JP2000302588A - Production of compound semiconductor crystal - Google Patents

Production of compound semiconductor crystal

Info

Publication number
JP2000302588A
JP2000302588A JP11116184A JP11618499A JP2000302588A JP 2000302588 A JP2000302588 A JP 2000302588A JP 11116184 A JP11116184 A JP 11116184A JP 11618499 A JP11618499 A JP 11618499A JP 2000302588 A JP2000302588 A JP 2000302588A
Authority
JP
Japan
Prior art keywords
crucible
crystal
raw material
compound semiconductor
material melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11116184A
Other languages
Japanese (ja)
Inventor
Yasuharu Muto
康晴 武藤
Seiji Mizuniwa
清治 水庭
Masaya Itani
賢哉 井谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP11116184A priority Critical patent/JP2000302588A/en
Publication of JP2000302588A publication Critical patent/JP2000302588A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To easily withdraw a grown compound semiconductor crystal from a crucible by solidifying all of a raw material melt in such a state that the front end of a suspension means (such as metal wire) placed above the crucible is immersed in the raw material melt so as to attain a prescribed depth, and thereafter, in the furnace inside cooling stage, elevating the suspension means or lowering the crucible before solidification of a liquid encapsulating medium, to withdraw the objective grown compound semiconductor crystal from the crucible. SOLUTION: This production process comprises: growing a compound semiconductor crystal 4 by relatively moving a heater 6 and a crucible 1 to each other or controlling the temperature of the heater 6, to gradually solidify a raw material 3 melt in the direction upward from the side of a seed crystal 2; then immersing the front end 9 of a suspension means 8 whose upper end is connected to an elevating/lowering device or the ceiling of a furnace, in the raw material melt 3; and in that state as it is, solidifying all of the raw material melt 3 to complete the growth of the crystal 4; wherein in the cooling stage, the suspension means 8 is pulled up before the solidification of a liquid encapsulating medium, to withdraw the grown crystal 4 from the crucible 1 and to cool the crystal 4 to room temperature while holding the crystal 4 above the crucible 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、化合物半導体結晶
の製造方法、特に、垂直ブリッジマン法や垂直温度傾斜
凝固法による化合物半導体単結晶の製造に好適な化合物
半導体結晶の製造方法に関する。
The present invention relates to a method for producing a compound semiconductor crystal, and more particularly to a method for producing a compound semiconductor crystal suitable for producing a compound semiconductor single crystal by a vertical Bridgman method or a vertical temperature gradient solidification method.

【0002】[0002]

【従来の技術】GaAs等の化合物半導体単結晶を製造
する技術として、これまでLEC法(液体封止チョクラ
ルスキー法)等の引上げ法や、HB法(水平ブリッジマ
ン法)、GF法(温度傾斜凝固法)等の横型ボート法が
実用化されている。
2. Description of the Related Art As a technique for producing a compound semiconductor single crystal such as GaAs, a pulling method such as an LEC method (liquid sealing Czochralski method), an HB method (horizontal Bridgman method), and a GF method (temperature A horizontal boat method such as an inclined solidification method has been put to practical use.

【0003】近年、低転位密度で且つ大型の単結晶の要
求が高まり、引上げ法や横型ボート法に代わる技術とし
て、VB法(垂直ブリッジマン法)やVGF法(垂直温
度傾斜凝固法)(以下総称して「VB法」という)が注
目されている。
In recent years, there has been an increasing demand for large single crystals having a low dislocation density and large-sized single crystals. As a technique that can replace the pulling method and the horizontal boat method, VB method (vertical Bridgman method) and VGF method (vertical temperature gradient solidification method) (Collectively referred to as the “VB method”) has attracted attention.

【0004】図4は従来のVB法を示す説明図であり、
同図において、1はPBN(パイロリティック窒化硼
素)製のルツボであり、その底部には種結晶2が配置さ
れ、その種結晶2の上にGaAs等の化合物半導体結晶
の原料融液3が収容されている。4は原料融液3が種結
晶2から固化して成長した結晶である。原料融液3の上
部は、原料融液からAs等の高揮発性元素が揮散するの
を防止するためにB2 3 等の液体封止剤5により覆わ
れている。6は結晶成長のために、炉内に種結晶2側で
温度が低く上方側で温度が高い温度分布を形成する加熱
ヒータである。この加熱ヒータ6とルツボ1を相対的に
移動させるか、若しくは加熱ヒータ6の温度を制御して
上記温度分布を移動させることにより原料融液3が種結
晶2側から徐々に固化し、結晶4の成長が行われる。な
お、7はルツボ1を支持するためのルツボ支持台であ
る。
FIG. 4 is an explanatory view showing a conventional VB method.
In FIG. 1, reference numeral 1 denotes a crucible made of PBN (pyrolytic boron nitride), on which a seed crystal 2 is disposed, and on which the raw material melt 3 of a compound semiconductor crystal such as GaAs is accommodated. Have been. Reference numeral 4 denotes a crystal obtained by solidifying and growing the raw material melt 3 from the seed crystal 2. The upper portion of the raw material melt 3 is covered with a liquid sealant 5 such as B 2 O 3 in order to prevent highly volatile elements such as As from volatilizing from the raw material melt. Numeral 6 denotes a heater for forming a temperature distribution in the furnace where the temperature is low on the seed crystal 2 side and high on the upper side in the furnace. By moving the heater 6 and the crucible 1 relatively, or by controlling the temperature of the heater 6 to move the temperature distribution, the raw material melt 3 is gradually solidified from the seed crystal 2 side, and Growth is performed. Reference numeral 7 denotes a crucible support for supporting the crucible 1.

【0005】[0005]

【発明が解決しようとする課題】ところが、VB法にお
いては、結晶成長後、室温まで冷却して結晶をルツボか
ら取り出そうとしても、ルツボと結晶の間に入り込んだ
液体封止剤がルツボに強固に焼き付いているため結晶を
取り出すことができない。そこで、従来は有機溶剤中に
ルツボごと浸漬して液体封止剤を溶かし、それから結晶
を取り出すようにしていたが、液体封止剤の溶解には十
数時間から数日かかり、生産性が悪いという問題があっ
た。
However, in the VB method, even if the crystal is grown and then cooled to room temperature and the crystal is taken out of the crucible, the liquid sealant interposed between the crucible and the crystal is firmly attached to the crucible. The crystal cannot be taken out because it is burned in. Therefore, conventionally, the crucible was immersed in an organic solvent to dissolve the liquid sealant, and the crystal was taken out from the liquid sealant.However, the dissolution of the liquid sealant took from several tens of hours to several days, resulting in poor productivity. There was a problem.

【0006】本発明の目的は、上記した従来技術の問題
点に鑑み、成長後の結晶を容易にルツボから取り出すこ
とができる生産性に優れた化合物半導体結晶の製造方法
を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method of manufacturing a compound semiconductor crystal having excellent productivity in which a crystal after growth can be easily taken out of a crucible in view of the above-mentioned problems of the prior art.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、本発明は、炉内に配置されたルツボに化合物半導体
の原料融液を収容すると共に該原料融液の上部を液体封
止剤で覆い、上記原料融液を上記ルツボの底部に配置し
た種結晶側から徐々に固化させて化合物半導体結晶を成
長させる化合物半導体結晶の製造方法において、上記ル
ツボの上方に吊具を設置し、該吊具の先端部を上記原料
融液中に所定深さまで浸漬した状態で原料融液の全てを
固化し、その後、上記炉内を冷却する過程で上記液体封
止剤が固化する前に上記吊具を上昇させるか、若しくは
上記ルツボを下降させて上記化合物半導体結晶を上記ル
ツボから取り出すものである。
In order to achieve the above-mentioned object, the present invention provides a method for accommodating a raw material melt of a compound semiconductor in a crucible disposed in a furnace and using a liquid sealant to cover the upper part of the raw material melt. In the method for manufacturing a compound semiconductor crystal in which the raw material melt is gradually solidified from a seed crystal disposed at the bottom of the crucible to grow a compound semiconductor crystal, a hanging tool is provided above the crucible, The raw material melt is solidified in a state in which the tip of the tool is immersed to a predetermined depth in the raw material melt, and then the hanging tool is used before the liquid sealant solidifies in the process of cooling the furnace. Or the crucible is lowered to take out the compound semiconductor crystal from the crucible.

【0008】なお、吊具の先端部は、上記化合物半導体
結晶を所定長成長させた後の残りの原料融液中に浸漬し
てもよいし、或いは上記化合物半導体結晶を成長させる
前に上記原料融液中に浸漬してもよい。前者の場合は、
後者に比べて吊具からの汚染の危険は少ない。但し、前
者の場合は吊具を浸漬した時に原料融液が急激に固化し
て結晶が割れる虞もあるが、後者の場合にはそのような
心配はない。
The tip of the hanging tool may be immersed in the remaining material melt after growing the compound semiconductor crystal for a predetermined length, or the material may be immersed before growing the compound semiconductor crystal. It may be immersed in the melt. In the former case,
There is less risk of contamination from lifting gear than the latter. However, in the former case, the raw material melt may be rapidly solidified when the hanging tool is immersed and the crystal may be broken, but in the latter case, there is no such concern.

【0009】なお、汚染の点では、吊具の少なくとも先
端部に窒化硼素被覆を施しておくことで、回避可能であ
る。
Incidentally, contamination can be avoided by applying a boron nitride coating to at least the tip of the hanging tool.

【0010】[0010]

【発明の実施の形態】以下、本発明の実施の形態を図面
により説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0011】図1は、本発明の一実施形態を示す説明図
である。同図において、1はPBN製のルツボであり、
その底部には種結晶2が配置され、その種結晶2の上に
GaAs等の化合物半導体結晶の原料融液3が収容され
ている。4は原料融液3が種結晶2側から固化して成長
した結晶である。原料融液3の上部は、原料融液からA
s等の高揮発性元素が揮散するのを防止するためにB2
3 等の液体封止剤5により覆われている。なお、液体
封止剤5は、原料融液3の上部にだけ存在するわけでは
なく、実際には原料融液3及び結晶4とルツボ1との間
にも回り込んでいる。6は結晶成長のために、炉内に種
結晶2側で温度が低く上方側で温度が高い温度分布を形
成する加熱ヒータである。なお、7はルツボ1を支持す
るためのルツボ支持台である。これらの成長治具は、高
圧容器からなる炉(図示せず)内に配置され、その炉内
は不活性ガス雰囲気となっている。
FIG. 1 is an explanatory diagram showing one embodiment of the present invention. In the figure, reference numeral 1 denotes a PBN crucible,
A seed crystal 2 is arranged at the bottom, and a raw material melt 3 of a compound semiconductor crystal such as GaAs is accommodated on the seed crystal 2. Reference numeral 4 denotes a crystal obtained by solidifying and growing the raw material melt 3 from the seed crystal 2 side. The upper part of the raw material melt 3 is A
B 2 to prevent the volatilization of highly volatile elements such as
It is covered with a liquid sealant 5 such as O 3 . The liquid sealant 5 does not necessarily exist only on the upper part of the raw material melt 3, but actually extends between the raw material melt 3 and the crystal 4 and the crucible 1. Numeral 6 denotes a heater for forming a temperature distribution in the furnace where the temperature is low on the seed crystal 2 side and high on the upper side in the furnace. Reference numeral 7 denotes a crucible support for supporting the crucible 1. These growth jigs are arranged in a furnace (not shown) composed of a high-pressure vessel, and the inside of the furnace has an inert gas atmosphere.

【0012】結晶4の成長は、加熱ヒータ6とルツボ1
を相対的に移動させるか、若しくは加熱ヒータ6の温度
を制御することにより原料融液3を種結晶2側から上方
に向けて徐々に固化させて行う。そして、本実施形態で
は、上端が炉の天井または昇降装置(図示せず)に接続
された吊具8の先端部9を原料融液3の中に浸漬し、そ
のまま原料融液3を全て固化させ結晶成長が完了する。
The crystal 4 is grown by the heater 6 and the crucible 1.
Is relatively moved or the temperature of the heater 6 is controlled to gradually solidify the raw material melt 3 upward from the seed crystal 2 side. In the present embodiment, the top end 9 of the hanging tool 8 whose upper end is connected to the ceiling of the furnace or the elevating device (not shown) is immersed in the raw material melt 3, and the entire raw material melt 3 is solidified as it is. The crystal growth is completed.

【0013】その後、炉内を室温まで冷却する過程にお
いて、液体封止剤が固化する前に吊具8を引上げて結晶
4をルツボ1から取り出し、ルツボ1の上方に結晶4を
保持したまま室温まで冷却する。
Thereafter, in the process of cooling the inside of the furnace to room temperature, before the liquid sealant solidifies, the lifting tool 8 is pulled up to take out the crystal 4 from the crucible 1, and the crystal 4 is held above the crucible 1 while maintaining the room temperature. Cool down to

【0014】ここで、結晶4をルツボ1から取り出す
際、取り出し速度が速いと液体封止剤5がルツボ1の上
方から溢れ出してしまうため、液体封止剤5がルツボ1
の底へ流れ込むことができる程度の速度で取り出すこと
が望ましい。
Here, when the crystal 4 is taken out of the crucible 1, if the take-out speed is high, the liquid sealant 5 overflows from above the crucible 1.
It is desirable to take it out at such a speed that it can flow into the bottom of the container.

【0015】また、図3に示すように、ルツボ1の上部
10は、上に向かって拡径するテーパー形状を有してお
り、これにより液体封止剤5が溢れ出る危険性を更に低
減することができる。この場合、テーパー部は結晶成長
する位置よりも上方にあることが望ましい。
As shown in FIG. 3, the upper portion 10 of the crucible 1 has a tapered shape whose diameter increases upward, thereby further reducing the risk of the liquid sealant 5 overflowing. be able to. In this case, the tapered portion is desirably above the position where the crystal grows.

【0016】更に、ルツボ1の底部には結晶4を取り出
す際にルツボ1内が真空にならないようにするための空
気孔11が設けられている。しかし、空気孔11が開放
されているままであると液体封止剤が下方に漏れ出すた
め、蓋12を設けておく。但し、ルツボ支持台7を空洞
にして液体封止剤5を溜められるようにすれば、蓋12
はは省略してもよい。
Further, the bottom of the crucible 1 is provided with an air hole 11 for preventing the inside of the crucible 1 from being evacuated when the crystal 4 is taken out. However, if the air hole 11 is left open, the liquid sealant leaks downward, so the lid 12 is provided. However, if the crucible support 7 is made hollow so that the liquid sealant 5 can be stored, the lid 12
May be omitted.

【0017】なお、本実施形態においては、成長開始前
或いは成長終了直前のいずれの時点でも吊具8の先端部
9を原料融液3中に浸漬させてもよいが、結晶成長中に
吊具8の先端部9を原料融液3に接触させると、急激に
原料融液3が固化して結晶が割れてしまう可能性もある
ため、結晶成長前に予め原料融液3に浸漬しておくこと
が好ましい。
In the present embodiment, the tip 9 of the hanging tool 8 may be immersed in the raw material melt 3 at any time before the start of growth or immediately before the end of the growth. When the tip portion 9 of 8 is brought into contact with the raw material melt 3, the raw material melt 3 may be rapidly solidified and the crystal may be broken. Therefore, the crystal 9 is immersed in the raw material melt 3 before crystal growth. Is preferred.

【0018】また、吊具8の先端部9をL字形に曲げる
など、結晶4から外れにくい形状にしておくことが好ま
しい。また、吊具8は、耐熱性で原料融液とは反応しな
い材質か、BNコーティングを施したもので、金属ワイ
ヤー等のようにできるだけ細く、熱膨張係数が半導体結
晶と同じかそれよりも大きいことが望ましい。
Further, it is preferable that the tip 9 of the hanging tool 8 is bent into an L-shape so that the hanging tool 8 has a shape that is hard to come off the crystal 4. The hanging member 8 is made of a material that is heat-resistant and does not react with the raw material melt or is coated with BN, and is as thin as possible such as a metal wire and has a thermal expansion coefficient equal to or larger than that of the semiconductor crystal. It is desirable.

【0019】[0019]

【発明の効果】本発明によれば、成長後の結晶を容易に
ルツボから取り出すことができるため、生産性を大幅に
向上することができる。
According to the present invention, the crystal after growth can be easily taken out of the crucible, so that the productivity can be greatly improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態の化合物半導体の製造方法
を示す説明図である。
FIG. 1 is an explanatory diagram illustrating a method for manufacturing a compound semiconductor according to an embodiment of the present invention.

【図2】本発明の一実施形態の化合物半導体の製造方法
において、結晶をルツボから取出した状態を示す説明図
である。
FIG. 2 is an explanatory view showing a state in which a crystal is taken out from a crucible in the method for manufacturing a compound semiconductor according to one embodiment of the present invention.

【図3】本発明の化合物半導体の製造方法に好適なルツ
ボの断面を示す説明図である。
FIG. 3 is an explanatory view showing a cross section of a crucible suitable for the method for producing a compound semiconductor of the present invention.

【図4】従来の化合物半導体の製造方法を示す説明図で
ある。
FIG. 4 is an explanatory view showing a conventional method for manufacturing a compound semiconductor.

【符号の説明】[Explanation of symbols]

1 ルツボ 2 種結晶 3 原料融液 4 結晶 5 液体封止剤 6 加熱ヒータ 7 ルツボ支持台 8 吊具 9 吊具先端部 11 空気孔 12 蓋 DESCRIPTION OF SYMBOLS 1 Crucible 2 seed crystal 3 Raw material melt 4 Crystal 5 Liquid sealant 6 Heater 7 Crucible support stand 8 Hanging tool 9 Hanging tool tip 11 Air hole 12 Lid

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】炉内に配置されたルツボに化合物半導体の
原料融液を収容すると共に該原料融液の上部を液体封止
剤で覆い、前記原料融液を前記ルツボの底部に配置した
種結晶側から徐々に固化させて化合物半導体結晶を成長
させる化合物半導体結晶の製造方法において、前記ルツ
ボの上方に吊具を設置し、該吊具の先端部を前記原料融
液中に所定深さまで浸漬した状態で原料融液の全てを固
化し、その後、前記炉内を冷却する過程で前記液体封止
剤が固化する前に前記吊具を上昇させるか、若しくは前
記ルツボを下降させて前記化合物半導体結晶を前記ルツ
ボから取り出すことを特徴とする化合物半導体結晶の製
造方法。
1. A seed wherein a raw material melt of a compound semiconductor is accommodated in a crucible arranged in a furnace, the upper part of the raw material melt is covered with a liquid sealant, and the raw material melt is disposed at the bottom of the crucible. In the method of manufacturing a compound semiconductor crystal in which a compound semiconductor crystal is grown by gradually solidifying from the crystal side, a hanging tool is installed above the crucible, and a tip of the hanging tool is immersed in the raw material melt to a predetermined depth. In this state, all of the raw material melt is solidified, and then, in a process of cooling the furnace, the hanging tool is raised or the crucible is lowered before the liquid sealant is solidified. A method for producing a compound semiconductor crystal, comprising extracting a crystal from the crucible.
【請求項2】前記化合物半導体結晶を所定長成長させた
後、吊具の先端部を残りの原料融液中に浸漬することを
特徴とする請求項1に記載の化合物半導体結晶の製造方
法。
2. The method according to claim 1, wherein after growing the compound semiconductor crystal for a predetermined length, the tip of the hanging tool is immersed in the remaining raw material melt.
【請求項3】前記化合物半導体結晶を成長させる前に、
前記吊具の先端部を前記原料融液中に浸漬することを特
徴とする請求項1に記載の化合物半導体結晶の製造方
法。
3. The method according to claim 1, wherein before growing the compound semiconductor crystal,
The method for producing a compound semiconductor crystal according to claim 1, wherein the tip of the hanging tool is immersed in the raw material melt.
【請求項4】前記吊具の少なくとも先端部に、窒化硼素
被覆が施されていることを特徴とする請求項1乃至請求
項3のいずれかに記載の化合物半導体結晶の製造方法。
4. The method for producing a compound semiconductor crystal according to claim 1, wherein a boron nitride coating is applied to at least a tip portion of said hanging tool.
JP11116184A 1999-04-23 1999-04-23 Production of compound semiconductor crystal Pending JP2000302588A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11116184A JP2000302588A (en) 1999-04-23 1999-04-23 Production of compound semiconductor crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11116184A JP2000302588A (en) 1999-04-23 1999-04-23 Production of compound semiconductor crystal

Publications (1)

Publication Number Publication Date
JP2000302588A true JP2000302588A (en) 2000-10-31

Family

ID=14680902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11116184A Pending JP2000302588A (en) 1999-04-23 1999-04-23 Production of compound semiconductor crystal

Country Status (1)

Country Link
JP (1) JP2000302588A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103726105A (en) * 2013-10-11 2014-04-16 中国科学院上海光学精密机械研究所 Growing apparatus and method for Ti sapphire crystal
CN115044961A (en) * 2022-06-09 2022-09-13 福建晶翔光电科技有限公司 Barium fluoride optical crystal preparation device and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103726105A (en) * 2013-10-11 2014-04-16 中国科学院上海光学精密机械研究所 Growing apparatus and method for Ti sapphire crystal
CN115044961A (en) * 2022-06-09 2022-09-13 福建晶翔光电科技有限公司 Barium fluoride optical crystal preparation device and preparation method thereof
CN115044961B (en) * 2022-06-09 2024-02-02 福建晶翔光电科技有限公司 Barium fluoride optical crystal preparation device and preparation method thereof

Similar Documents

Publication Publication Date Title
US5047113A (en) Method for directional solidification of single crystals
TW200419015A (en) Process for producing single crystal of compound semiconductor and crystal growing apparatus
JP2000302588A (en) Production of compound semiconductor crystal
JP3254329B2 (en) Method and apparatus for producing compound single crystal
JP4498457B1 (en) Crystal growth method
JP4292300B2 (en) Method for producing semiconductor bulk crystal
CN113699585B (en) Sapphire crystal growth process
EP4130348A1 (en) Device and method for producing a monocrystalline silicon rod
US20120285373A1 (en) Feed Tool For Shielding A Portion Of A Crystal Puller
JP3567662B2 (en) Single crystal growth method and apparatus
JPH08119784A (en) Production of compound single crystal and production device therefor
JP4549111B2 (en) GaAs polycrystal production furnace
JPH03193689A (en) Production of compound semiconductor crystal
JPS6090897A (en) Method and apparatus for manufacturing compound semiconductor single crystal
JPH11189499A (en) Production of compound semiconductor single crystal
KR100581045B1 (en) Method for porducing silicon single crystal
JP6842763B2 (en) Method for manufacturing SiC single crystal
JP2001080987A (en) Device for producing compound semiconductor crystal and production process using the same
JP3158661B2 (en) Method and apparatus for producing high dissociation pressure single crystal
JPH11130579A (en) Production of compound semiconductor single crystal and apparatus for producing the same
JPS60122791A (en) Pulling up method of crystal under liquid sealing
JP3938674B2 (en) Method for producing compound semiconductor single crystal
JP2005200279A (en) Method for manufacturing silicon ingot and solar battery
JPH0867593A (en) Method for growing single crystal
JP5454456B2 (en) Single crystal manufacturing apparatus and single crystal manufacturing method