JP4614583B2 - Crystal growth furnace and crystal growth method - Google Patents

Crystal growth furnace and crystal growth method Download PDF

Info

Publication number
JP4614583B2
JP4614583B2 JP2001196772A JP2001196772A JP4614583B2 JP 4614583 B2 JP4614583 B2 JP 4614583B2 JP 2001196772 A JP2001196772 A JP 2001196772A JP 2001196772 A JP2001196772 A JP 2001196772A JP 4614583 B2 JP4614583 B2 JP 4614583B2
Authority
JP
Japan
Prior art keywords
crystal growth
crucible
crystal
furnace
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001196772A
Other languages
Japanese (ja)
Other versions
JP2003081688A (en
Inventor
晃 大塚
光昭 虻川
剛 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Holdings Co Ltd
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Holdings Co Ltd, Dowa Mining Co Ltd filed Critical Dowa Holdings Co Ltd
Priority to JP2001196772A priority Critical patent/JP4614583B2/en
Publication of JP2003081688A publication Critical patent/JP2003081688A/en
Application granted granted Critical
Publication of JP4614583B2 publication Critical patent/JP4614583B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は,溶融液を引き上げながら固化させて結晶を成長させる結晶成長炉及び結晶成長方法に関する。
【0002】
【従来の技術】
るつぼ内に入れられた素材の溶融液に種子結晶を漬けて,ゆっくりと引き上げながら種子結晶についてくる溶融液を固化させて結晶を成長させるチョクラルスキー法の結晶成長炉では,単結晶の成長に悪影響を及ぼす輻射熱を防ぐために,炉容器内においてるつぼの上方に輻射熱シールドが配置される。このような輻射熱シールドに関して,特開2000−86381号のシールド取付治具や特開平1−160891号の単結晶引上装置が公知である。そして,これら特開2000−86381号や特開平1−160891号に開示された結晶成長炉では,いずれも炉容器の天井面に適当なシャフトを貫通させ,このシャフトの下端に輻射熱シールドを吊り下げることにより,輻射熱シールドを適当な高さに固定している。
【0003】
【発明が解決しようとする課題】
しかしながら,炉容器内の上部は高温になるため,シャフトを貫通させているシール部分が炉容器の天井面にあると,シール部分を熱によって損傷してしまう心配がある。この損傷から保護するためにシール部分を冷却することが必要となるが,冷却すると,シール部分や冷却されたシャフトに,るつぼから揮発した素材などが付着しやすくなってしまう。そして,このようにシール部分やシャフトに素材などが付着した場合,気密性を低下させ,炉容器内からガスリークを発生させる原因となる可能性がある。
【0004】
このため,従来は,結晶成長の操作を終了する毎に炉容器を開放し,シール部分やシャフトをクリーニングしたり,部品交換をする必要があった。また従来は,炉容器の天井面に貫通させたシャフトを,炉容器の上部に配置した駆動機構で昇降させており,炉容器を開放した状態で,輻射熱シールドの原点位置を目視で確認しにくかった。
【0005】
一方,チョクラルスキー法により結晶成長させる場合,結晶成長界面及び成長結晶側面における結晶欠陥の発生を抑制するためには,るつぼ内に入った素材の加熱量(るつぼ底方向への熱流量)を制御するが重要であると共に,ヒータや溶融液表面からの輻射熱量を制御することも重要である。本発明者らの知見によれば,これらの輻射熱量を制御するに際し,溶融液の液面上に充填された封止材表面と輻射熱シールドの下端との距離が重要なファクターの一つであることが分かった。
【0006】
ここで,従来の結晶成長炉では,輻射熱シールドの高さが固定されているため,例えば結晶の引き上げに伴ってるつぼを上昇させることにより,るつぼ内の溶融液液面と輻射熱シールドの下端との距離を一定に保つこととすると,るつぼとヒータの位置関係が変わってしまう。これにより,溶融液に対する加熱量が変化し,結晶成長界面及び成長結晶側面における結晶欠陥の発生を有効に抑制できなくなる心配がある。また,結晶成長が進み,成長したインゴットの大きさに応じ,インゴットの温度低下を防ぐため,前記距離をそれに応じて変化させる。
【0007】
また,従来の結晶成長炉において輻射熱シールドを昇降させようとしても,輻射熱シールドを支持しているシャフトを貫通させているシール部分が炉容器の天井面にあるので,結晶成長中にシャフトを昇降させると,熱によりシール部分のシール性を損なう心配がある。加えて,シール部分が高熱となった状態で輻射熱シールドの昇降を高精度で制御することは,相当に困難である。
【0008】
本発明の目的は,シール部分に熱的な悪影響を及ぼすことがなく,気密性に優れ,しかもメンテナンスも容易な結晶成長炉を提供するとともに,結晶成長界面や成長結晶側面における結晶欠陥の発生を抑制できる結晶成長方法を提供することにある。
【0009】
【課題を解決する手段】
この目的を達成するために,本発明にあっては,るつぼ内の溶融液を引き上げながら固化させて結晶を成長させる結晶成長炉であって,るつぼ内に入れられた溶融液の上方に配置される輻射熱シールドを昇降部材に支持し,前記昇降部材を炉容器底面に貫通させて,炉容器外に配置した昇降機構に接続し,前記るつぼの周側面および底面を囲むように断熱材が配置されてなる,結晶成長炉が提供される。前記炉容器底面において,前記昇降部材を貫通させる箇所にシール軸受けを設けると良い。
【0010】
また,本発明にあっては,るつぼ内の溶融液を引き上げながら固化させて結晶を成長させる結晶成長方法であって,
上記結晶成長炉において,るつぼ内に入れられた溶融液の上方に配置される輻射熱シールドを,結晶を引き上げるに伴って昇降させることを特徴とする,結晶成長方法が提供される。この場合,溶融液の液面上に充填された封止材表面と輻射熱シールドの下端との距離を一定に保つように,輻射熱シールドの昇降を制御すると良い。
【0011】
【発明の実施の形態】
以下,本発明の好ましい実施の形態を図面を参照にして説明する。図1は,本発明の実施の形態にかかる結晶成長炉1の内部構造を模式的に示した縦断面図である。
【0012】
底面が閉塞され上面が開口した円筒形状の炉容器10の上面は,蓋11によって開閉自在に塞がれている。炉容器10の内部のほぼ中央には,底面が閉塞され上面が開口した円筒形状のるつぼ12が収納されている。るつぼ12は,炉容器10の底面の中央を垂直に貫通して設けられた支柱13の上端に支持されている。
【0013】
るつぼ12の周側面全体を囲むようにしてヒータ15が配置されている。ヒータ15は,るつぼ12を内部に収納できる大きさを持った円筒形状をなしており,ヒータ15の上下は開口している。
【0014】
ヒータ15の周側面全体と,るつぼ12の底面を囲むようにして断熱材16が配置されている。断熱材16は,るつぼ12及びヒータ15を内部に収納できる大きさを持った円筒形状をなしており,断熱材16の底面は閉塞され上面は開口している。但し,断熱材16の底面の中央には,るつぼ12を支持している支柱13を通すための孔17が形成してある。
【0015】
るつぼ12の内部には,単結晶を成長させるための原料aが入れられている。原料aは,例えばGaAs,InPなどである。このようにるつぼ12内に入れられた原料aの上部には,封止材bが充填してある。封止材bには,例えばBなどが用いられる。
【0016】
また,このようにるつぼ12内に入れられた原料a及び封止材bの上方には,るつぼ12内に進入可能な大きさをもった円筒形状をなす輻射熱シールド20が配置されている。図1,2に示すように,輻射熱シールド20は,上下が開口した円筒形状をなす内円筒21を,上下が開口した円筒形状をなす外円筒22の中に挿入して,外円筒22の下方から内円筒21を突出させた構成を有している。
【0017】
外円筒22の下端には,内側に折れ曲がったフック部が形成され,内円筒21の上端には,外側に折れ曲がったフック部が形成されている。そして,これら外円筒22の下端のフック部と内円筒21の上端のフック部を係合させることによって,内円筒21は外円筒22の下端から抜け落ちないようになっている。図示の例では,これらフック部の間に適当な高さをもったリング形状のスペーサ(図示せず)を挟むことにより,外円筒22の下方から突出する内円筒21の長さを調節し,輻射熱シールド20全体の長さ(高さ)を所望のものにしている。なお,スペーサを省略し,これらフック部同士を直接に当接させても良い。
【0018】
輻射熱シールド20の上端(外円筒22の上端)には,中央が開口したドーナツ形状のサポート板30が取り付けてある。このサポート板30の下面を,左右一対の昇降部材31の上端によって支持することにより,輻射熱シールド20は,炉容器10の内部において所定の高さに配置されている。
【0019】
これら昇降部材31は,耐火性の高いモリブデン等の材料で構成することが好ましい。昇降部材31は,断熱材16及び炉容器10の底面を貫通するように設けられており,昇降部材31の下端は,炉容器10の底面よりも下方に突出している。このように炉容器10の底面から下方に突出した昇降部材31の下端には,昇降機構32が接続してあり,これら昇降機構32の稼動によって,左右の昇降部材31は一体的に昇降し,輻射熱シールド20が上下に移動するように構成されている。昇降機構32は,例えばウォームとウォームホイールからなる歯車機構であり,左右の昇降部材31を解して,輻射熱シールド20を任意の高さに昇降移動させることができる。
【0020】
また,炉容器10の底面において,昇降部材31を貫通させている箇所にはシール軸受け33がそれぞれ設けてある。これにより,昇降部材31が昇降しても,炉容器10底面の昇降部材31が貫通する箇所における気密性が維持されるようになっている。
【0021】
炉容器10の上面を塞いでいる蓋11の中央には,昇降自在な上部ロッド35が垂直に貫通して設けられている。この上部ロッド35の下端には,るつぼ12内に入れられた原料aの種子結晶(図示せず)が取り付けてある。
【0022】
そして,この上部ロッド35と前述の支柱13は同一直線状に配置されている。また,るつぼ12,ヒータ15,断熱材16及び炉容器10は,何れもこれら上部ロッド35及び支柱13を中心軸として同心状に配置されている。
【0023】
さて,以上のように構成された本発明の実施の形態にかかる結晶成長炉1において,原料aの単結晶を引き上げる場合には,先ず,蓋11によって塞がれた炉容器10内をアルゴンガスなどの不活性雰囲気に置換し,予めるつぼ12内に投入しておいた原料aを,ヒータ15で加熱することによって溶融させる。そして,このるつぼ12内の原料a(溶融液)を単結晶引上げに適した温度に維持する。
【0024】
次に,上部ロッド35を下降させ,上部ロッド35の下端に取り付けられた種子結晶を,るつぼ12内の原料a中に浸漬する。そして,上部ロッド35を引き上げることにより,るつぼ12内の原料a(溶融液)を種子結晶に付着させて,引き上げながら冷却し,固化させて結晶を成長させる。
【0025】
また,こうして原料aを引き上げる場合,昇降部材31によって支持されている輻射熱シールド20をるつぼ12内に進入させた状態とし,原料a及び封止材bの上方に配置する。そして,種子結晶に付着させて成長させた結晶を,上部ロッド35の上昇によって輻射熱シールド20内を通しながら引き上げていく。
【0026】
このように,成長させた結晶を輻射熱シールド20内にて引き上げることにより,熱線の輻射による影響を受けずに,好ましい状態で単結晶を作り出すことができる。
【0027】
なお,結晶の成長に伴い,るつぼ12内の原料a(溶融液)は徐々に減っていき,原料aの上部に充填された封止材bの表面が徐々に下降していく。そこで,封止材bの表面の下降に伴って,昇降機構32の稼動により昇降部材31を例えば最高速度10mm/hr(1mm/hr単位で制御)の昇降速度で昇降させ,封止材bの表面と輻射熱シールド20の下端(内円筒21の下端)との距離を最適な大きさ(例えば一定の距離)に保つと良い。封止材bの表面と輻射熱シールド20の下端との距離の最適値は,例えば封止材bの表面が下降していく位置などに基づいて演算して求めることができる。そうすれば,ヒータ15からるつぼ12内の原料aへの輻射熱量と,るつぼ12内の原料aから外部に出ようとする輻射熱量を一定に制御することが可能となる。また,るつぼ12の高さが一定であるので,るつぼ12とヒータ15の位置関係が変化せず,るつぼ12内の原料aの加熱量(るつぼ12底方向への熱流量)を一定に制御できるようになる。このため,結晶成長界面や成長結晶側面における結晶欠陥の発生を抑制できる。
【0028】
また,こうして結晶を成長させる場合,本発明の実施の形態の結晶成長炉1にあっては,ヒータ15の周側面全体とるつぼ12の底面を囲むようにして断熱材16が配置されているので,炉容器10の底面近傍の炉内雰囲気は,ヒータ15及びるつぼ12から熱的に遮断されている。このため,昇降部材31を貫通させているシール軸受け33は高温とならず,熱によってシール軸受け33を破損する心配がほとんどない。また,るつぼ12内から原料aが蒸発等しても,揮発した成分は,シール軸受け33近傍に到達する前に低温となって固化するので,シール軸受け33近傍では,昇降部材31への付着は少ない。これにより,シール軸受け33への異物混入が少なくなり,気密性の劣化が起こりにくくなる。
【0029】
また,本発明の実施の形態の結晶成長炉1にあっては,シール軸受け33の劣化が少ないため,シール軸受け33の交換が少なくて済み,昇降部材31やシール軸受け33のクリーニングなども作業低減できる。更に,原料aをるつぼ12内に投入する場合も,輻射熱シールド20を炉容器10内に取り付けたまま作業できるので,原料チャージも容易である。また,るつぼ12内の原料aや輻射熱シールド20などを上から視認しやすく,設置ミスを防止できる。
【0030】
以上,本発明の好ましい実施の形態の一例を示したが,本発明は,ここで説明した形態に限定されない。例えば,図1では,るつぼ12内において原料aの上部に封止材bを充填したLEC法(液体封止チョクラルスキー法)に基づいて説明したが,封止材bを用いない通常のチョクラルスキー法に本発明を適用しても良い。また,左右2本の昇降部材31のそれぞれに昇降機構32を設けた例を示したが,共通の昇降機構32によって左右2本の昇降部材31を上下動させても良い。なお,輻射熱シールド20は2本に限らず,1本でも良いし,3本以上あっても良い。また,断熱材16を貫通させて昇降部材31を配置した例を示したが,炉容器10内において昇降部材31を断熱材16の外側に配置しても良い。
【0031】
【実施例】
図1等で説明した結晶成長炉を用い,るつぼ内に原料としてGaAsを入れ結晶成長をおこなった。結晶成長前後で,結晶成長炉の底面においてシール軸受けを介して貫通している昇降部材を上下動させ,封止剤液面と輻射熱シールド下端との距離を固化率に応じて1〜60mmの範囲で昇降させた。なお,全体の昇降距離は100mm以上である。この操作を結晶成長毎に行い,結晶を10本成長させた。その結果,シール軸受けにおけるリークは許容範囲内であった。
【0032】
【発明の効果】
本発明によれば,炉容器底面が高温にならず,熱によってシール軸受けを破損する心配がほとんどない。またシール軸受け近傍では,昇降部材への原料の付着が少なく,気密性の劣化が起こりにくい。このため,シール軸受けの交換回数が少なくて済み,昇降部材やシール軸受けのクリーニング作業も容易である。また,蓋をとって炉容器を開けた場合でも,輻射熱シールドを炉容器内に取り付けたまま作業できるので,原料チャージも容易である。また,るつぼ内の原料や輻射熱シールドなどを上から視認しやすく,設置ミスを防止できる。
【0033】
また本発明によれば,るつぼ内に入った素材の加熱量や,ヒータ,溶融液表面からの輻射熱量を制御することができ,これにより,結晶成長界面や成長結晶側面における結晶欠陥の発生を抑制することが可能となる。
【図面の簡単な説明】
【図1】本発明の実施の形態にかかる結晶成長炉の内部構造を模式的に示した縦断面図である。
【図2】輻射熱シールドを斜め下方から見た斜視図である。
【符号の説明】
1 結晶成長炉
a 原料
b 封止材
10 炉容器
11 蓋
12 るつぼ
15 ヒータ
16 断熱材
20 輻射熱シールド
21 内円筒
22 外円筒
30 サポート板
31 昇降部材
32 昇降機構
35 上部ロッド
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a crystal growth furnace and a crystal growth method for growing a crystal by solidifying while pulling up a melt.
[0002]
[Prior art]
In the crystal growth furnace of the Czochralski method, where a seed crystal is immersed in a melt of a material placed in a crucible, and the melt that comes along the seed crystal is solidified while being slowly pulled up, the crystal grows. In order to prevent adverse radiant heat, a radiant heat shield is placed above the crucible in the furnace vessel. Regarding such a radiant heat shield, a shield mounting jig of Japanese Patent Laid-Open No. 2000-86381 and a single crystal pulling apparatus of Japanese Patent Laid-Open No. 1-160891 are known. In each of the crystal growth furnaces disclosed in Japanese Patent Application Laid-Open Nos. 2000-86381 and 1-160891, an appropriate shaft is passed through the ceiling surface of the furnace vessel, and a radiant heat shield is suspended from the lower end of the shaft. Therefore, the radiant heat shield is fixed at an appropriate height.
[0003]
[Problems to be solved by the invention]
However, since the upper part in the furnace vessel becomes high temperature, there is a concern that if the seal portion that penetrates the shaft is on the ceiling surface of the furnace vessel, the seal portion may be damaged by heat. In order to protect from this damage, it is necessary to cool the seal portion. However, if it is cooled, the material volatilized from the crucible tends to adhere to the seal portion and the cooled shaft. If the material adheres to the seal part or the shaft in this way, the gas tightness may be lowered and gas leakage may occur from the inside of the furnace vessel.
[0004]
For this reason, conventionally, it was necessary to open the furnace vessel every time the crystal growth operation was completed, clean the seal part and shaft, and replace parts. Conventionally, the shaft penetrating the ceiling of the furnace vessel is moved up and down by a drive mechanism located at the top of the furnace vessel, and it is difficult to visually check the origin position of the radiant heat shield with the furnace vessel opened. It was.
[0005]
On the other hand, in the case of crystal growth by the Czochralski method, in order to suppress the occurrence of crystal defects at the crystal growth interface and the side surface of the growth crystal, the heating amount of the material contained in the crucible (heat flow rate toward the bottom of the crucible) is set. Control is important, and it is also important to control the amount of radiant heat from the heater and melt surface. According to the knowledge of the present inventors, when controlling the amount of radiant heat, the distance between the surface of the sealing material filled on the melt surface and the lower end of the radiant heat shield is one of the important factors. I understood that.
[0006]
Here, in the conventional crystal growth furnace, since the height of the radiant heat shield is fixed, for example, by raising the crucible as the crystal is pulled up, the liquid level in the crucible and the lower end of the radiant heat shield are reduced. If the distance is kept constant, the positional relationship between the crucible and the heater will change. As a result, the amount of heating with respect to the melt changes, and there is a concern that the generation of crystal defects at the crystal growth interface and the crystal growth side cannot be effectively suppressed. Further, the crystal growth proceeds, and the distance is changed in accordance with the size of the grown ingot in order to prevent a temperature drop of the ingot.
[0007]
In addition, when trying to raise and lower the radiant heat shield in a conventional crystal growth furnace, the seal portion that penetrates the shaft supporting the radiant heat shield is located on the ceiling surface of the furnace vessel, so the shaft is raised and lowered during crystal growth. In addition, there is a concern that the sealing performance of the sealed part may be impaired by heat. In addition, it is considerably difficult to control the raising and lowering of the radiant heat shield with high accuracy in a state where the seal portion is heated.
[0008]
The object of the present invention is to provide a crystal growth furnace that does not adversely affect the seal portion thermally, has excellent airtightness and is easy to maintain, and is capable of generating crystal defects at the crystal growth interface and the crystal growth side. An object is to provide a crystal growth method that can be suppressed.
[0009]
[Means for solving the problems]
In order to achieve this object, the present invention is a crystal growth furnace for growing a crystal by pulling up the molten liquid in the crucible and is disposed above the molten liquid placed in the crucible. the radiant heat shield is supported by a lift member that, said lifting member to penetrate into the furnace vessel bottom, connected to a lifting mechanism that is disposed outside the furnace vessel, a heat insulating material is disposed so as to surround the peripheral sides and bottom of the crucible A crystal growth furnace is provided. On the bottom surface of the furnace vessel, a seal bearing may be provided at a location through which the elevating member penetrates.
[0010]
Further, in the present invention, a crystal growth method for growing a crystal by solidifying while pulling up a melt in a crucible,
In the crystal growth furnace, there is provided a crystal growth method characterized by raising and lowering a radiant heat shield disposed above a melt placed in a crucible as the crystal is pulled up. In this case, it is preferable to control the raising and lowering of the radiant heat shield so that the distance between the surface of the sealing material filled on the melt surface and the lower end of the radiant heat shield is kept constant.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a longitudinal sectional view schematically showing the internal structure of a crystal growth furnace 1 according to an embodiment of the present invention.
[0012]
The top surface of the cylindrical furnace vessel 10 whose bottom surface is closed and whose top surface is open is closed by a lid 11 so as to be freely opened and closed. A cylindrical crucible 12 having a closed bottom surface and an open top surface is accommodated at substantially the center inside the furnace vessel 10. The crucible 12 is supported on the upper end of a support column 13 provided vertically through the center of the bottom surface of the furnace vessel 10.
[0013]
A heater 15 is disposed so as to surround the entire peripheral side surface of the crucible 12. The heater 15 has a cylindrical shape with a size that can accommodate the crucible 12 therein, and the heater 15 is open at the top and bottom.
[0014]
A heat insulating material 16 is disposed so as to surround the entire peripheral side surface of the heater 15 and the bottom surface of the crucible 12. The heat insulating material 16 has a cylindrical shape having a size capable of accommodating the crucible 12 and the heater 15 therein, and the bottom surface of the heat insulating material 16 is closed and the upper surface is opened. However, in the center of the bottom surface of the heat insulating material 16, a hole 17 is formed for passing the support column 13 supporting the crucible 12.
[0015]
In the crucible 12, a raw material a for growing a single crystal is placed. The raw material a is, for example, GaAs, InP or the like. Thus, the upper part of the raw material a put in the crucible 12 is filled with the sealing material b. For example, B 2 O 3 is used for the sealing material b.
[0016]
A cylindrical radiant heat shield 20 having a size capable of entering the crucible 12 is disposed above the raw material a and the sealing material b placed in the crucible 12 as described above. As shown in FIGS. 1 and 2, the radiant heat shield 20 is formed by inserting an inner cylinder 21 having a cylindrical shape with upper and lower openings into an outer cylinder 22 having a cylindrical shape with upper and lower openings. The inner cylinder 21 is protruded from the inside.
[0017]
A hook part bent inward is formed at the lower end of the outer cylinder 22, and a hook part bent outward is formed at the upper end of the inner cylinder 21. Further, by engaging the hook portion at the lower end of the outer cylinder 22 and the hook portion at the upper end of the inner cylinder 21, the inner cylinder 21 is prevented from falling off from the lower end of the outer cylinder 22. In the illustrated example, the length of the inner cylinder 21 protruding from the lower side of the outer cylinder 22 is adjusted by sandwiching a ring-shaped spacer (not shown) having an appropriate height between these hook portions. The overall length (height) of the radiant heat shield 20 is set as desired. Note that the spacer may be omitted and the hook portions may be brought into direct contact with each other.
[0018]
A donut-shaped support plate 30 having an open center is attached to the upper end of the radiant heat shield 20 (the upper end of the outer cylinder 22). The lower surface of the support plate 30 is supported by the upper ends of the pair of left and right lifting members 31 so that the radiant heat shield 20 is disposed at a predetermined height inside the furnace vessel 10.
[0019]
These elevating members 31 are preferably made of a material such as molybdenum having high fire resistance. The elevating member 31 is provided so as to penetrate the heat insulating material 16 and the bottom surface of the furnace vessel 10, and the lower end of the elevating member 31 protrudes downward from the bottom surface of the furnace vessel 10. Thus, the elevating mechanism 32 is connected to the lower end of the elevating member 31 protruding downward from the bottom surface of the furnace vessel 10, and by operating these elevating mechanisms 32, the left and right elevating members 31 are integrally raised and lowered, The radiant heat shield 20 is configured to move up and down. The elevating mechanism 32 is a gear mechanism composed of, for example, a worm and a worm wheel, and can move the radiant heat shield 20 up and down to an arbitrary height through the left and right elevating members 31.
[0020]
Further, seal bearings 33 are provided at locations where the elevating member 31 is penetrated on the bottom surface of the furnace vessel 10. Thereby, even if the raising / lowering member 31 moves up and down, the airtightness in the location where the raising / lowering member 31 of the bottom face of the furnace vessel 10 penetrates is maintained.
[0021]
In the center of the lid 11 covering the upper surface of the furnace vessel 10, an upper rod 35 that can be moved up and down is vertically penetrated. A seed crystal (not shown) of the raw material a placed in the crucible 12 is attached to the lower end of the upper rod 35.
[0022]
And this upper rod 35 and the above-mentioned support | pillar 13 are arrange | positioned in the same straight line form. The crucible 12, the heater 15, the heat insulating material 16, and the furnace vessel 10 are all arranged concentrically with the upper rod 35 and the support column 13 as the central axes.
[0023]
In the crystal growth furnace 1 according to the embodiment of the present invention configured as described above, when pulling up the single crystal of the raw material a, first, the inside of the furnace vessel 10 closed by the lid 11 is argon gas. The raw material a previously put in the crucible 12 is melted by heating with the heater 15. Then, the raw material a (melt) in the crucible 12 is maintained at a temperature suitable for pulling the single crystal.
[0024]
Next, the upper rod 35 is lowered, and the seed crystal attached to the lower end of the upper rod 35 is immersed in the raw material a in the crucible 12. Then, by pulling up the upper rod 35, the raw material a (melt) in the crucible 12 is attached to the seed crystal, cooled while being pulled, and solidified to grow the crystal.
[0025]
Further, when the raw material a is pulled up in this way, the radiant heat shield 20 supported by the elevating member 31 is placed in the crucible 12 and disposed above the raw material a and the sealing material b. Then, the crystal grown by being attached to the seed crystal is pulled up while passing through the radiant heat shield 20 by the rising of the upper rod 35.
[0026]
Thus, by pulling up the grown crystal within the radiant heat shield 20, it is possible to produce a single crystal in a preferable state without being affected by the radiation of heat rays.
[0027]
As the crystal grows, the raw material a (melt) in the crucible 12 gradually decreases, and the surface of the sealing material b filled in the upper part of the raw material a gradually falls. Thus, as the surface of the sealing material b is lowered, the lifting member 31 is moved up and down at a lifting speed of, for example, a maximum speed of 10 mm / hr (controlled in units of 1 mm / hr) by operating the lifting mechanism 32. The distance between the surface and the lower end of the radiant heat shield 20 (the lower end of the inner cylinder 21) may be kept at an optimum size (for example, a constant distance). The optimum value of the distance between the surface of the sealing material b and the lower end of the radiant heat shield 20 can be obtained by calculation based on the position where the surface of the sealing material b descends, for example. By doing so, it is possible to control the amount of radiant heat from the heater 15 to the raw material a in the crucible 12 and the amount of radiant heat to be emitted from the raw material a in the crucible 12 to the outside. Further, since the height of the crucible 12 is constant, the positional relationship between the crucible 12 and the heater 15 does not change, and the heating amount of the raw material a in the crucible 12 (heat flow rate toward the bottom of the crucible 12) can be controlled to be constant. It becomes like this. For this reason, generation | occurrence | production of the crystal defect in a crystal growth interface and the growth crystal side surface can be suppressed.
[0028]
When the crystal is grown in this manner, in the crystal growth furnace 1 according to the embodiment of the present invention, the heat insulating material 16 is disposed so as to surround the entire peripheral side surface of the heater 15 and the bottom surface of the crucible 12. The furnace atmosphere near the bottom surface of the container 10 is thermally cut off from the heater 15 and the crucible 12. For this reason, the seal bearing 33 that penetrates the elevating member 31 does not become high temperature, and there is almost no fear that the seal bearing 33 is damaged by heat. Even if the raw material a evaporates from the crucible 12, the volatilized component is solidified at a low temperature before reaching the vicinity of the seal bearing 33. Few. As a result, foreign matter is less likely to enter the seal bearing 33 and airtightness is less likely to deteriorate.
[0029]
Further, in the crystal growth furnace 1 according to the embodiment of the present invention, since the deterioration of the seal bearing 33 is small, the replacement of the seal bearing 33 is small, and the work such as cleaning of the lifting member 31 and the seal bearing 33 is reduced. it can. Furthermore, even when the raw material a is put into the crucible 12, the work can be performed with the radiant heat shield 20 attached to the furnace vessel 10, so that the raw material can be charged easily. Further, the raw material a in the crucible 12 and the radiant heat shield 20 can be easily seen from above, and an installation error can be prevented.
[0030]
As mentioned above, although an example of preferable embodiment of this invention was shown, this invention is not limited to the form demonstrated here. For example, in FIG. 1, the crucible 12 is described based on the LEC method (liquid sealing Czochralski method) in which the sealing material b is filled in the upper part of the raw material a. The present invention may be applied to the Larsky method. Moreover, although the example which provided the raising / lowering mechanism 32 in each of the two right and left raising / lowering members 31 was shown, you may move the two raising / lowering members 31 right and left by the common raising / lowering mechanism 32 up and down. The radiant heat shield 20 is not limited to two, but may be one or three or more. Moreover, although the example which has penetrated the heat insulating material 16 and arrange | positioned the raising / lowering member 31 was shown, you may arrange | position the raising / lowering member 31 in the outer side of the heat insulating material 16 in the furnace vessel 10. FIG.
[0031]
【Example】
Crystal growth was performed by using GaAs as a raw material in the crucible using the crystal growth furnace described in FIG. Before and after crystal growth, the elevating member penetrating through the seal bearing at the bottom of the crystal growth furnace is moved up and down, and the distance between the sealant liquid surface and the lower end of the radiant heat shield is in the range of 1 to 60 mm depending on the solidification rate. Was raised and lowered. In addition, the whole raising / lowering distance is 100 mm or more. This operation was performed for each crystal growth to grow 10 crystals. As a result, the leak in the seal bearing was within the allowable range.
[0032]
【The invention's effect】
According to the present invention, the bottom surface of the furnace vessel does not become high temperature, and there is almost no fear that the seal bearing is damaged by heat. In the vicinity of the seal bearing, there is little adhesion of the raw material to the elevating member, and the hermeticity is hardly deteriorated. For this reason, the number of times of replacement of the seal bearing can be reduced, and the lifting member and the seal bearing can be easily cleaned. In addition, even when the furnace vessel is opened with the lid removed, the material can be charged easily because the operation can be performed with the radiant heat shield attached to the furnace vessel. In addition, the raw material in the crucible and the radiant heat shield can be easily seen from above, preventing installation errors.
[0033]
In addition, according to the present invention, it is possible to control the amount of heat of the material contained in the crucible and the amount of radiant heat from the heater and the surface of the melt, thereby preventing the generation of crystal defects at the crystal growth interface and the crystal growth side. It becomes possible to suppress.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view schematically showing an internal structure of a crystal growth furnace according to an embodiment of the present invention.
FIG. 2 is a perspective view of a radiant heat shield as viewed obliquely from below.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Crystal growth furnace a Raw material b Sealing material 10 Furnace container 11 Cover 12 Crucible 15 Heater 16 Heat insulating material 20 Radiation heat shield 21 Inner cylinder 22 Outer cylinder 30 Support plate 31 Elevating member 32 Elevating mechanism 35 Upper rod

Claims (4)

るつぼ内の溶融液を引き上げながら固化させて結晶を成長させる結晶成長炉であって,
るつぼ内に入れられた溶融液の上方に配置される輻射熱シールドを昇降部材に支持し,
前記昇降部材を炉容器底面に貫通させて,炉容器外に配置した昇降機構に接続し
前記るつぼの周側面および底面を囲むように断熱材が配置されてなる,結晶成長炉。
A crystal growth furnace for growing a crystal by pulling up the melt in the crucible
A radiant heat shield placed above the melt placed in the crucible is supported by the elevating member,
The elevating member is passed through the bottom of the furnace vessel and connected to an elevating mechanism arranged outside the furnace vessel ,
A crystal growth furnace in which a heat insulating material is arranged so as to surround a peripheral side surface and a bottom surface of the crucible .
前記炉容器底面において,前記昇降部材を貫通させる箇所にシール軸受けを設けた,請求項1の結晶成長炉。The crystal growth furnace according to claim 1, wherein a seal bearing is provided at a location through which the elevating member penetrates on the bottom surface of the furnace vessel. るつぼ内の溶融液を引き上げながら固化させて結晶を成長させる結晶成長方法であって,請求項1又は2に記載の結晶成長炉において,るつぼ内に入れられた溶融液の上方に配置される輻射熱シールドを,結晶を引き上げるに伴って昇降させることを特徴とする,結晶成長方法。A crystal growth method for growing a crystal by pulling up the melt in the crucible and radiating heat disposed above the melt put in the crucible in the crystal growth furnace according to claim 1 or 2. A crystal growth method, wherein the shield is moved up and down as the crystal is pulled up. るつぼ内の溶融液を引き上げながら固化させて結晶を成長させる結晶成長方法であって,請求項1又は2に記載の結晶成長炉において,溶融液の液面上に充填された封止材表面とるつぼ内に入れられた溶融液の上方に配置される輻射熱シールドの下端との距離を一定に保つことを特徴とする,結晶成長方法。A crystal growth method for growing a crystal by solidifying while pulling up a melt in a crucible, wherein in the crystal growth furnace according to claim 1, a surface of a sealing material filled on a liquid surface of the melt A crystal growth method characterized by maintaining a constant distance from a lower end of a radiant heat shield disposed above a melt placed in a crucible.
JP2001196772A 2001-06-25 2001-06-28 Crystal growth furnace and crystal growth method Expired - Fee Related JP4614583B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001196772A JP4614583B2 (en) 2001-06-25 2001-06-28 Crystal growth furnace and crystal growth method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-191935 2001-06-25
JP2001191935 2001-06-25
JP2001196772A JP4614583B2 (en) 2001-06-25 2001-06-28 Crystal growth furnace and crystal growth method

Publications (2)

Publication Number Publication Date
JP2003081688A JP2003081688A (en) 2003-03-19
JP4614583B2 true JP4614583B2 (en) 2011-01-19

Family

ID=26617524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001196772A Expired - Fee Related JP4614583B2 (en) 2001-06-25 2001-06-28 Crystal growth furnace and crystal growth method

Country Status (1)

Country Link
JP (1) JP4614583B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101607160B1 (en) * 2014-07-30 2016-03-29 주식회사 엘지실트론 Single crystal growing apparatus
CN107815727B (en) * 2017-11-16 2023-11-17 浙江晶盛机电股份有限公司 A swift material mechanism for single crystal growing furnace

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06279168A (en) * 1993-03-24 1994-10-04 Nippon Steel Corp Apparatus for production of single crystal
JPH0952790A (en) * 1995-08-11 1997-02-25 Japan Energy Corp Single crystal growth apparatus and single crystal growth process
JP2000159594A (en) * 1998-11-20 2000-06-13 Komatsu Electronic Metals Co Ltd Production of silicon single crystal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06279168A (en) * 1993-03-24 1994-10-04 Nippon Steel Corp Apparatus for production of single crystal
JPH0952790A (en) * 1995-08-11 1997-02-25 Japan Energy Corp Single crystal growth apparatus and single crystal growth process
JP2000159594A (en) * 1998-11-20 2000-06-13 Komatsu Electronic Metals Co Ltd Production of silicon single crystal

Also Published As

Publication number Publication date
JP2003081688A (en) 2003-03-19

Similar Documents

Publication Publication Date Title
KR20110076937A (en) Directional solidification furnace for reducing melt contamination and reducing wafer contamination
JP4614583B2 (en) Crystal growth furnace and crystal growth method
JP2017014073A (en) Device and method for supplying silicon melt, and manufacturing apparatus of silicon single crystal
EP0765406B1 (en) Improvements in crystal growth
US6246029B1 (en) High temperature semiconductor crystal growing furnace component cleaning method
KR100485662B1 (en) Grower of single crystalline silicon and Control method of melt gap of the same
EP0210439B1 (en) Method for growing single crystals of dissociative compound semiconductor
KR101983491B1 (en) Manufacturing method of SiC single crystal
JP3254329B2 (en) Method and apparatus for producing compound single crystal
JP3642175B2 (en) Silicon single crystal pulling apparatus and pulling method thereof
JP5040848B2 (en) Silicon single crystal manufacturing equipment
JP2013119500A (en) Single crystal growth method and apparatus thereof
KR101383956B1 (en) Growing apparatus for single crystal
JP2000001394A (en) Silicon single crystal pulling equipment and silicon single crystal pulling method using the same
JP3492820B2 (en) Compound semiconductor single crystal manufacturing equipment
JP2009161395A (en) Method for manufacturing compound semiconductor single crystal
JP3391598B2 (en) Compound semiconductor single crystal manufacturing apparatus and manufacturing method using the same
JP2000016892A (en) Production apparatus of compound single crystal
CN116200803A (en) Crystal growth device, method and control system
KR101665793B1 (en) Crucible for ingot growing apparatus
JP2645491B2 (en) Method for growing compound semiconductor single crystal
KR20220038991A (en) Device for improving flow in single crystal growth furnace of pulling machine
JP2000302588A (en) Production of compound semiconductor crystal
JP2023064374A (en) Single crystal growth apparatus
JP2004277267A (en) Apparatus for manufacturing compound semiconductor single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080321

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101019

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees