. As described above, the three-dimensional network-like carbon fiber has few defects and the carbon fiber has a desired outer diameter, and thus has such a high thermal stability.
  • the aggregate of carbon fibers according to the present invention preferably has a specific surface area of 10 to 60 m 2 / g.
  • the specific surface area is increased to 60 m 2 / g or more, the outer diameter of the carbon fiber becomes thin and dispersion and the like become difficult.
  • the specific surface area is 10 m 2 / g or less, the number of carbon fibers per unit amount is extremely small, so that a highly conductive composite material cannot be obtained with a small amount.
  • the carbon fiber structure having the above characteristics is not particularly limited, but can be prepared, for example, as follows.
  • an organic compound such as a hydrocarbon is chemically pyrolyzed by CVD using transition metal ultrafine particles as a catalyst to obtain a fiber structure (hereinafter referred to as an intermediate), which is further subjected to high-temperature heat treatment.
  • the raw material organic compound hydrocarbons such as benzene, toluene and xylene, alcohols such as carbon monoxide (CO) and ethanol can be used.
  • the “at least two or more carbon compounds” described in the present specification does not necessarily mean that two or more kinds of raw material organic compounds are used, and one kind of raw material organic compound is used.
  • a reaction such as hydrogen dealkylation of toluene or xylene occurs, and in the subsequent thermal decomposition reaction system, there are two different decomposition temperatures.
  • the aspect which becomes the above carbon compound is also included.
  • the decomposition temperature of each carbon compound is not limited to the type of the carbon compound, but the carbon compound in the raw material gas. Since it varies depending on the gas partial pressure or molar ratio, a relatively large number of combinations can be used as carbon compounds by adjusting the composition ratio of two or more carbon compounds in the raw material gas.
  • alkanes or cycloalkanes such as methane, ethane, propanes, butanes, pentanes, hexanes, heptanes, cyclopropane, cyclohexane, etc., particularly alkanes having about 1 to 7 carbon atoms; ethylene, propylene, butylenes, Alkenes or cycloolefins such as pentenes, heptenes and cyclopentenes, especially alkenes having about 1 to 7 carbon atoms; alkynes such as acetylene and propyne, especially alkynes having about 1 to 7 carbon atoms; benzene, toluene, styrene, xylene, naphthalene Aromatic or heteroaromatic hydrocarbons such as methylnaphthalene, indene and phenanthrene, especially aromatic or heteroaromatic hydrocarbons having about 6 to 18 carbon atoms, alcohols
  • the molar ratio of methane / benzene is 1 to 600, more preferably 1.1 to 200, and even more preferably 3 It is desirable to set it to 100.
  • This value is the gas composition ratio at the entrance of the reactor.
  • toluene is used as one of the carbon sources, toluene is decomposed 100% in the reactor, and methane and benzene are 1
  • methane and benzene are 1
  • a shortage of methane may be supplied separately.
  • the methane / benzene molar ratio is 3, 2 moles of methane may be added to 1 mole of toluene.
  • methane added to such toluene not only a method of preparing fresh methane separately, but also the unreacted methane contained in the exhaust gas discharged from the reactor is circulated and used. It is also possible to use it.
  • composition ratio By setting the composition ratio within such a range, it is possible to obtain a fiber structure (intermediate body) having a three-dimensional network structure in which both fine carbon fiber portions and granular portions are sufficiently developed.
  • the concentration of the hydrocarbon compound in the raw material may be increased. Further, the concentration ratio of the hydrocarbon compound and the catalyst metal in the raw material may be slightly increased by the molar ratio of the hydrocarbon compound and the catalyst metal as the outer diameter is increased. In the chemical vapor deposition method (CVD method), it is desirable to increase the amount of the metal catalyst used for growing the carbon fiber using the catalyst metal as a nucleus.
  • CVD method chemical vapor deposition method
  • an inert gas such as argon, helium, xenon, or hydrogen can be used as the atmospheric gas.
  • a transition metal such as iron, cobalt or molybdenum, or a mixture of a transition metal compound such as ferrocene or metal acetate and a sulfur compound such as sulfur or thiophene or iron sulfide is used.
  • the synthesis of the intermediate is carried out by using a conventional CVD method such as hydrocarbons, evaporating a mixture of hydrocarbons and catalysts as raw materials having a predetermined mixing ratio, and using hydrogen gas or the like as a carrier gas in the reactor. It is introduced and pyrolyzed at a temperature of 800-1300 ° C.
  • a plurality of carbon fiber structures having a sparse three-dimensional structure in which fibers having an outer diameter of 100 to 300 nm are bonded together by granular materials grown using the catalyst particles as nuclei. Synthesize an aggregate of several tens of centimeters.
  • the production apparatus including the reaction furnace is not particularly limited, and for example, a production apparatus having the structure shown in FIG. 2 can be exemplified.
  • the manufacturing apparatus 1 shown in the figure is a device that evaporates a raw material, mixes the gasified raw material with a carrier gas, introduces the raw material mixed gas into the reaction furnace 8, and manufactures carbon fiber in the reaction furnace 8. It is.
  • the manufacturing apparatus 1 includes a raw material tank 2 filled with raw materials, and a gas tank 4 filled with a carrier gas for carrying the raw materials and introducing them into the reaction furnace 8.
  • the raw material tank 2 and the gas tank 4 are introduced with raw materials.
  • Each is connected to an evaporator 6 via a pipe 3 and a gas introduction pipe 5.
  • the evaporator 6 is connected to a reaction furnace 8 through a raw material mixed gas introduction pipe 7.
  • the reaction furnace 8 for producing carbon fibers is formed in a cylindrical shape, and the conveyed raw material mixed gas is introduced into the reaction furnace 8 at the upper end forming one end in the axial direction.
  • An introduction nozzle 9 is provided.
  • a heater is provided as a heating means 11 on the outer periphery of the reaction furnace 8, and the inside of the reaction furnace 8 is heated from the outer periphery of the reaction furnace 8.
  • the carbon fiber recovery device 12 which stocks and collects the produced carbon fiber is connected to the lower end side which makes the other end of the axial direction of the reaction furnace 8.
  • a gas discharge pipe 13 for discharging gas is connected to the carbon fiber collector 12.
  • the thermal cracking reaction of the hydrocarbon as a raw material mainly occurs on the surface of the granular particles grown using the catalyst particles or the core, and the recrystallization of carbon generated by the decomposition proceeds in a certain direction from the catalytic particles or granular materials. Grows in a fibrous form.
  • the balance between the pyrolysis rate and the growth rate is intentionally changed.
  • the carbon material is grown three-dimensionally around the granular material without growing the carbon material only in a one-dimensional direction.
  • the growth of such three-dimensional carbon fibers does not depend only on the balance between the thermal decomposition rate and the growth rate, but the crystal face selectivity of the catalyst particles, the residence time in the reactor, and the furnace temperature.
  • the balance between the pyrolysis reaction and the growth rate is influenced not only by the type of carbon source as described above but also by the reaction temperature and gas temperature, etc.
  • the thermal decomposition rate is faster than the growth rate, the carbon material grows in the circumferential direction of the catalyst particles. To do.
  • the carbon material growth direction as described above is made to be a multi-direction under control without changing the growth direction to a constant direction, as in the present invention.
  • a three-dimensional structure can be formed.
  • the composition of the catalyst, the residence time in the reaction furnace, the reaction temperature, and the gas temperature are used. Etc. are desirable.
  • a method for efficiently producing a fiber structure (intermediate body)
  • a method other than the above-described approach using two or more carbon compounds having different decomposition temperatures at an optimum mixing ratio is supplied to the reaction furnace.
  • An approach for generating a turbulent flow in the vicinity of the supply port of the source gas can be mentioned.
  • the turbulent flow here is a flow that is turbulent and turbulent and flows in a spiral.
  • metal catalyst fine particles are formed by the decomposition of the transition metal compound as the catalyst in the raw material mixed gas. It is brought about through such a stage. That is, first, the transition metal compound is decomposed to become metal atoms, and then cluster generation occurs by collision of a plurality of, for example, about 100 atoms. At the stage of the generated cluster, it does not act as a catalyst for the fiber structure (intermediate body), and the generated clusters are further aggregated by collision and grow into metal crystalline particles of about 3 nm to 10 nm. It will be used as metal catalyst fine particles for the production of a structure (intermediate).
  • the metal catalyst fine particles are rapidly generated, and the area of the surface of the metal catalyst that is the decomposition reaction site of the carbon compound is increased, so that the decomposition of the carbon compound is promoted and sufficient carbon material is supplied.
  • Carbon fiber grows radially with each metal catalyst fine particle of the aggregate as a nucleus, and when the thermal decomposition rate of some of the carbon compounds is faster than the growth rate of the carbon material as described above, The substance grows also in the circumferential direction of the catalyst particles, forms a granular portion around the aggregate, and efficiently forms a fiber structure (intermediate body) having an intended three-dimensional structure.
  • the metal catalyst fine particle aggregate may include a part of catalyst fine particles that are less active than other catalyst fine particles or have been deactivated during the reaction.
  • a non-fibrous or very short fibrous carbon material layer that has grown on the surface of such a catalyst fine particle before agglomeration or has grown into an aggregate after such a fine particle has become an aggregate. It seems that the granular part of a precursor is formed by existing in the peripheral position of a body. Therefore, the granular portion is composed of end portions of a plurality of vapor phase carbon fibers and metal catalyst fine particles in which a carbon material is grown only in the circumferential direction, and the granular portion that bonds the vapor phase carbon fibers to each other, Rather than a simple sphere, a large number of spheres are assembled and accumulated, and in this state, the carbon material continues to grow.
  • the end portions of the plurality of vapor-phase carbon fibers and adjacent ones of the plurality of spherical structures form and share a continuous graphene sheet-like layer, and as a result, the plurality of vapor-phase carbon fibers are the granular portions.
  • a three-dimensional network-like vapor-phase carbon fiber structure that is firmly bonded is formed.
  • the temperature of the raw material gas introduced is preferably 350 to 450 ° C.
  • the specific means for generating the turbulent flow in the raw material gas flow is not particularly limited.
  • the raw material gas is introduced into the reaction furnace through a swirling flow or the raw material gas supply port. It is possible to adopt means such as providing some kind of collision portion at a position where it can interfere with the flow of the raw material gas.
  • the shape of the collision part is not limited in any way, as long as a sufficient turbulent flow is formed in the reactor by the vortex generated from the collision part. It is possible to adopt a form in which one or a plurality of plates, paddles, taper tubes, umbrellas, etc. are arranged alone or in combination.
  • a rectifying / buffer plate 10 is provided around the introduction nozzle 9 as an example.
  • the rectifying / buffer plate is an obstacle that is disposed in the vicinity of the introduction nozzle 9 and acts as a starting point of a collision that hinders the flow of the raw material mixed gas.
  • the distribution and the concentration distribution can be made uniform.
  • the shape of the rectifying / buffer plate is not limited in any way, and any shape may be used as long as the vortex generated from the rectifying / buffer plate as a starting point is sequentially formed up to the lower end side of the reaction furnace 8.
  • the intermediate obtained by heating the mixed gas of catalyst and hydrocarbon at a temperature set in the range of 800 to 1300 ° C has an incomplete structure as if patch-like sheet pieces made of carbon atoms were bonded together. Have.
  • This intermediate has a very large D band and many defects when analyzed by Raman spectroscopy.
  • the produced intermediate contains unreacted raw material, non-fibrous carbide, tar content and catalytic metal.
  • heat treatment is performed at a high temperature of 2400 to 3000 ° C. by an appropriate method.
  • this intermediate is heated at 800 to 1200 ° C. to remove volatile components such as unreacted raw materials and tars, and then annealed at a high temperature of 2400 to 3000 ° C. to prepare the desired structure.
  • the catalyst metal contained in the fiber is removed by evaporation.
  • a reducing gas or a small amount of carbon monoxide gas may be added to the inert gas atmosphere in order to protect the material structure.
  • the patch-like sheet pieces made of carbon atoms are bonded to each other to form a plurality of graphene sheet-like layers, and a desired carbon fiber is obtained. .
  • the resin that can be used for producing the conductive resin composite material of the present invention is not particularly limited, and examples thereof include epoxy resins, phenol resins, polyurethane resins, melamine resins, urea resins, aniline resins, and furan resins.
  • Curable resin such as alkyd resin, xylene resin, unsaturated polyester resin, diaryl phthalate resin, polybutylene terephthalate resin, polyethylene terephthalate resin, polycarbonate, polyphenylene oxide, polyphenylene ether, nylon 6, nylon 66, nylon 12, polyacetal, polyethylene , Polypropylene, polybutadiene, polyacrylonitrile, polystyrene, polymethyl methacrylate, polyethylene oxide, polytetramethylene oxide, thermoplastic polyurethane, Noxy resin, polyamide, ethylene / propylene copolymer, ethylene / 1-butene copolymer, ethylene / propylene / non-conjugated diene copolymer, ethylene / ethyl acrylate copolymer, ethylene / glycidyl methacrylate copolymer, Ethylene / vinyl acetate / glycidyl methacrylate copolymer, ethylene /
  • the above-described carbon fiber is added to and mixed with the resin to form the conductive resin composite material according to the present invention.
  • the compounding amount of the carbon fiber in the conductive resin composite material is preferably 1 to 11.2 parts by mass, more preferably 3 to 7.7 parts by mass with respect to 100 parts by mass of the resin.
  • the surface electrical resistance value is 10 3 to 10 12 ⁇ / ⁇ , good electrical conductivity, and elongation at break related to moldability. Properties such as improvement and reduction of carbon fiber shedding from the resin composite are obtained.
  • the conductive resin composite material having a surface electrical resistance value of 10 3 to 10 12 ⁇ / ⁇ is suitable for use in, for example, an IC component package such as a carrier tape or a transport tray for a magnetic head.
  • IC component package such as a carrier tape or a transport tray for a magnetic head.
  • conductive resin is used for parts containers, flooring at manufacturing sites, etc., and the surface electrical resistance value of the conductive resin in this case is 10 6 to 10 12.
  • ⁇ / ⁇ is preferred.
  • the resistance value of the container is too low, the stored static electricity rapidly moves to the container, a discharge phenomenon occurs, and the part is short-circuited.
  • the surface electrical resistance value of the electronic component container is 10 6 to 10 12 ⁇ / ⁇ , static electricity is gently removed from the charged electronic component to the container side without causing a short circuit.
  • the conductive resin composite material has a break elongation of 30% or more while maintaining excellent conductivity, and preferably has a break elongation of 40% or more. Shows excellent resistance to cracking.
  • the point that the carbon fiber from the conductive resin composite material has a low drop-off property is specifically, for example, by immersing the composite material (50 ⁇ 90 ⁇ 3 mm) in 2000 ml of ultrapure water, after the application of sound waves 60 seconds, the composite number of particles or particle size 0.5 ⁇ m to fall off from the surface of the material follows the surface area per 5000counts / cm 2 of the composite material, it preferably becomes 2500counts / cm 2 or less Indicated by.
  • the method for producing a conductive resin composite by adding and mixing carbon fibers to the resin is not particularly limited. However, since excellent kneading performance is required for the dispersion of carbon fibers, it is preferable to melt knead the resin and carbon fibers using a twin screw extruder. In addition, the conductive resin composite material of the present invention has an advantage that a large twin screw extruder having a large heat load can be used due to its characteristics.
  • ZSK (trade name, manufactured by Werner & Pfleiderer)
  • specific examples of similar types include TEX (trade name, manufactured by Nippon Steel Works, Ltd.), TEM (trade name, manufactured by Toshiba Machine Co., Ltd.), KTX (product name, manufactured by Kobe Steel, Ltd.), and the like.
  • melt kneaders such as FCM (manufactured by Farrel, trade name), Ko-Kneader (manufactured by Buss, trade name), and DSM (trade name, manufactured by Krauss-Maffei) can also be given as specific examples.
  • FCM manufactured by Farrel, trade name
  • Ko-Kneader manufactured by Buss, trade name
  • DSM trade name, manufactured by Krauss-Maffei
  • the type represented by ZSK is more preferable.
  • the screw is a fully meshed type, and the screw includes various screw segments having different lengths and pitches, and various kneading disks having different widths (and corresponding kneading segments). It consists of
  • a more preferable aspect is as follows.
  • the screw shape one, two, and three screw screws can be used, and in particular, a two-thread screw having a wide range of application in both the ability to convey the molten resin and the shear kneading ability can be preferably used.
  • the ratio (L / D) of the screw length (L) to the diameter (D) in the twin-screw extruder is preferably 20 to 50, more preferably 28 to 42. When L / D is large, uniform dispersion is easily achieved, while when it is too large, decomposition of the base resin is likely to occur due to thermal degradation.
  • the screw must have at least one kneading zone composed of a kneading disk segment (or a kneading segment corresponding thereto) for improving kneadability, and preferably has 1 to 3 kneading zones.
  • one having a vent capable of degassing moisture in the raw material and volatile gas generated from the melt-kneaded resin can be preferably used.
  • a vacuum pump is preferably installed for efficiently discharging generated moisture and volatile gas to the outside of the extruder.
  • water, an organic solvent, a supercritical fluid, or the like may be added in order to enhance the dispersibility of the carbon fiber or remove impurities in the resin composite material as much as possible.
  • a screen for removing foreign matters mixed in the extrusion raw material in the zone in front of the extruder die portion to remove the foreign matters from the resin composite material. Examples of such a screen include a wire mesh, a screen changer, a sintered metal plate (such as a disk filter), and the like.
  • the method for supplying the carbon fiber to the extruder is not particularly limited, but the following method is typically exemplified.
  • the carbon fibers may be mixed before the step (i), and the carbon fibers may be mixed during the steps (i) to (iii). You may mix.
  • the average fiber outer diameter of the carbon fiber group of the obtained large diameter product was 117 nm, and the standard deviation of the fiber outer diameter (nm) distribution was 26.
  • the average fiber outer diameter of the carbon fiber group of the small diameter product was 58 nm, and the standard deviation of the fiber outer diameter (nm) distribution was 13.
  • Such an extruder has a kneading zone by a kneading disk between the first supply port and the second supply port, and a vent port opened immediately after that is provided.
  • the length of the vent port was about 2D with respect to the screw diameter (D).
  • a side feeder was installed after the vent port, and a kneading zone with a kneading disk and a subsequent vent port were further provided after the side feeder.
  • the length of the vent port in this part is about 1.5D, and the degree of vacuum is about 3 kPa in that part using a vacuum pump. Extrusion was performed under the conditions of a cylinder temperature of 300 ° C.
  • Example 1 Preparation of Conductive Resin Composite Material 6.38 parts by mass of the large-diameter carbon fiber obtained in Example 1 was added to the polycarbonate resin, and a test piece for evaluation was produced in the same manner as in Example 2.
  • Example 2 Preparation of Conductive Resin Composite Material The fine and large diameter carbon fibers obtained in Example 1 were stirred at a mass ratio of 1: 2 in a closed tank for 2 hours or more, mixed and homogenized, and then 6.0 parts by mass were added to the polycarbonate resin, and a test piece for evaluation was produced in the same manner as in Example 2.
  • Example 5 Preparation of Conductive Resin Composite Material 4.0 parts by mass of the small-diameter carbon fiber obtained in Example 1 was added to the polycarbonate resin, and a test piece for evaluation was produced in the same manner as in Example 2.
  • the physical properties of the conductive resin composite material were measured according to the following method.
  • W 2 cm
  • L 2 cm
  • t 0.25 cm.
  • Elongation at break The tensile elongation at break was measured in accordance with ISO 527-1 (general rules) and 527-2 (test conditions for mold molding, extrusion molding and cast plastic).
  • the shape and size of the injection-molded test piece is a test piece 1A type of ISO527-2.
  • the testing apparatus was a universal material testing machine (Intesco 2005-5 type), the test speed was 50 mm / min, the distance between chucks was 115 mm, and the test was performed in a test environment of 23 ° C. and 50% RH.
  • the average value of the breaking elongation values of the five test pieces molded and measured in the same manner as described above was calculated. The obtained results are shown in Table 2.
  • Example 1 As shown in the results in Tables 2 and 3 above, a comparison is made between a mixture of two types of carbon fibers having different fiber diameter distributions and a mixture using only a large diameter product.
  • Example 4 and Comparative Example 7 were compared, and Example 5 and Comparative Example 9 were compared, it was confirmed that the mixed product showed better conductivity than the large-diameter product even with the same mass part of carbon fiber.
  • Example 2 and Comparative Example 4 and in Example 3 and Comparative Example 6, the smaller diameter product showed better conductivity at the same mass part. This is because thin products tend to be superior in terms of improving conductivity.
  • the manufacturing cost of the small-diameter product is high, and when kneaded into the resin, the viscosity is increased and the original physical properties of the resin are difficult to be obtained. Therefore, in Table 2, the elongation at break is good for the mixed product.
  • the mixed product exhibits a sufficient surface electric resistance value and volume electric resistance value, and the elongation at break exceeds 60%. Therefore, it can be said that the mixed product is excellent in exhibiting balanced properties in imparting mechanical properties and conductivity to the resin.
  • Example 6 and Comparative Examples 10 and 11 Large-diameter carbon fiber structure obtained in Example 1 (Comparative Example 10), small-diameter carbon fiber structure (Comparative Example 11), or gas phase carbon of these large-diameter products and small-diameter products 0.22 g of each carbon fiber structure was respectively adjusted so that the content of the mixed product (Example 6) obtained by mixing and homogenizing the fiber structure at a mass ratio of 5: 1 was 2.0% by mass.
  • An epoxy resin (Adeka Resin EP4100E, epoxy equivalent 190, manufactured by ADEKA Corporation) 10 g, a curing agent (Adeka Hardener EH3636-AS, manufactured by ADEKA Co., Ltd.), and a rotation-revolution centrifugal stirrer (Atsutori Rentaro, AR-250, manufactured by Shinky Co., Ltd.) was kneaded for 10 minutes, and an epoxy resin kneaded material of a carbon fiber structure for viscosity measurement was prepared.
  • the conductive resin composite material of the present invention is extremely useful for various industrial uses such as the field of OA equipment and the field of electrical and electronic equipment, and the industrial effect exerted thereby is extremely great.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)
  • Inorganic Fibers (AREA)

