JP2007092074A - Electroconductive polymer - Google Patents

Electroconductive polymer Download PDF

Info

Publication number
JP2007092074A
JP2007092074A JP2006306946A JP2006306946A JP2007092074A JP 2007092074 A JP2007092074 A JP 2007092074A JP 2006306946 A JP2006306946 A JP 2006306946A JP 2006306946 A JP2006306946 A JP 2006306946A JP 2007092074 A JP2007092074 A JP 2007092074A
Authority
JP
Japan
Prior art keywords
fiber group
fiber
ωcm
conductivity
electrical resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006306946A
Other languages
Japanese (ja)
Inventor
Hiroya Kakegawa
宏弥 掛川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2006306946A priority Critical patent/JP2007092074A/en
Publication of JP2007092074A publication Critical patent/JP2007092074A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To make electroconductivity of a polymer more adjustable to a desired state. <P>SOLUTION: This electroconductive polymer contains a polymer and a conductivity-adjusting material added to the polymer. The conductivity-adjusting material contains a first group of fibrils consisting of a first carbon short fiber and a second group of fibrils consisting of a second carbon short fiber having a smaller average fiber diameter than that of the first carbon short fiber. The first group of fibrils has a larger fibril group electric resistance value than that of the second group of fibrils. The fibril group electric resistance value of the first group of fibrils is not less than 1 Ωcm and not more than 100 kΩcm, for example. The fibril group electric resistance value of the second group of fibrils is not less than 0.001 Ωcm and less than 1 Ωcm, for example. The content of the conductivity-adjusting material is 5-40 wt.%, for example. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、導電性調整材および高分子材料、特に、高分子材料の導電性を調整するための導電性調整材および導電性を有する高分子材料に関する。   The present invention relates to a conductivity adjusting material and a polymer material, and particularly to a conductivity adjusting material for adjusting the conductivity of the polymer material and a polymer material having conductivity.

樹脂等の高分子材料は、一般に優れた電気絶縁性を示すことから、電気・電子部品分野において広く用いられている。ところが、高分子材料そのものからなる電気・電子部品材料は、一般に電気絶縁性を有するために帯電し易く、塵埃の付着或いは放電によりICなどの電子部品へダメージを与える等の不具合がある。このため、半導体製造分野において用いられる高分子材料は、通常、導電材を加えて微弱な導電性が付与されている。   Polymer materials such as resins are widely used in the field of electric and electronic parts because they generally exhibit excellent electrical insulation. However, electrical / electronic component materials made of polymer materials themselves are generally electrically charged because of their electrical insulation properties, and have problems such as damage to electronic components such as ICs due to dust adhesion or discharge. For this reason, the polymer material used in the semiconductor manufacturing field is usually given a weak conductivity by adding a conductive material.

ところで、高分子材料に導電性を付与するための導電材として、カーボンブラックが広く知られている。ところが、カーボンブラック、特にアセチレンブラックやケッチェンブラックは、それ自体が高い導電性を示す粉体であることから、高分子材料の導電性を段階的に緩やかに調整するのが困難である。すなわち、カーボンブラックは、添加量を僅かに変化させるだけで、高分子材料の導電性を急激に変化(例えば、109程度の範囲で変化)させてしまい、高分子材料の導電性を微妙に変化させるためには不適当である。このため、カーボンブラックを導電材として用いた場合、電子部品分野で用いられる高分子材料に対して一般に要求されることが多い導電性、すなわち105〜1013Ωcm程度の微弱な導電性を安定的に付与するのは極めて困難である。しかも、カーボンブラックは、上述のように粉体であることから、取り扱いが容易ではなく、また、高分子材料に対する添加時に分散不良が生じ易く、成形体からの脱落によるコンタミネーションを惹起するおそれもある。 Incidentally, carbon black is widely known as a conductive material for imparting conductivity to a polymer material. However, since carbon black, particularly acetylene black and ketjen black, are powders that exhibit high conductivity, it is difficult to gradually and gradually adjust the conductivity of the polymer material. In other words, carbon black changes the conductivity of the polymer material abruptly (for example, in the range of about 10 9 ) by changing the addition amount slightly, and the conductivity of the polymer material is subtly changed. It is inappropriate to change. For this reason, when carbon black is used as a conductive material, the conductivity that is often required for polymer materials used in the field of electronic components, that is, the weak conductivity of about 10 5 to 10 13 Ωcm is stable. Is difficult to apply. In addition, since carbon black is a powder as described above, it is not easy to handle, and also tends to cause poor dispersion when added to a polymer material, and may cause contamination due to falling off from the molded body. is there.

また、カーボンブラックに代わる導電材として、コンタミネーションを起こし難い炭素繊維が利用されつつある。例えば、特許文献1には、超極細炭素繊維により導電性が付与された高分子材料が記載されている。しかし、これらの炭素繊維も、導電性が非常に高い材料であるため、カーボンブラックの場合と同じく高分子材料の導電性を微妙に調整して上述の範囲に設定するのは極めて困難である。   In addition, carbon fibers that are unlikely to cause contamination are being used as conductive materials instead of carbon black. For example, Patent Document 1 describes a polymer material imparted with conductivity by ultrafine carbon fibers. However, since these carbon fibers are also highly conductive materials, it is extremely difficult to finely adjust the conductivity of the polymer material as in the case of carbon black and set it within the above range.

特開平2−300263号公報Japanese Patent Laid-Open No. 2-300263

本発明の目的は、高分子材料の導電性を所望の状態に調整しやすくすることにある。   An object of the present invention is to make it easy to adjust the conductivity of a polymer material to a desired state.

本発明の高分子材料用導電性調整材は、高分子材料の導電性を調整するためのものであり、第1炭素短繊維による第1繊維群と、第1炭素短繊維よりも平均繊維径が小さな第2炭素短繊維による第2繊維群とを含んでいる。第1繊維群は、第2繊維群に比べて繊維群電気抵抗値が小さい。   The conductivity adjusting material for a polymer material of the present invention is for adjusting the conductivity of the polymer material. The first fiber group is composed of first carbon short fibers, and the average fiber diameter is larger than that of the first carbon short fibers. Includes a second fiber group of small second carbon short fibers. The first fiber group has a smaller fiber group electrical resistance value than the second fiber group.

ここで、第1炭素短繊維および第2炭素短繊維は、それぞれ平均アスペクト比が例えば5〜2,000である。また、第1炭素短繊維の平均繊維径(A)と第2炭素短繊維の平均繊維径(B)との比(A/B)が例えば少なくとも1.5である。   Here, each of the first carbon short fibers and the second carbon short fibers has an average aspect ratio of, for example, 5 to 2,000. Further, the ratio (A / B) of the average fiber diameter (A) of the first short carbon fibers and the average fiber diameter (B) of the second short carbon fibers is, for example, at least 1.5.

また、第1繊維群および第2繊維群は、いずれも繊維群電気抵抗値が例えば少なくとも1Ωcmである。または、第1繊維群および第2繊維群は、いずれも繊維群電気抵抗値が例えば0.001Ωcm以上1Ωcm未満である。または、第1繊維群の繊維群電気抵抗値が例えば0.001Ωcm以上1Ωcm未満であり、かつ第2繊維群の繊維群電気抵抗値が例えば1Ωcm以上100kΩcm以下である。   The first fiber group and the second fiber group both have a fiber group electrical resistance value of at least 1 Ωcm, for example. Alternatively, both the first fiber group and the second fiber group have a fiber group electrical resistance value of, for example, 0.001 Ωcm or more and less than 1 Ωcm. Alternatively, the fiber group electrical resistance value of the first fiber group is, for example, 0.001 Ωcm or more and less than 1 Ωcm, and the fiber group electrical resistance value of the second fiber group is, for example, 1 Ωcm or more and 100 kΩcm or less.

さらに、第1繊維群の重量割合は、例えば、第2繊維群の重量割合よりも大きく設定されている。または、第1繊維群の重量割合が例えば50重量%以上99.9重量%未満であり、かつ第2繊維群の重量割合が例えば50重量%以下0.1重量%以上である。   Furthermore, the weight ratio of the first fiber group is set larger than the weight ratio of the second fiber group, for example. Alternatively, the weight ratio of the first fiber group is, for example, 50% by weight or more and less than 99.9% by weight, and the weight ratio of the second fiber group is, for example, 50% by weight or less and 0.1% by weight or more.

本発明の他の見地に係る高分子材料用導電性調整材は、高分子材料の導電性を調整するためのものであり、第1炭素短繊維による第1繊維群と、第1炭素短繊維よりも平均繊維径が小さな第2炭素短繊維による第2繊維群とを含んでいる。第1繊維群は、第2繊維群に比べて繊維群電気抵抗値が大きい。   The conductivity adjusting material for a polymer material according to another aspect of the present invention is for adjusting the conductivity of the polymer material, and includes a first fiber group of first carbon short fibers and a first carbon short fiber. 2nd fiber group by the 2nd carbon short fiber whose average fiber diameter is smaller than this. The first fiber group has a larger fiber group electrical resistance value than the second fiber group.

