JP3846145B2 - Crucible lid and silicon polycrystal melting method using the same - Google Patents

Crucible lid and silicon polycrystal melting method using the same Download PDF

Info

Publication number
JP3846145B2
JP3846145B2 JP2000021115A JP2000021115A JP3846145B2 JP 3846145 B2 JP3846145 B2 JP 3846145B2 JP 2000021115 A JP2000021115 A JP 2000021115A JP 2000021115 A JP2000021115 A JP 2000021115A JP 3846145 B2 JP3846145 B2 JP 3846145B2
Authority
JP
Japan
Prior art keywords
chamber
quartz crucible
crucible
lid
inert gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000021115A
Other languages
Japanese (ja)
Other versions
JP2001213695A (en
Inventor
憲治 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP2000021115A priority Critical patent/JP3846145B2/en
Publication of JP2001213695A publication Critical patent/JP2001213695A/en
Application granted granted Critical
Publication of JP3846145B2 publication Critical patent/JP3846145B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、シリコン単結晶育成装置の石英るつぼに使用される蓋及びその蓋を用いたシリコン多結晶の融解方法に関するものである。
【0002】
【従来の技術】
従来、シリコン単結晶を育成する装置は、チャンバ内に設けられ石英るつぼを包囲して支持するカーボンサセプタと、このサセプタを包囲してチャンバ内に設けられ石英るつぼ内の多結晶シリコンを融解しかつ石英るつぼ内に貯留されたシリコン融液を加熱するカーボンヒータとを備える。この装置はサセプタの支軸を介して石英るつぼを上昇又は下降させるるつぼ昇降手段を備え、石英るつぼに入れられた多結晶シリコンをカーボンヒータで融解した後、石英るつぼ内に貯留されたシリコン融液に種結晶を接触させ、その種結晶を引上げて種結晶の下方にシリコン単結晶を育成している。
一方、カーボンヒータで融解する多結晶シリコンはチャンバ内に装着された石英るつぼに入れられるか、又はチャンバの外部で石英るつぼに入れられ、その後チャンバ内に装着される。チャンバの外部で多結晶シリコンを入れるのは、シリコン単結晶育成装置の稼働率を向上させるためである。この場合、チャンバの外部で多結晶シリコンを入れた石英るつぼを予め保管し、一旦シリコン単結晶の育成が終了した装置にその保管された石英るつぼを直ちにチャンバ内に装着できるように準備しておく。この保管の際には、多結晶シリコンに空気中に浮遊する不純物が付着することを防止するために、多結晶シリコンを入れた石英るつぼに蓋が被せられる。
【0003】
【発明が解決しようとする課題】
しかし、石英るつぼに蓋をするだけでは石英るつぼの開口部と蓋の間を完全に密封することができず、周辺環境温度が変動することによりその僅かな隙間から空気の流通が生じ、石英るつぼの外部に浮遊する不純物が空気とともにその隙間から石英るつぼの内部に侵入して多結晶シリコンの表面に付着する不具合がある。この点を解消するためには石英るつぼに蓋をした後その僅かな隙間を更に埋める必要があるが、その作業は困難であり、作業工数が増加して実質的に装置の稼働率を向上できない問題点がある。
また、多結晶シリコンが入れられた石英るつぼをチャンバ内に装着する際には、チャンバ外部に浮遊する不純物がその石英るつぼとともチャンバ内に入り、石英るつぼから蓋を取り外した後にその不純物が石英るつぼの中に入り込んで多結晶シリコンに付着する場合もある。多結晶シリコンをその後融解して石英るつぼに貯留されたシリコン融液中にこのような不純物が存在すると、引き上げられるシリコン単結晶のフリー化率が低下する不具合がある。
本発明の目的は、石英るつぼに被せるだけで多結晶シリコンに不純物が付着することを有効に防止し得るるつぼ用蓋を提供することにある。
本発明の別の目的は、シリコン融液中の不純物を減少させて引き上げられるシリコン単結晶のフリー化率を向上し得るるつぼ用蓋を用いたシリコン多結晶の融解方法を提供することにある。
【0004】
【課題を解決するための手段】
請求項1に係る発明は、図1に示すように、多結晶シリコン11が入れられた石英るつぼ12の上部開口部を覆う平板部13aと、平板部13aと一体的に形成され石英るつぼ12の上部周囲を包囲する包囲部13bとを有し、平板部13aの略中央部に通風孔13cが形成された蓋体13と、通風孔13cを覆うように平板部13aの上部に取付けられたフィルタ14とを備えたるつぼ用蓋である。
その特徴ある構成は、平板部13aの上部に通風孔13cを包囲し外周囲に雄ねじが形成された周壁13dと、周壁13d及び平板部13aの上部に取付けられたフィルタ14を覆うように形成され通風孔13cに対応する導風孔16aを有しかつ内周囲に雄ねじに螺合可能な雌ねじが形成された取付蓋16とを有するところにある
この請求項1に記載された発明では、多結晶シリコン11を入れるつぼ用蓋10で封をした石英るつぼ12を保管すると、通風孔13cからエアの流通が行われる。石英るつぼ12の内部からその外部へエアが排出される場合には不純物が石英るつぼ12の内部に侵入することはないが、石英るつぼ12の外部から内部へエアが導入される場合にはエアがフィルタ14を通過した後、蓋体13の通風孔13cから石英るつぼ12の内部に導入される。この際フィルタ14は浮遊する不純物を捕集し、蓋体13の通風孔13cから石英るつぼ12の内部に導入されるエアに不純物が混入することを防止する。これにより不純物が石英るつぼ12内部に侵入して石英るつぼ12に入れられた多結晶シリコン11に不純物が付着することを防止する。
【0005】
請求項2に係る発明は、図2〜図4に示すように、多結晶シリコン11が入れられて上部開口部が請求項1記載のるつぼ用蓋10で覆われた石英るつぼ12をチャンバ21内に設ける工程と、チャンバ21内を真空にした後不活性ガスをチャンバ21内に流通させる工程と、チャンバ21内を大気圧にした後石英るつぼ12からるつぼ用蓋10を取り外す工程と、チャンバ21内を真空にした後不活性ガスをチャンバ21内に再び流通させる工程と、不活性ガスを流通させた状態で又は不活性ガスの流通を停止させた後の不活性ガス雰囲気中でチャンバ21内に設けられたカーボンヒータ26により多結晶シリコン11を融解する工程とを含むるつぼ用蓋を用いたシリコン多結晶の融解方法である。
【0006】
この請求項2に記載された発明では、石英るつぼ12をるつぼ用蓋10で覆った状態でチャンバ21内を一旦真空状態にすることにより、石英るつぼ12をチャンバ11に装着する際に入り込んだ浮遊不純物を外部に排出する。その後不活性ガスを流通させることによりその石英るつぼ12及びるつぼ用蓋10の外面に付着した不純物をチャンバ21外に排出させる。その後るつぼ用蓋10を取り外してチャンバ21の内部に不活性ガスを流通させることにより、るつぼ用蓋10を取り外す際に侵入した不純物を、多結晶シリコンに付着する以前に外部に排出する。このように、石英るつぼ12をチャンバ11に装着する際若しくは石英るつぼ12からるつぼ用蓋10を取り外す際に侵入した不純物、又は石英るつぼ12及びるつぼ用蓋10の外面に付着して侵入した不純物は多結晶シリコン11を融解させる以前にチャンバ21外に排出されるので、その多結晶シリコン11を融解させて石英るつぼ12の貯留されたシリコン融液中には不純物が存在せず、引き上げられるシリコン単結晶のフリー化率は従来より向上する。
【0007】
【発明の実施の形態】
次に本発明の実施の形態を図面に基づいて説明する。
図1に示すように、本発明のるつぼ用蓋10は多結晶シリコン11が入れられた石英るつぼ12の上部開口部を覆うように構成された蓋体13と、フィルタ14とを備え、蓋体13は石英るつぼ12の開口部を覆う平板部13aと石英るつぼ12上部周囲を包囲する包囲部13bが一体的に形成される。蓋体13はポリテトラフルオロエチレン(商標名;テフロン)、ポリプロピレン、ポリエチレン等の樹脂を成形することにより一体的に作られ、平板部13aの略中央部分には円形の孔から成る通風孔13cが形成される。また、平板部13aにはこの通風孔13cをその孔縁から所定の間隔をあけて包囲する周壁13dが上部に形成され、この周壁13dの周囲には雄ねじが形成される。
【0008】
フィルタ14は蓋体13の通風孔13cを覆うよう平板部13aの上部に配置される。この実施の形態に使用するフィルタ14は不織布からなる濾紙であり、周壁13dの高さに相当する厚さに形成される。このフィルタ14は粒径0.3μmの粒子をも捕集可能なものが使用され、このフィルタ14を透過するエアからそのエアに含まれる不純物を捕集可能に構成される。フィルタ14は周壁13dの内径に相当する外径に形成され、取付蓋16により蓋体13に取付けられる。取付蓋16は周壁を覆うように形成され、通風孔13cに対応する導風孔16aが形成される。取付蓋16には周壁13dの雄ねじに螺合可能な雌ねじが形成され、フィルタ14を平板部13aの上部に配置した状態で取付蓋16を周壁13dの雄ねじに螺合することにより、フィルタ14は通風孔13cを覆うように蓋体13の上部に取付けられる。
【0009】
多結晶シリコン11は、シリコン単結晶育成装置の外部における浮遊不純物が所定量以下の空間、いわゆるクリーンルームの内部で石英るつぼ12に入れられる。るつぼ用蓋10は、多結晶シリコン11が入れられた石英るつぼ12に被せられる。るつぼ用蓋10を石英るつぼ12に被せると、蓋体13の平板部13aが石英るつぼ12の開口部を覆い、蓋体13の包囲部13bが石英るつぼ12上部周囲を包囲して蓋体13が石英るつぼ12から外れることを防止する。このように多結晶シリコン11を入れた石英るつぼ12に本発明のるつぼ用蓋10で封をして保管した場合、周辺環境温度が変動すると石英るつぼ12の内部と外部に圧力差が生じ、この圧力差から通風孔13cを介する空気の流通が生じる。石英るつぼ12の内部からその外部へエアが排出される場合には不純物が石英るつぼ12の内部に侵入することはないが、石英るつぼ12の外部から内部へエアが導入される場合にはエアがフィルタ14を通過した後、図1の実線矢印で示すように蓋体13の通風孔13cから石英るつぼ12の内部に導入される。この際フィルタ14は浮遊する不純物を捕集し、蓋体13の通風孔13cから石英るつぼ12の内部に導入されるエアに不純物が混入することを防止する。これにより不純物が石英るつぼ12内部に侵入して石英るつぼ12に入れられた多結晶シリコン11に不純物が付着することを防止する。