Abstract

A conductive resin composite material comprising a base resin and carbon fibers, characterized in that the carbon fibers have an average outer diameter of 20-300 nm, excluding 20 nm, are of at least two kinds of carbon fibers which differ in outer-diameter distribution, and are contained in an amount of 1-11.2 parts by mass per 100 parts by mass of the base resin.  The composite material containing carbon fibers has satisfactory conductivity and satisfactory resin material properties including elongation at break, etc., and carbon fiber shedding rarely occurs.

Description

炭素繊維を含有する複合材料Composite material containing carbon fiber
 本発明は、樹脂材料と炭素繊維とを含有する導電性樹脂複合材料に関する。詳しく述べると、本発明は、従来の樹脂材料と炭素繊維を含む導電性樹脂複合材料と比べて、良好な導電性を有する一方で、加工成形時等において優れた物性を示し、また該導電性樹脂複合材からの炭素繊維の脱落性が低いことを特徴とする、樹脂材料と炭素繊維とを含有する導電性樹脂複合材料に関する。 The present invention relates to a conductive resin composite material containing a resin material and carbon fiber. More specifically, the present invention has excellent conductivity as compared to conventional resin materials and conductive resin composite materials containing carbon fibers, while exhibiting excellent physical properties during processing and molding. The present invention relates to a conductive resin composite material containing a resin material and carbon fiber, characterized in that the carbon fiber from the resin composite material has low detachability.
 従来、樹脂と導電性フィラーからなる導電性樹脂複合材料は、半導体分野、電気機器関連分野、自動車・航空分野で広く使用されている。このような導電性樹脂複合材料を使用する主な目的としては、例えば、半導体部品の静電気からの保護、電磁波を遮断することによる精密機器の誤作動防止、摩擦にともなう静電気・発熱の防止等が挙げられる。 Conventionally, a conductive resin composite material composed of a resin and a conductive filler has been widely used in the semiconductor field, electrical equipment related field, automobile / aviation field. The main purpose of using such a conductive resin composite material is, for example, protection of semiconductor components from static electricity, prevention of malfunction of precision equipment by blocking electromagnetic waves, prevention of static electricity and heat generation due to friction, etc. Can be mentioned.
 ところで、母材樹脂に電気伝導性を付与させる方法としては、樹脂にイオン伝導性を付与する材料を添加する方法や、樹脂に例えば、金属微粒子、金属繊維、カーボン微粒子、炭素繊維(アクリル繊維またはピッチ(石油、石炭、コールタールなどの副生成物)を原料に高温で炭化して作ったPAN系炭素繊維またはPITCH系炭素繊維。以下、本明細書において、これらを「汎用炭素繊維」と称する。)などの導電性フィラーを添加する方法がある。こうした中で、性能、環境問題等の面から、炭素系材料を用いて導電性を付与することが主流となりつつある。 By the way, as a method of imparting electrical conductivity to the base resin, a method of adding a material that imparts ion conductivity to the resin, or, for example, metal fine particles, metal fibers, carbon fine particles, carbon fibers (acrylic fibers or PAN-based carbon fiber or PITCH-based carbon fiber made by carbonizing pitch (by-products such as petroleum, coal, coal tar, etc.) at a high temperature as a raw material, hereinafter referred to as “general-purpose carbon fiber”. There is a method of adding a conductive filler such as. Under such circumstances, it is becoming mainstream to impart conductivity using a carbon-based material in terms of performance, environmental problems, and the like.
 しかしながら、必要とされる導電性を発現させるために、導電性フィラーとして粒径が数μmのカーボン粒子を用いる場合は、樹脂100質量部に対して40~50質量部、ケッチェンブラックなどのカーボンブラックでも8~15質量部添加する必要がある。このようなカーボン粒子を用いた複合材は、もとの樹脂に比べて粘度上昇・流動性低下や、硬度上昇などの物性変化を引き起こす。その結果、成形加工時の金型転写性の低下、光沢などの外観不良や耐衝撃性の低下の原因となる。
 また導電性フィラーとして上記したような汎用炭素繊維を用いた場合も、樹脂100質量部に対して例えば30質量部程度の添加で、体積固有抵抗102Ωcm程度の導電性を得ることができるが、やはり添加量が多いため流動性の悪化などにつながっている。
However, when carbon particles having a particle size of several μm are used as the conductive filler in order to develop the required conductivity, 40 to 50 parts by mass with respect to 100 parts by mass of the resin, carbon such as ketjen black Even in black, it is necessary to add 8 to 15 parts by mass. A composite material using such carbon particles causes changes in physical properties such as an increase in viscosity, a decrease in fluidity, and an increase in hardness as compared with the original resin. As a result, mold transferability during molding processing is deteriorated, appearance defects such as gloss and impact resistance are reduced.
In addition, when the above-mentioned general-purpose carbon fiber is used as the conductive filler, conductivity of about 10 2 Ωcm can be obtained by adding, for example, about 30 parts by mass with respect to 100 parts by mass of the resin. However, too much added amount leads to poor fluidity.
 近年、こうした導電性フィラーとして、カーボンナノチューブ(以下「CNT]とも記する)などに代表される繊維径0.7~130nm程度の微細炭素繊維が用いられるようになってきている。微細炭素繊維は、アーク放電法や気相成長法などで製造され、基本的には連続した6員環炭素構造からなるグラフェンシートが単層あるいは多層的に管状構造をなしたものであり、繊維径がナノメーターレベル、長さがミクロンオーダーであり、高アスペクト比を一つの特徴とする導電性フィラー材料である。この微細炭素繊維を用いると、その高い導電性から、樹脂100質量部に対して数質量部の添加により所望の導電性を有する樹脂複合材を得られることが報告されている。(特許文献1,2) In recent years, fine carbon fibers having a fiber diameter of about 0.7 to 130 nm, such as carbon nanotubes (hereinafter also referred to as “CNT”), have come to be used as such conductive fillers. , Manufactured by arc discharge method or vapor phase growth method, etc. Basically, a graphene sheet composed of a continuous 6-membered ring carbon structure has a single-layer or multi-layer tubular structure, and the fiber diameter is nanometer It is a conductive filler material whose level and length are on the order of microns and is characterized by a high aspect ratio.When this fine carbon fiber is used, several parts by mass with respect to 100 parts by mass of the resin due to its high conductivity. It has been reported that a resin composite material having a desired conductivity can be obtained by adding (Patent Documents 1 and 2).
 しかし、母材樹脂とこのような微細炭素繊維からなる導電性樹脂複合材料においても、良好な導電性を付与するレベルまで微細炭素繊維を樹脂に添加することによって、破断伸びなど樹脂複合材の物性・成形性は低下してしまう。これらの点は、この樹脂複合材料を用いて目的成形物を成形する際の課題となっている。また、微細炭素繊維の繊維径がきわめて細く、溶融した樹脂による炭素繊維表面の濡れ性の悪さなどもあって、成形した樹脂複合材からの微細炭素繊維の脱落が発生する傾向がある。このような導電性フィラーである微細炭素繊維の脱落は、特に半導体分野では、半導体製品の故障・損壊の原因となることが問題視されている。このため、良好な導電性と、優れた成形性などの本来母材樹脂が有する樹脂特性、さらには炭素繊維の低脱落性という点のいずれについても、十分なレベルで達している樹脂と炭素繊維からなる導電性樹脂複合材料が求められている。 However, even in a conductive resin composite material composed of a base resin and such fine carbon fibers, the physical properties of the resin composite material such as elongation at break can be obtained by adding fine carbon fibers to the resin to a level that gives good conductivity.・ Moldability is reduced. These points are problems in molding a target molded article using this resin composite material. In addition, the fine carbon fiber has a very small fiber diameter and the wettability of the surface of the carbon fiber by the melted resin tends to drop off from the molded resin composite material. The dropping of the fine carbon fibers as the conductive filler has been regarded as a problem in the semiconductor field, in particular, causing failure / damage of the semiconductor product. For this reason, the resin and the carbon fiber that have reached a sufficient level in terms of both good electrical conductivity, resin characteristics inherent to the base resin such as excellent moldability, and low carbon fiber shedding. There is a need for a conductive resin composite material comprising:
 一方、繊維外径分布の異なる二群以上の炭素繊維を含むガス貯蔵材が特許文献3において提案されている。小さい平均外径の炭素繊維群と、それより大きい平均外径の炭素繊維群を組み合わせると、ガスの吸着サイトを得るのに最適な細孔構造が形成され、ガスの貯蔵量を向上させるというものである。 On the other hand, Patent Document 3 proposes a gas storage material containing two or more groups of carbon fibers having different fiber outer diameter distributions. Combining a group of carbon fibers with a small average outer diameter and a group of carbon fibers with a larger average outer diameter forms an optimal pore structure for obtaining gas adsorption sites and improves the amount of gas stored. It is.
 しかし、特許文献3に示されるガス貯蔵材は、炭素繊維と樹脂材料を混練したものではなく、導電性の良好な樹脂材料を提供するものではない。 However, the gas storage material disclosed in Patent Document 3 is not a mixture of carbon fiber and resin material, and does not provide a resin material with good conductivity.
 また、特許文献4には、第一のグラファイト微細繊維と、それよりも細径の第二のグラファイト繊維とが樹脂バインダーに含有された導電性材料が提案されている。 Further, Patent Document 4 proposes a conductive material in which a first graphite fine fiber and a second graphite fiber having a smaller diameter are contained in a resin binder.
 この特許文献4に開示される導電性材料は、フェノール系の樹脂バインダーに混練するものであり、溶剤も必要である。さらに用いるグラファイト微細繊維は、平均直径5~20nmのものと、平均直径300nm~1000nmのものを混合するものである。 The conductive material disclosed in Patent Document 4 is kneaded with a phenolic resin binder and also requires a solvent. Further, the fine graphite fibers used are a mixture of those having an average diameter of 5 to 20 nm and those having an average diameter of 300 to 1000 nm.
 また、特許文献5には、炭素繊維の平均直径が大きいものと、小さいものを混合した導電性組成物が提案されている。 Further, Patent Document 5 proposes a conductive composition in which carbon fibers having a large average diameter and those having a small average diameter are mixed.
 しかし、特許文献5の炭素繊維は平均直径が13μmのものと平均直径が7μmによるものであり、汎用炭素繊維である。 However, the carbon fiber of Patent Document 5 has a mean diameter of 13 μm and a mean diameter of 7 μm, and is a general-purpose carbon fiber.
特開2006-306960号公報JP 2006-306960 A 特開2006-225648号公報JP 2006-225648 A 特開2005-185951号公報JP 2005-185951 A 特開平8-222025号公報JP-A-8-2222025 特開平5-32819号公報JP-A-5-32819
 本発明は、樹脂材料と炭素繊維を含む新たな導電性樹脂複合材料を提供することを課題とする。特に本発明は、良好な導電性を保持する一方で、成形性に関わる破断伸びが改善され、また樹脂複合材からの炭素繊維の脱落を低減した導電性樹脂複合材料を提供することを課題とする。 An object of the present invention is to provide a new conductive resin composite material including a resin material and carbon fiber. In particular, an object of the present invention is to provide a conductive resin composite material that has good electrical conductivity while improving break elongation related to moldability and that reduces the loss of carbon fibers from the resin composite material. To do.
 本発明者らは、上記課題を解決するために、鋭意検討を行った結果、樹脂材料中に配合される炭素繊維の平均繊維外径が20nmを超え300nm以下であり、繊維外径分布の異なる少なくとも二群の炭素繊維群を含ませた導電性樹脂複合材料が、良好な導電性を示し、かつ成形時における破断伸びも改善され、また該炭素繊維の該導電性樹脂複合材料からの脱落も低減されることを見出した。また、平均外径が20nmから300nmの炭素繊維を工業的に生産している例は少なく、本発明は平均外径が20nm~300nmの範囲の炭素繊維を製造する技術を開発したことにより、この範囲内の繊維外径分布が異なる2群の炭素繊維群を混合することを着想し完成させたものである。すなわち本発明は、以下の構成を有する。 As a result of intensive studies to solve the above problems, the present inventors have found that the average fiber outer diameter of the carbon fibers blended in the resin material is more than 20 nm and not more than 300 nm, and the fiber outer diameter distribution is different. The conductive resin composite material containing at least two groups of carbon fibers exhibits good electrical conductivity, and the elongation at break during molding is improved. Also, the carbon fibers can be removed from the conductive resin composite material. It was found to be reduced. In addition, there are few examples of industrial production of carbon fibers having an average outer diameter of 20 nm to 300 nm, and the present invention has developed a technology for producing carbon fibers having an average outer diameter of 20 nm to 300 nm. It was conceived and completed by mixing two carbon fiber groups having different fiber outer diameter distributions within the range. That is, the present invention has the following configuration.
 母材樹脂および炭素繊維を含む導電性樹脂複合材料であって、該炭素繊維の平均繊維外径が20nmを超え300nm以下であり、繊維外径分布の異なる少なくとも二群の炭素繊維を含み、かつ該母材樹脂100質量部に対し、炭素繊維を1~11.2質量部含有することを特徴とする導電性樹脂複合材料である。 A conductive resin composite material including a base material resin and carbon fibers, the carbon fibers having an average fiber outer diameter of more than 20 nm and not more than 300 nm, including at least two groups of carbon fibers having different fiber outer diameter distributions; and A conductive resin composite material comprising 1 to 11.2 parts by mass of carbon fiber with respect to 100 parts by mass of the base resin.
 本発明はさらに、前記の繊維外径分布の異なる少なくとも二群の炭素繊維群が、平均繊維外径がより細い炭素繊維群Aとより太い炭素繊維群Bに分けた場合に、質量比で該炭素繊維群Bが該炭素繊維群Aより大きくなり、かつ、該炭素繊維群Aの平均繊維外径をaとし該炭素繊維群Bの平均繊維外径をbとした場合にa/b比率が0.8以下となることを特徴とする前記導電性樹脂複合材料を示すものである。 In the present invention, when at least two carbon fiber groups having different fiber outer diameter distributions are divided into a carbon fiber group A having a thinner average fiber outer diameter and a carbon fiber group B having a larger average fiber outer diameter, When the carbon fiber group B is larger than the carbon fiber group A, and the average fiber outer diameter of the carbon fiber group A is a and the average fiber outer diameter of the carbon fiber group B is b, the a / b ratio is The conductive resin composite material is characterized by being 0.8 or less.
 本発明はさらに、前記炭素繊維群Aの平均外径aが20nmを超え100nm以下であり、炭素繊維群Bの平均繊維外径bが100nmを超え300nm以下であり、両者は、母材樹脂中で実質的に混合均質化されていることを特徴とする前記導電性樹脂複合材料を示すものである。 In the present invention, the average outer diameter a of the carbon fiber group A is more than 20 nm and not more than 100 nm, and the average fiber outer diameter b of the carbon fiber group B is more than 100 nm and not more than 300 nm. The conductive resin composite material is substantially mixed and homogenized.
 本発明はまた、前記炭素繊維群Aの質量存在比が炭素繊維群Bの質量存在比より小さいことを特徴とする前記導電性樹脂複合材料を示すものである。 The present invention also shows the conductive resin composite material characterized in that the mass abundance ratio of the carbon fiber group A is smaller than the mass abundance ratio of the carbon fiber group B.
 本発明はさらに、前記炭素繊維が気相成長法によって製造された炭素繊維であることを特徴とする前記導電性樹脂複合材料を示すものである。 The present invention further shows the conductive resin composite material, wherein the carbon fiber is a carbon fiber produced by a vapor phase growth method.
 本発明はまた、前記炭素繊維が3次元ネットワーク状の炭素繊維構造体を形成し、該炭素繊維構造体は、複数の粒状部を相互に立体的に該炭素繊維で結合されたネットワーク構造を呈するものであることを特徴とする前記導電性樹脂複合材料である。 In the present invention, the carbon fibers form a three-dimensional network-like carbon fiber structure, and the carbon fiber structure has a network structure in which a plurality of granular portions are sterically bonded to each other by the carbon fibers. It is the said conductive resin composite material characterized by the above-mentioned.
 本発明はさらに、前記粒状部が、前記炭素繊維の平均繊維外径の1.3倍以上の平均円相当外径を有することを特徴とする前記導電性樹脂複合材料を示すものである。 The present invention further shows the conductive resin composite material, wherein the granular portion has an average equivalent circle outer diameter of 1.3 times or more of an average fiber outer diameter of the carbon fiber.
 本発明はまた、前記導電性樹脂複合材料の破断伸びが40%以上であることを特徴とする導電性樹脂複合材を示すものである。 The present invention also shows a conductive resin composite material characterized in that the breaking elongation of the conductive resin composite material is 40% or more.
 本発明はさらに、前記導電性樹脂複合材料を用いて成形した成形物の表面電気抵抗値が10~1012Ω/□であることを特徴とする前記導電性樹脂複合材料である。 The present invention further provides the conductive resin composite material, wherein a molded product formed using the conductive resin composite material has a surface electrical resistance value of 10 3 to 10 12 Ω / □.
 本発明の導電性樹脂複合材料は、上記に説明した炭素繊維を樹脂に配合することにより、優れた導電性、改善された破断伸び、および炭素繊維が脱落しにくい特性とを有するものである。かかる特性によって、導電性樹脂複合材は幅広い成形条件に対応し、かつその成形は割れ耐性に優れることから、幅広い用途に適用可能な導電性材料が提供できる。かかる用途としては、例えばパソコン、ノートパソコン、ゲーム機(家庭用ゲーム機、業務用ゲーム機、パチンコ、およびスロットマシーンなど)、ディスプレー装置(LCD、有機EL、電子ペーパー、プラズマディスプレー、およびプロジェクタなど)、送電部品(誘電コイル式送電装置のハウジングに代表される)が例示される。また、かかる用途としては、例えばプリンター、コピー機、スキャナーおよびファックス(これらの複合機を含む)が例示される。あらに、かかる用途としては、VTRカメラ、光学フィルム式カメラ、デジタルスチルカメラ、カメラ用レンズユニット、防犯装置、および携帯電話などの精密機器が例示される。特に本発明の導電性樹脂複合材料は、カメラ鏡筒、デジタルカメラの如きデジタル画像情報処理装置の筐体、カバー、および枠に好適に利用される。 The conductive resin composite material of the present invention has excellent conductivity, improved elongation at break, and characteristics in which the carbon fibers are not easily dropped off by blending the above-described carbon fibers with the resin. With such characteristics, the conductive resin composite material can cope with a wide range of molding conditions, and the molding is excellent in crack resistance, so that a conductive material applicable to a wide range of applications can be provided. Such applications include, for example, personal computers, notebook computers, game machines (home game machines, arcade game machines, pachinko machines, slot machines, etc.), display devices (LCD, organic EL, electronic paper, plasma display, projectors, etc.) The power transmission component (represented by the housing of the dielectric coil power transmission device) is exemplified. Examples of such applications include printers, copiers, scanners, and fax machines (including these multifunction machines). Furthermore, examples of such applications include precision devices such as VTR cameras, optical film cameras, digital still cameras, camera lens units, security devices, and mobile phones. In particular, the conductive resin composite material of the present invention is suitably used for a housing, a cover, and a frame of a digital image information processing apparatus such as a camera barrel or a digital camera.
 その他更に本発明の導電性樹脂複合材料は、マッサージ機や高酸素治療器などの医療機器;画像録画機(いわゆるDVDレコーダーなど)、オーディオ機器、および電子楽器などの家庭電器製品;パチンコやスロットマシーンなどの遊技装置;並びに精密なセンサーを搭載する家庭用ロボットなどの部品にも好適なものである。 In addition, the conductive resin composite material of the present invention is a medical device such as a massage machine or a high oxygen treatment device; a home electric appliance such as an image recorder (so-called DVD recorder), an audio device, and an electronic musical instrument; a pachinko machine or a slot machine. It is also suitable for parts such as game machines such as home robots equipped with precision sensors.
 また本発明の導電性樹脂複合材料は、各種の車両部品、電池、発電装置、回路基板、集積回路のモールド、光学ディスク基板、ディスクカートリッジ、光カード、ICメモリーカード、コネクター、ケーブルカプラー、電子部品の搬送用容器(ICマガジンケース、シリコンウエハー容器、ガラス基板収納容器、磁気ヘッドトレイ、およびキャリアテープなど)、帯電防止用または帯電除去部品(電子写真感光装置の帯電ロールなど)、並びに各種機構部品(ギア、ターンテーブル、ローター、およびネジなど、マイクロマシン用機構部品を含む)に利用可能である。 In addition, the conductive resin composite material of the present invention includes various vehicle parts, batteries, power generation devices, circuit boards, integrated circuit molds, optical disk boards, disk cartridges, optical cards, IC memory cards, connectors, cable couplers, and electronic parts. Transport containers (such as IC magazine cases, silicon wafer containers, glass substrate storage containers, magnetic head trays, and carrier tapes), antistatic or charge removal parts (such as charging rolls for electrophotographic photosensitive devices), and various mechanical parts (Including mechanical parts for micromachines such as gears, turntables, rotors, and screws).
破断伸び向上の機構を説明する図面である。It is drawing explaining the mechanism of breaking elongation improvement. 本実施形態における炭素繊維製造装置の構造を模式的に示した構造図である。It is the structure figure which showed typically the structure of the carbon fiber manufacturing apparatus in this embodiment. (太径品:細径品=1:5(質量比))混合粉体のSEM写真である。(Large diameter product: small diameter product = 1: 5 (mass ratio)) It is a SEM photograph of mixed powder. 本発明に係る粘度測定の結果を示すグラフである。It is a graph which shows the result of the viscosity measurement which concerns on this invention.
 以下、本発明を好ましい実施形態に基づき詳細に説明する。 Hereinafter, the present invention will be described in detail based on preferred embodiments.
 本発明は、繊維外径分布が異なる少なくとも二群の炭素繊維群を樹脂材料に混練してなる樹脂成形体である。繊維外径分布が異なる炭素繊維群は、それぞれ別々に製造し、その後、樹脂材料に混練することが望ましい。炭素繊維を混ぜるのは、粉体の段階で混ぜても、樹脂へ別々に添加して混練後混ぜてもよい。 The present invention is a resin molded body obtained by kneading at least two carbon fiber groups having different fiber outer diameter distributions with a resin material. It is desirable that the carbon fiber groups having different fiber outer diameter distributions are manufactured separately and then kneaded into a resin material. The carbon fiber may be mixed at the powder stage or may be added separately to the resin and mixed after kneading.