ここで、第1炭素短繊維および第2炭素短繊維は、それぞれ平均アスペクト比が例えば5〜2,000である。また、第1炭素短繊維の平均繊維径(A)と第2炭素短繊維の平均繊維径(B)との比(A/B)が例えば少なくとも1.5である。   Here, each of the first carbon short fibers and the second carbon short fibers has an average aspect ratio of, for example, 5 to 2,000. Further, the ratio (A / B) of the average fiber diameter (A) of the first short carbon fibers and the average fiber diameter (B) of the second short carbon fibers is, for example, at least 1.5.

また、第1繊維群および第2繊維群は、いずれも繊維群電気抵抗値が例えば少なくとも1Ωcmである。または、第1繊維群および第2繊維群は、いずれも繊維群電気抵抗値が例えば0.001Ωcm以上1Ωcm未満である。または、第1繊維群の繊維群電気抵抗値が例えば1Ωcm以上100kΩcm以下であり、かつ第2繊維群の繊維群電気抵抗値が例えば0.001Ωcm以上1Ωcm未満である。   The first fiber group and the second fiber group both have a fiber group electrical resistance value of at least 1 Ωcm, for example. Alternatively, both the first fiber group and the second fiber group have a fiber group electrical resistance value of, for example, 0.001 Ωcm or more and less than 1 Ωcm. Alternatively, the fiber group electrical resistance value of the first fiber group is, for example, 1 Ωcm or more and 100 kΩcm or less, and the fiber group electrical resistance value of the second fiber group is, for example, 0.001 Ωcm or more and less than 1 Ωcm.

さらに、第1繊維群の重量割合は、例えば、第2繊維群の重量割合よりも大きく設定されている。または、第1繊維群の重量割合が例えば50重量%以上99.9重量%未満であり、かつ第2繊維群の重量割合が例えば50重量%以下0.1重量%以上である。   Furthermore, the weight ratio of the first fiber group is set larger than the weight ratio of the second fiber group, for example. Alternatively, the weight ratio of the first fiber group is, for example, 50% by weight or more and less than 99.9% by weight, and the weight ratio of the second fiber group is, for example, 50% by weight or less and 0.1% by weight or more.

本発明のさらに他の見地に係る高分子材料用導電性調整材は、高分子材料の導電性を調整するためのものであり、第1炭素短繊維による第1繊維群と、第1炭素短繊維よりも平均繊維径が小さな第2炭素短繊維による第2繊維群とを含んでいる。   The conductivity adjusting material for a polymer material according to still another aspect of the present invention is for adjusting the conductivity of the polymer material, and includes a first fiber group of first carbon short fibers and a first carbon short. 2nd fiber group by the 2nd carbon short fiber whose average fiber diameter is smaller than a fiber.

ここで、第1繊維群および第2繊維群は、いずれも繊維群電気抵抗値が例えば少なくとも1Ωcmである。または、第1繊維群および第2繊維群は、いずれも繊維群電気抵抗値が例えば0.001Ωcm以上1Ωcm未満である。   Here, each of the first fiber group and the second fiber group has a fiber group electrical resistance value of at least 1 Ωcm, for example. Alternatively, both the first fiber group and the second fiber group have a fiber group electrical resistance value of, for example, 0.001 Ωcm or more and less than 1 Ωcm.

本発明に係る導電性高分子材料は、高分子材料と、高分子材料に添加された導電性調整材とを含んでいる。導電性調整材は、第1炭素短繊維による第1繊維群と、第1炭素短繊維よりも平均繊維径が小さな第2炭素短繊維による第2繊維群とを含み、第1繊維群は、第2繊維群に比べて繊維群電気抵抗値が小さい。ここで、導電性調整材の含有量は、例えば5〜40重量%である。   The conductive polymer material according to the present invention includes a polymer material and a conductivity adjusting material added to the polymer material. The conductivity adjusting material includes a first fiber group composed of first carbon short fibers, and a second fiber group composed of second carbon short fibers having an average fiber diameter smaller than that of the first carbon short fibers. The fiber group electrical resistance value is smaller than that of the second fiber group. Here, the content of the conductivity adjusting material is, for example, 5 to 40% by weight.

本発明の他の見地に係る導電性高分子材料は、高分子材料と、高分子材料に添加された導電性調整材とを含んでいる。導電性調整材は、第1炭素短繊維による第1繊維群と、第1炭素短繊維よりも平均繊維径が小さな第2炭素短繊維による第2繊維群とを含み、第1繊維群は、第2繊維群に比べて繊維群電気抵抗値が大きい。ここで、導電性調整材の含有量は、例えば5〜40重量%である。   A conductive polymer material according to another aspect of the present invention includes a polymer material and a conductivity adjusting material added to the polymer material. The conductivity adjusting material includes a first fiber group composed of first carbon short fibers, and a second fiber group composed of second carbon short fibers having an average fiber diameter smaller than that of the first carbon short fibers. The fiber group electrical resistance value is larger than that of the second fiber group. Here, the content of the conductivity adjusting material is, for example, 5 to 40% by weight.

本発明の高分子材料用導電性調整材は、上述のような第1繊維群と第2繊維群とを含むため、高分子材料に対する添加量を変化させると高分子材料の導電性を段階的に徐々に変化させることができ、従来の導電性調整材に比べて高分子材料の導電性を調整しやすい。また、本発明の導電性調整材は、高分子材料に対する添加量を必要最小限の量に設定しつつ、第1繊維群と第2繊維群との割合を変化させて高分子材料の導電性を段階的に徐々に変化させることもできる。   Since the conductivity adjusting material for a polymer material according to the present invention includes the first fiber group and the second fiber group as described above, the conductivity of the polymer material is changed stepwise when the amount of addition to the polymer material is changed. It is easy to adjust the conductivity of the polymer material as compared with the conventional conductivity adjusting material. In addition, the conductivity adjusting material of the present invention changes the ratio of the first fiber group and the second fiber group while setting the amount of addition to the polymer material to the minimum necessary amount, and the conductivity of the polymer material is changed. Can be gradually changed step by step.

一方、本発明の導電性高分子材料は、本発明に係る導電性調整材を含んでいるので、導電性が所望の範囲に設定されやすい。   On the other hand, since the conductive polymer material of the present invention includes the conductivity adjusting material according to the present invention, the conductivity is easily set in a desired range.

高分子材料用導電性調整材
本発明に係る高分子材料用導電性調整材は、第1繊維群および第2繊維群の2つの繊維群を含んでいる。ここで、第1繊維群は、多数の第1炭素短繊維からなり、また、第2繊維群は、多数の第2炭素短繊維からなる。
Conductivity adjusting material for polymer material The conductivity adjusting material for polymer material according to the present invention includes two fiber groups, a first fiber group and a second fiber group. Here, the first fiber group is composed of a large number of first carbon short fibers, and the second fiber group is composed of a large number of second carbon short fibers.

第1炭素短繊維および第2炭素短繊維は、いずれも公知の各種の炭素繊維の短繊維であり、例えば、ポリアクリロニトリル系炭素繊維、等方性ピッチ系炭素繊維、異方性ピッチ系炭素繊維、カイノール樹脂系炭素繊維、レーヨン系炭素繊維、リグニン系炭素繊維等である。これらの炭素繊維は、第1繊維群および第2繊維群において2種以上が併用されてもよい。なお、これらの炭素繊維の焼成温度は、特に限定されるものではないが、後述する繊維群電気抵抗値との関係で適宜設定される。すなわち、相対的に高い繊維群電気抵抗値が求められる場合は、焼成温度が相対的に低めに設定され、相対的に低い繊維群電気抵抗値が求められる場合は、焼成温度が相対的に高めに設定される。   The first carbon short fibers and the second carbon short fibers are all known short fibers of various carbon fibers, such as polyacrylonitrile-based carbon fibers, isotropic pitch-based carbon fibers, and anisotropic pitch-based carbon fibers. And quinol resin-based carbon fiber, rayon-based carbon fiber, and lignin-based carbon fiber. Two or more of these carbon fibers may be used in combination in the first fiber group and the second fiber group. In addition, the firing temperature of these carbon fibers is not particularly limited, but is appropriately set in relation to the fiber group electrical resistance value described later. That is, when a relatively high fiber group electrical resistance value is required, the firing temperature is set relatively low, and when a relatively low fiber group electrical resistance value is required, the firing temperature is relatively high. Set to

第1炭素短繊維および第2炭素短繊維の平均繊維長は、一般に短繊維として認められる長さであれば特に限定されるものではないが、通常は0.1〜30mm、好ましくは0.5〜10mm、より好ましくは0.7〜6mm程度である。平均繊維長が0.1mm未満の場合は、導電性を発現しにくくなるおそれがある。逆に、30mmを超える場合は、高分子材料と混合(複合)するときに、供給が困難になるおそれがある。なお、ここでいう平均繊維長は、光学顕微鏡(SEM)により求めることができる値である。   The average fiber length of the first carbon short fiber and the second carbon short fiber is not particularly limited as long as it is generally recognized as a short fiber, but is usually 0.1 to 30 mm, preferably 0.5. 10 mm, more preferably about 0.7 to 6 mm. When the average fiber length is less than 0.1 mm, it may be difficult to develop conductivity. On the contrary, when it exceeds 30 mm, there is a possibility that the supply becomes difficult when mixing (compositing) with the polymer material. In addition, the average fiber length here is a value that can be obtained by an optical microscope (SEM).