【0010】
次にこの石英るつぼ12が装着されるシリコン多結晶の引上げ装置20について説明する。
図2〜図4に示すように、石英るつぼ12は、シリコン単結晶の引上げ装置20のチャンバ21内に設けられる。石英るつぼ12の外面は黒鉛サセプタ22により被覆される。石英るつぼ12の下面は上記黒鉛サセプタ22を介して支軸23の上端に固定され、この支軸23の下部はるつぼ駆動手段24に接続される。るつぼ駆動手段24は図示しないが石英るつぼ12を回転させる第1回転用モータと、石英るつぼ12を昇降させる昇降用モータとを有し、これらのモータにより石英るつぼ12が所定の方向に回転し得るとともに、上下方向に移動可能となっている。石英るつぼ12の外周面は石英るつぼ12から所定の間隔をあけてヒータ26により包囲され、このヒータ26は保温筒27により包囲される。
【0011】
またチャンバ21の上端には円筒状のケーシング28が接続される。図4に示すように、このケーシング28には引上げ手段29が設けられる。引上げ手段29はケーシング28の上端部に水平状態で旋回可能に設けられた引上げヘッド(図示せず)と、このヘッドを回転させる第2回転用モータ(図示せず)と、ヘッドから石英るつぼ12の回転中心に向って垂下されたワイヤケーブル29aと、上記ヘッド内に設けられワイヤケーブル29aを巻取り又は繰出す引上げ用モータ(図示せず)とを有する。ワイヤケーブル29aの下端にはシリコン単結晶棒25を引上げるための種結晶29bが取付けられる。またシリコン単結晶棒25の外周面と石英るつぼ12の内周面との間にはシリコン単結晶棒25の外周面を包囲する熱遮蔽部材31が設けられる。
【0012】
更に、チャンバ21にはこのチャンバ21のシリコン単結晶棒側に不活性ガスを供給しかつ上記不活性ガスをチャンバ21のるつぼ内周面側から排出するガス給排手段32が接続される。ガス給排手段32は一端がケーシング28の周壁に接続され他端が上記不活性ガスを貯留するタンク(図示せず)に接続された供給パイプ33と、一端がチャンバ21の下壁に接続され他端が真空ポンプ(図示せず)に接続された排出パイプ34とを有する。供給パイプ33及び排出パイプ34にはこれらのパイプ33,34を流れる不活性ガスの流量を調整する第1及び第2流量調整弁36,37がそれぞれ設けられる。
【0013】
このように構成された装置におけるるつぼ用蓋を用いたシリコン多結晶の融解方法を説明する。
図2に示すように、先ず多結晶シリコン11が入れられて上部開口部がるつぼ用蓋10で覆われた石英るつぼ12を黒鉛サセプタ22に装着することにより、るつぼ用蓋10とともにその石英るつぼ12をチャンバ21内に設ける。次に、第2流量調整弁37を開くことによりチャンバ21内のエアを排出パイプ34からチャンバ21外部に排出し、一旦チャンバ21の内部を真空にする。その後第1流量調整弁36を開いて供給パイプ33からチャンバ21内に不活性ガスを供給し、その不活性ガスを排出パイプ34から排出させることにより不活性ガスをチャンバ21内に流通させる。このようにチャンバ21内を一旦真空状態にすることにより、石英るつぼ12をチャンバ11に装着する際に入り込んだ浮遊不純物はエアとともに排出パイプ34から外部に排出され、不活性ガスを流通させることによりその石英るつぼ12及びるつぼ用蓋10の外面に付着した不純物をチャンバ21外に排出させる。
【0014】
その後第2流量調整弁37を閉じ、チャンバ21内が供給パイプ33から供給される不活性ガスにより大気圧にし、その状態で第1流量調整弁36を閉じる。その後図3に示すようにチャンバ21を開放して石英るつぼ12からるつぼ用蓋10を取り外し、再びチャンバ21を閉じ、第2流量調整弁37を再び開く。これにより開放した際にチャンバ21内に侵入したエア及びそのチャンバ21内に残存する不活性ガスは排出パイプ34からチャンバ21外部に排出され、チャンバ21の内部は真空状態になる。その後第1流量調整弁36を再び開いて供給パイプ33からチャンバ21内に不活性ガスを供給し、その不活性ガスを排出パイプ34から排出させることにより不活性ガスをチャンバ21内に流通させる。これにより開放した際にエアとともに侵入した不純物は、多結晶シリコンに付着する以前にエア又は不活性ガスとともに排出パイプ34から外部に排出される。
【0015】
このように不活性ガスを流通させた状態で又は不活性ガスの流通を停止させた後の不活性ガス雰囲気中でカーボンヒータ26により石英るつぼ12に入れられた多結晶シリコン11を融解する。多結晶シリコン11が融解すると図4に示すように、石英るつぼ12にシリコン融液39が貯留され、チャンバ21内部を流通する不活性ガスは融解したシリコン融液12の表面から蒸発したガスを排出パイプ34から外部に排出する。その後、引上げ手段のワイヤケーブル29aを繰出して種結晶29bの先端部をシリコン融液39に接触させ、徐々に引上げて種結晶29bの下部にシリコン単結晶棒25を育成させるが、石英るつぼ12をチャンバ11に装着する際若しくは石英るつぼ12からるつぼ用蓋10を取り外す際にエアとともに侵入した不純物、又は石英るつぼ12及びるつぼ用蓋10の外面に付着して侵入した不純物は、多結晶シリコン11を融解させる以前にチャンバ21外に排出されるので、石英るつぼ12の貯留されたシリコン融液39中には不純物が存在せず、引き上げられるシリコン単結晶25のフリー化率は従来より向上する。
【0016】
【発明の効果】
以上述べたように、本発明のるつぼ用蓋は、多結晶シリコンが入れられた石英るつぼの上部開口部を覆うように構成され略中央部に通風孔が形成された蓋体と、通風孔を覆うように蓋体の上部に取付けられたフィルタとを備えたので、通風孔からエアの流通が行われる。石英るつぼの外部から内部へエアが導入される場合にはエアはフィルタを通過し、フィルタは浮遊する不純物を捕集するので、その通風孔から石英るつぼの内部に不純物が混入することはなく、石英るつぼに入れられた多結晶シリコンに不純物が付着することはない。
また、本発明のるつぼ用蓋を用いたシリコン多結晶の融解方法では、石英るつぼをるつぼ用蓋で覆った状態でチャンバ内を一旦真空状態にするので、石英るつぼをチャンバに装着する際に入り込んだ浮遊不純物は外部に排出され、その後不活性ガスを流通させることによりその石英るつぼ及びるつぼ用蓋の外面に付着した不純物もチャンバ外に排出させることができる。またるつぼ用蓋を取り外した後にもチャンバの内部に不活性ガスを流通させるので、るつぼ用蓋を取り外す際に侵入した不純物も外部に排出することができる。この結果、多結晶シリコンを融解させて石英るつぼの貯留されたシリコン融液中には不純物が存在することはなく、引き上げられるシリコン単結晶のフリー化率を従来より向上することができる。
【図面の簡単な説明】
【図1】本発明のるつぼ用蓋を石英るつぼに被せた状態を示す断面構成図。
【図2】るつぼ用蓋が被せられた石英るつぼが装着された引上げ装置の断面構成図。
【図3】そのるつぼ用蓋が石英るつぼから取り外された引上げ装置の断面構成図。
【図4】シリコン融液からシリコン単結晶が引き上げられた引上げ装置の断面構成図。
【符号の説明】
10 るつぼ用蓋
11 多結晶シリコン
12 石英るつぼ
13 蓋体
13a 通風孔
14 フィルタ
21 チャンバ
26 カーボンヒータ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a lid used for a quartz crucible of a silicon single crystal growing apparatus and a silicon polycrystal melting method using the lid.
[0002]
[Prior art]
Conventionally, an apparatus for growing a silicon single crystal includes a carbon susceptor that is provided in a chamber and surrounds and supports a quartz crucible, and melts polycrystalline silicon in the quartz crucible that surrounds the susceptor and is provided in the chamber. A carbon heater for heating the silicon melt stored in the quartz crucible. This apparatus is provided with a crucible lifting / lowering means for raising or lowering the quartz crucible via the support shaft of the susceptor, and after melting polycrystalline silicon contained in the quartz crucible with a carbon heater, the silicon melt stored in the quartz crucible A seed crystal is brought into contact with the seed crystal, and the seed crystal is pulled up to grow a silicon single crystal below the seed crystal.