 本発明で用いられる炭素繊維としては、上記したように繊維外径分布が異なる少なくとも二群の炭素繊維群を用いるものであれば特に限定されないが、平均外径の小さい炭素繊維群としてその平均外径が、20nmを超え100nm以下のもの、また平均外径の大きい炭素繊維群としてはその平均外径は100nmを超え300nm以下のものを組合せ、両者を実質的に混合均質化してなる混合物とすることが好ましい。両者を混ぜ合わせることで、平均外径の小さい炭素繊維群だけ、または平均外径の大きい炭素繊維群だけを単独で用いるより、良好な導電性を保持する一方で、成形性に関わる破断伸びが改善され、また樹脂複合材からの炭素繊維の脱落を低減することが可能である。 The carbon fiber used in the present invention is not particularly limited as long as it uses at least two carbon fiber groups having different fiber outer diameter distributions as described above. A carbon fiber group having a diameter of more than 20 nm and not more than 100 nm, and a carbon fiber group having a large average outer diameter, those having an average outer diameter of more than 100 nm and not more than 300 nm are combined to make a mixture obtained by substantially mixing and homogenizing the two. It is preferable. By mixing the two together, the carbon fiber group having a small average outer diameter or only the carbon fiber group having a large average outer diameter is used alone, while maintaining good conductivity, the elongation at break relating to formability is reduced. It is possible to improve and reduce the loss of carbon fibers from the resin composite.
 ここで用いている平均繊維外径とは、測定対象の炭素繊維を倍率35000倍に設定した走査型電子顕微鏡でランダムに複数視野を撮影し、少なくとも3視野以上でかつ繊維外径の測定点数合計が50点を超えるように各撮影視野中の測定可能な繊維外径をすべて測定し、それを数平均したものである。本発明の導電性樹脂複合材料で用いる炭素繊維は、該方法における1視野あたり、およそ20~50点の繊維外径の測定ができる。 The average fiber outer diameter used here is a total of the number of measurement points of the fiber outer diameter of at least three fields of view taken at random with a scanning electron microscope in which the carbon fiber to be measured is set at a magnification of 35,000 times. All the fiber outer diameters that can be measured in each field of view are measured so that the number exceeds 50 points, and the number is averaged. The carbon fiber used in the conductive resin composite material of the present invention can measure the fiber outer diameter of approximately 20 to 50 points per visual field in the method.
 一般に、炭素繊維を添加してなる樹脂成形体の導電性、粘度、破断は炭素繊維の外径により影響を受けるものである。導電性は外径が細くなるほど単位添加あたりの本数が増えるため、向上する傾向がある。また粘度は外径が細くなるほど高まる傾向がある。用途にもよるが、粘度が高いと樹脂本来の物性が発揮されにくくなる。炭素繊維の製造コストに関しては、外径が細くなるほど単位質量あたりの製造コストが高額となる。ゆえに、本発明は、炭素繊維の外径が異なるものを混練することで炭素繊維の外径の細いものの性質と、太いものの性質の優れた性質を双方に発揮させるように着想し発明に到ったものである。 Generally, the conductivity, viscosity, and breakage of a resin molded body obtained by adding carbon fiber are affected by the outer diameter of the carbon fiber. The conductivity tends to improve because the number per unit addition increases as the outer diameter decreases. Also, the viscosity tends to increase as the outer diameter decreases. Depending on the application, if the viscosity is high, the original physical properties of the resin are difficult to be exhibited. Regarding the manufacturing cost of carbon fiber, the manufacturing cost per unit mass increases as the outer diameter decreases. Therefore, the present invention has been conceived to achieve both the properties of the carbon fiber with a small outer diameter and the excellent properties of the thick one by kneading carbon fibers having different outer diameters. It is a thing.
 例えば、ある平均外径を有する炭素繊維群Aに、これよりも太い平均外径を有する炭素繊維群Bを混ぜると、炭素繊維群Bが単独で母材樹脂マトリクス中に粗く分散する複合状態のものにおいて、炭素繊維群Bの炭素繊維と樹脂との空間を、炭素繊維群Aの炭素繊維により埋めることができ、これによって、電気的接触が増えることにより導電性が向上する。また、炭素繊維群Bの炭素繊維が分散した隙間に炭素繊維群Aの炭素繊維に分散させることにより、炭素繊維が絡まりあい、破断伸びなどの力学的な強度も増大するものである(図1)。 For example, when carbon fiber group B having a larger average outer diameter is mixed with carbon fiber group A having a certain average outer diameter, carbon fiber group B alone is in a composite state in which it is roughly dispersed in the matrix resin matrix. In the product, the space between the carbon fiber of the carbon fiber group B and the resin can be filled with the carbon fiber of the carbon fiber group A, thereby increasing the electrical contact and improving the conductivity. Further, by dispersing the carbon fibers of the carbon fiber group B in the carbon fibers of the carbon fiber group A in the gaps in which the carbon fibers of the carbon fiber group B are dispersed, the carbon fibers are entangled and mechanical strength such as elongation at break increases (FIG. 1). ).
 高分子材料の破壊機構は、加工条件と基本構造で決まる。または、結晶化度、構造の均一性、配向性、球晶の大きさとその分布、分子鎖の長さと分布などの結晶性、材料の傷、切り込みなど物理的な欠陥の存在によっても変化する。たとえば、図1に示すように、表面に切れ込み傷がある場合は、き裂が非結晶樹脂構成の分子鎖界面に沿って伝播していく。図1に示すように、炭素繊維を添加した場合、せん断応力は、ブリッジング効果である炭素繊維によって受けられ、き裂の伝播速度を遅くさせられるため、破断伸びを向上できる。 The fracture mechanism of polymer materials is determined by processing conditions and basic structure. Alternatively, the degree of crystallinity, the uniformity of the structure, the orientation, the size and distribution of spherulites, the crystallinity such as the length and distribution of molecular chains, and the presence of physical defects such as scratches and notches in materials. For example, as shown in FIG. 1, when there is a cut on the surface, the crack propagates along the molecular chain interface of the amorphous resin structure. As shown in FIG. 1, when carbon fiber is added, the shear stress is received by the carbon fiber, which is a bridging effect, and the propagation speed of the crack is slowed, so that the elongation at break can be improved.
 繊維が細い程、繊維表面と樹脂との接触面が大きくなり、せん断応力が分散されるため、樹脂からの繊維が引き抜き(Pull-out)し難くなる。しかし、繊維径が細くなるほど、コストも高くなり、分散もし難くなる。そのため、本発明は、細い径の炭素繊維が太径の炭素繊維の周辺に分散されることによって、少ない量の細い径の炭素繊維を用いても、優れた導電性を維持しながら、破断伸びを向上させる効果を有する。 The thinner the fiber, the larger the contact surface between the fiber surface and the resin, and the shear stress is dispersed, making it difficult for the fiber from pulling out. However, the smaller the fiber diameter, the higher the cost and the harder it is to disperse. For this reason, the present invention is a method in which a thin carbon fiber is dispersed around a large carbon fiber, so that even when a small amount of a thin carbon fiber is used, excellent elongation is maintained while maintaining excellent conductivity. Has the effect of improving.
 また、本発明で用いられる炭素繊維としては、平均繊維外径が20nmを超え300nm以下であり、3次元ネットワーク状の構造体であることが望ましい。該炭素繊維構造体は、該炭素繊維が複数延出する態様で、当該炭素繊維を互いに結合する粒状部を有することを特徴とする炭素繊維構造体である。このような炭素繊維構造体は、特に限定されるものではないが、化学気相成長法によって製造され得る。なお、平均外径が300nmを超えると単位量あたりの、本数が下がるため、平均外径は300nm以下のものを用いるのが望ましい。 Also, the carbon fiber used in the present invention is desirably a three-dimensional network structure having an average fiber outer diameter of more than 20 nm and not more than 300 nm. The carbon fiber structure is a carbon fiber structure characterized in that a plurality of the carbon fibers extend to have a granular portion that bonds the carbon fibers to each other. Such a carbon fiber structure is not particularly limited, but can be produced by a chemical vapor deposition method. Note that when the average outer diameter exceeds 300 nm, the number per unit amount decreases, so it is desirable to use an average outer diameter of 300 nm or less.
 さらに、本発明に係る導電性複合材料において、前記の繊維外径分布の異なる少なくとも二群の炭素繊維群の配合割合としては、単独の炭素繊維群を使用した場合と比較して、上記したような導電性の向上、破断伸びの向上、さらには繊維脱落の低減効果が得られる限り、特に限定されるものではないが、例えば、平均繊維外径がより細い炭素繊維Aとより太い炭素繊維Bに分けた場合に質量比で該炭素繊維Bが該炭素繊維Aより大きくなり、かつ、該炭素繊維Aの平均繊維外径をaとし該炭素繊維Bの平均繊維外径をbとした場合にa/b比率が0.8以下、より好ましくは0.07~0.8、さらに好ましくは0.2~0.8程度となるように大別できるものであることが望ましい。このような配合割合とすることで、特に優れた効果が期待できるためである。 Furthermore, in the conductive composite material according to the present invention, the blending ratio of at least two groups of carbon fibers having different fiber outer diameter distributions is as described above in comparison with the case of using a single group of carbon fibers. There is no particular limitation as long as the improvement in electrical conductivity, the improvement in elongation at break, and the effect of reducing fiber dropout are obtained, but for example, carbon fiber A with a thinner average fiber outer diameter and carbon fiber B with a larger thickness When the carbon fiber B is larger than the carbon fiber A by mass ratio and the average fiber outer diameter of the carbon fiber A is a and the average fiber outer diameter of the carbon fiber B is b It is desirable that the ratio can be roughly divided so that the a / b ratio is 0.8 or less, more preferably 0.07 to 0.8, and still more preferably about 0.2 to 0.8. This is because a particularly excellent effect can be expected with such a blending ratio.
 上記ネットワーク構造を有する気相炭素繊維構造体としては、更に、複数の粒状部を有し、この複数の粒状部のそれぞれの粒状部から複数の前記炭素繊維がそれぞれ独立に延出し全体として3次元的な広がりを呈し、且つ一つの粒状部より延出する複数の気相炭素繊維の少なくとも一部が、他の粒状部とも結合している態様によって、少なくとも部分的に該気相炭素繊維の3次元的な網目状構造を有することを特徴とする気相炭素繊維構造体であることが望ましい。 The vapor phase carbon fiber structure having the network structure further includes a plurality of granular portions, and the plurality of carbon fibers extend independently from the respective granular portions of the plurality of granular portions, respectively, and are three-dimensional as a whole. 3 of the gas-phase carbon fiber is at least partially formed by an aspect in which at least a part of the plurality of gas-phase carbon fibers extending from one granular part is bonded to other granular parts. A vapor-phase carbon fiber structure characterized by having a dimensional network structure is desirable.
 なお、本願明細書において、粒状部から炭素繊維が「延出する」とは、粒状部に複数の炭素繊維が他の結着剤(炭素物質のものを含む)によって、単に見かけ上で繋がっているような状態をさすものではなく、上記したように炭素結晶構造的な結合、即ち粒状部は、前記炭素繊維と同じ多層構造のグラフェンシートを共有していることによって繋がっている状態を主として意味するものである。
 また、本願明細書において「全体として3次元的な広がりを呈する」とは、複数の炭素繊維が一箇所の粒状部から互いに独立した方向に延出しており、その延出の様態は、粒状部を基点として立体空間内に複数繊維が伸長するような構造を意味する。
In the specification of the present application, “extending” the carbon fiber from the granular part simply means that a plurality of carbon fibers are simply connected to the granular part by other binders (including carbon materials). As described above, the carbon crystal structural bond, that is, the granular portion mainly means a state in which the graphene sheets having the same multilayer structure as the carbon fiber are shared. To do.
Further, in the present specification, “exhibiting a three-dimensional expansion as a whole” means that a plurality of carbon fibers extend from one granular part in directions independent of each other, This means a structure in which a plurality of fibers extend in a three-dimensional space from the base point.
 このような炭素繊維構造体としては、さらに、2つの該粒状部を連結する炭素繊維の平均長さは3.0~20.0μmであるものが好ましい。 As such a carbon fiber structure, it is preferable that the average length of the carbon fibers connecting the two granular portions is 3.0 to 20.0 μm.
 なお、上記「2つの粒状部間の距離」とは、炭素繊維が伸長している1つの粒状部位から、隣接する粒状部位までを連結する炭素繊維の長さを意味する。この隣接する粒状部間の距離は、1つの粒状体の中心部からこれに隣接する粒状部の中心部までの距離を測定したものである。粒状体間の平均距離が、0.5μm未満であると、炭素繊維の長さが足りず十分に延び広がることが出来ない為、例えば、母材樹脂中に分散配合された場合に、良好な導電パスを形成し得ないものとなる虞れがあり、一方、平均距離が100μmを越えるものであると、当該炭素繊維の構造体は、比較的大きな炭素繊維の構造体となり、母材樹脂中に分散配合させる際に、粘性を高くさせる要因となり、炭素繊維の集合体の母材樹脂に対する分散性が低下する虞れがあるためである。なお、より望ましい粒状部間の平均距離は、好ましくは2.0~50μm、さらに好ましくは3.0~20μm程度となる。 The “distance between two granular parts” means the length of the carbon fiber that connects from one granular part where the carbon fiber is extended to the adjacent granular part. The distance between the adjacent granular parts is obtained by measuring the distance from the central part of one granular body to the central part of the granular part adjacent thereto. If the average distance between the granular materials is less than 0.5 μm, the length of the carbon fiber is not sufficient and cannot be sufficiently extended and spread. For example, it is good when dispersed and blended in the base resin. There is a possibility that a conductive path cannot be formed. On the other hand, if the average distance exceeds 100 μm, the carbon fiber structure becomes a relatively large carbon fiber structure, and the base resin is This is because, when dispersed and blended, the viscosity increases, and the dispersibility of the aggregate of carbon fibers with respect to the base resin may be lowered. A more preferable average distance between the granular parts is preferably about 2.0 to 50 μm, and more preferably about 3.0 to 20 μm.
 また、本発明で用いられる炭素繊維は、その繊維外径(nm)の分布の標準偏差が25~40であることが望ましく、特に望ましいのは30~40である。標準偏差が25~40の炭素繊維を用いた導電性樹脂複合材料では30%以上、標準偏差が30~40の炭素繊維であれば50%以上の破断伸びを示す。これは、本発明で好ましく用いられる上記したような3次元ネットワーク状の構造体をとる炭素繊維においては、該標準偏差範囲で規定される繊維外径のばらつき中の太い繊維外径の炭素繊維と細い繊維外径の炭素繊維が、該炭素繊維を用いた導電性樹脂複合材の破断伸びに、相補的に効果を与えるためと考えられる。 Further, the carbon fiber used in the present invention preferably has a standard deviation of the fiber outer diameter (nm) distribution of 25 to 40, particularly preferably 30 to 40. A conductive resin composite material using carbon fibers having a standard deviation of 25 to 40 exhibits a breaking elongation of 30% or more, and carbon fibers having a standard deviation of 30 to 40 exhibits a break elongation of 50% or more. This is because, in the carbon fiber having the three-dimensional network structure as described above that is preferably used in the present invention, the carbon fiber having a thick fiber outer diameter in the variation of the fiber outer diameter defined by the standard deviation range and It is considered that the carbon fiber having a thin outer diameter has a complementary effect on the elongation at break of the conductive resin composite using the carbon fiber.
 なお本願において、2つの炭素繊維群以外に、カーボンブラックなどその他のフィラーを添加することにより、導電性や力学特性を強化することも可能である。 In addition, in this application, it is also possible to reinforce electroconductivity and a mechanical characteristic by adding other fillers, such as carbon black, other than two carbon fiber groups.
 前記の平均繊維外径ならびに繊維外径の分布の標準偏差の値を有する炭素繊維は、炭素繊維の製造方法において、バッチ式であれば1回の製造反応で得られる、あるいは連続反応であれば適当な製造量の得られる1連続期間を1回として得られる炭素繊維でもよく、またはそうして得られる炭素繊維の複数回分の混合物でもよい。該混合を行う際は、炭素繊維群Aと炭素繊維群Bとを実質的に混合均質化してなる混合物であり、該混合物における炭素繊維群B由来の炭素繊維の質量存在比が炭素繊維群A由来の炭素繊維の質量存在比より大きい炭素繊維混合物が、前記の平均繊維外径と繊維外径の分布の標準偏差範囲を満たすうえでも望ましい。 The carbon fiber having the above average fiber outer diameter and the standard deviation value of the fiber outer diameter can be obtained in one production reaction if it is a batch type in the carbon fiber production method, or if it is a continuous reaction. It may be a carbon fiber obtained as a single continuous period for obtaining an appropriate production amount, or a mixture of carbon fibers obtained in such a manner. When performing the mixing, the carbon fiber group A and the carbon fiber group B are substantially mixed and homogenized, and the mass ratio of the carbon fibers derived from the carbon fiber group B in the mixture is the carbon fiber group A. A carbon fiber mixture larger than the mass abundance ratio of the derived carbon fiber is also desirable in satisfying the standard deviation range of the distribution of the average fiber outer diameter and the fiber outer diameter.
 また、本発明で用いる好ましく用いられる炭素繊維は、前記3次元ネットワーク状の構造体をとっており、単純な分岐構造ではなく、少なくとも部分的に該炭素繊維の網目状構造を有し、該炭素繊維構造体は複数の粒状部を有し、それぞれの粒状部の平均円相当外径より細い繊維径の炭素繊維が該粒状部より複数延出する態様で、かつ該粒状部は該炭素繊維の成長過程において形成されてなるものである。複数の炭素繊維の結合部である該粒状部も、上記したように炭素繊維と同じグラフェンシートの多層構造を有しているため炭素繊維同士の強固な結合をもたらす。したがって、より強固な結合に望ましい粒状部の平均円相当外径は、炭素繊維の平均繊維外径の1.3倍以上、より好ましくは1.5~5.0倍である。強固な炭素繊維がこうした強固な結合によって3次元ネットワーク状に形成された炭素繊維構造体は、樹脂中に混練等により添加されてもその構造体が保持され、この3次元ネットワーク状の立体構造と、炭素繊維よりも外径の大きい粒状部が、導電性樹脂複合材の樹脂のマトリックス中において物理的なアンカー効果を発揮し、該導電性樹脂複合材からの該炭素繊維の脱落を低減しているものと考えられる。 The carbon fiber preferably used in the present invention has the three-dimensional network structure, and has at least partially a network structure of the carbon fiber, not a simple branched structure. The fiber structure has a plurality of granular parts, and a plurality of carbon fibers having a fiber diameter thinner than the average equivalent circular outer diameter of each granular part extend from the granular part, and the granular parts are formed of the carbon fibers. It is formed during the growth process. As described above, the granular part, which is a connecting part of a plurality of carbon fibers, has the same graphene sheet multilayer structure as that of the carbon fibers, and thus provides a strong bond between the carbon fibers. Accordingly, the average equivalent circular outer diameter of the granular part desirable for stronger bonding is 1.3 times or more, more preferably 1.5 to 5.0 times the average fiber outer diameter of the carbon fiber. A carbon fiber structure in which strong carbon fibers are formed into a three-dimensional network by such strong bonding is retained even when added to the resin by kneading or the like. The granular portion having a larger outer diameter than the carbon fiber exhibits a physical anchoring effect in the resin matrix of the conductive resin composite material, thereby reducing the falling of the carbon fiber from the conductive resin composite material. It is thought that there is.
 なお、本明細書でいう「粒状部の平均円相当外径」とは、気相炭素繊維相互の結合点である粒状部の観察される面積を測定し、一つの真円として直径を求めた値である。具体的には、気相炭素繊維相互の結合点である粒状部の外形を電子顕微鏡などで撮影し、この撮影画像において、各粒状部の輪郭を、適当な画像解析ソフトウェア、例えばWinRoof(商品名、三谷商事株式会社製)を用いてなぞり、輪郭内の面積を求め、該面積に基いて各粒状部の円相当径を計算し、平均したものである。 As used herein, the “average equivalent circular outer diameter of the granular part” means the observed area of the granular part, which is the bonding point between the vapor-phase carbon fibers, and the diameter was determined as one perfect circle. Value. Specifically, the outer shape of the granular portion, which is a bonding point between the vapor-phase carbon fibers, is photographed with an electron microscope or the like, and in this photographed image, the contour of each granular portion is converted into an appropriate image analysis software such as WinRoof (trade name). , Manufactured by Mitani Shoji Co., Ltd.), the area within the contour was determined, and the equivalent circle diameter of each granular portion was calculated and averaged based on the area.
 前記3次元ネットワーク状の炭素繊維構造体は、面積基準の円相当平均径が20~100μmであることが望ましい。ここで面積基準の円相当平均径とは、炭素繊維構造体の外形を電子顕微鏡などを用いて撮影し、この撮影画像において、各炭素繊維構造体の輪郭を、適当な画像解析ソフトウェア、例えばWinRoof(商品名、三谷商事株式会社製)を用いてなぞり、輪郭内の面積を求め、各繊維構造体の円相当径を計算し、これを平均化したものである。この円相当平均径は、樹脂のマトリックス中に配合された場合における当該炭素繊維構造体の繊維長を判断する要因となるものであり、概して、円相当平均径が20μm未満であると繊維長が短く、それを用いた樹脂複合材料に良好な導電性が得られないおそれがあり、一方、100μmを越えるものであると、例えば、樹脂マトリックス中へ混練等により配合する際に大きな粘度上昇が起こり混合分散が困難あるいは成形性が劣化するおそれがある。 The three-dimensional network-like carbon fiber structure preferably has an area-based circle equivalent average diameter of 20 to 100 μm. Here, the area-based circle-equivalent mean diameter is obtained by photographing the outer shape of the carbon fiber structure using an electron microscope or the like, and in this photographed image, the contour of each carbon fiber structure is represented by an appropriate image analysis software such as WinRoof (Trade name, manufactured by Mitani Shoji Co., Ltd.) is used to determine the area within the contour, calculate the equivalent circle diameter of each fiber structure, and average it. This circle-equivalent average diameter is a factor for determining the fiber length of the carbon fiber structure when blended in the resin matrix. In general, when the circle-equivalent average diameter is less than 20 μm, the fiber length is There is a possibility that good electrical conductivity may not be obtained in a resin composite material using the same, and on the other hand, if it exceeds 100 μm, for example, a large increase in viscosity occurs when blended into a resin matrix by kneading or the like. Mixing and dispersion may be difficult or moldability may be deteriorated.