第1炭素短繊維および第2炭素短繊維の平均アスペクト比(平均繊維長/平均繊維径)は、通常、5〜2,000に設定されているのが好ましく、10〜1,800に設定されているのがより好ましく、20〜1,500に設定されているのがさらに好ましい。平均アスペクト比が5未満の場合は、高分子材料に対する電気抵抗の低減効果が低下するおそれがある。逆に、2,000を超える場合は、高分子材料に対する定量供給が困難になるおそれがある。なお、平均アスペクト比は、定量供給が可能な限り、大きい方が高分子材料との複合後の残存アスペクト比を大きくできるため好ましい。因みに、この平均アスペクト比の基準になる平均繊維径は、光学顕微鏡(SEM)により求めることができる値である。   The average aspect ratio (average fiber length / average fiber diameter) of the first carbon short fibers and the second carbon short fibers is usually preferably set to 5 to 2,000, and preferably set to 10 to 1,800. More preferably, it is more preferably set to 20 to 1,500. If the average aspect ratio is less than 5, the effect of reducing the electrical resistance to the polymer material may be reduced. On the other hand, when it exceeds 2,000, there is a risk that it is difficult to quantitatively supply the polymer material. The average aspect ratio is preferably as long as it can be quantitatively supplied because the remaining aspect ratio after being combined with the polymer material can be increased. Incidentally, the average fiber diameter which becomes the standard of this average aspect ratio is a value which can be obtained by an optical microscope (SEM).

但し、本発明で用いられる第2繊維群を構成する第2炭素短繊維は、第1繊維群を構成する第1炭素短繊維に比べて平均繊維径が小さく設定されている必要がある。換言すると、第1炭素短繊維の平均繊維径は、第2炭素短繊維の平均繊維径に比べて大きく設定されている必要がある。例えば、第1炭素短繊維の平均繊維径(A)と第2炭素短繊維の平均繊維径(B)との比(A/B)は、少なくとも1.5であるのが好ましく、少なくとも2.0であるのがより好ましい。この比が1.5未満の場合は、本発明の導電性調整材を高分子材料に対して複合するときに、添加量の僅かな変化で高分子材料の導電性が大幅に変化してしまうおそれがあり、結果的に高分子材料の導電性を所望の状態に調整しにくくなるおそれがある。   However, the second short carbon fibers constituting the second fiber group used in the present invention need to have a smaller average fiber diameter than the first short carbon fibers constituting the first fiber group. In other words, the average fiber diameter of the first short carbon fibers needs to be set larger than the average fiber diameter of the second short carbon fibers. For example, the ratio (A / B) of the average fiber diameter (A) of the first short carbon fibers to the average fiber diameter (B) of the second short carbon fibers is preferably at least 1.5, and at least 2. More preferably 0. When this ratio is less than 1.5, when the conductivity adjusting material of the present invention is combined with the polymer material, the conductivity of the polymer material changes significantly with a slight change in the amount added. As a result, it may be difficult to adjust the conductivity of the polymer material to a desired state.

本発明で用いられる第1繊維群と第2繊維群とは、いずれも後述する繊維群電気抵抗値が少なくとも1Ωcm(好ましくは少なくとも1.1Ωcm)であるか、或いはいずれも繊維群電気抵抗値が0.001Ωcm以上1Ωcm未満(好ましくは0.01Ωcm以上0.5Ωcm未満)であることが望ましい。前者の場合は、高分子材料の導電性を小さい範囲(すなわち、電気抵抗が大きい範囲、例えば1010〜1013Ωcmの範囲)で所望の状態に容易に調整することができる。一方、後者の場合は、高分子材料の導電性を大きい範囲(すなわち、電気抵抗が小さい範囲、例えば105〜1010Ωcmの範囲)で所望の状態に容易に調整することができる。 Each of the first fiber group and the second fiber group used in the present invention has a fiber group electrical resistance value described later of at least 1 Ωcm (preferably at least 1.1 Ωcm), or both have a fiber group electrical resistance value. It is desirable that it is 0.001 Ωcm or more and less than 1 Ωcm (preferably 0.01 Ωcm or more and less than 0.5 Ωcm). In the former case, the conductivity of the polymer material can be easily adjusted to a desired state within a small range (that is, a range where the electrical resistance is large, for example, a range of 10 10 to 10 13 Ωcm). On the other hand, in the latter case, the conductivity of the polymer material can be easily adjusted to a desired state within a large range (that is, a range where the electrical resistance is small, for example, a range of 10 5 to 10 10 Ωcm).

ここで、繊維群電気抵抗値とは、繊維群を構成する個々の炭素短繊維の電気抵抗値ではなく、多数の炭素短繊維からなる繊維群全体としての電気抵抗値であり、次のようにして求められる。先ず、中心部に直径0.8cmの貫通孔を有する電気絶縁体を用意し、その貫通孔の一端を電極で封止する。そして、貫通孔内に0.5gの繊維群を充填し、貫通孔の他端から導電性の押し棒を挿入して40kgf/cm2の圧力を加えて繊維群を高さxcmの円柱状に成形する。この状態で電極と押し棒との間にテスターを接続し、貫通孔内で圧縮された繊維群の電気抵抗値を測定する。繊維群電気抵抗値は、測定された電気抵抗値に繊維群の成形体の端面の面積(すなわち、0.42πcm2)を掛け、その値を高さxcmで割ると体積抵抗値(Ωcm)として求めることができる。なお、繊維群の電気抵抗値を測定する際に用いられるテスターは、通常、デジタルマルチメーターなどの直接抵抗を測定することができるものである。 Here, the fiber group electrical resistance value is not the electrical resistance value of individual carbon short fibers constituting the fiber group, but the electrical resistance value of the entire fiber group composed of a number of carbon short fibers, and is as follows. Is required. First, an electrical insulator having a through hole with a diameter of 0.8 cm is prepared at the center, and one end of the through hole is sealed with an electrode. Then, 0.5 g of the fiber group is filled in the through hole, a conductive push rod is inserted from the other end of the through hole, and a pressure of 40 kgf / cm 2 is applied to make the fiber group into a column having a height of xcm. Mold. In this state, a tester is connected between the electrode and the push rod, and the electrical resistance value of the fiber group compressed in the through hole is measured. The fiber group electrical resistance value is obtained by multiplying the measured electrical resistance value by the area of the end face of the molded body of the fiber group (that is, 0.4 2 πcm 2 ) and dividing the value by the height xcm, the volume resistance value (Ωcm ). In addition, the tester used when measuring the electrical resistance value of the fiber group is usually one that can directly measure resistance such as a digital multimeter.

また、本発明で用いられる第1繊維群と第2繊維群とは、上述の繊維群電気抵抗値が互いに異なっていてもよい。すなわち、第1繊維群の繊維群電気抵抗値と第2繊維群の繊維群電気抵抗値とが異なっていてもよい。この場合、本発明の高分子材料用導電性調整材は、次の2つの態様で説明することができる。   Further, the first fiber group and the second fiber group used in the present invention may have different fiber group electrical resistance values. That is, the fiber group electrical resistance value of the first fiber group and the fiber group electrical resistance value of the second fiber group may be different. In this case, the conductivity adjusting material for a polymer material of the present invention can be described in the following two aspects.

(態様1)
この態様では、第1繊維群の繊維群電気抵抗値が第2繊維群の繊維群電気抵抗値よりも小さく設定されている。
この態様の場合、第1繊維群および第2繊維群の繊維群電気抵抗値は、例えば次のように設定される。
(1)第1繊維群および第2繊維群の繊維群電気抵抗値は、いずれも少なくとも1Ωcm、好ましくは少なくとも1.1Ωcmになるように設定されている。換言すると、第1繊維群および第2繊維群の繊維群電気抵抗値は、少なくとも1Ωcm(すなわち、1Ωcm以上)の範囲において、第1繊維群の繊維群電気抵抗値が第2繊維群の繊維群電気抵抗値よりも小さく設定されている。この場合、本発明の導電性調整材は、高分子材料の導電性を小さい範囲(すなわち、電気抵抗が大きい範囲、例えば1010〜1013Ωcmの範囲)で所望の状態に容易に設定することができる。
(Aspect 1)
In this aspect, the fiber group electrical resistance value of the first fiber group is set smaller than the fiber group electrical resistance value of the second fiber group.
In the case of this aspect, the fiber group electrical resistance values of the first fiber group and the second fiber group are set as follows, for example.
(1) The fiber group electrical resistance values of the first fiber group and the second fiber group are both set to be at least 1 Ωcm, preferably at least 1.1 Ωcm. In other words, the fiber group electrical resistance value of the first fiber group and the second fiber group is at least 1 Ωcm (that is, 1 Ωcm or more), and the fiber group electrical resistance value of the first fiber group is the fiber group of the second fiber group. It is set smaller than the electric resistance value. In this case, the conductivity adjusting material of the present invention can easily set the conductivity of the polymer material to a desired state within a small range (that is, a range where the electrical resistance is large, for example, a range of 10 10 to 10 13 Ωcm). Can do.