On the other hand, the polycrystalline silicon melted by the carbon heater is put in a quartz crucible mounted in the chamber, or is put in a quartz crucible outside the chamber and then mounted in the chamber. The reason why polycrystalline silicon is put outside the chamber is to improve the operating rate of the silicon single crystal growing apparatus. In this case, a quartz crucible containing polycrystalline silicon is stored in advance outside the chamber, and the quartz crucible stored in the apparatus once the growth of the silicon single crystal is prepared so that the stored quartz crucible can be immediately installed in the chamber. . At the time of storage, a lid is put on a quartz crucible containing polycrystalline silicon in order to prevent impurities floating in the air from adhering to the polycrystalline silicon.
[0003]
[Problems to be solved by the invention]
However, if the quartz crucible is simply covered, the quartz crucible opening and lid cannot be completely sealed, and the ambient temperature fluctuates, causing air to flow from the slight gap and the quartz crucible. There is a problem that impurities floating on the outside of the metal enter the inside of the quartz crucible through the gap together with air and adhere to the surface of the polycrystalline silicon. In order to solve this problem, it is necessary to fill the gap after the quartz crucible is covered. However, this work is difficult, and the number of work steps increases, so that the operating rate of the apparatus cannot be substantially improved. There is a problem.
Also, when a quartz crucible containing polycrystalline silicon is installed in the chamber, impurities floating outside the chamber enter the chamber together with the quartz crucible, and the impurities are removed from the quartz crucible after removing the lid. In some cases, it enters the crucible and adheres to the polycrystalline silicon. If such impurities are present in the silicon melt that is subsequently melted from the polycrystalline silicon and stored in the quartz crucible, there is a problem that the free rate of the pulled silicon single crystal is lowered.
An object of the present invention is to provide a crucible lid that can effectively prevent impurities from adhering to polycrystalline silicon simply by covering the quartz crucible.
Another object of the present invention is to provide a method for melting silicon polycrystal using a crucible lid that can improve the freezing rate of a silicon single crystal that is pulled up by reducing impurities in the silicon melt.
[0004]
[Means for Solving the Problems]
As shown in FIG. 1, the invention according to claim 1 includes a flat plate portion 13a that covers an upper opening of a quartz crucible 12 in which polycrystalline silicon 11 is placed, and a quartz crucible 12 that is integrally formed with the flat plate portion 13a. A cover 13 having a surrounding portion 13b surrounding the upper portion and having a ventilation hole 13c formed at a substantially central portion of the flat plate portion 13a ; and a filter attached to the upper portion of the flat plate portion 13a so as to cover the ventilation hole 13c. 14 and a crucible lid .
The characteristic structure is formed so as to cover the peripheral wall 13d surrounding the ventilation hole 13c in the upper part of the flat plate part 13a and having an external thread formed on the outer periphery, and the filter 14 attached to the upper part of the peripheral wall 13d and the flat plate part 13a. There is a mounting lid 16 having an air guide hole 16a corresponding to the vent hole 13c and having an internal thread formed on the inner periphery thereof that can be screwed into the external thread .
According to the first aspect of the present invention, when the quartz crucible 12 sealed with the crucible lid 10 into which the polycrystalline silicon 11 is placed is stored, air is circulated from the ventilation hole 13c. When air is discharged from the inside of the quartz crucible 12 to the outside, impurities do not enter the inside of the quartz crucible 12, but when air is introduced from the outside to the inside of the quartz crucible 12, the air is After passing through the filter 14, the air is introduced into the quartz crucible 12 through the ventilation holes 13 c of the lid 13. At this time, the filter 14 collects the floating impurities and prevents the impurities from being mixed into the air introduced into the quartz crucible 12 from the vent hole 13 c of the lid 13. Thus, impurities are prevented from entering the inside of the quartz crucible 12 and adhering to the polycrystalline silicon 11 placed in the quartz crucible 12.
[0005]
2 to 4, the quartz crucible 12 in which the polycrystalline silicon 11 is put and the upper opening portion is covered with the crucible lid 10 according to the first aspect is disposed in the chamber 21. A step of evacuating the inside of the chamber 21 and circulating an inert gas in the chamber 21, a step of removing the crucible lid 10 from the quartz crucible 12 after setting the inside of the chamber 21 to atmospheric pressure, A process of circulating the inert gas again in the chamber 21 after evacuating the interior, and the chamber 21 in the inert gas atmosphere in a state where the inert gas is circulated or after the inert gas is stopped. And a step of melting the polycrystalline silicon 11 by the carbon heater 26 provided in the method for melting the polycrystalline silicon using a crucible lid.
[0006]
In the second aspect of the present invention, the quartz crucible 12 is covered with the crucible lid 10 and the inside of the chamber 21 is once evacuated to float the quartz crucible 12 when the quartz crucible 12 is attached to the chamber 11. Impurities are discharged to the outside. Thereafter, an inert gas is circulated to discharge impurities adhering to the outer surfaces of the quartz crucible 12 and the crucible lid 10 out of the chamber 21. Thereafter, the crucible lid 10 is removed and an inert gas is allowed to flow inside the chamber 21, whereby impurities that have entered when the crucible lid 10 is removed are discharged to the outside before adhering to the polycrystalline silicon. As described above, when the quartz crucible 12 is attached to the chamber 11 or when the crucible lid 10 is removed from the quartz crucible 12, impurities introduced into the quartz crucible 12 and the crucible lid 10 adhere to the outer surface. Since the polycrystalline silicon 11 is discharged out of the chamber 21 before melting, the polycrystalline silicon 11 is melted and no impurities are present in the silicon melt stored in the quartz crucible 12, and the single silicon to be pulled up is removed. The crystal free rate is improved as compared with the conventional case.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described with reference to the drawings.
As shown in FIG. 1, a crucible lid 10 of the present invention includes a lid 13 configured to cover an upper opening of a quartz crucible 12 in which polycrystalline silicon 11 is placed, and a filter 14. A flat plate portion 13 a that covers the opening of the quartz crucible 12 and a surrounding portion 13 b that surrounds the upper periphery of the quartz crucible 12 are integrally formed. The lid body 13 is integrally formed by molding a resin such as polytetrafluoroethylene (trade name; Teflon), polypropylene, polyethylene, and the like, and a vent hole 13c formed of a circular hole is formed at a substantially central portion of the flat plate portion 13a. It is formed. The flat plate portion 13a is formed with a peripheral wall 13d surrounding the ventilation hole 13c at a predetermined distance from the hole edge, and a male screw is formed around the peripheral wall 13d.
[0008]
The filter 14 is disposed above the flat plate portion 13 a so as to cover the ventilation hole 13 c of the lid 13. The filter 14 used in this embodiment is a filter paper made of non-woven fabric, and is formed to a thickness corresponding to the height of the peripheral wall 13d. The filter 14 is capable of collecting particles having a particle diameter of 0.3 μm, and is configured to collect impurities contained in the air from the air that passes through the filter 14. The filter 14 is formed to have an outer diameter corresponding to the inner diameter of the peripheral wall 13 d and is attached to the lid body 13 by an attachment lid 16. The attachment lid 16 is formed so as to cover the peripheral wall, and an air guide hole 16a corresponding to the ventilation hole 13c is formed. The mounting lid 16 is formed with a female screw that can be screwed into the male screw of the peripheral wall 13d, and the filter 14 is screwed into the male screw of the peripheral wall 13d in a state where the filter 14 is disposed on the upper portion of the flat plate portion 13a. It attaches to the upper part of the cover body 13 so that the ventilation hole 13c may be covered.
[0009]
The polycrystalline silicon 11 is placed in the quartz crucible 12 in a space where the amount of floating impurities outside the silicon single crystal growing apparatus is not more than a predetermined amount, that is, in a so-called clean room. The crucible lid 10 is placed on a quartz crucible 12 in which polycrystalline silicon 11 is placed. When the crucible lid 10 is put on the quartz crucible 12, the flat plate portion 13 a of the lid body 13 covers the opening of the quartz crucible 12, and the surrounding portion 13 b of the lid body 13 surrounds the upper periphery of the quartz crucible 12. This prevents the quartz crucible 12 from coming off. Thus, when the quartz crucible 12 containing the polycrystalline silicon 11 is sealed and stored with the crucible lid 10 of the present invention, a pressure difference is generated between the inside and outside of the quartz crucible 12 when the ambient environment temperature fluctuates. From the pressure difference, air flows through