 さらに、前記3次元ネットワーク状の炭素繊維構造体は、前記した構造から炭素繊維が疎に存在した嵩高な構造を有するが、具体的には、例えば、その嵩密度が0.001~0.05g/cm、より好ましくは0.001~0.02g/cmであることが望ましい。嵩密度が0.05g/cmを超えるものであると、少量添加によって樹脂の物性を改善することが難しくなるためである。 Further, the three-dimensional network-like carbon fiber structure has a bulky structure in which carbon fibers are sparsely present from the above structure. Specifically, for example, the bulk density is 0.001 to 0.05 g. / Cm 3 , more preferably 0.001 to 0.02 g / cm 3 . If the bulk density exceeds 0.05 g / cm 3 , it is difficult to improve the physical properties of the resin by adding a small amount.
 また、前記3次元ネットワーク状の炭素繊維構造体は、3次元ネットワーク状に存在する炭素繊維がその成長過程において形成された粒状部において互いに結合されている、特に好ましくは、炭素繊維構造体の占有する立体空間内において前記したように粒状部を複数個有しており、当該立体空間内に存在する炭素繊維がその成長過程において形成された粒状部において互いに結合されている、ことから、上記したように構造体自体の電気的特性等も非常に優れたものであるが、例えば、一定圧縮密度0.8g/cmにおいて測定した粉体抵抗値が、0.025Ω・cm以下、より望ましくは、0.005~0.020Ω・cmであることが好ましい。粉体抵抗値が0.025Ω・cmを超えるものであると、樹脂と複合材化した際に、良好な導電性複合材料を製造することが難しくなるためである。 The three-dimensional network-like carbon fiber structure is preferably formed by bonding carbon fibers present in the three-dimensional network form to each other in a granular portion formed during the growth process. As described above, a plurality of granular portions are included in the three-dimensional space, and the carbon fibers existing in the three-dimensional space are bonded to each other in the granular portions formed in the growth process. Thus, the electrical characteristics of the structure itself are very excellent. For example, the powder resistance value measured at a constant compression density of 0.8 g / cm 3 is 0.025 Ω · cm or less, more desirably 0.005 to 0.020 Ω · cm is preferable. This is because when the powder resistance value exceeds 0.025 Ω · cm, it is difficult to produce a good conductive composite material when it is made into a composite material with a resin.
 また、前記3次元ネットワーク状の炭素繊維構造体は、高い強度および導電性を有する上から、炭素繊維を構成するグラフェンシート中における欠陥が少ないことが望ましく、具体的には、例えば、ラマン分光分析法で測定されるI/I比が、0.2以下、より好ましくは0.1以下であることが望ましい。ここで、ラマン分光分析では、大きな単結晶の黒鉛では1580cm-1付近のピーク(Gバンド)しか現れない。結晶が有限の微小サイズであることや格子欠陥により、1360cm-1付近にピーク(Dバンド)が出現する。このため、DバンドとGバンドの強度比(R=I1360/I1580=I/I)が上記したように所定値以下であると、グラフェンシート中における欠陥量が少ないことが認められるためである。 In addition, the three-dimensional network-like carbon fiber structure preferably has high strength and conductivity, and it is desirable that there are few defects in the graphene sheet constituting the carbon fiber. Specifically, for example, Raman spectroscopy analysis It is desirable that the I D / IG ratio measured by the method is 0.2 or less, more preferably 0.1 or less. Here, in the Raman spectroscopic analysis, only a peak (G band) around 1580 cm −1 appears in large single crystal graphite. A peak (D band) appears in the vicinity of 1360 cm −1 due to the fact that the crystal has a finite minute size and lattice defects. For this reason, when the intensity ratio (R = I 1360 / I 1580 = I D / I G ) of the D band and the G band is equal to or less than the predetermined value as described above, it is recognized that the amount of defects in the graphene sheet is small. Because.
 ここでいう欠陥とは、中間体等を構成するグラフェンシートの配列に、不純物として不要な原子が侵入したり、必要な炭素原子が不足したり、又ずれが生じる等により生じたグラフェンシートの配列の不完全な部分(格子欠陥(lattice defect))などをいう。 The defect here refers to an arrangement of graphene sheets caused by unnecessary atoms entering as an impurity, lack of necessary carbon atoms, or misalignment in the arrangement of graphene sheets constituting an intermediate or the like Incomplete part (lattice defect).
 さらに、特に限定されるものではないが、前記3次元ネットワーク状の前記炭素繊維は、また、空気中での燃焼開始温度が700℃以上、より好ましくは750~900℃であることが望ましい。前記したように3次元ネットワーク状の前記炭素繊維が、欠陥が少なく、かつ炭素繊維が所期の外径を有するものであることから、このような高い熱的安定性を有するものとなる。 Further, although not particularly limited, it is desirable that the three-dimensional network-like carbon fiber has a combustion start temperature in air of 700 ° C. or higher, more preferably 750 to 900 ° C. As described above, the three-dimensional network-like carbon fiber has few defects and the carbon fiber has a desired outer diameter, and thus has such a high thermal stability.
 本発明に係る前記炭素繊維の集合体は、比表面積が10~60m/gであることが望ましい。比表面積が60m/g以上に大きくなると、炭素繊維の外径が細くなり、分散などが難しくなる。一方、比表面積が10m/g以下になると、単位量あたりの炭素繊維の本数が極めて少なくなるため、少量の添加では高い導電性の複合材料を得られなくなる。 The aggregate of carbon fibers according to the present invention preferably has a specific surface area of 10 to 60 m 2 / g. When the specific surface area is increased to 60 m 2 / g or more, the outer diameter of the carbon fiber becomes thin and dispersion and the like become difficult. On the other hand, when the specific surface area is 10 m 2 / g or less, the number of carbon fibers per unit amount is extremely small, so that a highly conductive composite material cannot be obtained with a small amount.
 上記の特徴を有する炭素繊維構造体は、特に限定されるものではないが、例えば、次のようにして調製することができる。 The carbon fiber structure having the above characteristics is not particularly limited, but can be prepared, for example, as follows.
 基本的には、遷移金属超微粒子を触媒として炭化水素等の有機化合物をCVD法で化学熱分解して繊維構造体(以下、中間体という)を得、これをさらに高温熱処理する。 Basically, an organic compound such as a hydrocarbon is chemically pyrolyzed by CVD using transition metal ultrafine particles as a catalyst to obtain a fiber structure (hereinafter referred to as an intermediate), which is further subjected to high-temperature heat treatment.
 原料有機化合物としては、ベンゼン、トルエン、キシレンなどの炭化水素、一酸化炭素(CO)、エタノール等のアルコール類などが使用できる。特に限定されるわけではないが、本発明に係る繊維構造体を得る上においては、炭素源として、分解温度の異なる少なくとも2つ以上の炭素化合物を用いることが好ましい。なお、本明細書において述べる「少なくとも2つ以上の炭素化合物」とは、必ずしも原料有機化合物として2種以上のものを使用するというものではなく、原料有機化合物としては1種のものを使用した場合であっても、繊維構造体の合成反応過程において、例えば、トルエンやキシレンの水素脱アルキル化(hydrodealkylation)などのような反応を生じて、その後の熱分解反応系においては分解温度の異なる2つ以上の炭素化合物となっているような態様も含むものである。 As the raw material organic compound, hydrocarbons such as benzene, toluene and xylene, alcohols such as carbon monoxide (CO) and ethanol can be used. Although not particularly limited, in obtaining the fiber structure according to the present invention, it is preferable to use at least two or more carbon compounds having different decomposition temperatures as the carbon source. The “at least two or more carbon compounds” described in the present specification does not necessarily mean that two or more kinds of raw material organic compounds are used, and one kind of raw material organic compound is used. However, in the process of synthesizing the fiber structure, for example, a reaction such as hydrogen dealkylation of toluene or xylene occurs, and in the subsequent thermal decomposition reaction system, there are two different decomposition temperatures. The aspect which becomes the above carbon compound is also included.
 なお、熱分解反応系において炭素源としてこのように2種以上の炭素化合物を存在させた場合、それぞれの炭素化合物の分解温度は、炭素化合物の種類のみでなく、原料ガス中の各炭素化合物のガス分圧ないしモル比によっても変動するものであるため、原料ガス中における2種以上の炭素化合物の組成比を調整することにより、炭素化合物として比較的多くの組み合わせを用いることができる。 In addition, when two or more types of carbon compounds are present as carbon sources in the thermal decomposition reaction system, the decomposition temperature of each carbon compound is not limited to the type of the carbon compound, but the carbon compound in the raw material gas. Since it varies depending on the gas partial pressure or molar ratio, a relatively large number of combinations can be used as carbon compounds by adjusting the composition ratio of two or more carbon compounds in the raw material gas.
 例えば、メタン、エタン、プロパン類、ブタン類、ペンタン類、へキサン類、ヘプタン類、シクロプロパン、シクロヘキサンなどといったアルカンないしシクロアルカン、特に炭素数1~7程度のアルカン;エチレン、プロピレン、ブチレン類、ペンテン類、ヘプテン類、シクロペンテンなどといったアルケンないしシクロオレフィン、特に炭素数1~7程度のアルケン;アセチレン、プロピン等のアルキン、特に炭素数1~7程度のアルキン;ベンゼン、トルエン、スチレン、キシレン、ナフタレン、メチルナフタレン、インデン、フェナントレン等の芳香族ないし複素芳香族炭化水素、特に炭素数6~18程度の芳香族ないし複素芳香族炭化水素、メタノール、エタノール等のアルコール類、特に炭素数1~7程度のアルコール類;その他、一酸化炭素、ケトン類、エーテル類等の中から選択した2種以上の炭素化合物を所期の熱分解反応温度域において異なる分解温度を発揮できるようにガス分圧を調整し、組み合わせて用いること、および/または、所定の温度領域における滞留時間を調整することで可能であり、その混合比を最適化することで効率よく繊維構造体(中間体)を製造することができる。 For example, alkanes or cycloalkanes such as methane, ethane, propanes, butanes, pentanes, hexanes, heptanes, cyclopropane, cyclohexane, etc., particularly alkanes having about 1 to 7 carbon atoms; ethylene, propylene, butylenes, Alkenes or cycloolefins such as pentenes, heptenes and cyclopentenes, especially alkenes having about 1 to 7 carbon atoms; alkynes such as acetylene and propyne, especially alkynes having about 1 to 7 carbon atoms; benzene, toluene, styrene, xylene, naphthalene Aromatic or heteroaromatic hydrocarbons such as methylnaphthalene, indene and phenanthrene, especially aromatic or heteroaromatic hydrocarbons having about 6 to 18 carbon atoms, alcohols such as methanol and ethanol, especially about 1 to 7 carbon atoms Of alcohol; In addition, adjust the gas partial pressure so that two or more carbon compounds selected from carbon monoxide, ketones, ethers, etc. can exhibit different decomposition temperatures in the desired thermal decomposition reaction temperature range, and combine them The fiber structure (intermediate body) can be produced efficiently by adjusting the residence time in a predetermined temperature range and / or adjusting the mixing ratio.
 このような2種以上の炭素化合物の組み合わせのうち、例えば、メタンとベンゼンとの組み合わせにおいては、メタン/ベンゼンのモル比が、1~600、より好ましくは1.1~200、さらに好ましくは3~100とすることが望ましい。なお、この値は、反応炉の入り口におけるガス組成比であり、例えば、炭素源の1つとしてトルエンを使用する場合には、反応炉内でトルエンが100%分解して、メタンおよびベンゼンが1:1で生じることを考慮して、不足分のメタンを別途供給するようにすれば良い。例えば、メタン/ベンゼンのモル比を3とする場合には、トルエン1モルに対し、メタン2モルを添加すれば良い。なお、このようなトルエンに対して添加するメタンとしては、必ずしも新鮮なメタンを別途用意する方法のみならず、当該反応炉より排出される排ガス中に含まれる未反応のメタンを循環使用することにより用いることも可能である。 Among such combinations of two or more carbon compounds, for example, in the combination of methane and benzene, the molar ratio of methane / benzene is 1 to 600, more preferably 1.1 to 200, and even more preferably 3 It is desirable to set it to 100. This value is the gas composition ratio at the entrance of the reactor. For example, when toluene is used as one of the carbon sources, toluene is decomposed 100% in the reactor, and methane and benzene are 1 In consideration of the occurrence of: 1, a shortage of methane may be supplied separately. For example, when the methane / benzene molar ratio is 3, 2 moles of methane may be added to 1 mole of toluene. In addition, as methane added to such toluene, not only a method of preparing fresh methane separately, but also the unreacted methane contained in the exhaust gas discharged from the reactor is circulated and used. It is also possible to use it.
 このような範囲内の組成比とすることで、微細な炭素繊維部および粒状部のいずれもが十分を発達した三次元ネットワーク構造を有する繊維構造体(中間体)を得ることが可能となる。 By setting the composition ratio within such a range, it is possible to obtain a fiber structure (intermediate body) having a three-dimensional network structure in which both fine carbon fiber portions and granular portions are sufficiently developed.
 また、必ずしも限定されるわけではないが、繊維外径の太さを制御するための要因としては、
1)原料中の炭化水素化合物濃度
2)原料中の炭化水素化合物と触媒金属の濃度比率
3)反応炉内における滞留時間
などが挙げられる。
 炭素繊維の外径を太くするには、原料中の炭化水素化合物の濃度を高めればよい。また、原料中の炭化水素化合物と触媒金属の濃度比率は、外径を太くする分、炭化水素化合物と触媒金属のモル比で、触媒金属のモル比をわずかに高めてもよい。化学気相成長法(CVD法)では触媒金属を核として、炭素繊維の成長をさせるため用いる金属触媒も増量させることが望ましい。
Although not necessarily limited, as a factor for controlling the thickness of the fiber outer diameter,
1) Concentration of hydrocarbon compound in raw material 2) Concentration ratio of hydrocarbon compound and catalyst metal in raw material 3) Residence time in reaction furnace.
In order to increase the outer diameter of the carbon fiber, the concentration of the hydrocarbon compound in the raw material may be increased. Further, the concentration ratio of the hydrocarbon compound and the catalyst metal in the raw material may be slightly increased by the molar ratio of the hydrocarbon compound and the catalyst metal as the outer diameter is increased. In the chemical vapor deposition method (CVD method), it is desirable to increase the amount of the metal catalyst used for growing the carbon fiber using the catalyst metal as a nucleus.
 なお、雰囲気ガスには、アルゴン、ヘリウム、キセノン等の不活性ガスや水素を用いることができる。 Note that an inert gas such as argon, helium, xenon, or hydrogen can be used as the atmospheric gas.
 また、触媒としては、鉄、コバルト、モリブデンなどの遷移金属あるいはフェロセン、酢酸金属塩などの遷移金属化合物と硫黄あるいはチオフェン、硫化鉄などの硫黄化合物の混合物を使用する。 Further, as the catalyst, a transition metal such as iron, cobalt or molybdenum, or a mixture of a transition metal compound such as ferrocene or metal acetate and a sulfur compound such as sulfur or thiophene or iron sulfide is used.
 中間体の合成は、通常行われている炭化水素等のCVD法を用い、所定の配合比の原料となる炭化水素および触媒の混合液を蒸発させ、水素ガス等をキャリアガスとして反応炉内に導入し、800~1300℃の温度で熱分解する。これにより、外径が100~300nmの繊維相互が、前記触媒の粒子を核として成長した粒状体によって結合した疎な3次元構造を有する炭素繊維構造体(中間体)が複数集まった数cmから数十センチの大きさの集合体を合成する。 The synthesis of the intermediate is carried out by using a conventional CVD method such as hydrocarbons, evaporating a mixture of hydrocarbons and catalysts as raw materials having a predetermined mixing ratio, and using hydrogen gas or the like as a carrier gas in the reactor. It is introduced and pyrolyzed at a temperature of 800-1300 ° C. As a result, from a few centimeters, a plurality of carbon fiber structures (intermediates) having a sparse three-dimensional structure in which fibers having an outer diameter of 100 to 300 nm are bonded together by granular materials grown using the catalyst particles as nuclei. Synthesize an aggregate of several tens of centimeters.
 上記反応炉を含む製造装置としては、特に限定されるものではないが、たとえば図2に示す構造を有する製造装置を例示することが出来る。図中に示す製造装置1は、原料を蒸発させ、ガス化した原料をキャリアガスと混合し、この原料混合ガスを反応炉8の内部に導入し、反応炉8内で炭素繊維を製造するものである。製造装置1は、原料の充填された原料タンク2と、原料の搬送及び反応炉8への導入を行うキャリアガスの充填されたガスタンク4とを備え、これら原料タンク2及びガスタンク4は、原料導入管3及びガス導入管5を介して蒸発器6にそれぞれ接続されている。さらに、蒸発器6は、原料混合ガス導入管7を介して反応炉8に接続されている。そして、内部で炭素繊維を製造する反応炉8は、円筒状に形成されており、その軸心方向の一端をなす上端には、搬送されてきた原料混合ガスを反応炉8の内部に導入させる導入ノズル9を備えている。また、反応炉8の外周部には、加熱手段11としてヒーターが設けられ、反応炉8の外周部から反応炉8の内部を加熱している。そして、反応炉8の軸心方向の他端をなす下端側には、製造された炭素繊維を備蓄して回収する炭素繊維回収器12が接続されている。この炭素繊維回収器12には、ガスを排出するガス排出管13が接続されている。 The production apparatus including the reaction furnace is not particularly limited, and for example, a production apparatus having the structure shown in FIG. 2 can be exemplified. The manufacturing apparatus 1 shown in the figure is a device that evaporates a raw material, mixes the gasified raw material with a carrier gas, introduces the raw material mixed gas into the reaction furnace 8, and manufactures carbon fiber in the reaction furnace 8. It is. The manufacturing apparatus 1 includes a raw material tank 2 filled with raw materials, and a gas tank 4 filled with a carrier gas for carrying the raw materials and introducing them into the reaction furnace 8. The raw material tank 2 and the gas tank 4 are introduced with raw materials. Each is connected to an evaporator 6 via a pipe 3 and a gas introduction pipe 5. Further, the evaporator 6 is connected to a reaction furnace 8 through a raw material mixed gas introduction pipe 7. The reaction furnace 8 for producing carbon fibers is formed in a cylindrical shape, and the conveyed raw material mixed gas is introduced into the reaction furnace 8 at the upper end forming one end in the axial direction. An introduction nozzle 9 is provided. Further, a heater is provided as a heating means 11 on the outer periphery of the reaction furnace 8, and the inside of the reaction furnace 8 is heated from the outer periphery of the reaction furnace 8. And the carbon fiber recovery device 12 which stocks and collects the produced carbon fiber is connected to the lower end side which makes the other end of the axial direction of the reaction furnace 8. A gas discharge pipe 13 for discharging gas is connected to the carbon fiber collector 12.
 原料となる炭化水素の熱分解反応は、主として触媒粒子ないしこれを核として成長した粒状体表面において生じ、分解によって生じた炭素の再結晶化が当該触媒粒子ないし粒状体より一定方向に進むことで、繊維状に成長する。しかしながら、前記したような炭素繊維として好ましい3次元ネットワーク状の炭素繊維構造体を得る上においては、このような熱分解速度と成長速度とのバランスを意図的に変化させる、例えば上記したように炭素源として分解温度の異なる少なくとも2つ以上の炭素化合物を用いることで、1次元的方向にのみ炭素物質を成長させることなく、粒状体を中心として3次元的に炭素物質を成長させる。もちろん、このような3次元的な炭素繊維の成長は、熱分解速度と成長速度とのバランスにのみ依存するものではなく、触媒粒子の結晶面選択性、反応炉内における滞留時間、炉内温度分布等によっても影響を受け、また、前記熱分解反応と成長速度とのバランスは、上記したような炭素源の種類のみならず、反応温度およびガス温度等によっても影響受けるが、概して、上記したような熱分解速度よりも成長速度の方が速いと、炭素物質は繊維状に成長し、一方、成長速度よりも熱分解速度の方が速いと、炭素物質は触媒粒子の周面方向に成長する。従って、熱分解速度と成長速度とのバランスを意図的に変化させることで、上記したような炭素物質の成長方向を一定方向とすることなく、制御下に多方向として、本発明に係るような3次元構造を形成することができるものである。なお、生成する中間体において、繊維相互が粒状体により結合された前記したような3次元構造を容易に形成する上では、触媒等の組成、反応炉内における滞留時間、反応温度、およびガス温度等を最適化することが望ましい。 The thermal cracking reaction of the hydrocarbon as a raw material mainly occurs on the surface of the granular particles grown using the catalyst particles or the core, and the recrystallization of carbon generated by the decomposition proceeds in a certain direction from the catalytic particles or granular materials. Grows in a fibrous form. However, in obtaining a three-dimensional network-like carbon fiber structure preferable as the carbon fiber as described above, the balance between the pyrolysis rate and the growth rate is intentionally changed. By using at least two or more carbon compounds having different decomposition temperatures as a source, the carbon material is grown three-dimensionally around the granular material without growing the carbon material only in a one-dimensional direction. Of course, the growth of such three-dimensional carbon fibers does not depend only on the balance between the thermal decomposition rate and the growth rate, but the crystal face selectivity of the catalyst particles, the residence time in the reactor, and the furnace temperature. The balance between the pyrolysis reaction and the growth rate is influenced not only by the type of carbon source as described above but also by the reaction temperature and gas temperature, etc. When the growth rate is faster than the thermal decomposition rate, the carbon material grows in a fibrous form. On the other hand, when the thermal decomposition rate is faster than the growth rate, the carbon material grows in the circumferential direction of the catalyst particles. To do. Therefore, by intentionally changing the balance between the pyrolysis rate and the growth rate, the carbon material growth direction as described above is made to be a multi-direction under control without changing the growth direction to a constant direction, as in the present invention. A three-dimensional structure can be formed. In order to easily form the three-dimensional structure in which the fibers are bonded with each other in the intermediate body to be produced, the composition of the catalyst, the residence time in the reaction furnace, the reaction temperature, and the gas temperature are used. Etc. are desirable.
 なお、繊維構造体(中間体)を効率良く製造する方法としては、上記したような分解温度の異なる2つ以上の炭素化合物を最適な混合比にて用いるアプローチ以外に、反応炉に供給される原料ガスに、その供給口近傍において乱流を生じさせるアプローチを挙げることができる。ここでいう乱流とは、激しく乱れた流れであり、渦巻いて流れるような流れをいう。 In addition, as a method for efficiently producing a fiber structure (intermediate body), a method other than the above-described approach using two or more carbon compounds having different decomposition temperatures at an optimum mixing ratio is supplied to the reaction furnace. An approach for generating a turbulent flow in the vicinity of the supply port of the source gas can be mentioned. The turbulent flow here is a flow that is turbulent and turbulent and flows in a spiral.
