JPH0952790A - Single crystal growth apparatus and single crystal growth process - Google Patents

Single crystal growth apparatus and single crystal growth process

Info

Publication number
JPH0952790A
JPH0952790A JP20613795A JP20613795A JPH0952790A JP H0952790 A JPH0952790 A JP H0952790A JP 20613795 A JP20613795 A JP 20613795A JP 20613795 A JP20613795 A JP 20613795A JP H0952790 A JPH0952790 A JP H0952790A
Authority
JP
Japan
Prior art keywords
single crystal
crystal
crucible
shield
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20613795A
Other languages
Japanese (ja)
Inventor
Manabu Kano
学 加納
Soichiro Otani
聡一郎 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP20613795A priority Critical patent/JPH0952790A/en
Publication of JPH0952790A publication Critical patent/JPH0952790A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a single crystal growing apparatus and a single crystal growing process able to manufacture a longer single crystal. SOLUTION: The single crystal growing apparatus 100 equips a shielding body 11 intercepting radiant heat which propagate from a crucible 4 to a single crystal 10. The shielding body 11 is consisted of a cylindrical part 11a and a collar part 11b provided facing toward outside on an upper end of the cylindrical part 11a and an outer edge of the collar part 11b is fixed on the upper end of heat insulating mold 9. Air holes 11c for letting off high temperature gas within space A devided by the shielding body 11 is provided in the collar part 11b. High temperature of the shielding body 11 is avoided by the air holes 11c and also high temperature gas doesn't flow into the crucible 4 and temperature gradient within the growing single crystal 10 can be enlarged. A length L of the cylindrical part 11a is so set up as a suitable length that distance (h) between a lower end of the cylindrical part 11a and a surface of sealing agent 3 be from >=0 to <=100mm. The distance (h) is always controlled so as to be kept within the prescribed range during crystal growth. Thereby, it is prevented that the temperature gradient within crystal becomes smaller, and the longer single crystal can be grown.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、単結晶の育成装置
及び育成方法に関し、特に液体封止チョクラルスキー
(LEC)法によりGaAs等の化合物半導体の単結晶
を育成する技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus and a method for growing a single crystal, and more particularly to a technology for growing a single crystal of a compound semiconductor such as GaAs by a liquid sealed Czochralski (LEC) method.

【0002】[0002]

【従来の技術】従来、GaAsなどの化合物半導体の単
結晶を製造する主要な方法として、原料と封止剤をるつ
ぼ内で溶融させ、その原料融液表面に種結晶を接触させ
て回転させながら徐々に引き上げることにより単結晶を
育成するLEC法が公知である。このLEC法を含めた
チョクラルスキー法においては、原料融液と成長結晶と
の固液界面を下凸状、即ち成長結晶の下端がその縁から
中央にかけて原料融液中に膨出するような形状に保つこ
とが重要である。そのためには、育成中の結晶が受ける
熱量を減少させ、結晶内を上方向に伝わる熱量を大きく
すればよい。
2. Description of the Related Art Conventionally, as a main method for producing a single crystal of a compound semiconductor such as GaAs, a raw material and a sealant are melted in a crucible, and a seed crystal is brought into contact with the surface of the raw material melt and rotated. The LEC method is known in which a single crystal is grown by gradually pulling it up. In the Czochralski method including the LEC method, the solid-liquid interface between the raw material melt and the grown crystal is downwardly convex, that is, the lower end of the grown crystal bulges into the raw material melt from its edge to the center. It is important to keep the shape. For that purpose, the amount of heat received by the growing crystal may be reduced and the amount of heat transferred upward in the crystal may be increased.

【0003】従来、上述した熱環境を満たすために、る
つぼ内に熱遮蔽板を設ける提案(特開昭62−2169
95号公報に開示されている。)や、固液界面の近傍か
ら結晶の側面近傍までの範囲に冷却フィンを設ける提案
(特開平4−130084号公報に開示されている。)
などがされている。
Conventionally, in order to satisfy the above-mentioned thermal environment, it has been proposed to provide a heat shield plate in the crucible (Japanese Patent Laid-Open No. 62-2169).
No. 95 publication. ), Or providing a cooling fin in the range from near the solid-liquid interface to near the side surface of the crystal (disclosed in JP-A-4-130084).
And so on.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、本発明
者らの行った検討によれば、GaAs単結晶の育成にあ
たって上記従来の構成の熱遮蔽板や冷却フィンを設けた
だけでは、ある程度の長さ(100mm程度)のGaAs
単結晶は得られるが、より長尺(150〜200mm程
度、あるいはそれ以上の長さ)の単結晶を得ることは極
めて困難であることがわかった。
However, according to the study conducted by the present inventors, it is possible to grow the GaAs single crystal to a certain extent only by providing the heat shield plate and the cooling fin having the above-described conventional structure. (100 mm) GaAs
Although a single crystal can be obtained, it has been found that it is extremely difficult to obtain a longer single crystal (about 150 to 200 mm or longer).