(2)第1繊維群および第2繊維群の繊維群電気抵抗値は、いずれも0.001Ωcm以上1Ωcm未満、好ましくは0.01Ωcm以上1Ωcm未満になるように設定されている。換言すると、第1繊維群および第2繊維群の繊維群電気抵抗値は、0.001Ωcm以上1Ωcm未満、好ましくは0.01Ωcm以上1Ωcm未満の範囲において、第1繊維群の繊維群電気抵抗値が第2繊維群の繊維群電気抵抗値よりも小さく設定されている。この場合、本発明の導電性調整材は、高分子材料の導電性を大きい範囲(すなわち、電気抵抗が小さい範囲、例えば105〜1010Ωcmの範囲)で所望の状態に容易に設定することができる。 (2) The fiber group electrical resistance values of the first fiber group and the second fiber group are both set to 0.001 Ωcm or more and less than 1 Ωcm, preferably 0.01 Ωcm or more and less than 1 Ωcm. In other words, the fiber group electrical resistance value of the first fiber group and the second fiber group is 0.001 Ωcm or more and less than 1 Ωcm, preferably 0.01 Ωcm or more and less than 1 Ωcm, and the fiber group electrical resistance value of the first fiber group is It is set smaller than the fiber group electrical resistance value of the second fiber group. In this case, the conductivity adjusting material of the present invention can easily set the conductivity of the polymer material to a desired state within a large range (that is, a range where the electrical resistance is small, for example, a range of 10 5 to 10 10 Ωcm). Can do.

(3)第1繊維群の繊維群電気抵抗値が0.001Ω以上1Ω未満(好ましくは0.01Ω以上1Ω未満)に設定されており、第2繊維群の繊維群電気抵抗値が1Ω以上100kΩ以下(好ましくは1Ω以上100Ω以下)に設定されている。第1繊維群の繊維群電気抵抗値が0.001Ω未満の場合または第2繊維群の繊維群電気抵抗値が100kΩを超える場合は、高分子材料に対する本発明の導電性調整材の添加量を大幅に変えても高分子材料の電気抵抗値が殆ど変化しないおそれがあり、高分子材料の導電性を段階的に微妙に調整するためには本発明の導電性調整材が大量に必要になる場合がある。 (3) The fiber group electrical resistance value of the first fiber group is set to 0.001Ω or more and less than 1Ω (preferably 0.01Ω or more and less than 1Ω), and the fiber group electrical resistance value of the second fiber group is 1Ω or more and 100 kΩ. Or less (preferably 1Ω or more and 100Ω or less). When the fiber group electrical resistance value of the first fiber group is less than 0.001Ω or when the fiber group electrical resistance value of the second fiber group exceeds 100 kΩ, the addition amount of the conductivity adjusting material of the present invention to the polymer material is There is a possibility that the electrical resistance value of the polymer material hardly changes even if it is significantly changed, and in order to finely adjust the conductivity of the polymer material step by step, a large amount of the conductivity adjusting material of the present invention is required. There is a case.

(態様2)
この態様では、第1繊維群の繊維群電気抵抗値が第2繊維群の繊維群電気抵抗値よりも大きく設定されている。
この態様の場合、第1繊維群および第2繊維群の繊維群電気抵抗値は、例えば次のように設定される。
(1)第1繊維群および第2繊維群の繊維群電気抵抗値は、いずれも少なくとも1Ωcm、好ましくは少なくとも1.1Ωcmになるように設定されている。換言すると、第1繊維群および第2繊維群の繊維群電気抵抗値は、少なくとも1Ωcm(すなわち、1Ωcm以上)の範囲において、第1繊維群の繊維群電気抵抗値が第2繊維群の繊維群電気抵抗値よりも大きく設定されている。この場合、本発明の導電性調整材は、高分子材料の導電性を小さい範囲(すなわち、電気抵抗が大きい範囲、例えば1010〜1013Ωcmの範囲)で所望の状態に容易に設定することができる。
(Aspect 2)
In this aspect, the fiber group electrical resistance value of the first fiber group is set larger than the fiber group electrical resistance value of the second fiber group.
In the case of this aspect, the fiber group electrical resistance values of the first fiber group and the second fiber group are set as follows, for example.
(1) The fiber group electrical resistance values of the first fiber group and the second fiber group are both set to be at least 1 Ωcm, preferably at least 1.1 Ωcm. In other words, the fiber group electrical resistance value of the first fiber group and the second fiber group is at least 1 Ωcm (that is, 1 Ωcm or more), and the fiber group electrical resistance value of the first fiber group is the fiber group of the second fiber group. It is set larger than the electric resistance value. In this case, the conductivity adjusting material of the present invention can easily set the conductivity of the polymer material to a desired state within a small range (that is, a range where the electrical resistance is large, for example, a range of 10 10 to 10 13 Ωcm). Can do.

(2)第1繊維群および第2繊維群の繊維群電気抵抗値は、いずれも0.001Ωcm以上1Ωcm未満、好ましくは0.01Ωcm以上1Ωcm未満になるように設定されている。換言すると、第1繊維群および第2繊維群の繊維群電気抵抗値は、0.001Ωcm以上1Ωcm未満、好ましくは0.01Ωcm以上1Ωcm未満の範囲において、第1繊維群の繊維群電気抵抗値が第2繊維群の繊維群電気抵抗値よりも大きく設定されている。この場合、本発明の導電性調整材は、高分子材料の導電性を大きい範囲(すなわち、電気抵抗が小さい範囲、例えば105〜1010Ωcmの範囲)で所望の状態に容易に設定することができる。 (2) The fiber group electrical resistance values of the first fiber group and the second fiber group are both set to 0.001 Ωcm or more and less than 1 Ωcm, preferably 0.01 Ωcm or more and less than 1 Ωcm. In other words, the fiber group electrical resistance value of the first fiber group and the second fiber group is 0.001 Ωcm or more and less than 1 Ωcm, preferably 0.01 Ωcm or more and less than 1 Ωcm, and the fiber group electrical resistance value of the first fiber group is It is set larger than the fiber group electrical resistance value of the second fiber group. In this case, the conductivity adjusting material of the present invention can easily set the conductivity of the polymer material to a desired state within a large range (that is, a range where the electrical resistance is small, for example, a range of 10 5 to 10 10 Ωcm). Can do.

(3)第1繊維群の繊維群電気抵抗値が1Ω以上100kΩ以下(好ましくは1Ω以上100Ω以下)に設定されており、第2繊維群の繊維群電気抵抗値が0.001Ω以上1Ω未満(好ましくは0.01Ω以上1Ω未満)に設定されている。第1繊維群の繊維群電気抵抗値が100kΩを超える場合または第2繊維群の繊維群電気抵抗値が0.001Ω未満の場合は、高分子材料に対する本発明の導電性調整材の添加量を大幅に変えても高分子材料の電気抵抗値が殆ど変化しないおそれがあり、高分子材料の導電性を段階的に微妙に調整するためには本発明の導電性調整材が大量に必要になる場合がある。 (3) The fiber group electrical resistance value of the first fiber group is set to 1Ω to 100 kΩ (preferably 1Ω to 100Ω), and the fiber group electrical resistance value of the second fiber group is 0.001Ω to less than 1Ω ( Preferably, it is set to 0.01Ω or more and less than 1Ω. When the fiber group electrical resistance value of the first fiber group exceeds 100 kΩ or when the fiber group electrical resistance value of the second fiber group is less than 0.001Ω, the addition amount of the conductivity adjusting material of the present invention to the polymer material is There is a possibility that the electrical resistance value of the polymer material hardly changes even if it is significantly changed, and in order to finely adjust the conductivity of the polymer material step by step, a large amount of the conductivity adjusting material of the present invention is required. There is a case.

なお、第1繊維群および第2繊維群の繊維群電気抵抗値は、通常、各繊維群を構成する炭素短繊維を製造するときの焼成温度を適宜調整することにより、上述のような所要の範囲に設定することができる。   In addition, the fiber group electrical resistance values of the first fiber group and the second fiber group are usually set as described above by appropriately adjusting the firing temperature when manufacturing the short carbon fibers constituting each fiber group. Can be set to a range.

本発明の導電性調整材では、第1繊維群の重量割合が第2繊維群の重量割合に比べて大きく設定されているのが好ましい。例えば、上述の態様1に係る導電性調整材について第2繊維群の重量割合が第1繊維群の重量割合よりも大きい場合は、当該導電性調整材を含む高分子材料の電気抵抗が小さく成り過ぎる傾向(すなわち、導電性が高まり過ぎる傾向)があり、例えば高分子材料の電気抵抗値(体積固有抵抗値:以下同じ)を105〜1013Ωcm程度、特に1010〜1013Ωcm程度に設定するのが困難になる。一方、上述の態様2に係る導電性調整材について第2繊維群の重量割合が第1繊維群の重量割合よりも大きい場合は、当該導電性調整材を含む高分子材料の電気抵抗値が大きく成り過ぎる傾向(すなわち、導電性が低くなり過ぎる傾向)があり、例えば高分子材料の電気抵抗値を105〜1013Ωcm程度、特に105〜1010Ωcm程度に設定するのが困難になる。 In the conductivity adjusting material of the present invention, the weight ratio of the first fiber group is preferably set larger than the weight ratio of the second fiber group. For example, when the weight ratio of the second fiber group is larger than the weight ratio of the first fiber group in the conductive adjustment material according to the above-described aspect 1, the electrical resistance of the polymer material including the conductive adjustment material becomes small. For example, the electrical resistance value (volume specific resistance value: the same shall apply hereinafter) of the polymer material is about 10 5 to 10 13 Ωcm, particularly about 10 10 to 10 13 Ωcm. It becomes difficult to set. On the other hand, when the weight ratio of the second fiber group is larger than the weight ratio of the first fiber group in the conductivity adjusting material according to the above-described aspect 2, the electrical resistance value of the polymer material including the conductivity adjusting material is large. become too trend (i.e., the tendency of the conductivity too low) may, for example, an electric resistance value 105 to 13 [Omega] cm approximately polymeric materials, it is difficult to set the particular 10 5 to 10 about 10 [Omega] cm .

因みに、本発明の導電性調整材を用いて高分子材料の電気抵抗値を105〜1013Ωcm程度の範囲を目標に調整する場合、第1繊維群の割合は50重量%以上99.9重量%未満に、また、第2繊維群の割合は50重量%以下0.1重量%以上に設定するのが好ましい。 Incidentally, when adjusting the electric resistance of the polymeric material using the conductive adjusting material present invention to a target range of about 10 5 to 10 13 [Omega] cm, the ratio of the first fiber group has 50 wt% or more 99.9 It is preferable to set the ratio of the second fiber group to less than wt% and 50 wt% or less and 0.1 wt% or more.

本発明の高分子材料用導電性調整材は、各種の高分子材料の導電性を調整するため、すなわち、後述するような導電性高分子材料を製造するために用いられる。この場合、本発明の導電性調製材は、通常、第1繊維群と第2繊維群とが別々に調製され、両繊維群の割合が上述のようになるよう、高分子材料に対して供給される。この際、第1繊維群と第2繊維群とは、高分子材料に対して別個に供給されて混合されてもよいし、予め混合された後に高分子材料に対して供給されてもよい。   The conductivity adjusting material for a polymer material of the present invention is used for adjusting the conductivity of various polymer materials, that is, for producing a conductive polymer material as described later. In this case, the conductive preparation material of the present invention is usually supplied to the polymer material so that the first fiber group and the second fiber group are prepared separately and the ratio of both fiber groups is as described above. Is done. At this time, the first fiber group and the second fiber group may be separately supplied and mixed to the polymer material, or may be supplied to the polymer material after being mixed in advance.

導電性高分子材料
本発明の導電性高分子材料は、高分子材料と、上述の本発明に係る導電性調整材、例えば、上述の態様1または態様2に係る導電性調整材とを含んでおり、導電性を有している。
Conductive polymer material The conductive polymer material of the present invention includes a polymer material and the above-described conductivity adjusting material according to the present invention, for example, the above-described conductivity adjusting material according to Aspect 1 or Aspect 2. It has electrical conductivity.

この導電性高分子材料を構成する高分子材料は、特に限定されるものではなく、公知の各種の熱可塑性樹脂、熱硬化性樹脂およびゴムなどである。
ここで、熱可塑性樹脂としては、例えば、ポリエチレン樹脂,ポリプロピレン樹脂,ポリスチレン樹脂およびポリアクリルスチレン樹脂などの汎用プラスチック、アクリル−ブタジエン−スチレン樹脂(ABS),ポリフェニルエーテル樹脂,ポリアセタール樹脂,ポリカーボネート樹脂,ポリブチレンテレフタレート樹脂,ポリエチレンテレフタレート樹脂,ナイロン6およびナイロン6,6などのエンジニアリングプラスチック、並びにポリエーテルエーテルケトン樹脂,ポリアミド樹脂,ポリイミド樹脂,ポリスルホン樹脂,4−フッ化エチレン−エチレン共重合体樹脂,ポリフッ化ビニリデン樹脂,4−フッ化エチレン−パーフルオロアルキルビニルエーテル共重合体樹脂,ポリエーテルイミド樹脂,ポリエーテルサルフォン樹脂,ポリフェニレンサルファイド樹脂,変性ポリフェニレンオキサイド樹脂,ポリフェニレンエーテル樹脂および液晶ポリマーなどの超エンジニアリングプラスチックなどを挙げることができる。また、熱硬化性樹脂としては、例えば、フェノール樹脂、エポキシ樹脂、ポリイミド樹脂および不飽和ポリエステル樹脂などを挙げことができる。さらに、ゴムとしては、天然ゴム、イソプレンゴム、ブタジエンゴム、スチレン−ブタジエンゴム、クロロプレンゴム、ニトリルゴム、エチレン−プロピレンゴム、アクリルゴム、エピクロルヒドリンゴム、多硫化ゴム、ウレタンゴム、ポリオレフィン系エラストマーおよびシリコーンゴムなどを挙げることができる。
The polymer material constituting the conductive polymer material is not particularly limited, and includes various known thermoplastic resins, thermosetting resins, rubbers, and the like.
Here, as the thermoplastic resin, for example, general-purpose plastics such as polyethylene resin, polypropylene resin, polystyrene resin and polyacryl styrene resin, acrylic-butadiene-styrene resin (ABS), polyphenyl ether resin, polyacetal resin, polycarbonate resin, Engineering plastics such as polybutylene terephthalate resin, polyethylene terephthalate resin, nylon 6 and nylon 6,6, polyether ether ketone resin, polyamide resin, polyimide resin, polysulfone resin, 4-fluoroethylene-ethylene copolymer resin, polyfluoride Vinylidene fluoride resin, 4-fluoroethylene-perfluoroalkyl vinyl ether copolymer resin, polyetherimide resin, polyether sulfone resin, It can be mentioned Li polyphenylene sulfide resin, a modified polyphenylene oxide resin, super engineering plastics such as polyphenylene ether resin and a liquid crystal polymer and the like. Moreover, as a thermosetting resin, a phenol resin, an epoxy resin, a polyimide resin, an unsaturated polyester resin etc. can be mentioned, for example. Further, as rubber, natural rubber, isoprene rubber, butadiene rubber, styrene-butadiene rubber, chloroprene rubber, nitrile rubber, ethylene-propylene rubber, acrylic rubber, epichlorohydrin rubber, polysulfide rubber, urethane rubber, polyolefin elastomer and silicone rubber And so on.

このような導電性高分子を製造する場合は、通常、高分子材料に対し、公知の各種のフィーダー等を用いて上述の本発明に係る導電性調整材を供給して混合する。この際、導電性調整材は、第1繊維群と第2繊維群とが別個に高分子材料に対して供給されてもよいし、予め混合された後に高分子材料に対して供給されてもよい。   In the case of producing such a conductive polymer, usually, the above-described conductivity adjusting material according to the present invention is supplied and mixed with the polymer material using various known feeders. At this time, the conductivity adjusting material may be supplied to the polymer material separately from the first fiber group and the second fiber group, or may be supplied to the polymer material after being mixed in advance. Good.

高分子材料に対する導電性調整材の添加量は、目標とする高分子材料の導電性(電気抵抗値)に応じて適宜設定することができる。この際、導電性調整材は、上述のような第1繊維群と第2繊維群とを含むため、添加量を徐々に増加させるに従って、高分子材料の導電性を段階的に徐々に高めて行くことができる。換言すると、本発明の導電性調整材は、高分子材料に対する添加量を僅かに変化させた程度では、高分子材料の導電性を大幅に変化させ難い。このため、この導電性調整材を用いた場合は、カーボンブラック等の従来の導電性調整材では達成するのが困難であった、105〜1013Ωcm程度の微弱な導電性を高分子材料に対して容易に付与することができる。 The amount of the conductivity adjusting material added to the polymer material can be appropriately set according to the conductivity (electric resistance value) of the target polymer material. At this time, since the conductivity adjusting material includes the first fiber group and the second fiber group as described above, the conductivity of the polymer material is gradually increased stepwise as the addition amount is gradually increased. can go. In other words, it is difficult for the conductivity adjusting material of the present invention to significantly change the conductivity of the polymer material as long as the amount added to the polymer material is slightly changed. For this reason, when this conductivity adjusting material is used, it is difficult to achieve with a conventional conductivity adjusting material such as carbon black, and a weak conductivity of about 10 5 to 10 13 Ωcm is a polymer material. Can be easily applied.

また、本発明の導電性調整材は、高分子材料に対して付与することができる導電性を第1繊維群と第2繊維群との割合を変化させて変化させることもできる。例えば、導電性調整材が上述の態様1の場合は、第2繊維群の割合を高めて行くと、高分子材料に対する導電性調整材の添加量が略同じであっても、高分子材料の導電性を大きく(すなわち、電気抵抗値を小さく)設定することができる。一方、導電性調整材が上述の態様2の場合は、第2繊維群の割合を高めて行くと、高分子材料に対する導電性調整材の添加量が略同じであっても、高分子材料の導電性を小さく(すなわち、電気抵抗値を大きく)設定することができる。すなわち、本発明の導電性調整材は、第1繊維群と第2繊維群との割合を変化させることにより、高分子材料に対する添加量を必要最小限の量に設定しながら高分子材料の導電性を105〜1013Ωcmの範囲で任意に調整することもできる。 Moreover, the electroconductivity adjusting material of this invention can also change the electroconductivity which can be provided with respect to a polymeric material by changing the ratio of a 1st fiber group and a 2nd fiber group. For example, in the case where the conductivity adjusting material is the above-described aspect 1, when the ratio of the second fiber group is increased, even if the amount of the conductivity adjusting material added to the polymer material is substantially the same, The conductivity can be set large (that is, the electric resistance value can be set small). On the other hand, in the case where the conductivity adjusting material is in the above-described aspect 2, when the ratio of the second fiber group is increased, even if the amount of the conductivity adjusting material added to the polymer material is substantially the same, The conductivity can be set small (that is, the electric resistance value can be set large). That is, the conductivity adjusting material of the present invention changes the ratio of the first fiber group and the second fiber group, thereby setting the amount of addition to the polymer material to the minimum necessary amount while conducting the conductivity of the polymer material. The properties can be arbitrarily adjusted in the range of 10 5 to 10 13 Ωcm.

なお、このような導電性高分子において、導電性(電気抵抗値)を105〜1013Ωcm程度に設定する場合は、一般に高分子材料における上述の導電性調整材の含有量が5〜40重量%になるよう設定するのが好ましく、6〜15重量%になるよう設定するのがより好ましい。 In such a conductive polymer, when the conductivity (electric resistance value) is set to about 10 5 to 10 13 Ωcm, the content of the above-described conductivity adjusting material in the polymer material is generally 5 to 40. It is preferable to set so that it may become weight%, and it is more preferable to set so that it may become 6 to 15 weight%.

本発明の導電性高分子材料は、上述のような導電性調整材を含み、導電性が付与されているため、帯電防止や埃の付着防止が求められる分野、例えば半導体製造用治具、ICトレー、キャリヤーなどの各種の用途に利用することができる。   The conductive polymer material of the present invention includes the above-described conductivity adjusting material and is imparted with conductivity, so that it is necessary to prevent antistatic and dust adhesion, such as jigs for semiconductor manufacturing, ICs, etc. It can be used for various applications such as trays and carriers.

実施例1〜3
平均繊維径が12μmでありかつ平均アスペクト比が250の等方性ピッチ系炭素短繊維(大阪瓦斯株式会社の商品名”Xylus GCR−1”)からなる、繊維群電気抵抗値が6.36Ωcmの第1繊維群と、平均繊維径が2μmでありかつ平均アスペクト比が250の異方性ピッチ系炭素短繊維(大阪瓦斯株式会社の商品名”UFM−1”)からなる、繊維群電気抵抗値が3,300Ωcmの第2繊維群とを用意した。
Examples 1-3
The fiber group electrical resistance value is 6.36 Ωcm made of isotropic pitch-based carbon short fibers (trade name “Xylus GCR-1” of Osaka Gas Co., Ltd.) having an average fiber diameter of 12 μm and an average aspect ratio of 250. Fiber group electrical resistance value comprising the first fiber group and an anisotropic pitch-based carbon short fiber (trade name “UFM-1” of Osaka Gas Co., Ltd.) having an average fiber diameter of 2 μm and an average aspect ratio of 250 Was prepared with a second fiber group of 3,300 Ωcm.

高分子材料であるポリフェニレンオキサイド樹脂(日本ゼネラルエレクトリック株式会社の商品名”ノリルPPO534”)に対して第1繊維群と第2繊維群とを表1に示す割合でそれぞれ別々のフィーダーを用いて供給し、第1繊維群および第2繊維群を含む高分子材料からなるペレットを調製した。このペレットを、樹脂温度300℃、射出圧力2,000kg/cm2および金型温度160℃の条件で住友重機械工業株式会社製のPROMAT射出成形機を用いて成形し、直径50mm、厚さ3mmの円板を得た。得られた円板の表面に銀ペーストを用いて電極を形成し、当該電極間の電気抵抗を測定することにより円板の表面抵抗(Ω/□)を求めた。結果を表1に示す。 Supply the first fiber group and the second fiber group to the polymer material polyphenylene oxide resin (trade name “Noryl PPO534” of Nippon General Electric Co., Ltd.) using the separate feeders in the ratios shown in Table 1. And the pellet which consists of a polymeric material containing a 1st fiber group and a 2nd fiber group was prepared. The pellets were molded using a PROMAT injection molding machine manufactured by Sumitomo Heavy Industries, Ltd. under conditions of a resin temperature of 300 ° C., an injection pressure of 2,000 kg / cm 2 and a mold temperature of 160 ° C., and the diameter was 50 mm and the thickness was 3 mm. Got the disc. An electrode was formed using a silver paste on the surface of the obtained disk, and the electric resistance between the electrodes was measured to determine the surface resistance (Ω / □) of the disk. The results are shown in Table 1.

Figure 2007092074
Figure 2007092074

実施例4〜6
平均繊維径が12μmでありかつ平均アスペクト比が250の等方性ピッチ系炭素短繊維(大阪瓦斯株式会社の商品名”Xylus GC03J401”)からなる、繊維群電気抵抗値が0.14Ωcmの第1繊維群と、平均繊維径が7μmでありかつ平均アスペクト比が857のポリアクリロニトリル系炭素短繊維(三菱レーヨン株式会社の商品名”パイロフィル”)からなる、繊維群電気抵抗値が0.29Ωcmの第2繊維群とを用意した。
この第1繊維群および第2繊維群を用いて実施例1〜3の場合と同様にして円板を得、その表面抵抗(Ω/□)を同様にして測定した。結果を表2に示す。
Examples 4-6
A first fiber having an average fiber diameter of 12 μm and an isotropic pitch short carbon fiber having a mean aspect ratio of 250 (trade name “Xylus GC03J401” from Osaka Gas Co., Ltd.) having a fiber group electrical resistance of 0.14 Ωcm. A fiber group comprising a polyacrylonitrile-based short carbon fiber (trade name “Pyrofil”, manufactured by Mitsubishi Rayon Co., Ltd.) having an average fiber diameter of 7 μm and an average aspect ratio of 857, and having an electrical resistance value of 0.29 Ωcm. Two fiber groups were prepared.
A disk was obtained in the same manner as in Examples 1 to 3 using the first fiber group and the second fiber group, and the surface resistance (Ω / □) was measured in the same manner. The results are shown in Table 2.

実施例7、8
平均繊維径が2μmでありかつ平均アスペクト比が250の異方性ピッチ系炭素短繊維(大阪瓦斯株式会社の商品名”UFM−2”)からなる、繊維群電気抵抗値が0.19Ωcmの繊維群を第2繊維群として用いた点を除き、実施例4〜6と同様にして円板を得た。そして、得られた円板の表面抵抗(Ω/□)を同様にして測定した。結果を表2に示す。
Examples 7 and 8
A fiber having an average fiber diameter of 2 μm and an average aspect ratio of 250, an anisotropic pitch-based short carbon fiber (trade name “UFM-2” from Osaka Gas Co., Ltd.) and having a fiber group electrical resistance of 0.19 Ωcm Discs were obtained in the same manner as in Examples 4 to 6 except that the group was used as the second fiber group. Then, the surface resistance (Ω / □) of the obtained disc was measured in the same manner. The results are shown in Table 2.

Figure 2007092074
Figure 2007092074

実施例9〜11
平均繊維径が7μmでありかつ平均アスペクト比が857のポリアクリロニトリル系炭素短繊維(三菱レーヨン株式会社の商品名”パイロフィル”)からなる、繊維群電気抵抗値が0.29Ωcmの第1繊維群と、平均繊維径が2μmでありかつ平均アスペクト比が250の異方性ピッチ系炭素短繊維(大阪瓦斯株式会社の商品名”UFM−1”)からなる、繊維群電気抵抗値が3,300Ωcmの第2繊維群とを用意した。
この第1繊維群および第2繊維群を用いて実施例1〜3の場合と同様にして円板を得、その表面抵抗(Ω/□)を同様にして測定した。結果を表3に示す。
Examples 9-11
A first fiber group having a fiber group electrical resistance value of 0.29 Ωcm, comprising a polyacrylonitrile-based carbon short fiber (trade name “Pyrofil”, manufactured by Mitsubishi Rayon Co., Ltd.) having an average fiber diameter of 7 μm and an average aspect ratio of 857; The fiber group electrical resistance value is 3,300 Ωcm, which is made of an anisotropic pitch carbon short fiber (trade name “UFM-1” of Osaka Gas Co., Ltd.) having an average fiber diameter of 2 μm and an average aspect ratio of 250. A second fiber group was prepared.
A disk was obtained in the same manner as in Examples 1 to 3 using the first fiber group and the second fiber group, and the surface resistance (Ω / □) was measured in the same manner. The results are shown in Table 3.

Figure 2007092074
Figure 2007092074

実施例12〜14
平均繊維径が7μmでありかつ平均アスペクト比が857のポリアクリロニトリル系炭素短繊維(三菱レーヨン株式会社の商品名”パイロフィル”)からなる、繊維群電気抵抗値が0.29Ωcmの第1繊維群と、平均繊維径が2μmでありかつ平均アスペクト比が250の異方性ピッチ系炭素短繊維(大阪瓦斯株式会社の商品名”UFM−2”)からなる、繊維群電気抵抗値が0.19Ωcmの第2繊維群とを用意した。
この第1繊維群および第2繊維群を用いて実施例1〜3の場合と同様にして円板を得、その表面抵抗(Ω/□)を同様にして測定した。結果を表4に示す。
Examples 12-14
A first fiber group having a fiber group electrical resistance value of 0.29 Ωcm, comprising a polyacrylonitrile-based carbon short fiber (trade name “Pyrofil”, manufactured by Mitsubishi Rayon Co., Ltd.) having an average fiber diameter of 7 μm and an average aspect ratio of 857; The fiber group electrical resistance value is 0.19 Ωcm, which is made of an anisotropic pitch-based carbon short fiber (trade name “UFM-2” of Osaka Gas Co., Ltd.) having an average fiber diameter of 2 μm and an average aspect ratio of 250. A second fiber group was prepared.
A disk was obtained in the same manner as in Examples 1 to 3 using the first fiber group and the second fiber group, and the surface resistance (Ω / □) was measured in the same manner. The results are shown in Table 4.

Figure 2007092074
Figure 2007092074

実施例15
平均繊維径が13μmでありかつ平均アスペクト比が54のピッチ系炭素短繊維(株式会社ドナックの商品名”ドナカーボS244”)からなる、繊維群電気抵抗値が1.2Ωcmの第1繊維群と、平均繊維径が7μmでありかつ平均アスペクト比が857のポリアクリロニトリル系炭素短繊維(三菱レーヨン株式会社の商品名”パイロフィル”)からなる、繊維群電気抵抗値が0.29Ωcmの第2繊維群とを用意した。
この第1繊維群および第2繊維群を用いて実施例1〜3の場合と同様にして円板を得、その表面抵抗(Ω/□)を同様にして測定した。但し、高分子材料としてアクリロニトリル−ブタジエン−スチレン共重合体樹脂(東レ株式会社の商品名”トヨラック100”)を用い、樹脂温度、射出圧力および金型温度をそれぞれ240℃、1,200kg/cm2および60℃に変更した。結果を表5に示す。
Example 15
A first fiber group having an average fiber diameter of 13 μm and a pitch group carbon short fiber having an average aspect ratio of 54 (trade name “DonnaCarbo S244” manufactured by Donak Co., Ltd.), and having a fiber group electrical resistance of 1.2 Ωcm; A second fiber group having a fiber group electrical resistance of 0.29 Ωcm, comprising a polyacrylonitrile-based carbon short fiber (trade name “Pyrofil”, manufactured by Mitsubishi Rayon Co., Ltd.) having an average fiber diameter of 7 μm and an average aspect ratio of 857; Prepared.
A disk was obtained in the same manner as in Examples 1 to 3 using the first fiber group and the second fiber group, and the surface resistance (Ω / □) was measured in the same manner. However, acrylonitrile-butadiene-styrene copolymer resin (trade name “Toyolac 100” manufactured by Toray Industries, Inc.) is used as the polymer material, and the resin temperature, injection pressure, and mold temperature are 240 ° C. and 1,200 kg / cm 2 , respectively. And 60 ° C. The results are shown in Table 5.

実施例16〜18
平均繊維径が12μmでありかつ平均アスペクト比が250のピッチ系炭素短繊維(大阪瓦斯株式会社の商品名”Xylus GCA03J431”)からなる、繊維群電気抵抗値が7,790Ωcmの第1繊維群と、平均繊維径が7μmでありかつ平均アスペクト比が857のポリアクリロニトリル系炭素短繊維(三菱レーヨン株式会社の商品名”パイロフィル”)からなる、繊維群電気抵抗値が0.29Ωcmの第2繊維群とを用意した。
この第1繊維群および第2繊維群を用いて実施例1〜3の場合と同様にして円板を得、その表面抵抗(Ω/□)を同様にして測定した。結果を表5に示す。
Examples 16-18
A first fiber group having an average fiber diameter of 12 μm and an average aspect ratio of 250 pitch-based carbon short fibers (trade name “Xylus GCA03J431” from Osaka Gas Co., Ltd.) and having a fiber group electrical resistance of 7,790 Ωcm; And a second fiber group having a fiber group electrical resistance of 0.29 Ωcm, comprising a polyacrylonitrile-based short carbon fiber (trade name “Pyrofil” of Mitsubishi Rayon Co., Ltd.) having an average fiber diameter of 7 μm and an average aspect ratio of 857. And prepared.
A disk was obtained in the same manner as in Examples 1 to 3 using the first fiber group and the second fiber group, and the surface resistance (Ω / □) was measured in the same manner. The results are shown in Table 5.

実施例19〜21
平均繊維径が12μmでありかつ平均アスペクト比が250の等方性ピッチ系炭素短繊維(大阪瓦斯株式会社の商品名”Xylus GCR1”)からなる、繊維群電気抵抗値が6.36Ωcmの第1繊維群と、平均繊維径が2μmでありかつ平均アスペクト比が250の異方性ピッチ系炭素短繊維(大阪瓦斯株式会社の商品名”UFM−4”)からなる、繊維群電気抵抗値が0.05Ωcmの第2繊維群とを用意した。
この第1繊維群および第2繊維群を用いて実施例1〜3の場合と同様にして円板を得、その表面抵抗(Ω/□)を同様にして測定した。結果を表5に示す。
Examples 19-21
A first fiber having an electrical resistance value of 6.36 Ωcm, comprising an isotropic pitch-based carbon short fiber (trade name “Xylus GCR1” from Osaka Gas Co., Ltd.) having an average fiber diameter of 12 μm and an average aspect ratio of 250. The electrical resistance value of the fiber group is 0 consisting of the fiber group and an anisotropic pitch carbon short fiber (trade name “UFM-4” of Osaka Gas Co., Ltd.) having an average fiber diameter of 2 μm and an average aspect ratio of 250. A second fiber group of .05 Ωcm was prepared.
A disk was obtained in the same manner as in Examples 1 to 3 using the first fiber group and the second fiber group, and the surface resistance (Ω / □) was measured in the same manner. The results are shown in Table 5.

Figure 2007092074
Figure 2007092074

比較例1
平均繊維径が13μmでありかつ平均アスペクト比が54のピッチ系炭素短繊維(株式会社ドナックの商品名”ドナカーボS244”)からなる、繊維群電気抵抗値が1.2Ωcmの繊維群のみを用いて実施例1〜3の場合と同様にしてペレットを調製し、そのペレットから実施例1〜3の場合と同様にして円板を得た。但し、高分子材料をポリエーテルスルフォン樹脂(住友化学工業株式会社の商品名”スミカエクセル4100”)に変更し、また、樹脂温度、射出圧力および金型温度をそれぞれ330℃、1,500kg/cm2および140℃に変更した。円板の表面抵抗(Ω/□)を実施例1〜3の場合と同様にして測定した結果を表6に示す。
Comparative Example 1
Using only a fiber group having an average fiber diameter of 13 μm and a pitch group carbon short fiber having an average aspect ratio of 54 (trade name “Donna Carbo S244” manufactured by Donak Co., Ltd.) and having a fiber group electrical resistance of 1.2 Ωcm. Pellets were prepared in the same manner as in Examples 1 to 3, and disks were obtained from the pellets in the same manner as in Examples 1 to 3. However, the polymer material was changed to a polyether sulfone resin (trade name “Sumika Excel 4100” from Sumitomo Chemical Co., Ltd.), and the resin temperature, injection pressure and mold temperature were 330 ° C. and 1,500 kg / cm, respectively. Changed to 2 and 140 ° C. Table 6 shows the results of measuring the surface resistance (Ω / □) of the disk in the same manner as in Examples 1 to 3.

比較例2
平均繊維径が12μmでありかつ平均アスペクト比が250のピッチ系炭素短繊維(大阪瓦斯株式会社の商品名”Xylus GCA03J431”)からなる、繊維群電気抵抗値が7,790Ωcmの繊維群のみを用いて実施例1〜3の場合と同様にしてペレットを調製し、そのペレットから実施例1〜3の場合と同様にして円板を得た。円板の表面抵抗(Ω/□)を実施例1〜3の場合と同様にして測定した結果を表6に示す。
Comparative Example 2
Only fiber groups having an average fiber diameter of 12 μm and a pitch group carbon short fiber (trade name “Xylus GCA03J431” from Osaka Gas Co., Ltd.) having an average aspect ratio of 250 and a fiber group electrical resistance of 7,790 Ωcm are used. Then, pellets were prepared in the same manner as in Examples 1 to 3, and disks were obtained from the pellets in the same manner as in Examples 1 to 3. Table 6 shows the results of measuring the surface resistance (Ω / □) of the disk in the same manner as in Examples 1 to 3.

比較例3
平均繊維径が2μmでありかつ平均アスペクト比が250の異方性ピッチ系炭素短繊維(大阪瓦斯株式会社の商品名”UFM−2”)からなる、繊維群電気抵抗値が0.19Ωcmの繊維群のみを用いて実施例1〜3の場合と同様にしてペレットを調製し、そのペレットから実施例1〜3の場合と同様にして円板を得た。円板の表面抵抗(Ω/□)を実施例1〜3の場合と同様にして測定した結果を表6に示す。
Comparative Example 3
A fiber having an average fiber diameter of 2 μm and an average aspect ratio of 250, an anisotropic pitch-based short carbon fiber (trade name “UFM-2” from Osaka Gas Co., Ltd.) and having a fiber group electrical resistance of 0.19 Ωcm Using only the group, pellets were prepared in the same manner as in Examples 1 to 3, and disks were obtained from the pellets in the same manner as in Examples 1 to 3. Table 6 shows the results of measuring the surface resistance (Ω / □) of the disk in the same manner as in Examples 1 to 3.

Figure 2007092074
Figure 2007092074

比較例4
高分子材料である高密度ポリエチレン樹脂(三井石油化学工業株式会社の商品名”ハイゼックス1300J”)に対して導電材であるケッチェンブラック(ケッチェンブラックインターナショナル株式会社の商品名”ケッチェンブラックEC”)を表3に示す割合で供給してペレットを調製し、このペレットを用いて実施例1〜3の場合と同様にして円板を成形した。この際、成形時の樹脂温度、射出圧力および金型温度をそれぞれ210℃、1,000kg/cm2および40℃に設定した。円板の体積固有抵抗(Ωcm)を測定した結果を表7に示す。
Comparative Example 4
Ketjen Black (trade name “Ketjen Black EC” from Ketjen Black International Co., Ltd.) is a conductive material for high-density polyethylene resin (trade name “Hi-Zex 1300J” from Mitsui Petrochemical Co., Ltd.). ) Was supplied at a ratio shown in Table 3 to prepare pellets, and discs were formed using the pellets in the same manner as in Examples 1 to 3. At this time, the resin temperature, injection pressure, and mold temperature at the time of molding were set to 210 ° C., 1,000 kg / cm 2 and 40 ° C., respectively. Table 7 shows the results of measuring the volume resistivity (Ωcm) of the disk.

比較例5
導電材としてアセチレンブラック(電気化学工業株式会社の商品名”デンカブラック”)を用いた点を除いて比較例4の場合と同様に操作し、円板を得た。この円板の体積固有抵抗(Ωcm)を測定した結果を表7に示す。
Comparative Example 5
A disc was obtained in the same manner as in Comparative Example 4 except that acetylene black (trade name “DENKA BLACK” manufactured by Denki Kagaku Kogyo Co., Ltd.) was used as the conductive material. Table 7 shows the results of measuring the volume resistivity (Ωcm) of this disk.

Figure 2007092074
Figure 2007092074

Claims (1)

高分子材料と、
前記高分子材料に添加された導電性調整材とを含み、
前記導電性調整材は、第1炭素短繊維による第1繊維群と、前記第1炭素短繊維よりも平均繊維径が小さな第2炭素短繊維による第2繊維群とを含み、前記第1繊維群は、前記第2繊維群に比べて繊維群電気抵抗値が大きい、
導電性高分子材料。
A polymer material;
A conductivity adjusting material added to the polymer material,
The conductivity adjusting material includes a first fiber group made of first carbon short fibers and a second fiber group made of second carbon short fibers having an average fiber diameter smaller than that of the first carbon short fibers, and the first fibers The group has a larger fiber group electrical resistance value than the second fiber group,
Conductive polymer material.
JP2006306946A 2006-11-13 2006-11-13 Electroconductive polymer Pending JP2007092074A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006306946A JP2007092074A (en) 2006-11-13 2006-11-13 Electroconductive polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006306946A JP2007092074A (en) 2006-11-13 2006-11-13 Electroconductive polymer

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP10311172A Division JP2000136310A (en) 1998-10-30 1998-10-30 Electroconductivity adjusting material for polymer material and electrically conductive polymer material

Publications (1)

Publication Number Publication Date
JP2007092074A true JP2007092074A (en) 2007-04-12

Family

ID=37978130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006306946A Pending JP2007092074A (en) 2006-11-13 2006-11-13 Electroconductive polymer

Country Status (1)

Country Link
JP (1) JP2007092074A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010059227A (en) * 2008-09-01 2010-03-18 Eagle Ind Co Ltd Rubber composition
WO2010038784A1 (en) * 2008-09-30 2010-04-08 保土谷化学工業株式会社 Composite material containing carbon fiber

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0532819A (en) * 1990-11-06 1993-02-09 Osaka Gas Co Ltd Conductive composition
JPH07156146A (en) * 1993-12-07 1995-06-20 Dainippon Ink & Chem Inc Manufacture of thermoplastic resin molded body
JPH08239513A (en) * 1995-02-28 1996-09-17 Yoshihisa Futagawa Composite dielectric substance and phantom model using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0532819A (en) * 1990-11-06 1993-02-09 Osaka Gas Co Ltd Conductive composition
JPH07156146A (en) * 1993-12-07 1995-06-20 Dainippon Ink & Chem Inc Manufacture of thermoplastic resin molded body
JPH08239513A (en) * 1995-02-28 1996-09-17 Yoshihisa Futagawa Composite dielectric substance and phantom model using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010059227A (en) * 2008-09-01 2010-03-18 Eagle Ind Co Ltd Rubber composition
WO2010038784A1 (en) * 2008-09-30 2010-04-08 保土谷化学工業株式会社 Composite material containing carbon fiber
CN102227782B (en) * 2008-09-30 2014-03-12 保土谷化学工业株式会社 Composite material containing carbon fiber

Similar Documents

Publication Publication Date Title
JP5205947B2 (en) Resin carbon composite material
US7439475B2 (en) Thermally conductive body and method of manufacturing the same
Mighri et al. Electrically conductive thermoplastic blends for injection and compression molding of bipolar plates in the fuel cell application
Zhang et al. Percolation threshold and morphology of composites of conducting carbon black/polypropylene/EVA
KR20070092725A (en) Use of carbon nanotubes for the production of a conductive organic composition and applications of one such composition
Maaroufi et al. Electrical resistivity of polymeric matrix loaded with nickel and cobalt powders
JP2000501884A (en) Electrical element
JP2012015118A (en) Conductive resin composition and molded article thereof
SE531409C2 (en) Field-controlling material
JP2008207404A (en) Conducting film and composite film having conducting film
EP0539936B1 (en) Short fiber-containing polymer composition and method for controlling electrical resistance of the polymer composition
KR100898900B1 (en) Conductive composites and method for manufacturing the same
JP2007092074A (en) Electroconductive polymer
KR20070026426A (en) Conductive thermoplastic resin film and layered conductive thermoplastic resin film
JP2010053250A (en) Conductive polymer composite material and electric field responsive polymer membrane using the same
WO2018116821A1 (en) Pressure sensor
JP5025079B2 (en) Conductive resin composition and molded body thereof
CN1776825A (en) Conductive composition exhibiting PTC behavior and over-current protection device using the same
US3808678A (en) Method of making pressure-sensitive resistor element
JP2000136310A (en) Electroconductivity adjusting material for polymer material and electrically conductive polymer material
JP6270778B2 (en) Temperature sensor material, and temperature sensor and temperature strain sensor using the same
KR20140062777A (en) Thick membrane type ptc heating element with conductive paste composition
Sancaktar et al. Thickness-dependent conduction behavior of various particles for conductive adhesive applications
JP2005508073A (en) PTC conductive polymer composition
JP2000212453A (en) Conductive polymer material composition and conductivity control member

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20100608

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A02 Decision of refusal

Effective date: 20101019

Free format text: JAPANESE INTERMEDIATE CODE: A02