 反応炉においては、原料ガスが、その供給口より反応炉内へ導入された直後において、原料混合ガス中の触媒としての遷移金属化合物の分解により金属触媒微粒子が形成されるが、これは、次のような段階を経てもたらされる。すなわち、まず、遷移金属化合物が分解され金属原子となり、次いで、複数個、例えば、約100原子程度の金属原子の衝突によりクラスター生成が起こる。この生成したクラスターの段階では、繊維構造体(中間体)の触媒として作用せず、生成したクラスター同士が衝突により更に集合し、約3nm~10nm程度の金属の結晶性粒子に成長して、繊維構造体(中間体)の製造用の金属触媒微粒子として利用されることとなる。 In the reaction furnace, immediately after the raw material gas is introduced into the reaction furnace from the supply port, metal catalyst fine particles are formed by the decomposition of the transition metal compound as the catalyst in the raw material mixed gas. It is brought about through such a stage. That is, first, the transition metal compound is decomposed to become metal atoms, and then cluster generation occurs by collision of a plurality of, for example, about 100 atoms. At the stage of the generated cluster, it does not act as a catalyst for the fiber structure (intermediate body), and the generated clusters are further aggregated by collision and grow into metal crystalline particles of about 3 nm to 10 nm. It will be used as metal catalyst fine particles for the production of a structure (intermediate).
 この触媒形成過程において、上記したように激しい乱流による渦流が存在すると、ブラウン運動のみの金属原子又はクラスター同士の衝突と比してより激しい衝突が可能となり、単位時間あたりの衝突回数の増加によって金属触媒微粒子が短時間に高収率で得られ、又、渦流によって濃度、温度等が均一化されることにより粒子のサイズの揃った金属触媒微粒子を得ることができる。さらに、金属触媒微粒子が形成される過程で、渦流による激しい衝突により金属の結晶性粒子が多数集合した金属触媒微粒子の集合体を形成する。このようにして金属触媒微粒子が速やかに生成され、炭素化合物の分解反応サイトである金属触媒表面の面積が大きくなるため、炭素化合物の分解が促進されて、十分な炭素物質が供給されることになり、前記集合体の各々の金属触媒微粒子を核として放射状に炭素繊維が成長し、一方で、前記したように一部の炭素化合物の熱分解速度が炭素物質の成長速度よりも速いと、炭素物質は触媒粒子の周面方向にも成長し、前記集合体の周りに粒状部を形成し、所期の3次元構造を有する繊維構造体(中間体)を効率よく形成する。なお、前記金属触媒微粒子の集合体中には、他の触媒微粒子よりも活性の低いないしは反応途中で失活してしまった触媒微粒子も一部に含まれていることも考えられ、集合体として凝集するより以前にこのような触媒微粒子の表面に成長していた、あるいは集合体となった後にこのような触媒微粒子を核として成長した非繊維状ないしはごく短い繊維状の炭素物質層が、集合体の周縁位置に存在することで、前駆体の粒状部を形成しているものとも思われる。したがって、前記粒状部は、複数の気相炭素繊維の端部と、周面方向にのみ炭素物質を成長させた金属触媒微粒子とからなり、気相炭素繊維同士を結合させている粒状部分は、単純な球形より、むしろ複数の球体状構造物の集合・集積態様を多く形づくり、かつそうした状態でさらに炭素物質の成長が継続するため、後述するアニール処理とあいまって、粒状部に集合・集積している複数の気相炭素繊維の端部や複数の球状構造物の隣接し合うものが連続するグラフェンシート状の層を形成・共有し、結果として複数の気相炭素繊維同士が該粒状部で強固に結合する3次元ネットワーク状気相炭素繊維構造体を形成する。 In this catalyst formation process, if there is a vortex due to intense turbulence as described above, more intense collision is possible compared to collisions between metal atoms or clusters with only Brownian motion, and by increasing the number of collisions per unit time Metal catalyst fine particles can be obtained in a high yield in a short time, and metal catalyst fine particles having a uniform particle size can be obtained by equalizing the concentration, temperature, etc. by vortex. Furthermore, in the process of forming the metal catalyst fine particles, an aggregate of metal catalyst fine particles in which a large number of metal crystalline particles are gathered is formed by vigorous collision due to the vortex. In this way, the metal catalyst fine particles are rapidly generated, and the area of the surface of the metal catalyst that is the decomposition reaction site of the carbon compound is increased, so that the decomposition of the carbon compound is promoted and sufficient carbon material is supplied. Carbon fiber grows radially with each metal catalyst fine particle of the aggregate as a nucleus, and when the thermal decomposition rate of some of the carbon compounds is faster than the growth rate of the carbon material as described above, The substance grows also in the circumferential direction of the catalyst particles, forms a granular portion around the aggregate, and efficiently forms a fiber structure (intermediate body) having an intended three-dimensional structure. The metal catalyst fine particle aggregate may include a part of catalyst fine particles that are less active than other catalyst fine particles or have been deactivated during the reaction. A non-fibrous or very short fibrous carbon material layer that has grown on the surface of such a catalyst fine particle before agglomeration or has grown into an aggregate after such a fine particle has become an aggregate. It seems that the granular part of a precursor is formed by existing in the peripheral position of a body. Therefore, the granular portion is composed of end portions of a plurality of vapor phase carbon fibers and metal catalyst fine particles in which a carbon material is grown only in the circumferential direction, and the granular portion that bonds the vapor phase carbon fibers to each other, Rather than a simple sphere, a large number of spheres are assembled and accumulated, and in this state, the carbon material continues to grow. The end portions of the plurality of vapor-phase carbon fibers and adjacent ones of the plurality of spherical structures form and share a continuous graphene sheet-like layer, and as a result, the plurality of vapor-phase carbon fibers are the granular portions. A three-dimensional network-like vapor-phase carbon fiber structure that is firmly bonded is formed.
 反応炉の原料ガス供給口近傍において、投入される原料ガスの温度としては、好ましくは350~450℃である。原料ガスの流れに乱流を生じさせる具体的手段としては、特に限定されるものではなく、例えば、原料ガスが旋回流で反応炉内に導入する手段や原料ガス供給口より反応炉内に導出される原料ガスの流れに干渉し得る位置に、何らかの衝突部を設ける等の手段を採ることができる。前記衝突部の形状としては、何ら限定されるものではなく、衝突部を起点として発生した渦流によって十分な乱流が反応炉内に形成されるものであれば良いが、例えば、各種形状の邪魔板、パドル、テーパ管、傘状体等を単独であるいは複数組み合わせて1ないし複数個配置するといった形態を採択することができる。 In the vicinity of the raw material gas supply port of the reactor, the temperature of the raw material gas introduced is preferably 350 to 450 ° C. The specific means for generating the turbulent flow in the raw material gas flow is not particularly limited. For example, the raw material gas is introduced into the reaction furnace through a swirling flow or the raw material gas supply port. It is possible to adopt means such as providing some kind of collision portion at a position where it can interfere with the flow of the raw material gas. The shape of the collision part is not limited in any way, as long as a sufficient turbulent flow is formed in the reactor by the vortex generated from the collision part. It is possible to adopt a form in which one or a plurality of plates, paddles, taper tubes, umbrellas, etc. are arranged alone or in combination.
 図2に例示する製造装置1においては、その例として導入ノズル9周囲に整流・緩衝板10を設けている。整流・緩衝板は、導入ノズル9近傍に配置され原料混合ガスの流通の妨げとなる衝突の起点として作用する障害物であり、この障害物と原料混合ガスが衝突することで渦流が発生し温度分布と濃度分布とを均一化することが可能となる。整流・緩衝板の形状は、何ら限定されることはなく、整流・緩衝板を起点として発生した渦流が消滅することなく反応炉8の下端側まで逐次形成される形状であれば良い。 In the manufacturing apparatus 1 illustrated in FIG. 2, a rectifying / buffer plate 10 is provided around the introduction nozzle 9 as an example. The rectifying / buffer plate is an obstacle that is disposed in the vicinity of the introduction nozzle 9 and acts as a starting point of a collision that hinders the flow of the raw material mixed gas. The distribution and the concentration distribution can be made uniform. The shape of the rectifying / buffer plate is not limited in any way, and any shape may be used as long as the vortex generated from the rectifying / buffer plate as a starting point is sequentially formed up to the lower end side of the reaction furnace 8.
 触媒および炭化水素の混合ガスを800~1300℃の範囲に設定した温度で加熱生成して得られた中間体は、炭素原子からなるパッチ状のシート片を貼り合わせたような不完全な構造を有する。この中間体は、ラマン分光分析をすると、Dバンドが非常に大きく、欠陥が多い。また、生成した中間体は、未反応原料、非繊維状炭化物、タール分および触媒金属を含んでいる。 The intermediate obtained by heating the mixed gas of catalyst and hydrocarbon at a temperature set in the range of 800 to 1300 ° C has an incomplete structure as if patch-like sheet pieces made of carbon atoms were bonded together. Have. This intermediate has a very large D band and many defects when analyzed by Raman spectroscopy. The produced intermediate contains unreacted raw material, non-fibrous carbide, tar content and catalytic metal.
 従って、このような中間体からこれら残留物を除去し、欠陥が少ない所期の炭素繊維構造体を得るために、適切な方法で2400~3000℃の高温で熱処理する。 Therefore, in order to remove these residues from such an intermediate and obtain the desired carbon fiber structure with few defects, heat treatment is performed at a high temperature of 2400 to 3000 ° C. by an appropriate method.
 すなわち、例えば、この中間体を800~1200℃で加熱して未反応原料やタール分などの揮発分を除去した後、2400~3000℃の高温でアニール処理することによって所期の構造体を調製し、同時に繊維に含まれる触媒金属を蒸発させて除去する。なお、この際、物質構造を保護するために不活性ガス雰囲気中に還元ガスや微量の一酸化炭素ガスを添加してもよい。 That is, for example, this intermediate is heated at 800 to 1200 ° C. to remove volatile components such as unreacted raw materials and tars, and then annealed at a high temperature of 2400 to 3000 ° C. to prepare the desired structure. At the same time, the catalyst metal contained in the fiber is removed by evaporation. At this time, a reducing gas or a small amount of carbon monoxide gas may be added to the inert gas atmosphere in order to protect the material structure.
 前記中間体を2400~3000℃の範囲の温度でアニール処理すると、炭素原子からなるパッチ状のシート片は、それぞれ結合して複数のグラフェンシート状の層を形成し、所望の炭素繊維が得られる。 When the intermediate is annealed at a temperature in the range of 2400 to 3000 ° C., the patch-like sheet pieces made of carbon atoms are bonded to each other to form a plurality of graphene sheet-like layers, and a desired carbon fiber is obtained. .
 一方、本発明の導電性樹脂複合材料を製造する上で用いることができる樹脂としては 、特に限定はなく、例えば、エポキシ樹脂、フェノール樹脂、ポリウレタン樹脂、メラミン樹脂、ユリア樹脂、アニリン樹脂、フラン樹脂、アルキド樹脂、キシレン樹脂、不飽和ポリエステル樹脂、ジアリールフタレート樹脂等の硬化性樹脂、ポリブチレンテレフタレート樹脂、ポリエチレンテレフタレート樹脂、ポリカーボネート、ポリフェニレンオキシド、ポリフェニレンエーテル、ナイロン6、ナイロン66、ナイロン12、ポリアセタール、ポリエチレン、ポリプロピレン、ポリブタジエン、ポリアクリロニトリル、ポリスチレン、ポリメチルメタクリレート、ポリエチレンオキシド、ポリテトラメチレンオキシド、熱可塑性ポリウレタン、フェノキシ樹脂、ポリアミド、エチレン/プロピレン共重合体、エチレン/1-ブテン共重合体、エチレン/プロピレン/非共役ジエン共重合体、エチレン/アクリル酸エチル共重合体、エチレン/メタクリル酸グリシジル共重合体、エチレン/酢酸ビニル/メタクリル酸グリシジル共重合体、エチレン/プロピレン-g-無水マレイン酸共重合体、ポリエステルポリエーテルエラストマー、ポリテトラフルオロエチレン、セルロースアセテート、エチルセルロース、ポリジメチルシロキサン、ポリメチルメタクリラート、ポリビニルアセテート、ポリビニルアルコール、ポリビニルクロライド、ポリビニルピロリジン、シュークロースオクタアセテート、ポリスチレン、アクリロトリル/ブタンジエン/スチレン樹脂、ポリ塩化ビニル、アクリロニトリル/スチレン樹脂、メタクリル樹脂、塩化ビニル、ポリアミド、ポリアセタール、変性ポリフェニレンエーテル、ポリブチレンテレフタレート、ポリエチレンテレフタレート、超高分子量ポリエチレン、ポリフェニレンスルフィド、ポリイミド、ポリエーテルイミド、ポリアリレート、ポリスルホン、ポリエーテルスルホン、ポリエーテルエーテルケトン、液晶ポリマー、ポリテトラフルオロエチレン及びこれらの変性物等の熱可塑性樹脂が挙げられる。これら樹脂は、ホモポリマーであってもコポリマーであってもよく、2種類以上の混合物であってもよい。 On the other hand, the resin that can be used for producing the conductive resin composite material of the present invention is not particularly limited, and examples thereof include epoxy resins, phenol resins, polyurethane resins, melamine resins, urea resins, aniline resins, and furan resins. Curable resin such as alkyd resin, xylene resin, unsaturated polyester resin, diaryl phthalate resin, polybutylene terephthalate resin, polyethylene terephthalate resin, polycarbonate, polyphenylene oxide, polyphenylene ether, nylon 6, nylon 66, nylon 12, polyacetal, polyethylene , Polypropylene, polybutadiene, polyacrylonitrile, polystyrene, polymethyl methacrylate, polyethylene oxide, polytetramethylene oxide, thermoplastic polyurethane, Noxy resin, polyamide, ethylene / propylene copolymer, ethylene / 1-butene copolymer, ethylene / propylene / non-conjugated diene copolymer, ethylene / ethyl acrylate copolymer, ethylene / glycidyl methacrylate copolymer, Ethylene / vinyl acetate / glycidyl methacrylate copolymer, ethylene / propylene-g-maleic anhydride copolymer, polyester polyether elastomer, polytetrafluoroethylene, cellulose acetate, ethyl cellulose, polydimethylsiloxane, polymethyl methacrylate, polyvinyl Acetate, polyvinyl alcohol, polyvinyl chloride, polyvinyl pyrrolidine, sucrose octaacetate, polystyrene, acrylotolyl / butanediene / styrene resin, polyvinyl chloride, acrylic Ronitrile / styrene resin, methacrylic resin, vinyl chloride, polyamide, polyacetal, modified polyphenylene ether, polybutylene terephthalate, polyethylene terephthalate, ultrahigh molecular weight polyethylene, polyphenylene sulfide, polyimide, polyetherimide, polyarylate, polysulfone, polyethersulfone, poly Examples thereof include thermoplastic resins such as ether ether ketone, liquid crystal polymer, polytetrafluoroethylene, and modified products thereof. These resins may be homopolymers or copolymers, and may be a mixture of two or more.
 前記の樹脂に上記の炭素繊維を添加混合し、本発明に係る導電性樹脂複合材料を形成する。該導電性樹脂複合材料における炭素繊維の配合量としては、樹脂100質量部に対し、上記炭素繊維を好ましくは1~11.2質量部、より好ましくは3~7.7質量部である。このような所期の量の炭素繊維を添加混合してなる導電性樹脂複合材においては、表面電気抵抗値が10~1012Ω/□の良好な導電性、成形性に関わる破断伸びの改善および樹脂複合材からの炭素繊維脱落の低減といった特性が得られる。表面電気抵抗値が10~1012Ω/□の導電性を有する該導電性樹脂複合材は、例えば、キャリアテープなどIC部品包装体や磁気ヘッドの搬送用トレイに用いるのに適している。精密半導体部品を静電気による破壊から守るために、部品容器、製造場所の床材等に導電性樹脂が使用されるが、この場合の該導電性樹脂の表面電気抵抗値としては106~1012Ω/□が好ましい。該容器の抵抗値が低すぎる場合、蓄えられた静電気が急激に該容器に移動し、放電現象が発生し、それがもとで該部品がショートしてしまう。これに対し、電子部品容器の表面電気抵抗値が106~1012Ω/□の場合、帯電した電子部品から静電気がショートを起こす事無く緩やかに該容器側に除去されるためである。 The above-described carbon fiber is added to and mixed with the resin to form the conductive resin composite material according to the present invention. The compounding amount of the carbon fiber in the conductive resin composite material is preferably 1 to 11.2 parts by mass, more preferably 3 to 7.7 parts by mass with respect to 100 parts by mass of the resin. In the conductive resin composite material obtained by adding and mixing the desired amount of carbon fiber, the surface electrical resistance value is 10 3 to 10 12 Ω / □, good electrical conductivity, and elongation at break related to moldability. Properties such as improvement and reduction of carbon fiber shedding from the resin composite are obtained. The conductive resin composite material having a surface electrical resistance value of 10 3 to 10 12 Ω / □ is suitable for use in, for example, an IC component package such as a carrier tape or a transport tray for a magnetic head. In order to protect precision semiconductor parts from damage due to static electricity, conductive resin is used for parts containers, flooring at manufacturing sites, etc., and the surface electrical resistance value of the conductive resin in this case is 10 6 to 10 12. Ω / □ is preferred. When the resistance value of the container is too low, the stored static electricity rapidly moves to the container, a discharge phenomenon occurs, and the part is short-circuited. In contrast, when the surface electrical resistance value of the electronic component container is 10 6 to 10 12 Ω / □, static electricity is gently removed from the charged electronic component to the container side without causing a short circuit.
 また、前記導電性樹脂複合材料は、優れた導電性を保持しながら、30%以上の破断伸びが得られる、好ましくは40%以上の破断伸びが得られることにより、成形性に関わる流動性や割れ耐性に優れた特性を示す。 In addition, the conductive resin composite material has a break elongation of 30% or more while maintaining excellent conductivity, and preferably has a break elongation of 40% or more. Shows excellent resistance to cracking.
 また、前記導電性樹脂複合材料からの炭素繊維の脱落性が低い点は、具体的には、例えば、超純水2000ml中に該複合材料(50×90×3mm)を浸漬し、47kHzの超音波を60秒間印加した後、該複合材料の表面から脱落する粒径0.5μm以上のパーティクルの数が該複合材の単位表面積当り5000counts/cm以下、好ましくは2500counts/cm以下となることによって示される。 Further, the point that the carbon fiber from the conductive resin composite material has a low drop-off property is specifically, for example, by immersing the composite material (50 × 90 × 3 mm) in 2000 ml of ultrapure water, after the application of sound waves 60 seconds, the composite number of particles or particle size 0.5μm to fall off from the surface of the material follows the surface area per 5000counts / cm 2 of the composite material, it preferably becomes 2500counts / cm 2 or less Indicated by.
 本発明に係る導電性樹脂複合材料を製造する上で、前記樹脂に炭素繊維を添加混合し、導電性樹脂複合材を製造する方法については、特に限定されるものではない。しかしながら、炭素繊維の分散には優れた混練性能が必要とされることから、二軸押出機を使用して樹脂と炭素繊維を溶融混練することが好ましい。また本発明の導電性樹脂複合材料は、その特性から熱負荷の大きい大型の二軸押出機を利用可能である利点を有する。 In the production of the conductive resin composite material according to the present invention, the method for producing a conductive resin composite by adding and mixing carbon fibers to the resin is not particularly limited. However, since excellent kneading performance is required for the dispersion of carbon fibers, it is preferable to melt knead the resin and carbon fibers using a twin screw extruder. In addition, the conductive resin composite material of the present invention has an advantage that a large twin screw extruder having a large heat load can be used due to its characteristics.
 二軸押出機の代表的な例としては、ZSK(Werner & Pfleiderer社製、商品名)を挙げることができる。同様のタイプの具体例としてはTEX((株)日本製鋼所製、商品名)、TEM(東芝機械(株)製、商品名)、KTX((株)神戸製鋼所製、商品名)などを挙げることができる。その他、FCM(Farrel社製、商品名)、Ko-Kneader(Buss社製、商品名)、およびDSM(Krauss-Maffei社製、商品名)などの溶融混練機も具体例として挙げることができる。上記の中でもZSKに代表されるタイプがより好ましい。かかるZSKタイプの二軸押出機においてそのスクリューは、完全噛合い型であり、スクリューは長さとピッチの異なる各種のスクリューセグメント、および幅の異なる各種のニーディングディスク(またそれに相当する混練用セグメント)からなるものである。 As a typical example of the twin screw extruder, ZSK (trade name, manufactured by Werner & Pfleiderer) can be mentioned. Specific examples of similar types include TEX (trade name, manufactured by Nippon Steel Works, Ltd.), TEM (trade name, manufactured by Toshiba Machine Co., Ltd.), KTX (product name, manufactured by Kobe Steel, Ltd.), and the like. Can be mentioned. In addition, melt kneaders such as FCM (manufactured by Farrel, trade name), Ko-Kneader (manufactured by Buss, trade name), and DSM (trade name, manufactured by Krauss-Maffei) can also be given as specific examples. Among the above, the type represented by ZSK is more preferable. In such a ZSK type twin screw extruder, the screw is a fully meshed type, and the screw includes various screw segments having different lengths and pitches, and various kneading disks having different widths (and corresponding kneading segments). It consists of
 二軸押出機においてより好ましい態様は次の通りである。スクリュー形状は1条、2条、および3条のネジスクリューを使用することができ、特に溶融樹脂の搬送能力やせん断混練能力の両方の適用範囲が広い2条ネジスクリューが好ましく使用できる。二軸押出機におけるスクリューの長さ(L)と直径(D)との比(L/D)は、20~50が好ましく、更に28~42が好ましい。L/Dが大きい方が均質な分散が達成されやすい一方、大きすぎる場合には熱劣化により母材樹脂の分解が起こりやすい。スクリューには混練性を上げるためのニーディングディスクセグメント(またはそれに相当する混練セグメント)から構成された混練ゾーンを1個所以上有することが必要であり、1~3箇所有することが好ましい。 In the twin screw extruder, a more preferable aspect is as follows. As the screw shape, one, two, and three screw screws can be used, and in particular, a two-thread screw having a wide range of application in both the ability to convey the molten resin and the shear kneading ability can be preferably used. The ratio (L / D) of the screw length (L) to the diameter (D) in the twin-screw extruder is preferably 20 to 50, more preferably 28 to 42. When L / D is large, uniform dispersion is easily achieved, while when it is too large, decomposition of the base resin is likely to occur due to thermal degradation. The screw must have at least one kneading zone composed of a kneading disk segment (or a kneading segment corresponding thereto) for improving kneadability, and preferably has 1 to 3 kneading zones.
 押出機としては、原料中の水分や、溶融混練樹脂から発生する揮発ガスを脱気できるベントを有するものが好ましく使用できる。ベントからは発生水分や揮発ガスを効率よく押出機外部へ排出するための真空ポンプが好ましく設置される。また炭素繊維の分散性を高めたり、樹脂複合材料中の不純物を極力除去するため、水、有機溶剤、および超臨界流体などの添加を行ってもよい。更に押出原料中に混入した異物などを除去するためのスクリーンを押出機ダイス部前のゾーンに設置し、異物を樹脂複合材から取り除くことも可能である。かかるスクリーンとしては金網、スクリーンチェンジャー、焼結金属プレート(ディスクフィルターなど)などを挙げることができる。 As the extruder, one having a vent capable of degassing moisture in the raw material and volatile gas generated from the melt-kneaded resin can be preferably used. From the vent, a vacuum pump is preferably installed for efficiently discharging generated moisture and volatile gas to the outside of the extruder. In addition, water, an organic solvent, a supercritical fluid, or the like may be added in order to enhance the dispersibility of the carbon fiber or remove impurities in the resin composite material as much as possible. Further, it is possible to install a screen for removing foreign matters mixed in the extrusion raw material in the zone in front of the extruder die portion to remove the foreign matters from the resin composite material. Examples of such a screen include a wire mesh, a screen changer, a sintered metal plate (such as a disk filter), and the like.
 炭素繊維の押出機への供給方法は特に限定されないが、以下の方法が代表的に例示される。(i)炭素繊維を樹脂とは独立して押出機中に供給する方法。(ii)炭素繊維と樹脂粉末とをスーパーミキサーなどの混合機を用いて予備混合した後、押出機に供給する方法。(iii)炭素繊維と樹脂とを予め溶融混練してマスターペレット化し、それを炭素繊維源として供給する方法。繊維外径分布の異なる炭素繊維を使用する場合、上記(i)の工程の前に炭素繊維同士を混合してもよく、また上記(i)~(iii)の工程の際に炭素繊維同士を混合してもよい。 The method for supplying the carbon fiber to the extruder is not particularly limited, but the following method is typically exemplified. (I) A method of supplying carbon fibers into an extruder independently of a resin. (Ii) A method in which carbon fiber and resin powder are premixed using a mixer such as a super mixer and then supplied to the extruder. (Iii) A method in which carbon fibers and a resin are previously melt-kneaded into master pellets and supplied as a carbon fiber source. When carbon fibers having different fiber outer diameter distributions are used, the carbon fibers may be mixed before the step (i), and the carbon fibers may be mixed during the steps (i) to (iii). You may mix.
 以下本発明を実施例に基づきより具体的に説明するが、本発明はこれらの実施例に何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples.
炭素繊維の調製
 図2に示す製造装置を用い、次の表1に示す条件にて太径品(製造例-1)及び細径品(製造例-2)という炭素繊維群の中間体を得た後、アルゴンガス中で900℃で焼成して、不純物として含まれるタールなどの炭化水素を分離し精製を行った。ついでこの中間体をアルゴンガス中で2600℃の高温熱処理(アニール処理)を行い、さらに気流粉砕機にて解砕し、炭素繊維の3次元ネットワーク構造体からなる炭素繊維の集合体を得た。
 得られた太径品(製造例-1)の炭素繊維群の平均繊維外径は117nmであり、繊維外径(nm)の分布の標準偏差が26であった。一方、細径品(製造例-2)の炭素繊維群の平均繊維外径は58nmであり、繊維外径(nm)の分布の標準偏差が13であった。
Preparation of carbon fiber Using the manufacturing apparatus shown in FIG. 2, carbon fiber group intermediates of a large diameter product (Production Example-1) and a small diameter product (Production Example-2) were obtained under the conditions shown in Table 1 below. After that, it was baked at 900 ° C. in an argon gas to separate and purify hydrocarbons such as tar contained as impurities. Next, this intermediate was subjected to high-temperature heat treatment (annealing) at 2600 ° C. in argon gas, and further pulverized with an airflow pulverizer to obtain an aggregate of carbon fibers comprising a three-dimensional network structure of carbon fibers.
The average fiber outer diameter of the carbon fiber group of the obtained large diameter product (Production Example-1) was 117 nm, and the standard deviation of the fiber outer diameter (nm) distribution was 26. On the other hand, the average fiber outer diameter of the carbon fiber group of the small diameter product (Production Example-2) was 58 nm, and the standard deviation of the fiber outer diameter (nm) distribution was 13.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
導電性樹脂複合材料の調製
 実施例1で得た太径品と細径品の炭素繊維を5:1の質量比で密閉タンク中にて2時間以上攪拌し、混合均質化した。これにより得た平均繊維径が102nmである混合物(図3)を、ポリカーボネート樹脂(Lexan141R(商品名、SABICイノベーティブプラスチックス社製))に6.38質量部数添加し、均一に混合した。スクリュー径30mmのベント式二軸押出機TEX-30XSST(商品名、(株)日本製鋼所製)を用いて、該混合物を最後部の第1投入口に供給した。かかる押出機は、第1供給口から第2供給口の間にニーディングディスクによる混練ゾーンがあり、その直後に開放されたベント口が設けられていた。ベント口の長さはスクリュー径(D)に対して約2Dであった。かかるベント口の後にサイドフィーダーが設置され、サイドフィーダー以後に更にニーディングディスクによる混練ゾーンおよびそれに続くベント口が設けられていた。かかる部分のベント口の長さは約1.5Dであり、その部分では真空ポンプを使用し約3kPaの減圧度とした。押出は、シリンダー温度300℃(スクリュー根元のバレル~ダイスまでほぼ均等に上昇)、スクリュー回転数180rpm、および時間当りの吐出量20kgの条件で行った。押出されたストランドを水浴において冷却した後、ペレタイザーで切断しペレット化した。得られたペレットを120℃で5時間、熱風循環式乾燥機にて100℃24時間乾燥した後、射出成形機(東芝機械IS55FPB)を用いて、シリンダー温度300℃、金型温度80℃、射速20mm/sec、並びに成形サイクル約60秒の条件で、評価用試験片を作製した。
Preparation of conductive resin composite material The large-diameter product and the small-diameter carbon fiber obtained in Example 1 were stirred in a closed tank at a mass ratio of 5: 1 for 2 hours or more to be mixed and homogenized. 6.38 parts by mass of the resulting mixture (FIG. 3) having an average fiber diameter of 102 nm was added to a polycarbonate resin (Lexan 141R (trade name, manufactured by SABIC Innovative Plastics)) and mixed uniformly. The mixture was supplied to the first inlet at the end using a vented twin screw extruder TEX-30XSST (trade name, manufactured by Nippon Steel Works, Ltd.) with a screw diameter of 30 mm. Such an extruder has a kneading zone by a kneading disk between the first supply port and the second supply port, and a vent port opened immediately after that is provided. The length of the vent port was about 2D with respect to the screw diameter (D). A side feeder was installed after the vent port, and a kneading zone with a kneading disk and a subsequent vent port were further provided after the side feeder. The length of the vent port in this part is about 1.5D, and the degree of vacuum is about 3 kPa in that part using a vacuum pump. Extrusion was performed under the conditions of a cylinder temperature of 300 ° C. (raise almost uniformly from the barrel at the root of the screw to the die), a screw rotation speed of 180 rpm, and a discharge amount of 20 kg per hour. The extruded strand was cooled in a water bath, then cut with a pelletizer and pelletized. The obtained pellets were dried at 120 ° C. for 5 hours and at 100 ° C. for 24 hours in a hot air circulating dryer, and then using an injection molding machine (Toshiba Machine IS55FPB), the cylinder temperature was 300 ° C., the mold temperature was 80 ° C., Test specimens for evaluation were produced under the conditions of a speed of 20 mm / sec and a molding cycle of about 60 seconds.
[比較例1]
導電性樹脂複合材料の調製
 実施例1で得た太径品炭素繊維を上記のポリカーボネート樹脂に6.38質量部数添加し、実施例2と同じ方法で評価用試験片を作製した。
[Comparative Example 1]
Preparation of Conductive Resin Composite Material 6.38 parts by mass of the large-diameter carbon fiber obtained in Example 1 was added to the polycarbonate resin, and a test piece for evaluation was produced in the same manner as in Example 2.
[比較例2]
導電性樹脂複合材料の調製
 実施例1で得た太径品炭素繊維を上記のポリカーボネート樹脂に7.53質量部数添加し、実施例2と同じ方法で評価用試験片を作製した。
[Comparative Example 2]
Preparation of Conductive Resin Composite Material 7.53 parts by mass of the large-diameter carbon fiber obtained in Example 1 was added to the above polycarbonate resin, and a test piece for evaluation was produced in the same manner as in Example 2.
[比較例3]
導電性樹脂複合材料の調製
 実施例1で得た細径品炭素繊維を上記のポリカーボネート樹脂に4.17質量部数添加し、実施例2と同じ方法で評価用試験片を作製した。
[Comparative Example 3]
Preparation of Conductive Resin Composite Material 4.17 parts by mass of the small-diameter carbon fiber obtained in Example 1 was added to the polycarbonate resin, and a test piece for evaluation was produced in the same manner as in Example 2.
[比較例4]
導電性樹脂複合材料の調製
 実施例1で得た細径品炭素繊維を上記のポリカーボネート樹脂に6.38質量部数添加し、実施例2と同じ方法で評価用試験片を作製した。
[Comparative Example 4]
Preparation of conductive resin composite material 6.38 parts by mass of the small-diameter carbon fiber obtained in Example 1 was added to the polycarbonate resin, and a test piece for evaluation was produced in the same manner as in Example 2.
導電性樹脂複合材料の調製
 実施例1で得た細径品と太径品の炭素繊維を2:3の質量比で密閉タンク中にて2時間以上攪拌し、混合均質化した後、上記のポリカーボネート樹脂に5.0質量部数添加し、実施例2と同じ方法で評価用試験片を作製した。
Preparation of conductive resin composite material The small-diameter product and the large-diameter product carbon fiber obtained in Example 1 were stirred in a sealed tank at a mass ratio of 2: 3 for 2 hours or more, mixed and homogenized, and then 5.0 parts by mass were added to the polycarbonate resin, and a test piece for evaluation was produced in the same manner as in Example 2.
導電性樹脂複合材料の調製
 実施例1で得た細径品と太径品の炭素繊維を1:2の質量比で密閉タンク中にて2時間以上攪拌し、混合均質化した後、上記のポリカーボネート樹脂に6.0質量部数添加し、実施例2と同じ方法で評価用試験片を作製した。
Preparation of Conductive Resin Composite Material The fine and large diameter carbon fibers obtained in Example 1 were stirred at a mass ratio of 1: 2 in a closed tank for 2 hours or more, mixed and homogenized, and then 6.0 parts by mass were added to the polycarbonate resin, and a test piece for evaluation was produced in the same manner as in Example 2.
導電性樹脂複合材料の調製
 実施例1で得た細径品と太径品の炭素繊維を3:5の質量比で密閉タンク中にて2時間以上攪拌し、混合均質化した後、上記のポリカーボネート樹脂に8.0質量部数添加し、実施例2と同じ方法で評価用試験片を作製した。
Preparation of conductive resin composite material The small-diameter product and the large-diameter product carbon fiber obtained in Example 1 were stirred in a closed tank at a mass ratio of 3: 5 for 2 hours or more, mixed and homogenized, and then mixed with the above. 8.0 parts by mass were added to the polycarbonate resin, and a test piece for evaluation was produced in the same manner as in Example 2.
[比較例5]
導電性樹脂複合材料の調製
 実施例1で得た細径品炭素繊維を上記のポリカーボネート樹脂に4.0質量部数添加し、実施例2と同じ方法で評価用試験片を作製した。
[Comparative Example 5]
Preparation of Conductive Resin Composite Material 4.0 parts by mass of the small-diameter carbon fiber obtained in Example 1 was added to the polycarbonate resin, and a test piece for evaluation was produced in the same manner as in Example 2.
[比較例6]
導電性樹脂複合材料の調製
 実施例1で得た細径品炭素繊維を上記のポリカーボネート樹脂に5.0質量部数添加し、実施例2と同じ方法で評価用試験片を作製した。
[Comparative Example 6]
Preparation of Conductive Resin Composite Material 5.0 parts by mass of the small-diameter carbon fiber obtained in Example 1 was added to the polycarbonate resin, and a test piece for evaluation was produced in the same manner as in Example 2.
[比較例7]
導電性樹脂複合材料の調製
 実施例1で得た太径品炭素繊維を上記のポリカーボネート樹脂に6.0質量部数添加し、実施例2と同じ方法で評価用試験片を作製した。
[Comparative Example 7]
Preparation of Conductive Resin Composite Material 6.0 parts by mass of the large-diameter carbon fiber obtained in Example 1 was added to the polycarbonate resin, and a test piece for evaluation was produced in the same manner as in Example 2.
[比較例8]
導電性樹脂複合材料の調製
 実施例1で得た太径品炭素繊維を上記のポリカーボネート樹脂に7.0質量部数添加し、実施例2と同じ方法で評価用試験片を作製した。
[Comparative Example 8]
Preparation of Conductive Resin Composite Material 7.0 parts by mass of the large-diameter carbon fiber obtained in Example 1 was added to the polycarbonate resin, and a test piece for evaluation was produced in the same manner as in Example 2.
[比較例9]
導電性樹脂複合材料の調製
 実施例1で得た太径品炭素繊維を上記のポリカーボネート樹脂に8.0質量部数添加し、実施例2と同じ方法で評価用試験片を作製した。
[Comparative Example 9]
Preparation of Conductive Resin Composite Material 8.0 parts by mass of the large-diameter carbon fiber obtained in Example 1 was added to the above polycarbonate resin, and a test piece for evaluation was produced in the same manner as in Example 2.
 導電性樹脂複合材の物性は、以下の方法に従って測定した。 The physical properties of the conductive resin composite material were measured according to the following method.
(1)表面電気抵抗
 JIS K 7194(導電性プラスチックの4探針法による抵抗試験方法)を参照して、測定位置および測定方法を準じて、ロレスタGP(MCP-T600型、三菱化学(株)製、商品名)、ハイレスタUP(MCP-HT450型、三菱化学(株)製、商品名)を用いて、射出成形した試験片(50×90×3mm)の表面抵抗を測定した。得られた結果を、表2および表3に示す。
(1) Surface electrical resistance Referring to JIS K 7194 (Resistance testing method for conductive plastics using 4-probe method), according to the measurement position and measurement method, Loresta GP (MCP-T600 type, Mitsubishi Chemical Corporation) The surface resistance of the injection-molded test piece (50 × 90 × 3 mm) was measured by using Hiresta UP (MCP-HT450 type, manufactured by Mitsubishi Chemical Corporation, product name). The obtained results are shown in Table 2 and Table 3.
(2)体積電気抵抗
 射出成形した試験片から20mm×20mm×厚さ2.5mmの試料片を切り出し、20mm×2.5mmの2つの平行な側面に銀ペースト(株式会社徳力化学製、シルベストP-248)を塗布し、約10cmの銅線電極の端部を接着した。この銅線電極をワニ口クリップと専用ケーブルで直流電圧・電流源/モニタR6243(エーディーシー株式会社製)の入出力端子と接続した。この装置を用いて、二端子法により試料の体積抵抗Rv(単位はΩcm)を測定した。電圧V(単位はV)を印加し、読み取った電流値(I:単位はA)を記録した。試料の体積抵抗Rvは、電流方向の断面積S=試料幅W×厚さt(単位はcm)と、試料長さL(単位はcm)から、試料の抵抗の測定値R=(V/I)を用いて、体積抵抗Rv=(V/I)×W×t/L (Ωcm)と算出できる。上記試料では、W=2cm、L=2cm、t=0.25cmとなる。得られた体積電気抵抗結果は表3に示す。
(2) Volume electric resistance A 20 mm × 20 mm × 2.5 mm thick sample piece was cut out from the injection-molded test piece, and silver paste (Sylbest P, manufactured by Tokushi Chemical Co., Ltd.) was formed on two parallel sides of 20 mm × 2.5 mm. -248) was applied and the ends of copper wire electrodes of about 10 cm were adhered. This copper wire electrode was connected to an input / output terminal of a DC voltage / current source / monitor R6243 (manufactured by ADC Corporation) with an alligator clip and a dedicated cable. Using this apparatus, the volume resistance Rv (unit: Ωcm) of the sample was measured by the two-terminal method. A voltage V (unit: V) was applied, and the read current value (I: unit: A) was recorded. The volume resistance Rv of the sample is the measured value R = (V of the resistance of the sample from the cross-sectional area S in the current direction = sample width W × thickness t (unit: cm 2 ) and sample length L (unit: cm)). / I), volume resistivity Rv = (V / I) × W × t / L (Ωcm) can be calculated. In the above sample, W = 2 cm, L = 2 cm, and t = 0.25 cm. The obtained volume electric resistance results are shown in Table 3.
(3)破断伸び
 ISO527-1(通則)および527-2(型成型、押出成型および注型プラスチックの試験条件)に準拠して引張破断伸びを測定した。射出成型した試験片の形状及び寸法はISO527-2の試験片1A形である。試験装置は万能材料試験機(インテスコ2005-5型)を用いた、試験速度は50mm/min、チャック間距離は115mmであり、23℃50%RHの試験環境で行った。上記と同様に成型及び測定した5本試験片の破断伸び値の平均値を算出した。得られた結果を表2に示す。
(3) Elongation at break The tensile elongation at break was measured in accordance with ISO 527-1 (general rules) and 527-2 (test conditions for mold molding, extrusion molding and cast plastic). The shape and size of the injection-molded test piece is a test piece 1A type of ISO527-2. The testing apparatus was a universal material testing machine (Intesco 2005-5 type), the test speed was 50 mm / min, the distance between chucks was 115 mm, and the test was performed in a test environment of 23 ° C. and 50% RH. The average value of the breaking elongation values of the five test pieces molded and measured in the same manner as described above was calculated. The obtained results are shown in Table 2.
(4)脱落性
 超純水で洗浄した3000mLガラスビーカーに、超純水を2000mL注入し、射出成形した試験片(50×90×3mm)を1枚浸漬させた。その後、5210E-DTH(47kHz/140W)(商品名、BRANSON社製)により超音波を1分間印加した。その後、抽出した超純水を液中微粒子計測器HIAC ROYCO SYSTEM8011(商品名、HACH ULTRA ANALYTICS社製)にて吸引し、塵埃粒子径0.5μm以上の発塵量を測定した。得られた結果を表2に示す。
(4) Separability 2000 mL of ultrapure water was injected into a 3000 mL glass beaker washed with ultrapure water, and one injection-molded test piece (50 × 90 × 3 mm) was immersed therein. Thereafter, ultrasonic waves were applied for 1 minute using 5210E-DTH (47 kHz / 140 W) (trade name, manufactured by BRANSON). Thereafter, the extracted ultrapure water was sucked with an in-liquid particle measuring instrument HIAC ROYCO SYSTEM8011 (trade name, manufactured by HACH ULTRA ANALYTICS), and the amount of dust generated with a dust particle diameter of 0.5 μm or more was measured. The obtained results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 上記表2、表3に示す結果のとおり、繊維径分布が異なる2種類の炭素繊維を混合したものと太径品のみを用いたものとを比較する、具体的には、実施例2と比較例1、実施例4と比較例7、実施例5と比較例9を比較すると、炭素繊維が同質量部でも混合品のほうが太径品より良好な導電性を示すことが確認できた。一方、実施例2と比較例4、実施例3と比較例6では、同質量部で細径品のほうが良好な導電性を示した。これは細径品のほうが、導電性を向上させる点では優れている傾向があるためである。しかし、前述したとおり、細径品は製造コストが割高であり、樹脂へ混練した際に、粘性を高めてしまい樹脂本来の物性が出にくい。そのため表2においては、破断伸びが混合品が良好となっている。混合品は十分な表面電気抵抗値および体積電気抵抗値を示し、かつ破断伸びも60%を上回っている。そのため混合品は樹脂の力学特性と導電性付与においてバランスよい特性を発揮させるのに優れるといえる。 As shown in the results in Tables 2 and 3 above, a comparison is made between a mixture of two types of carbon fibers having different fiber diameter distributions and a mixture using only a large diameter product. When Example 1, Example 4 and Comparative Example 7 were compared, and Example 5 and Comparative Example 9 were compared, it was confirmed that the mixed product showed better conductivity than the large-diameter product even with the same mass part of carbon fiber. On the other hand, in Example 2 and Comparative Example 4, and in Example 3 and Comparative Example 6, the smaller diameter product showed better conductivity at the same mass part. This is because thin products tend to be superior in terms of improving conductivity. However, as described above, the manufacturing cost of the small-diameter product is high, and when kneaded into the resin, the viscosity is increased and the original physical properties of the resin are difficult to be obtained. Therefore, in Table 2, the elongation at break is good for the mixed product. The mixed product exhibits a sufficient surface electric resistance value and volume electric resistance value, and the elongation at break exceeds 60%. Therefore, it can be said that the mixed product is excellent in exhibiting balanced properties in imparting mechanical properties and conductivity to the resin.
[実施例6および比較例10,11]
 実施例1で得られた太径品の炭素繊維構造体(比較例10)、細径品の炭素繊維構造体(比較例11)、または、これらの太径品と細径品の気相炭素繊維構造体を5:1の質量比で混合均質化した混合品(実施例6)の含有量が、2.0質量%となるように、0.22gの各炭素繊維構造体を、それぞれ、エポキシ樹脂(アデカレジン EP4100E、エポキシ当量190、(株)ADEKA製)10g、硬化剤(アデカハードナー EH3636-AS、(株)ADEKA製)に配合し、自転-公転型遠心力攪拌機(あわとり錬太郎、AR-250、シンキー(株)製)で、10分間混練後、粘度測定のための炭素繊維構造体のエポキシ樹脂混練物を調製した。
[Example 6 and Comparative Examples 10 and 11]
Large-diameter carbon fiber structure obtained in Example 1 (Comparative Example 10), small-diameter carbon fiber structure (Comparative Example 11), or gas phase carbon of these large-diameter products and small-diameter products 0.22 g of each carbon fiber structure was respectively adjusted so that the content of the mixed product (Example 6) obtained by mixing and homogenizing the fiber structure at a mass ratio of 5: 1 was 2.0% by mass. An epoxy resin (Adeka Resin EP4100E, epoxy equivalent 190, manufactured by ADEKA Corporation) 10 g, a curing agent (Adeka Hardener EH3636-AS, manufactured by ADEKA Co., Ltd.), and a rotation-revolution centrifugal stirrer (Atsutori Rentaro, AR-250, manufactured by Shinky Co., Ltd.) was kneaded for 10 minutes, and an epoxy resin kneaded material of a carbon fiber structure for viscosity measurement was prepared.
 高性能の回転式レオメーター(Gemini150、Bhlin Instruments製)を用いて、温度25℃、周波数範囲0.01~10Hz、Auto-stressモードで、比較例10、比較例11と実施例6の炭素繊維構造体とエポキシ樹脂の2.0質量%混合物の粘度(Complex Viscosity)を測定した。その結果は図4に示す。
 図4からわかるように、混合品(実施例6)のエポキシ樹脂混合物の粘度は、太径品のエポキシ樹脂混合物(比較例10)の粘度と相当で、細径品のエポキシ樹脂混合物(比較例11)の粘度よりかなり低いことがわかる。
Carbon fibers of Comparative Example 10, Comparative Example 11 and Example 6 in a high-performance rotary rheometer (Gemini 150, manufactured by Bhlin Instruments) at a temperature of 25 ° C., a frequency range of 0.01 to 10 Hz, and an Auto-stress mode. The viscosity (Complex Viscosity) of a 2.0 mass% mixture of the structure and the epoxy resin was measured. The result is shown in FIG.
As can be seen from FIG. 4, the viscosity of the epoxy resin mixture of the mixed product (Example 6) is equivalent to the viscosity of the epoxy resin mixture of the large diameter product (Comparative Example 10), and the epoxy resin mixture of the small diameter product (Comparative Example). It can be seen that the viscosity is considerably lower than the viscosity of 11).
 したがって本発明の導電性樹脂複合材は、OA機器分野、電気電子機器分野などの各種工業用途に極めて有用であり、その奏する工業的効果は極めて大である。 Therefore, the conductive resin composite material of the present invention is extremely useful for various industrial uses such as the field of OA equipment and the field of electrical and electronic equipment, and the industrial effect exerted thereby is extremely great.
 1 ・・・・・炭素繊維の製造装置
 2 ・・・・・原料タンク
 3 ・・・・・原料導入管
 4 ・・・・・ガスタンク
 5 ・・・・・ガス導入管
 6 ・・・・・蒸発器
 7 ・・・・・原料混合ガス導入管
 8 ・・・・・反応炉
 9 ・・・・・導入ノズル
 10 ・・・・整流・緩衝板
 11 ・・・・加熱手段
 12 ・・・・炭素繊維回収器
 13 ・・・・ガス排出管
 14 ・・・・原料混合ガス導入口
 15 ・・・・冷却ガス導入口
 16 ・・・・冷却ガス出口
 20 ・・・・金属触媒粒子生成帯域
 30 ・・・・炭素繊維製造帯域
DESCRIPTION OF SYMBOLS 1 ... Carbon fiber manufacturing apparatus 2 ... Raw material tank 3 ... Raw material introduction pipe 4 ... Gas tank 5 ... Gas introduction pipe 6 ... Evaporator 7 ... Raw material mixed gas introduction pipe 8 ... Reactor 9 ... Introduction nozzle 10 ... ... Rectification / buffer plate 11 ... Heating means 12 ... Carbon fiber recovery device 13 ··· Gas discharge pipe 14 ··· Raw material mixed gas inlet 15 ··· Cooling gas inlet 16 ··· Cooling gas outlet 20 ··· Metal catalyst particle generation zone 30 .... Carbon fiber production zone

Claims (8)

  1.  母材樹脂および炭素繊維を含む導電性樹脂複合材料であって、該炭素繊維の平均繊維外径が20nmを超え300nm以下であり、繊維外径分布の異なる少なくとも二群の炭素繊維を含み、かつ該母材樹脂100質量部に対し、炭素繊維を1~11.2質量部含有することを特徴とする導電性樹脂複合材料。 A conductive resin composite material including a base material resin and carbon fibers, the carbon fibers having an average fiber outer diameter of more than 20 nm and not more than 300 nm, including at least two groups of carbon fibers having different fiber outer diameter distributions; and A conductive resin composite material comprising 1 to 11.2 parts by mass of carbon fiber with respect to 100 parts by mass of the base resin.
  2.  前記の繊維外径分布の異なる少なくとも二群の炭素繊維群が、平均繊維外径がより細い炭素繊維群Aとより太い炭素繊維群Bに分けた場合に、質量比で該炭素繊維群Bが該炭素繊維群Aより大きくなり、かつ、該炭素繊維群Aの平均繊維外径をaとし該炭素繊維群Bの平均繊維外径をbとした場合にa/b比率が0.8以下となることを特徴とする請求項1に記載の導電性樹脂複合材料。 When at least two carbon fiber groups having different fiber outer diameter distributions are divided into a carbon fiber group A having a smaller average fiber outer diameter and a carbon fiber group B having a larger average fiber outer diameter, the carbon fiber group B has a mass ratio. When the average fiber outer diameter of the carbon fiber group A is a and the average fiber outer diameter of the carbon fiber group B is b, the a / b ratio is 0.8 or less. The conductive resin composite material according to claim 1, wherein
  3.  前記炭素繊維群Aの平均外径aが20nmを超え100nm以下であり、炭素繊維群Bの平均繊維外径bが100nmを超え300nm以下であり、両者は、母材樹脂中で実質的に混合均質化されていることを特徴とする請求項1または請求項2に記載の導電性樹脂複合材料。 The average outer diameter a of the carbon fiber group A is more than 20 nm and not more than 100 nm, and the average fiber outer diameter b of the carbon fiber group B is more than 100 nm and not more than 300 nm, and both are substantially mixed in the matrix resin. The conductive resin composite material according to claim 1, wherein the conductive resin composite material is homogenized.
  4.  前記炭素繊維が気相成長法によって製造した炭素繊維であることを特徴とする請求項1~3のいずれかの一項に記載の導電性樹脂複合材料。 The conductive resin composite material according to any one of claims 1 to 3, wherein the carbon fiber is a carbon fiber produced by a vapor phase growth method.
  5.  前記炭素繊維が3次元ネットワーク状の炭素繊維構造体を形成し、該炭素繊維構造体は複数の粒状部を相互に立体的に該炭素繊維で結合されたネットワーク構造を有することを特徴とする請求項1~4のいずれかの一項に記載の導電性樹脂複合材料。 The carbon fiber forms a three-dimensional network-like carbon fiber structure, and the carbon fiber structure has a network structure in which a plurality of granular parts are sterically bonded to each other by the carbon fiber. Item 5. The conductive resin composite material according to any one of Items 1 to 4.
  6.  前記粒状部が、前記炭素繊維の平均繊維外径の1.3倍以上の平均円相当外径を有することを特徴とする請求項1~5のいずれかの一項に記載の導電性樹脂複合材料。 The conductive resin composite according to any one of claims 1 to 5, wherein the granular part has an average equivalent circular outer diameter of 1.3 times or more of an average fiber outer diameter of the carbon fiber. material.
  7. 前記導電性樹脂複合材の破断伸びが40%以上であることを特徴とする請求項1~6のいずれかの一項に記載の導電性樹脂複合材料。 The conductive resin composite material according to any one of claims 1 to 6, wherein the elongation at break of the conductive resin composite material is 40% or more.
  8.  前記導電性樹脂複合材を用いて成形した成形物の表面電気抵抗値が10~1012Ω/□であることを特徴とする請求項1~7のいずれかの一項に記載の導電性樹脂複合材料。 The conductive property according to any one of claims 1 to 7, wherein a surface electrical resistance value of a molded product molded using the conductive resin composite material is 10 3 to 10 12 Ω / □. Resin composite material.
PCT/JP2009/067045 2008-09-30 2009-09-30 Composite material containing carbon fiber WO2010038784A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010531884A JP5634870B2 (en) 2008-09-30 2009-09-30 Composite material containing carbon fiber
CN200980147475.0A CN102227782B (en) 2008-09-30 2009-09-30 Composite material containing carbon fiber
HK12100825.7A HK1160545A1 (en) 2008-09-30 2012-01-29 Composite material containing carbon fiber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-252860 2008-09-30
JP2008252860 2008-09-30

Publications (1)

Publication Number Publication Date
WO2010038784A1 true WO2010038784A1 (en) 2010-04-08

Family

ID=42073543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/067045 WO2010038784A1 (en) 2008-09-30 2009-09-30 Composite material containing carbon fiber

Country Status (5)

Country Link
JP (1) JP5634870B2 (en)
CN (1) CN102227782B (en)
HK (1) HK1160545A1 (en)
TW (1) TW201027565A (en)
WO (1) WO2010038784A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012173111A1 (en) * 2011-06-17 2012-12-20 出光興産株式会社 Polycarbonate resin composition and molding produced using same
JP2013091783A (en) * 2011-10-06 2013-05-16 Showa Denko Kk Electroconductive resin composition, and electroconductive coating and electroconductive adhesive using the same
CN103551200A (en) * 2013-11-20 2014-02-05 河南城建学院 Porous graphite carbon composite material as well as preparation method and application thereof
JP2014028900A (en) * 2012-07-31 2014-02-13 Showa Denko Kk Conductive resin composition, and conductive coating material and conductive adhesive using the same
JP2015189074A (en) * 2014-03-28 2015-11-02 横浜ゴム株式会社 Mold release agent for tire inner surface and method for producing pneumatic tire using the same
US9253878B2 (en) 2012-03-29 2016-02-02 Sumitomo Riko Company Limited Conductive composition and conductive film
US9748017B2 (en) 2013-09-10 2017-08-29 Riken Technos Corporation Electrically conductive resin composition, and film produced from same
JP2019127584A (en) * 2018-01-19 2019-08-01 出光興産株式会社 Composition, electromagnetic wave-shielding sheet and method for producing the same, electromagnetic wave-shielding material and method for producing the same, electromagnetic wave radar, and vehicle control device
US10767035B2 (en) 2014-10-09 2020-09-08 Riken Technos Corporation Method for producing thermoplastic resin composition film
WO2021251361A1 (en) * 2020-06-10 2021-12-16 古河電気工業株式会社 Fiber-dispersing resin composite material, molded body, and composite member
CN116514113A (en) * 2023-05-06 2023-08-01 昆明理工大学 Carbon nano tube-graphene composite material with latticed shell structure and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0532819A (en) * 1990-11-06 1993-02-09 Osaka Gas Co Ltd Conductive composition
JP2005200620A (en) * 2003-12-15 2005-07-28 Bridgestone Corp Thermoplastic resin composition and thermoplastic resin molded product
JP2007092074A (en) * 2006-11-13 2007-04-12 Osaka Gas Co Ltd Electroconductive polymer
JP2007122927A (en) * 2005-10-25 2007-05-17 Bussan Nanotech Research Institute Inc Conductive sheet
JP2007191718A (en) * 2000-06-05 2007-08-02 Showa Denko Kk Electroconductive curable resin composition, its cured product and molded article thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2772613B2 (en) * 1992-12-16 1998-07-02 龍 仁 李 Conductive adhesive tape
US7026388B2 (en) * 2001-03-28 2006-04-11 Ube Industries, Ltd. Conductive resin composition and process for producing the same
US8999200B2 (en) * 2002-07-23 2015-04-07 Sabic Global Technologies B.V. Conductive thermoplastic composites and methods of making

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0532819A (en) * 1990-11-06 1993-02-09 Osaka Gas Co Ltd Conductive composition
JP2007191718A (en) * 2000-06-05 2007-08-02 Showa Denko Kk Electroconductive curable resin composition, its cured product and molded article thereof
JP2005200620A (en) * 2003-12-15 2005-07-28 Bridgestone Corp Thermoplastic resin composition and thermoplastic resin molded product
JP2007122927A (en) * 2005-10-25 2007-05-17 Bussan Nanotech Research Institute Inc Conductive sheet
JP2007092074A (en) * 2006-11-13 2007-04-12 Osaka Gas Co Ltd Electroconductive polymer

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2012173111A1 (en) * 2011-06-17 2015-02-23 出光興産株式会社 Polycarbonate resin composition and molded body using the same
CN103608404B (en) * 2011-06-17 2016-03-09 出光兴产株式会社 Polycarbonate resin composition and molded article using same
WO2012173111A1 (en) * 2011-06-17 2012-12-20 出光興産株式会社 Polycarbonate resin composition and molding produced using same
CN103608404A (en) * 2011-06-17 2014-02-26 出光兴产株式会社 Polycarbonate resin composition and molded article using same
JP2013091783A (en) * 2011-10-06 2013-05-16 Showa Denko Kk Electroconductive resin composition, and electroconductive coating and electroconductive adhesive using the same
US9253878B2 (en) 2012-03-29 2016-02-02 Sumitomo Riko Company Limited Conductive composition and conductive film
JP2014028900A (en) * 2012-07-31 2014-02-13 Showa Denko Kk Conductive resin composition, and conductive coating material and conductive adhesive using the same
US9748017B2 (en) 2013-09-10 2017-08-29 Riken Technos Corporation Electrically conductive resin composition, and film produced from same
CN103551200B (en) * 2013-11-20 2015-06-03 河南城建学院 Porous graphite carbon composite material as well as preparation method and application thereof
CN103551200A (en) * 2013-11-20 2014-02-05 河南城建学院 Porous graphite carbon composite material as well as preparation method and application thereof
JP2015189074A (en) * 2014-03-28 2015-11-02 横浜ゴム株式会社 Mold release agent for tire inner surface and method for producing pneumatic tire using the same
US10767035B2 (en) 2014-10-09 2020-09-08 Riken Technos Corporation Method for producing thermoplastic resin composition film
JP2019127584A (en) * 2018-01-19 2019-08-01 出光興産株式会社 Composition, electromagnetic wave-shielding sheet and method for producing the same, electromagnetic wave-shielding material and method for producing the same, electromagnetic wave radar, and vehicle control device
JP7176947B2 (en) 2018-01-19 2022-11-22 出光興産株式会社 Composition, electromagnetic wave shielding sheet and manufacturing method thereof, electromagnetic wave shielding material and manufacturing method thereof, electromagnetic wave radar and vehicle control device
WO2021251361A1 (en) * 2020-06-10 2021-12-16 古河電気工業株式会社 Fiber-dispersing resin composite material, molded body, and composite member
CN116514113A (en) * 2023-05-06 2023-08-01 昆明理工大学 Carbon nano tube-graphene composite material with latticed shell structure and preparation method thereof
CN116514113B (en) * 2023-05-06 2024-03-15 昆明理工大学 Carbon nano tube-graphene composite material with latticed shell structure and preparation method thereof

Also Published As

Publication number Publication date
TW201027565A (en) 2010-07-16
CN102227782A (en) 2011-10-26
JP5634870B2 (en) 2014-12-03
CN102227782B (en) 2014-03-12
JPWO2010038784A1 (en) 2012-03-01
HK1160545A1 (en) 2012-08-17

Similar Documents

Publication Publication Date Title
JP5634870B2 (en) Composite material containing carbon fiber
KR101150774B1 (en) Semiconductive resin composition
JP4817772B2 (en) Conductive resin composition, production method and use thereof
JP4936026B2 (en) Method for producing conductive binder
WO2010002004A1 (en) Carbon fiber and composite material
JP5281086B2 (en) Aggregate of carbon fibers, production method thereof, and composite material containing them
WO2015084065A1 (en) Composite material with improved mechanical properties and molded article containing same
JP4684840B2 (en) Resin composition for seamless belt and seamless belt
WO2015084067A1 (en) Composite material having improved electrical conductivity and molded part containing same
JP2014529352A (en) Nanotube and finely pulverized carbon fiber polymer composite composition and production method
JP5983850B1 (en) Conductive resin composition, molded article and method for producing the same
JP2016108524A (en) Conductive resin composition, conductive master batch, molded body, and production method of the same
JP2018028031A (en) Conductive resin composition, molded article, and method for producing the same
JP2007138039A (en) Recycled composite material
WO2011027780A1 (en) Electrically conductive thermoplastic resin composition
JP5624297B2 (en) Conductive resin composite
KR20100103172A (en) Polymer/carbon nano tube composite with good electronic property and fabrication method for thereof
JP2015117253A (en) Conductive resin composition master batch
WO2016032307A1 (en) Composite with improved mechanical properties and molded product containing same
JP6995942B2 (en) Conductive polymer material and molded products using it
WO2017029920A1 (en) Method for producing carbon nanofiber composite and carbon nanofiber composite
CN1813316A (en) Electrically conductive compositions and method of manufacture thereof
Li Fabrication and characterization of multifunctional polyetherimide/carbon nanofiller composites

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980147475.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09817816

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010531884

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09817816

Country of ref document: EP

Kind code of ref document: A1