【0005】本発明は、上記事情に鑑みてなされたもの
で、より長尺の単結晶を製造するのに適した結晶育成装
置を提供することを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a crystal growth apparatus suitable for producing a longer single crystal.

【0006】また、本発明の他の目的は、より長尺の単
結晶を引上げ法により育成する方法を提供することであ
る。
Another object of the present invention is to provide a method for growing a longer single crystal by a pulling method.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明者らはさらに検討を重ね、成長結晶がるつぼ
壁から輻射熱を受けて加熱されるのを防ぐために熱遮蔽
体をるつぼ内面と成長結晶の側面との間に介装させると
ともに、熱遮蔽体により仕切られた空間に高温ガスが溜
まって熱がこもるのを防ぐために熱遮蔽体に通気孔を設
けて高温ガスを逃がすようにするのが有効であることを
見出した。これは、上記従来の熱遮蔽板や冷却フィンを
設けた構成では、熱遮蔽板や冷却フィンにより仕切られ
た空間に高温ガスが溜まって熱源となったり、その溜ま
った高温ガスがるつぼ内に流れ込んだりすることによ
り、結晶が加熱されて結晶内の温度勾配が小さくなって
しまう、という欠点があることを本発明者らが解明した
ことに基づいている。
In order to achieve the above object, the inventors of the present invention have conducted further studies, and a heat shield is provided on the inner surface of the crucible in order to prevent the grown crystal from being heated by receiving radiant heat from the crucible wall. And the side surface of the growing crystal, and to prevent hot gas from accumulating in the space partitioned by the heat shield and trapping heat, vent holes are provided in the heat shield so that the hot gas escapes. It was found to be effective to do. This is because, in the above-described configuration in which the heat shield plate and cooling fins are provided, high temperature gas accumulates in the space partitioned by the heat shield plate and cooling fins to become a heat source, and the accumulated high temperature gas flows into the crucible. It is based on the clarification by the present inventors that there is a drawback that the crystal is heated and the temperature gradient in the crystal becomes small due to the heating.

【0008】本発明は、上記知見に基づきなされたもの
で、るつぼ内に入れた原料をヒータにより加熱して融解
させ、その原料融液の上面に種結晶を接触させてこれを
徐々に引き上げることにより単結晶を育成する単結晶育
成装置において、前記るつぼの内面と成長結晶の側面と
の間に、該成長結晶を略囲繞して前記るつぼからの輻射
熱により前記成長結晶が加熱されるのを防ぐ遮蔽体が、
るつぼ内融液の表面から所定高さだけ上方に離れるよう
に設けられており、該遮蔽体の上部には、該遮蔽体によ
り仕切られてなる空間内の高温ガスを同遮蔽体よりも上
方の空間に逃がす通気孔が設けられていることを特徴と
する。それによって、結晶育成の際に、育成中の結晶が
るつぼから輻射熱を受けるのを遮蔽体により抑えること
ができるとともに、遮蔽体により仕切られた空間内の高
温ガスを通気孔を介して上方に逃がすことができる。
The present invention was made on the basis of the above findings. The raw material placed in the crucible is heated by a heater to be melted, and a seed crystal is brought into contact with the upper surface of the raw material melt to gradually pull it up. In the single crystal growing apparatus for growing a single crystal by, between the inner surface of the crucible and the side surface of the growing crystal, the growing crystal is substantially surrounded to prevent the growing crystal from being heated by radiant heat from the crucible. The shield is
It is provided so as to be upwardly separated from the surface of the melt in the crucible by a predetermined height, and the high temperature gas in the space partitioned by the shield is provided above the shield above the shield. It is characterized in that a ventilation hole is provided to allow it to escape into the space. As a result, during the crystal growth, it is possible to prevent the growing crystal from receiving radiant heat from the crucible, and at the same time, the hot gas in the space partitioned by the shield escapes upward through the vent holes. be able to.

【0009】この単結晶育成装置において、前記遮蔽体
の下端と前記るつぼ内融液の表面との距離は、0mmより
も長くかつ100mm以下であり、好ましくは略30mm以
下であるとよい。その理由は、本発明者らが行った実験
によれば、遮蔽体の下端をるつぼ内融液(GaAs等化
合物半導体を育成するLEC法では液体封止剤)中に浸
漬させると単結晶が得られ難くなり、遮蔽体の下端とる
つぼ内融液の表面との距離が100mmであれば平均15
5mmの長さの単結晶が得られ、その距離が100mmを超
えるとるつぼからの輻射熱を遮る効果が小さくなって遮
蔽体による効果が期待できないからである。遮蔽体の下
端とるつぼ内融液の表面との距離が略30mm以下であれ
ば200mmの長さの単結晶が得られる。
In this single crystal growing apparatus, the distance between the lower end of the shield and the surface of the melt in the crucible is longer than 0 mm and 100 mm or less, preferably about 30 mm or less. The reason is that, according to the experiments conducted by the present inventors, a single crystal was obtained when the lower end of the shield was immersed in a melt in a crucible (a liquid sealant in the LEC method for growing a compound semiconductor such as GaAs). If the distance between the lower end of the shield and the surface of the melt in the crucible is 100 mm, it will average 15
This is because a single crystal having a length of 5 mm can be obtained, and the effect of shielding the radiant heat from the crucible having a distance of more than 100 mm becomes small, and the effect of the shield cannot be expected. If the distance between the lower end of the shield and the surface of the melt in the crucible is about 30 mm or less, a single crystal with a length of 200 mm can be obtained.

【0010】また、本発明は、るつぼ内に入れた原料を
ヒータにより加熱して融解させ、その原料融液の上面に
種結晶を接触させてこれを徐々に引き上げることにより
単結晶を育成するにあたって、前記るつぼを徐々に上昇
させて同るつぼの内面と成長結晶の側面との間に設けた
遮蔽体の下端とるつぼ内融液の表面との距離を所定の範
囲に保ちながら、該遮蔽体により前記るつぼからの輻射
熱を遮ってその輻射熱による前記成長結晶の加熱を防ぐ
とともに、該遮蔽体の上部に設けた通気孔により該遮蔽
体により仕切られてなる空間内の高温ガスを同遮蔽体よ
りも上方の空間に逃がすようにして結晶の育成を行うこ
とを特徴とする。それによって、るつぼからの輻射熱や
遮蔽体により仕切られた空間内に溜まる高温ガスにより
結晶が加熱されるのを防止でき、結晶内の温度勾配を適
当な大きさに保つことができる。
Further, according to the present invention, when a raw material placed in a crucible is heated by a heater to be melted, a seed crystal is brought into contact with the upper surface of the raw material melt and gradually pulled up to grow a single crystal. While gradually raising the crucible and maintaining the distance between the lower end of the shield provided between the inner surface of the crucible and the side surface of the grown crystal and the surface of the melt in the crucible within a predetermined range, The radiant heat from the crucible is shielded to prevent the growth crystal from being heated by the radiant heat, and the high-temperature gas in the space partitioned by the shield by the ventilation hole provided on the upper part of the shield is higher than that of the shield. It is characterized in that the crystal is grown so as to escape into the upper space. This can prevent the crystal from being heated by the radiant heat from the crucible and the high-temperature gas accumulated in the space partitioned by the shield, and the temperature gradient in the crystal can be maintained at an appropriate level.

【0011】この発明において、前記遮蔽体の下端と前
記るつぼ内融液の表面との距離を、0mmよりも長くかつ
100mm以下、好ましくは略30mm以下に保ちながら結
晶の育成を行うようにするとよい。その理由は、上述し
たように、本発明者らが行った実験によれば、遮蔽体の
下端がるつぼ内融液(LEC法では液体封止剤)中に浸
漬されたり、遮蔽体の下端とるつぼ内融液の表面との距
離が100mmを超えると長尺の単結晶が得られなくなる
からである。
In the present invention, it is advisable to grow crystals while maintaining the distance between the lower end of the shield and the surface of the melt in the crucible to be longer than 0 mm and 100 mm or less, preferably about 30 mm or less. . The reason is that, as described above, according to the experiments conducted by the present inventors, the lower end of the shield is immersed in the melt in the crucible (the liquid sealant in the LEC method) or the lower end of the shield. This is because a long single crystal cannot be obtained if the distance from the surface of the melt in the crucible exceeds 100 mm.

【0012】また、前記原料融液を、前記ヒータにより
加熱されて融解された液体封止材で覆いながら、GaA
s等の化合物半導体の単結晶を育成すれば、150〜2
00mm程度の長尺のGaAs等の単結晶が得られる。
Further, while covering the raw material melt with a liquid sealing material which is heated and melted by the heater,
If a single crystal of a compound semiconductor such as s is grown, it is 150 to 2
A long single crystal such as GaAs having a length of about 00 mm can be obtained.

【0013】[0013]

【発明の実施の形態】図1には、本発明に係る結晶育成
装置をLEC法による引上げ炉に適用した一例が示され
ている。同図に示すように、この結晶育成装置100
は、不活性ガスや窒素ガスによって内部が20気圧程度
に加圧される高圧容器1、原料2及び封止剤3を入れる
るつぼ4、該るつぼ4を回転可能かつ上下動可能に支持
するるつぼ軸5、下端に種結晶6を回転可能かつ上下動
可能に保持する引上げ軸7、原料2及び封止剤3を加熱
して融解するためのヒータ8、該ヒータ8を囲繞して容
器1を高温から保護する保温筒9、るつぼ4の内面と成
長した結晶10の側面との間に該結晶10を囲繞するよ
うに介装されてるつぼ4から結晶10ヘ向かう輻射熱を
遮る遮蔽体11とを備えた構成となっている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an example in which the crystal growth apparatus according to the present invention is applied to a pulling furnace by the LEC method. As shown in FIG.
Is a high-pressure container 1 whose inside is pressurized to about 20 atm by an inert gas or nitrogen gas, a crucible 4 for containing a raw material 2 and a sealant 3, and a crucible shaft for rotatably and vertically moving the crucible 4. 5, a pulling shaft 7 for holding the seed crystal 6 rotatably and vertically movable at the lower end, a heater 8 for heating and melting the raw material 2 and the sealant 3, and surrounding the heater 8 to raise the temperature of the container 1 to a high temperature. A heat-insulating cylinder 9 for protecting the crystal 10 from the crucible 4, and a shield 11 for shielding radiant heat from the crucible 4 to the crystal 10 interposed between the inner surface of the crucible 4 and the side surface of the grown crystal 10 so as to surround the crystal 10. It has been configured.

【0014】遮蔽体11は、成長した結晶10を囲繞す
る筒部11aと該筒部11aの上端に外向きに設けられ
た鍔部11bとにより例えばシルクハット状に成形され
ており、グラファイト、カーボン、pBN(熱分解窒化
ホウ素)、アルミナ、モリブデンまたはタングステンな
ど、耐熱性を有しかつ結晶10を汚染しないような材質
でできている。鍔部11bの外縁は保温筒9の上端に固
定されている。鍔部11bには、表裏(上下)に貫通す
る通気孔11cが設けられている。
The shield 11 is formed, for example, in a top hat shape by a tubular portion 11a surrounding the grown crystal 10 and a flange portion 11b provided on the upper end of the tubular portion 11a so as to face outward. , PBN (pyrolytic boron nitride), alumina, molybdenum, or tungsten, which are heat resistant and do not contaminate the crystal 10. The outer edge of the collar portion 11b is fixed to the upper end of the heat insulating cylinder 9. The collar portion 11b is provided with ventilation holes 11c penetrating through the front and back (up and down).

【0015】この通気孔11cを介して、遮蔽体11、
保温筒9及びヒータ8などで仕切られた空間A内の高温
ガスが容器1内の上方空間Bへ逃げるので、遮蔽板11
が高温にならず、またるつぼ4内に高温ガスが流れ込む
こともない。従って、成長結晶10内の温度勾配を大き
くすることができる。そして、遮蔽体11が保温筒9に
固定されていることにより前記上方空間Bが容積の大き
な空間となるので、成長結晶10内の温度勾配を大きく
するのに有効である。
Through the ventilation hole 11c, the shield 11,
Since the high temperature gas in the space A partitioned by the heat insulation cylinder 9 and the heater 8 escapes to the upper space B in the container 1, the shielding plate 11
Does not reach a high temperature and hot gas does not flow into the crucible 4. Therefore, the temperature gradient in the grown crystal 10 can be increased. Since the shield 11 is fixed to the heat insulating cylinder 9, the upper space B becomes a space having a large volume, which is effective for increasing the temperature gradient in the grown crystal 10.

【0016】筒部11aの長さLは、筒部11aの下端
と封止剤3の表面との距離hが0mmよりも大きくかつ1
00mm以下となるような長さであるのが適当である。そ
の理由は、筒部11aの下端を封止剤3中に浸漬させる
(この場合を、距離hが0mmであるとする。)と単結晶
が得られ難くなり、また距離hが100mmを超えるとる
つぼ4からの輻射熱を遮る効果が小さくなって結晶10
がるつぼ4からの輻射熱により加熱されてしまい、結晶
10内の温度勾配が小さくなってしまうからである。こ
こで、結晶育成中、るつぼ軸5を徐々に上昇させて、常
に筒部11aの下端と封止剤3の表面との距離hを一定
に保つようにする。
The length L of the tubular portion 11a is such that the distance h between the lower end of the tubular portion 11a and the surface of the sealant 3 is greater than 0 mm and 1
It is suitable that the length is 100 mm or less. The reason is that it becomes difficult to obtain a single crystal when the lower end of the tubular portion 11a is immersed in the sealant 3 (in this case, the distance h is 0 mm), and when the distance h exceeds 100 mm. The effect of blocking the radiant heat from the crucible 4 is reduced and the crystal 10
This is because it is heated by the radiant heat from the crucible 4 and the temperature gradient in the crystal 10 becomes small. Here, during the crystal growth, the crucible shaft 5 is gradually raised so that the distance h between the lower end of the tubular portion 11a and the surface of the sealant 3 is always kept constant.

【0017】なお、遮蔽体11は、図1に示す断面形状
のものに限らず、筒部11aを傾斜させてテーパー状に
してもよい。このように遮蔽体11の形状、特に筒部1
1aの形状及びその長さLと通気孔11cの開口率(通
気孔11cの開口面積を含めた鍔部11b全体の面積に
対する通気孔11cの開口面積の割合)を適宜選択する
ことにより、成長した結晶10内の温度勾配を適当な大
きさに制御するようにしてもよい。
The shield 11 is not limited to the one having the cross-sectional shape shown in FIG. 1 and may have a tapered shape by inclining the tubular portion 11a. In this way, the shape of the shield 11 and particularly the tubular portion 1
The shape and the length L of 1a and the opening ratio of the ventilation hole 11c (ratio of the opening area of the ventilation hole 11c to the entire area of the collar portion 11b including the opening area of the ventilation hole 11c) were grown appropriately. The temperature gradient in the crystal 10 may be controlled to an appropriate size.

【0018】高圧容器1は、ステンレス等の金属製の水
冷高圧ジャケット構造をしており、周囲を流れる冷却水
(図示せず)により冷却されている。また、容器1内
は、容器1に連結された図示しないガス供給装置及びガ
ス排出装置により、所定の雰囲気とされる。その際、容
器1内の圧力は、図示しない圧力センサの検出値に基づ
いて所定圧力となるように制御される。
The high-pressure vessel 1 has a water-cooled high-pressure jacket structure made of metal such as stainless steel, and is cooled by cooling water (not shown) flowing around it. Further, the inside of the container 1 is made into a predetermined atmosphere by a gas supply device and a gas discharge device (not shown) connected to the container 1. At that time, the pressure in the container 1 is controlled to be a predetermined pressure based on the detection value of a pressure sensor (not shown).

【0019】るつぼ4はpBNなどでできている。The crucible 4 is made of pBN or the like.

【0020】保温筒9はグラファイトやグラファイトフ
ェルトなどでできている。
The heat insulation cylinder 9 is made of graphite or graphite felt.

【0021】引上げ軸7には、引上げ軸の変位量を検知
する変位センサ、及び結晶の直径制御用の重量センサ
(ロードセル等)が取り付けられている。
A displacement sensor for detecting the amount of displacement of the pulling shaft and a weight sensor (load cell etc.) for controlling the diameter of the crystal are attached to the pulling shaft 7.

【0022】るつぼ軸5には、るつぼ軸5の変位量を測
定する変位センサが取り付けられている。結晶育成中、
引上げ軸7の変位センサ及び重量センサの検出値に基づ
いてそれらセンサが接続された図示しない計算機により
原料融液2の液面の変位量が計算され、その計算値及び
計算機に接続されたるつぼ軸5の変位センサの検出値に
基づいてるつぼ4の上昇量が制御される。
A displacement sensor for measuring the amount of displacement of the crucible shaft 5 is attached to the crucible shaft 5. During crystal growth,
A displacement amount of the liquid surface of the raw material melt 2 is calculated by a computer (not shown) connected to the displacement sensor and the weight sensor of the pulling shaft 7 based on the detected values of the sensors, and the calculated value and the crucible shaft connected to the computer. The ascending amount of the crucible 4 is controlled based on the detection value of the displacement sensor 5.

【0023】なお、上記構成の結晶育成装置100は、
LEC法以外のチョクラルスキー法により結晶を育成す
る際にも用いることができる。
The crystal growth apparatus 100 having the above-mentioned structure is
It can also be used when growing crystals by the Czochralski method other than the LEC method.

【0024】[0024]

【実施例】以下に、実施例及び比較例を挙げて本発明の
特徴とするところを明らかとする。なお、本発明は、以
下の各実施例により何ら限定されるものではないのはい
うまでもない。
EXAMPLES The features of the present invention will be clarified below with reference to Examples and Comparative Examples. Needless to say, the present invention is not limited to the following examples.

【0025】(実施例1)図1に示した構成の結晶育成
装置100を用いてLEC法によりGaAs単結晶の育
成を行った。この育成装置100の遮蔽体11にはグラ
ファイト製のものを用いた。その遮蔽体11の筒部11
aの断面形状は内径200mmの円形状であった。そし
て、筒部11aの長さLを適当な長さとして筒部11a
の下端と封止剤3の表面との距離hを30mmとした。ま
た、遮蔽体11の鍔部11bには通気孔11cを面積比
(開口率)で90%となるように設けた。保温筒9の内
径は350mmであった。
Example 1 A GaAs single crystal was grown by the LEC method using the crystal growing apparatus 100 having the structure shown in FIG. The shield 11 of the growing apparatus 100 is made of graphite. The cylindrical portion 11 of the shield 11
The sectional shape of a was circular with an inner diameter of 200 mm. Then, the length L of the tubular portion 11a is set to an appropriate length and the tubular portion 11a
The distance h between the lower end of the sealant and the surface of the sealant 3 was set to 30 mm. Further, ventilation holes 11c were provided in the collar portion 11b of the shield 11 so that the area ratio (opening ratio) was 90%. The inner diameter of the heat insulating cylinder 9 was 350 mm.

【0026】内径300mmのpBN(熱分解窒化ホウ
素)製るつぼ4に15kgの高純度GaAs原料2と封止
剤3として2.5kgのB2 3 を入れ、それを高圧容器
1内のるつぼ軸5上に設置した。高圧容器1内を真空ポ
ンプ(図示省略した。)で排気した後、Arガスを導入
して容器1内を20気圧のArガス雰囲気とした。その
後、ヒータ8に給電してるつぼ4内の原料2及び封止剤
3を融解させ、所定の温度環境となるようにヒータ8に
供給する電力を制御しながら種結晶6を原料融液2の表
面に接触させた。なお、所定の温度環境とは、結晶(種
結晶6或は成長結晶10)と原料融液2との固液界面形
状が下向きに凸形状となるような炉内温度分布の環境で
ある。
Into a crucible 4 made of pBN (pyrolytic boron nitride) having an inner diameter of 300 mm, 15 kg of high-purity GaAs raw material 2 and 2.5 kg of B 2 O 3 as a sealing agent 3 were put, and the crucible shaft in the high-pressure vessel 1 was put into the crucible shaft. 5 was installed. After evacuating the inside of the high-pressure container 1 with a vacuum pump (not shown), Ar gas was introduced to make the inside of the container 1 an Ar gas atmosphere of 20 atm. After that, the raw material 2 and the sealant 3 in the crucible 4 are melted by supplying power to the heater 8, and the seed crystal 6 is fed to the raw material melt 2 while controlling the electric power supplied to the heater 8 so as to obtain a predetermined temperature environment. Contacted the surface. The predetermined temperature environment is an environment in which the temperature distribution in the furnace is such that the solid-liquid interface shape between the crystal (seed crystal 6 or grown crystal 10) and the raw material melt 2 is convex downward.

【0027】引上げ軸7を時計回りに6rpm で回転させ
るとともにるつぼ軸5を反時計回りに20rpm で回転さ
せながら、毎時6〜10mmの引上げ速度でもって結晶軸
7を上昇させて、直径110mm(4インチ)で長さ20
0mmのGaAsの結晶(成長方位〈100〉)を育成し
た。育成回数は4回であった。なお、結晶育成中、遮蔽
体11の筒部11aの下端と封止剤3の表面との距離h
が常に一定(30mm)に保たれるように、るつぼ軸5に
よりるつぼ4を徐々に上昇させた。
While the pulling shaft 7 is rotated clockwise at 6 rpm and the crucible shaft 5 is rotated counterclockwise at 20 rpm, the crystal shaft 7 is raised at a pulling speed of 6 to 10 mm / hour to obtain a diameter of 110 mm (4 20 inches in length
A 0 mm GaAs crystal (growth direction <100>) was grown. The number of breeding was 4 times. During the crystal growth, the distance h between the lower end of the cylindrical portion 11a of the shield 11 and the surface of the sealant 3 is h.
The crucible 4 was gradually moved upward by the crucible shaft 5 so that the temperature was kept constant (30 mm).

【0028】(実施例2)遮蔽体11の筒部11aの長
さLを100mmとし、かつ筒部11aの下端と封止剤3
の表面との距離hを100mmとしてGaAsの結晶を育
成した。育成回数は4回であった。なお、結晶育成中、
遮蔽体11の筒部11aの下端と封止剤3の表面との距
離hが常に一定(100mm)に保たれるように、るつぼ
4を徐々に上昇させた。その他の条件等については、上
記実施例1と同じであった。
(Embodiment 2) The length L of the tubular portion 11a of the shield 11 is 100 mm, and the lower end of the tubular portion 11a and the sealant 3 are used.
A GaAs crystal was grown with the distance h from the surface of the substrate being 100 mm. The number of breeding was 4 times. During crystal growth,
The crucible 4 was gradually raised so that the distance h between the lower end of the tubular portion 11a of the shield 11 and the surface of the sealant 3 was always kept constant (100 mm). The other conditions were the same as in Example 1 above.

【0029】(比較例)遮蔽体11を設けずにGaAs
の結晶を3回育成した。その他の条件等については、上
記実施例1と同じであった。
(Comparative Example) GaAs without the shield 11
Was grown three times. The other conditions were the same as in Example 1 above.

【0030】(結果)上記実施例1、実施例2及び比較
例で得られた各GaAs結晶(長さ200mm)につい
て、それぞれの単結晶部分の長さを表1に示す。
(Results) Table 1 shows the lengths of the single crystal portions of the GaAs crystals (length 200 mm) obtained in Examples 1 and 2 and Comparative Example.

【0031】[0031]

【表1】 [Table 1]

【0032】表1から、実施例1,2のように遮蔽体1
1を設けると、遮蔽体11を設けない場合(比較例)よ
りも単結晶部分の長さが長くなることがわかる。また、
実施例1と実施例2を比較することにより、遮蔽板11
の筒部11aの下端と封止剤3の表面との距離hが小さ
いほど単結晶部分の長さは長くなり、特に実施例1のよ
うにその距離hが30mmであれば、得られた結晶の全体
(200mm)が単結晶になることがわかる。
From Table 1, as in Examples 1 and 2, the shield 1
It can be seen that when 1 is provided, the length of the single crystal portion becomes longer than when the shield 11 is not provided (comparative example). Also,
By comparing Example 1 and Example 2, the shielding plate 11
The smaller the distance h between the lower end of the cylindrical portion 11a and the surface of the sealant 3, the longer the length of the single crystal portion. Particularly, when the distance h is 30 mm as in Example 1, the obtained crystal is obtained. It can be seen that the whole of (200 mm) becomes a single crystal.

【0033】従って、遮蔽体11を設け、その筒部11
aの下端を封止剤3の表面に近づけるようにすることに
より、単結晶化率の高いGaAs結晶(単結晶部分の長
さが150mm〜200mm)が得られる。
Therefore, the shield 11 is provided, and the cylindrical portion 11 thereof is provided.
By making the lower end of a close to the surface of the encapsulant 3, a GaAs crystal with a high single crystallization rate (the length of the single crystal portion is 150 mm to 200 mm) can be obtained.

【0034】[0034]

【発明の効果】本発明によれば、結晶育成の際に、育成
中の結晶がるつぼから輻射熱を受けるのを遮蔽体により
抑えることができるとともに、遮蔽体により仕切られた
空間内の高温ガスを通気孔を介して上方に逃がすことが
できるので、それら輻射熱や高温ガスによる結晶の加熱
により結晶内の温度勾配が小さくなるのを未然に防ぐこ
とができ、より長尺の単結晶を育成できる。
According to the present invention, it is possible to prevent the growing crystal from receiving radiant heat from the crucible during the crystal growth, and to prevent the high temperature gas in the space partitioned by the shield. Since it can escape upward through the ventilation holes, it is possible to prevent the temperature gradient in the crystal from becoming small due to the radiant heat or the heating of the crystal by the high temperature gas, and it is possible to grow a longer single crystal.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る結晶育成装置をLEC法による引
上げ炉に適用した一例を示す概略図である。
FIG. 1 is a schematic diagram showing an example in which a crystal growth apparatus according to the present invention is applied to a pulling furnace by the LEC method.

【符号の説明】[Explanation of symbols]

A 遮蔽体により仕切られてなる空間 B 遮蔽体よりも上方の空間 h 遮蔽体の下端と封止剤(るつぼ内融液)の表面と
の距離 2 原料融液 3 封止剤 4 るつぼ 6 種結晶 8 ヒータ 10 成長結晶 11 遮蔽体 11c 通気孔 100 結晶育成装置
A Space partitioned by shield B Space above shield h h Distance between bottom of shield and surface of sealant (melt in crucible) 2 Raw material melt 3 Sealant 4 Crucible 6 Seed crystal 8 Heater 10 Growth Crystal 11 Shield 11c Vent 100 Crystal Growth Device

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 るつぼ内に入れた原料をヒータにより加
熱して融解させ、その原料融液の上面に種結晶を接触さ
せてこれを徐々に引き上げることにより単結晶を育成す
る単結晶育成装置において、前記るつぼの内面と成長結
晶の側面との間に、該成長結晶を略囲繞して前記るつぼ
からの輻射熱により前記成長結晶が加熱されるのを防ぐ
遮蔽体が、るつぼ内融液の表面から所定高さだけ上方に
離れるように設けられており、該遮蔽体の上部には、該
遮蔽体により仕切られてなる空間内の高温ガスを同遮蔽
体よりも上方の空間に逃がす通気孔が設けられているこ
とを特徴とする単結晶育成装置。
1. A single crystal growing apparatus for growing a single crystal by heating a raw material placed in a crucible with a heater to melt it, bringing a seed crystal into contact with the upper surface of the raw material melt, and gradually pulling it up. , Between the inner surface of the crucible and the side surface of the growing crystal, a shield that substantially surrounds the growing crystal and prevents the growing crystal from being heated by radiant heat from the crucible, from the surface of the melt in the crucible. It is provided so as to be separated upward by a predetermined height, and a ventilation hole is provided in the upper part of the shield to let hot gas in the space partitioned by the shield escape to a space above the shield. A single crystal growth apparatus characterized by being provided.
【請求項2】 前記遮蔽体の下端と前記るつぼ内融液の
表面との距離は、0mmよりも長くかつ100mm以下であ
り、好ましくは略30mm以下であることを特徴とする請
求項1記載の単結晶育成装置。
2. The distance between the lower end of the shield and the surface of the melt in the crucible is longer than 0 mm and 100 mm or less, preferably about 30 mm or less. Single crystal growth equipment.
【請求項3】 るつぼ内に入れた原料をヒータにより加
熱して融解させ、その原料融液の上面に種結晶を接触さ
せてこれを徐々に引き上げることにより単結晶を育成す
るにあたって、前記るつぼを徐々に上昇させて同るつぼ
の内面と成長結晶の側面との間に設けた遮蔽体の下端と
るつぼ内融液の表面との距離を所定の範囲に保ちなが
ら、該遮蔽体により前記るつぼからの輻射熱を遮ってそ
の輻射熱による前記成長結晶の加熱を防ぐとともに、該
遮蔽体の上部に設けた通気孔により該遮蔽体により仕切
られてなる空間内の高温ガスを同遮蔽体よりも上方の空
間に逃がすようにして結晶の育成を行うことを特徴とす
る単結晶育成方法。
3. A single crystal is grown by heating a raw material placed in a crucible with a heater to melt it, bringing a seed crystal into contact with the upper surface of the raw material melt, and gradually pulling it up to grow the single crystal. While keeping the distance between the lower end of the shield provided between the inner surface of the crucible and the side surface of the grown crystal gradually rising and the surface of the melt in the crucible within a predetermined range, from the crucible by the shield. The radiant heat is shielded to prevent the growth crystal from being heated by the radiant heat, and the high temperature gas in the space partitioned by the shield by the ventilation hole provided above the shield is transferred to a space above the shield. A method for growing a single crystal, characterized in that the crystal is grown so as to escape.
【請求項4】 前記遮蔽体の下端と前記るつぼ内融液の
表面との距離を、0mmよりも長くかつ100mm以下、好
ましくは略30mm以下に保ちながら結晶の育成を行うこ
とを特徴とする請求項3記載の単結晶育成方法。
4. The crystal is grown while keeping the distance between the lower end of the shield and the surface of the melt in the crucible longer than 0 mm and 100 mm or less, preferably about 30 mm or less. Item 3. The single crystal growth method according to Item 3.
【請求項5】 前記原料融液を、前記ヒータにより加熱
されて融解された液体封止材で覆いながら、化合物半導
体の単結晶を育成することを特徴とする請求項3または
4記載の単結晶育成方法。
5. A single crystal of a compound semiconductor according to claim 3, wherein a single crystal of a compound semiconductor is grown while the raw material melt is covered with a liquid sealing material which is heated and melted by the heater. Training method.
【請求項6】 前記化合物半導体は、GaAsであるこ
とを特徴とする請求項5記載の単結晶育成方法。
6. The method for growing a single crystal according to claim 5, wherein the compound semiconductor is GaAs.
JP20613795A 1995-08-11 1995-08-11 Single crystal growth apparatus and single crystal growth process Pending JPH0952790A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20613795A JPH0952790A (en) 1995-08-11 1995-08-11 Single crystal growth apparatus and single crystal growth process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20613795A JPH0952790A (en) 1995-08-11 1995-08-11 Single crystal growth apparatus and single crystal growth process

Publications (1)

Publication Number Publication Date
JPH0952790A true JPH0952790A (en) 1997-02-25

Family

ID=16518404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20613795A Pending JPH0952790A (en) 1995-08-11 1995-08-11 Single crystal growth apparatus and single crystal growth process

Country Status (1)

Country Link
JP (1) JPH0952790A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003081688A (en) * 2001-06-25 2003-03-19 Dowa Mining Co Ltd Furnace and method for growing crystal
KR20030070477A (en) * 2002-02-25 2003-08-30 네오세미테크 주식회사 Crystal Growing Apparatus For Increasing GaAs Single Crystal Yield
WO2012009900A1 (en) * 2010-07-19 2012-01-26 常州天合光能有限公司 Heat field structure of single crystal furnace for removing the deposition of volatile components on the exterior of heat shield

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003081688A (en) * 2001-06-25 2003-03-19 Dowa Mining Co Ltd Furnace and method for growing crystal
JP4614583B2 (en) * 2001-06-25 2011-01-19 Dowaホールディングス株式会社 Crystal growth furnace and crystal growth method
KR20030070477A (en) * 2002-02-25 2003-08-30 네오세미테크 주식회사 Crystal Growing Apparatus For Increasing GaAs Single Crystal Yield
WO2012009900A1 (en) * 2010-07-19 2012-01-26 常州天合光能有限公司 Heat field structure of single crystal furnace for removing the deposition of volatile components on the exterior of heat shield

Similar Documents

Publication Publication Date Title
US6632280B2 (en) Apparatus for growing single crystal, method for producing single crystal utilizing the apparatus and single crystal
JP3634867B2 (en) Single crystal manufacturing apparatus and manufacturing method
US9217208B2 (en) Apparatus for producing single crystal
WO2023231259A1 (en) Thermal field control device for crystal pulling furnace and crystal pulling furnace
JPH11335194A (en) Semiconductor crystal, its production and production apparatus
JPS62138386A (en) Device for pulling single crystal
JPH09183686A (en) Method and apparatus for pulling up single crystal
KR20110036896A (en) Single crystal manufacturing apparatus and manufacturing method
JPH0952790A (en) Single crystal growth apparatus and single crystal growth process
EP1614774A1 (en) Process for producing single crystal
EP0210439B1 (en) Method for growing single crystals of dissociative compound semiconductor
EP0417948A2 (en) Method and apparatus for pulling up silicon single crystal
JP2520924B2 (en) Single crystal pulling device
EP0221051A1 (en) Method and apparatus for growing single crystal bodies
JP2755452B2 (en) Silicon single crystal pulling equipment
JPH09309787A (en) Eater-cooling tower for single crystal-pulling up apparatus
JP2004277267A (en) Apparatus for manufacturing compound semiconductor single crystal
JPH11255577A (en) Apparatus for pulling silicon single crystal and pulling up thereof
JP4117813B2 (en) Method for producing compound semiconductor single crystal
JP3788077B2 (en) Semiconductor crystal manufacturing method and manufacturing apparatus
JP2850561B2 (en) Single crystal pulling device
JP2003267795A (en) Silicon single crystal pulling apparatus
JPH09268097A (en) Apparatus for producing single crystal
JP2022182823A (en) Single crystal production apparatus
JP3750172B2 (en) Single crystal pulling method