the ventilation holes 13c. When air is discharged from the inside of the quartz crucible 12 to the outside, impurities do not enter the inside of the quartz crucible 12, but when air is introduced from the outside to the inside of the quartz crucible 12, the air is After passing through the filter 14, it is introduced into the quartz crucible 12 through the ventilation hole 13 c of the lid 13 as indicated by the solid arrow in FIG. 1. At this time, the filter 14 collects the floating impurities and prevents the impurities from being mixed into the air introduced into the quartz crucible 12 from the vent hole 13 c of the lid 13. This prevents impurities from entering the quartz crucible 12 and adhering to the polycrystalline silicon 11 placed in the quartz crucible 12.
[0010]
Next, the silicon polycrystal pulling apparatus 20 to which the quartz crucible 12 is attached will be described.
As shown in FIGS. 2 to 4, the quartz crucible 12 is provided in a chamber 21 of a silicon single crystal pulling apparatus 20. The outer surface of the quartz crucible 12 is covered with a graphite susceptor 22. The lower surface of the quartz crucible 12 is fixed to the upper end of the support shaft 23 via the graphite susceptor 22, and the lower portion of the support shaft 23 is connected to the crucible driving means 24. Although not shown, the crucible driving means 24 has a first rotating motor for rotating the quartz crucible 12 and a lifting motor for moving the quartz crucible 12 up and down, and the quartz crucible 12 can be rotated in a predetermined direction by these motors. At the same time, it is movable in the vertical direction. The outer peripheral surface of the quartz crucible 12 is surrounded by a heater 26 at a predetermined interval from the quartz crucible 12, and the heater 26 is surrounded by a heat retaining cylinder 27.
[0011]
A cylindrical casing 28 is connected to the upper end of the chamber 21. As shown in FIG. 4, the casing 28 is provided with a pulling means 29. The pulling means 29 is a pulling head (not shown) provided at the upper end of the casing 28 so as to be rotatable in a horizontal state, a second rotating motor (not shown) for rotating the head, and the quartz crucible 12 from the head. And a pulling motor (not shown) provided in the head for winding or unwinding the wire cable 29a. A seed crystal 29b for pulling up the silicon single crystal rod 25 is attached to the lower end of the wire cable 29a. A heat shielding member 31 is provided between the outer peripheral surface of the silicon single crystal rod 25 and the inner peripheral surface of the quartz crucible 12 to surround the outer peripheral surface of the silicon single crystal rod 25.
[0012]
Further, gas supply / discharge means 32 for supplying an inert gas to the silicon single crystal rod side of the chamber 21 and discharging the inert gas from the crucible inner peripheral surface side of the chamber 21 is connected to the chamber 21. The gas supply / discharge means 32 has one end connected to the peripheral wall of the casing 28 and the other end connected to a tank (not shown) for storing the inert gas, and one end connected to the lower wall of the chamber 21. The other end has a discharge pipe 34 connected to a vacuum pump (not shown). The supply pipe 33 and the discharge pipe 34 are provided with first and second flow rate adjusting valves 36 and 37 for adjusting the flow rate of the inert gas flowing through the pipes 33 and 34, respectively.
[0013]
A method for melting silicon polycrystal using the crucible lid in the apparatus configured as described above will be described.
As shown in FIG. 2, first, a quartz crucible 12 in which polycrystalline silicon 11 is placed and an upper opening is covered with a crucible lid 10 is attached to a graphite susceptor 22, so that the quartz crucible 12 together with the crucible lid 10. Is provided in the chamber 21. Next, the air in the chamber 21 is discharged from the discharge pipe 34 to the outside of the chamber 21 by opening the second flow rate adjusting valve 37, and the inside of the chamber 21 is once evacuated. Thereafter, the first flow rate adjusting valve 36 is opened, an inert gas is supplied from the supply pipe 33 into the chamber 21, and the inert gas is discharged from the discharge pipe 34, whereby the inert gas is circulated into the chamber 21. As described above, when the chamber 21 is once evacuated, the floating impurities introduced when the quartz crucible 12 is mounted in the chamber 11 are discharged together with air from the discharge pipe 34 to the outside, and an inert gas is circulated. Impurities adhering to the outer surfaces of the quartz crucible 12 and the crucible lid 10 are discharged out of the chamber 21.
[0014]
Thereafter, the second flow rate adjusting valve 37 is closed, the inside of the chamber 21 is brought to atmospheric pressure by the inert gas supplied from the supply pipe 33, and the first flow rate adjusting valve 36 is closed in this state. Thereafter, as shown in FIG. 3, the chamber 21 is opened, the crucible lid 10 is removed from the quartz crucible 12, the chamber 21 is closed again, and the second flow rate adjusting valve 37 is opened again. As a result, the air that has entered the chamber 21 when released and the inert gas remaining in the chamber 21 are discharged from the discharge pipe 34 to the outside of the chamber 21, and the inside of the chamber 21 is in a vacuum state. Thereafter, the first flow rate adjusting valve 36 is opened again, an inert gas is supplied into the chamber 21 from the supply pipe 33, and the inert gas is circulated into the chamber 21 by exhausting the inert gas from the exhaust pipe 34. As a result, the impurities that have entered with the air when released are discharged from the discharge pipe 34 together with the air or inert gas before adhering to the polycrystalline silicon.
[0015]
The polycrystalline silicon 11 placed in the quartz crucible 12 is melted by the carbon heater 26 in a state where the inert gas is circulated as described above or in an inert gas atmosphere after the flow of the inert gas is stopped. When the polycrystalline silicon 11 is melted, as shown in FIG. 4, the silicon melt 39 is stored in the quartz crucible 12, and the inert gas flowing through the chamber 21 discharges the gas evaporated from the surface of the melted silicon melt 12. The pipe 34 is discharged to the outside. Thereafter, the wire cable 29a of the pulling means is fed out, the tip of the seed crystal 29b is brought into contact with the silicon melt 39, and the silicon single crystal rod 25 is grown under the seed crystal 29b. Impurities that intrude with air when attaching to the chamber 11 or removing the crucible lid 10 from the quartz crucible 12, or impurities adhering to the quartz crucible 12 and the outer surface of the crucible lid 10 enter the polycrystalline silicon 11. Since it is discharged out of the chamber 21 before melting, there is no impurity in the silicon melt 39 stored in the quartz crucible 12, and the free rate of the pulled silicon single crystal 25 is improved as compared with the prior art.
[0016]
【The invention's effect】
As described above, the crucible lid of the present invention is configured to cover the upper opening of the quartz crucible in which polycrystalline silicon is placed, and has a lid body formed with a vent hole in a substantially central portion, and a vent hole. Since the filter attached to the upper part of the lid is provided so as to cover, air is circulated from the ventilation hole. When air is introduced from the outside to the inside of the quartz crucible, the air passes through the filter, and the filter collects floating impurities, so that impurities are not mixed into the inside of the quartz crucible from the ventilation holes. Impurities do not adhere to the polycrystalline silicon placed in the quartz crucible.
Further, in the silicon polycrystal melting method using the crucible lid of the present invention, the chamber is once evacuated while the quartz crucible is covered with the crucible lid, so that the quartz crucible is inserted when the quartz crucible is attached to the chamber. The floating impurities are discharged to the outside, and then the impurities adhering to the outer surface of the quartz crucible and the crucible lid can be discharged out of the chamber by circulating an inert gas. Further, since the inert gas is allowed to flow inside the chamber even after the crucible lid is removed, impurities that have intruded when the crucible lid is removed can be discharged to the outside. As a result, there is no impurity in the silicon melt in which the polycrystalline silicon is melted and stored in the quartz crucible, and the free rate of the silicon single crystal to be pulled can be improved as compared with the prior art.
[Brief description of the drawings]
FIG. 1 is a cross-sectional configuration diagram showing a state in which a crucible lid of the present invention is put on a quartz crucible.
FIG. 2 is a cross-sectional configuration diagram of a pulling device equipped with a quartz crucible covered with a crucible lid.
FIG. 3 is a cross-sectional configuration diagram of a pulling device in which the crucible lid is removed from a quartz crucible.
FIG. 4 is a cross-sectional configuration diagram of a pulling apparatus in which a silicon single crystal is pulled up from a silicon melt.
[Explanation of symbols]
10 Crucible lid 11 Polycrystalline silicon 12 Quartz crucible 13 Lid 13a Ventilation hole 14 Filter 21 Chamber 26 Carbon heater

Claims (2)

多結晶シリコン(11)が入れられた石英るつぼ(12)の上部開口部を覆う平板部 (13a) と、前記平板部 (13a) と一体的に形成され前記石英るつぼ (12) の上部周囲を包囲する包囲部 (13b) とを有し、前記平板部 (13a) 略中央部に通風孔(13c)が形成された蓋体(13)と、
前記通風孔(13c)を覆うように前記平板部 (13a)の上部に取付けられたフィルタ(14)と
を備えたるつぼ用蓋であって、
前記平板部 (13a) の上部に前記通風孔 (13c) を包囲し外周囲に雄ねじが形成された周壁 (13d) と、
前記周壁 (13d) 及び前記平板部 (13a) の上部に取付けられた前記フィルタ (14) を覆うように形成され前記通風孔 (13c) に対応する導風孔 (16a) を有しかつ内周囲に前記雄ねじに螺合可能な雌ねじが形成された取付蓋 (16) とを有する
ことを特徴とするるつぼ用蓋
A flat plate portion (13a) covering the upper opening of the quartz crucible (12) containing polycrystalline silicon (11), and the upper periphery of the quartz crucible (12) formed integrally with the flat plate portion (13a) A lid (13) having a surrounding portion (13b) for enclosing, and a vent hole (13c) formed in a substantially central portion of the flat plate portion (13a) ,
A crucible lid comprising: a filter (14) attached to an upper portion of the flat plate portion (13a) so as to cover the ventilation hole (13c) ,
A peripheral wall (13d) surrounding the ventilation hole (13c) at the top of the flat plate portion (13a) and having a male screw formed on the outer periphery ;
An air guide hole (16a) is formed to cover the filter (14) attached to the upper part of the peripheral wall (13d) and the flat plate part (13a) , and corresponds to the ventilation hole (13c) , and the inner periphery. wherein and a male thread can be screwed mounting lid female thread is formed (16) to
A crucible lid characterized by that .
多結晶シリコン(11)が入れられて上部開口部が請求項1記載のるつぼ用蓋(10)で覆われた石英るつぼ(12)をチャンバ(21)内に設ける工程と、
前記チャンバ(21)内を真空にした後不活性ガスを前記チャンバ(21)内に流通させる工程と、
前記チャンバ(21)内を大気圧にした後前記石英るつぼ(12)から前記るつぼ用蓋(10)を取り外す工程と、
前記チャンバ(21)内を真空にした後不活性ガスを前記チャンバ(21)内に再び流通させる工程と、
不活性ガスを流通させた状態で又は不活性ガスの流通を停止させた後の不活性ガス雰囲気中で前記チャンバ(21)内に設けられたカーボンヒータ(26)により前記多結晶シリコン(11)を融解する工程と
を含むるつぼ用蓋を用いたシリコン多結晶の融解方法。
Providing a quartz crucible (12) in the chamber (21) in which polycrystalline silicon (11) is placed and the upper opening is covered with a crucible lid (10) according to claim 1;
Circulating an inert gas in the chamber (21) after evacuating the chamber (21);
Removing the crucible lid (10) from the quartz crucible (12) after bringing the chamber (21) to atmospheric pressure;
Recirculating an inert gas into the chamber (21) after evacuating the chamber (21);
The polycrystalline silicon (11) by the carbon heater (26) provided in the chamber (21) in a state where the inert gas is circulated or in an inert gas atmosphere after the flow of the inert gas is stopped A method for melting silicon polycrystal using a crucible lid, comprising the step of melting.
JP2000021115A 2000-01-31 2000-01-31 Crucible lid and silicon polycrystal melting method using the same Expired - Fee Related JP3846145B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000021115A JP3846145B2 (en) 2000-01-31 2000-01-31 Crucible lid and silicon polycrystal melting method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000021115A JP3846145B2 (en) 2000-01-31 2000-01-31 Crucible lid and silicon polycrystal melting method using the same

Publications (2)

Publication Number Publication Date
JP2001213695A JP2001213695A (en) 2001-08-07
JP3846145B2 true JP3846145B2 (en) 2006-11-15

Family

ID=18547569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000021115A Expired - Fee Related JP3846145B2 (en) 2000-01-31 2000-01-31 Crucible lid and silicon polycrystal melting method using the same

Country Status (1)

Country Link
JP (1) JP3846145B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150051181A (en) * 2013-10-31 2015-05-11 재단법인대구경북과학기술원 PREPARATION METHOD OF CZTSSe-BASED THIN FILM SOLAR CELL AND CZTSSe-BASED THIN FILM SOLAR CELL PREPARED BY THE METHOD

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115286221A (en) * 2022-07-20 2022-11-04 隆基绿能科技股份有限公司 Crucible melting machine and crucible melting method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150051181A (en) * 2013-10-31 2015-05-11 재단법인대구경북과학기술원 PREPARATION METHOD OF CZTSSe-BASED THIN FILM SOLAR CELL AND CZTSSe-BASED THIN FILM SOLAR CELL PREPARED BY THE METHOD
KR101628312B1 (en) * 2013-10-31 2016-06-09 재단법인대구경북과학기술원 PREPARATION METHOD OF CZTSSe-BASED THIN FILM SOLAR CELL AND CZTSSe-BASED THIN FILM SOLAR CELL PREPARED BY THE METHOD

Also Published As

Publication number Publication date
JP2001213695A (en) 2001-08-07

Similar Documents

Publication Publication Date Title
US5288366A (en) Method for growing multiple single crystals and apparatus for use therein
JP2655576B2 (en) Isolation valve in single crystal pulling device
JP5670519B2 (en) Method for producing a silica crucible having a pure and bubble-free crucible inner layer
US6214109B1 (en) Apparatus for controlling the oxygen content in silicon wafers heavily doped with antimony or arsenic
JPS581080B2 (en) Method for producing high-purity single crystals using Czyochralski's crucible pulling method
JP3846145B2 (en) Crucible lid and silicon polycrystal melting method using the same
JP3671562B2 (en) Single crystal manufacturing apparatus and manufacturing method
WO2002027077A1 (en) Method of manufacturing silicon monocrystal and device for manufacturing semiconductor monocrystal
JPS62260791A (en) Device for pulling up silicon single crystal
EP0162467B1 (en) Device for growing single crystals of dissociative compounds
JP2005053722A (en) Single crystal production apparatus and single crystal production method
CN109666968B (en) Method for producing silicon single crystal
JP3747696B2 (en) Heat shielding member of silicon single crystal pulling device
JP2631591B2 (en) Semiconductor single crystal manufacturing method and manufacturing apparatus
JP3760680B2 (en) Single crystal pulling device
JPH07223894A (en) Apparatus for production of semiconductor single crystal
JPH06199590A (en) Device for producing semiconductor single crystal rod
JP3642175B2 (en) Silicon single crystal pulling apparatus and pulling method thereof
JP2558171Y2 (en) Heat shield for single crystal pulling
JPH0952790A (en) Single crystal growth apparatus and single crystal growth process
JP2500875B2 (en) Single crystal manufacturing equipment
JPS6120042Y2 (en)
KR100485663B1 (en) A Grower of silicon crysital ingot
JP3750172B2 (en) Single crystal pulling method
JPH04160087A (en) Apparatus for producing semiconductor single crystal

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060411

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060814

R150 Certificate of patent or registration of utility model

Ref document number: 3846145

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130901

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees