WO2002027077A1 - Method of manufacturing silicon monocrystal and device for manufacturing semiconductor monocrystal - Google Patents

Method of manufacturing silicon monocrystal and device for manufacturing semiconductor monocrystal Download PDF

Info

Publication number
WO2002027077A1
WO2002027077A1 PCT/JP2001/008408 JP0108408W WO0227077A1 WO 2002027077 A1 WO2002027077 A1 WO 2002027077A1 JP 0108408 W JP0108408 W JP 0108408W WO 0227077 A1 WO0227077 A1 WO 0227077A1
Authority
WO
WIPO (PCT)
Prior art keywords
single crystal
furnace
growth furnace
growth
silicon
Prior art date
Application number
PCT/JP2001/008408
Other languages
French (fr)
Japanese (ja)
Inventor
Makoto Iida
Hiromi Watanabe
Original Assignee
Shin-Etsu Handotai Co.,Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin-Etsu Handotai Co.,Ltd. filed Critical Shin-Etsu Handotai Co.,Ltd.
Publication of WO2002027077A1 publication Critical patent/WO2002027077A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/14Heating of the melt or the crystallised materials

Definitions

  • the present invention relates to a method for manufacturing a silicon single crystal and an apparatus for manufacturing a semiconductor single crystal including the silicon single crystal.
  • CZ method Method, hereinafter referred to as CZ method.
  • a raw material mass is accommodated in a crucible disposed in a growth furnace of a single crystal manufacturing apparatus, and a raw material in the crucible is melted by heating a heater disposed around the crucible to a high temperature.
  • the seed crystal is immersed on the surface of the raw material melt. Thereafter, the seed crystal is gently pulled up to form a semiconductor single crystal having a desired diameter and quality below the seed crystal. Cultivate.
  • Recent semiconductor single crystal manufacturing equipment using the CZ method has been developed with the advancement of automation and the development of optical equipment, and an imaging device for observing the inside of the growth furnace outside the growth furnace and a crystal pulled from the melt.
  • Devices equipped with an optical detection device such as an optical diameter detection device for detecting the diameter of a laser or a radiation thermometer for measuring the temperature of a melt have been used.
  • an imaging device the main body of the device is mounted outside the growth furnace, and through the furnace observation window provided on the growth furnace wall and the upper furnace internal structure disposed inside the growth furnace. The raw material melt surface and the single crystal growing part inside the growing furnace are photographed. The image data obtained by the photographing is used as growth control information for the semiconductor single crystal.
  • Such an observation window inside the furnace may separate the inside and outside of the growth furnace and impair the function of the upper furnace internal structure.
  • transparent glass is inserted so that the inside of the growth furnace can be observed and measured without the need to check the growth status of the single crystal through this glass, and to collect information inside the growth furnace. Processing and performing various controls necessary for single crystal growth.
  • Various methods have been sought for improvement.
  • the upper furnace internal structure As a method for efficiently cooling the single crystal pulled from the raw material melt, the upper furnace internal structure is placed just above the raw material melt surface so as to surround the single crystal, and the heater and the raw material melt surface A common method is to rapidly cool the crystal by shielding radiant heat.
  • the upper furnace internal structure to be used includes a cylindrical gas rectifying cylinder disposed so as to hang down from the upper growth furnace, a heat shielding screen having an inverted conical appearance, and an inner structure of the growth furnace.
  • Various shapes are being studied according to the environment and crystal quality.
  • evaporates such as SiO 2 are constantly emitted toward the growth furnace.
  • the evaporate solidifies and precipitates in the low temperature part, adheres to the structure of the furnace wall of the growth furnace and the structure in the furnace, and gradually accumulates. To go. If the amount of such deposits becomes too large, the deposits may come off during the operation, fall into the raw material melt, or adhere to the growing part of the single crystal, causing crystals such as dislocations. This may cause defects and may hinder normal single crystal growth.
  • an inert gas such as Ar (argon) gas having low reactivity is supplied to the inside of the growth furnace. It is circulated at a sufficient flow rate, and evaporates from the raw material melt are discharged out of the growth furnace together with the inert gas.
  • Ar argon
  • large-diameter long single crystals which require time to grow single crystals, and the so-called Multiple Czochralski Method (single crystal growth), without solidifying the crucible material melt after growing the single crystals.
  • the evaporation from the raw material melt is efficiently removed from the growth furnace. It is an important requirement to keep the growth furnace clean for a long time from the start to the end of the operation, and to maintain a stable operation.
  • the upper furnace internal structure The temperature of the gas itself has also dropped significantly, resulting in the accelerated adhesion of evaporants. Also, the attachment of evaporants to the upper furnace internals tends to be further promoted as the size of single crystal manufacturing equipment increases. Specifically, single crystal manufacturing equipment for growing large single crystals uses large-diameter crucibles to hold a large amount of molten material, or it is necessary to hold large-diameter crucibles. As a result, the growth furnace itself also had a large volume, and relatively low-temperature parts were more likely to be formed in places away from the heat source.
  • An object of the present invention is to grow and deposit silicon vapor from a silicon melt on an upper furnace structure located immediately above a silicon melt in growing a silicon single crystal using the CZ method.
  • To provide a method for producing a silicon single crystal that can effectively suppress the occurrence of a single crystal for example, can continue operation for a long time without obstructing in-reactor observation necessary for growing a single crystal and controlling equipment.
  • a method for producing a silicon single crystal comprises: disposing a crucible containing a silicon melt inside a growing furnace; and forming an upper furnace so as to surround the grown single crystal.
  • An internal structure is provided, and a silicon single crystal is grown by the Czochralski method while flowing an inert gas downstream from above in the upper furnace internal structure toward the silicon melt surface in the rutupo.
  • the inert gas flowing out of the opening at the tip of the upper furnace internal structure is transferred to the outside of the growth furnace via a space surrounded by the inner wall of the crucible and the outer wall of the upper furnace internal structure.
  • the flow rate of the inert gas when passing through the space is adjusted to be 6.5 cm / sec or more.
  • the flow rate of the inert gas flowing into the growth furnace from the space between the outer wall of the upper furnace structure and the inner wall of the crucible along the melt surface is adjusted to be 6.5 cm / sec or more.
  • the flow rate of the inert gas is represented by the value at the position where the radial distance between the inner wall of the crucible and the outer wall of the upper furnace internal structure with respect to the single crystal pulling axis in the radial direction is minimum. Shall be.
  • the furnace observation window made of a transparent material (for example, heat-resistant glass such as quartz glass) formed on the growth furnace and the upper furnace internal structure, respectively. It is possible to grow a silicon single crystal while optically detecting or observing the state inside the upper furnace internal structure.
  • the furnace observation window may be fogged by the deposits. It becomes difficult. This makes it possible to continue photographing and observing a single crystal during growth by a photographing means such as a force camera or the like and measurement by an optical system detector such as a crystal diameter detecting device without any problem for a long time.
  • the diameter of the grown crystal is controlled by detecting the illuminated ring (fusion ring) formed at the boundary between the melt surface and the crystal, it is caused when evaporates adhere to the observation window in the furnace. Since the measurement error is reduced over a long period of time, it is possible to control the diameter with high accuracy, and it is possible to improve the productivity and yield of the single crystal. Further, since it is possible to continue pulling a crystal having a desired diameter with a small error, it is possible to grow a single crystal in which the quality is stable over the entire length of the crystal and the dispersion of impurities such as oxygen is suppressed.
  • the effects of the present invention are particularly remarkable in the production of large-diameter crystals, which require time for crystal growth, and in pulling long crystals.
  • the space in the ceiling of the growth furnace main body is relatively large, the diameter exceeds 50 cm, and a large single crystal capable of accommodating a large-diameter rutupo capable of melting 100 kg or more of polycrystalline silicon material.
  • the effect can also be fully exhibited in manufacturing equipment.
  • the same crucible is refilled with the polycrystalline raw material without solidifying the raw material melt, and a single pulling method using a multiple pulling method to grow a plurality of single crystals from one quartz crucible is used. Satisfactory effects can be obtained in crystal production.
  • the above-mentioned effect is sufficiently achieved by controlling the flow rate of the inert gas.
  • the lower limit is set at 6.5 cm / sec, but increasing the flow rate more than necessary wastes inert gas, which is not desirable in view of manufacturing costs. Absent.
  • the space (gap) between the outer wall of the upper furnace internal structure and the inner wall of the crucible Force (flow rate) It is desirable that the flow rate of the inert gas flowing out does not exceed 20 cm / sec at the maximum.
  • the flow rate is more desirably set in the range of 6.5 to 8.5 cmZ sec.
  • the upper furnace internal structure is arranged so as to surround the grown single crystal so as to function as a means for adjusting the thermal history of the grown single crystal, and is placed immediately above the melt surface.
  • the upper furnace internal structure serves to prevent radiant heat from the heater, raw material melt, etc. from directly hitting the crystal.
  • the crystal growth part where the melt surface of the raw material and the grown single crystal are in contact is the shadow of the upper furnace internal structure placed just above these melts, and can be directly observed from outside the growth furnace. Therefore, it is particularly effective to provide the in-furnace observation window, and the effect of the present invention is more remarkably exhibited from the viewpoint of preventing fogging and the like.
  • the upper furnace internal structure can be made of a material having good thermal conductivity such as metal or graphite, and the structure is designed so as to exhibit its effect immediately after the single crystal is pulled. In some cases, the lower end is placed with a slight gap of about 5 to 5 Omm from the surface of the raw material melt.
  • the cooling temperature atmosphere of the single crystal part surrounded by the upper furnace internal structure can be adjusted by devising the thermal conductivity and the heat insulation structure.
  • the inert 1 "raw gas blown up from the melt surface easily hits the surface of the upper furnace internal structure.
  • the outer wall of the upper furnace internal structure can be effectively suppressed. the flow rate of inert I 1 product gas flowing out from between the the Rutsupo inner wall 6. by adjusting such that the 5 cm / sec or more, is possible to effectively suppress the adhesion of vaporized substances evaporated from the raw material melt Possible It is.
  • a gas rectifying cylinder is provided at the lower end facing the surface of the raw material melt so that the surface of the raw material melt is kept warm to suppress temperature fluctuations of the melt near the crystal growth interface and grow the single crystal smoothly.
  • a heat shield ring integrally formed on the side can be used. Although it can be said that such an upper furnace internal structure tends to have a lower temperature and a lower temperature, the use of the method of the present invention can effectively suppress the adhesion of evaporants. In this case, the flow velocity of the inert gas flowing from the space between the outer peripheral surface of the heat shield ring and the inner wall of the crucible into the growth furnace main body is adjusted to be 6.5 cm / sec or more.
  • single crystals are grown by arranging upper furnace structures of complicated and various shapes directly above the raw material melt.
  • the effect can be obtained by adjusting the flow rate of the inert gas flowing between the upper furnace internal structure and the crucible inner wall containing the raw material melt to 6.5 cm / sec or more and flowing it into the growth furnace. Can be obtained.
  • the method of the present invention it is desirable to grow a silicon single crystal while keeping the inside of the growth furnace at a reduced pressure of 200 hPa or less.
  • the operation at a relatively low pressure is performed, so that the evaporation of the evaporation from the raw material melt on the furnace wall of the growth furnace and the surface of the upper internal structure can be further reduced.
  • (1) the amount of inactive I "raw gas flowing into the breeding furnace is small and it is economical.
  • the pressure inside the breeding furnace during operation should be kept at a lower limit of at least 50 hPa.
  • the required flow rate of the inert gas can be easily obtained, and separately from the following reasons: that is, the amount of Si in the evaporating from the melt surface Oxygen is supplied by the elution of oxygen from the wall of the quartz crucible containing the raw material melt, so that if the pressure inside the growth furnace holding the raw material melt becomes lower than necessary, the melting will occur. In some cases, the amount of SiO 2 evaporating from the liquid surface increases, and as a result, the quartz crucible wall containing the raw material melt deteriorates quickly and it becomes difficult to continue the operation for a long time. Lower the pressure of the breeding furnace to avoid Even in this case, it is preferable to grow the single crystal while keeping the pressure at about 50 hPa.
  • the gas rectification cylinder is placed in the growth furnace from the lower end side of the recovery space.
  • An inert gas is provided so as to extend inside the main body, and the inert gas is introduced into the above-mentioned recovery space, and is discharged out of the growth furnace through an exhaust gas pipe connected to the bottom of the growth furnace main body.
  • the inert gas introduced from the upper part of the growth furnace main body passes through, for example, a gas flow straightening tube to melt the raw material.
  • a gas flow straightening tube to melt the raw material.
  • a crucible containing a raw material melt is arranged inside a growth furnace, and an upper furnace internal structure is arranged so as to surround the grown single crystal.
  • an inert gas is flowed down from the upper part of the growth furnace toward the raw material melt surface in the rutupo in the upper furnace internal structure.
  • a plurality of exhaust ports for exhausting inert gas are formed at substantially equal angular intervals on a circumferential path centered on the single crystal pulling shaft on the bottom surface of the growth furnace. It is characterized by the following.
  • the inert gas flowing in the growth furnace can be refluxed and discharged out of the growth furnace without stagnation.
  • the obtained effect can be made more reliable.
  • oxides such as SiO 2 evaporated from the raw material melt can be removed from the growth furnace. Precipitation in the low-temperature portion of the furnace is suppressed, and the inside of the growth furnace can be kept clean for a long time. This makes it difficult for precipitates to accumulate in the upper part of the furnace, causing precipitates to fall into the raw material melt during operation and attaching to the growing single crystal, causing slip dislocation in the crystal. As a result, it is possible to reduce the factors that hinder the crystal growth itself, and to achieve operations.
  • the inert gas into the growth furnace as uniformly as possible about the crystal pulling axis.
  • a plurality of gas outlets are formed at substantially equal angular intervals on a circumferential path centered on the single crystal pulling axis on the bottom portion of the growth furnace main body.
  • two or more exhaust gas slots should be provided at the bottom of the furnace so that each has the same gas exhaust capacity. It is desirable to configure manufacturing equipment.
  • a single crystal growing apparatus having a large volume inside the growing furnace works more effectively, and by adopting such a structure of the single crystal manufacturing apparatus, the structure in the upper furnace and the material melt can be improved.
  • the inert gas flowing out from between the crucible inner walls accommodating the gas can be kept uniform throughout the gap.
  • the inert gas flowing above the melt in the growth furnace body is uniformly recirculated without stagnation, so that it is possible to prevent evaporation substances from adhering to the furnace wall of the growth furnace and the upper furnace internal structure.
  • FIG. 1 is a schematic diagram showing an example of a single crystal manufacturing apparatus of the present invention in a longitudinal section.
  • FIG. 2 is a schematic diagram showing a modified example of the single crystal manufacturing apparatus of FIG. 1, in which a heat shield ring at the lower end of the gas flow straightening tube is replaced with a heat reflecting plate.
  • FIG. 3 is a schematic view showing a modification in which an inverted conical heat shielding screen is provided instead of the gas flow tube.
  • Fig. 4 is a cross-sectional view of Fig. 1 near the bottom of the growth furnace main body.
  • FIG. 5 is a schematic diagram showing the exhaust protrusion together with various modifications thereof.
  • FIG. 6 is a schematic view showing a modified example in which three sets of exhaust gas ports and exhaust gas pipes are formed at equal intervals in a cross section and a partial vertical section.
  • FIG. 7 is a cross-sectional view showing a modification of the exhaust gas port shape.
  • FIG. 8 is a cross-sectional view showing still another modified example.
  • FIG. 1 is a schematic cross-sectional view showing one embodiment of a semiconductor single crystal manufacturing apparatus according to the CZ method of the present invention.
  • the semiconductor single crystal manufacturing apparatus (hereinafter simply referred to as “single crystal manufacturing apparatus”) 1 accommodates a rutupo 12 filled with a silicon melt 14 as a raw material melt, and a growing furnace for the silicon single crystal 2 3 And a recovery space forming part 4 integrally formed above the growth furnace main body 2 and containing and holding the silicon single crystal 23 pulled up from the silicon melt 14.
  • a crucible 12 having a quartz crucible 12a on the inside and a graphite crucible 12b on the outside is placed at approximately the center of the inside of the growth furnace body 2 via a crucible support shaft 13.
  • the crucible 12 is driven by a crucible drive mechanism 19 attached to the lower end of the crucible support shaft 13. In other words, it is freely rotatable and vertically operable in accordance with the growth conditions and work process of the silicon single crystal 23.
  • a gas rectifying cylinder 5 as an upper furnace internal structure is positioned, with its lower end surface located immediately above and immediately adjacent to the silicon melt 14, and pulled up It is arranged so as to surround the silicon single crystal 23 to be formed.
  • a heat shield ring 30 is attached to the lower end of the gas flow straightening tube 5 so as to face the melt surface 14a.
  • the heat shield ring 30 is made of a heat insulating layer made of a porous or fibrous heat insulating material, and more effectively shields the radiant heat from the silicon melt 14 to enhance the heat retaining effect of the melt. The temperature fluctuation of 14 can be further reduced.
  • the heat insulating layer is made of a material having a high heat insulating effect such as a fibrous heat insulating material made of carbon fiber, a larger heat retaining effect can be obtained, and more stable crystal growth can be performed.
  • the periphery of the heat insulating layer can be covered with a coating layer made of graphite or the like for the purpose of, for example, reducing the influence of carbon contamination derived from the heat insulating layer on the melt.
  • the in-furnace observation windows 44 and 8 made of quartz glass are formed in the growth furnace main body 2 and the gas flow straightening tube 5 as the upper furnace internal structure, respectively. These furnace observation windows 4
  • the silicon single crystal is grown while the state inside the gas rectifying cylinder 5 is not detected or observed by the photographing means such as the camera 6 after passing through steps 4 and 8.
  • FIG. 2 instead of the heat shielding ring 30, a plate-like heat reflecting ring 130 (for example, made of isotropic graphite) having an outer diameter on an inverted truncated cone is provided. You may.
  • FIG. 3 shows an example in which a graphite heat shielding screen 55 having a truncated conical outer shape with a narrowed lower end is provided as an upper furnace internal structure.
  • a flange-shaped heat reflection plate 55a here, substantially parallel to the melt surface
  • the same reference numerals are given to the same elements as those in FIG. 1, and the detailed description will be omitted.
  • the outside of the crucible 12 melts the polycrystalline raw material put in the crucible 12
  • a heater 15 for maintaining the silicon melt 14 at a desired temperature is provided upright on the bottom surface of the growth furnace main body 2 with a heater electrode (not shown) as a support.
  • the heater 15 is heated by supplying electric power from the heater electrode to the heater 15 so that the silicon melt 14 is kept at a high temperature.
  • the recovery space forming section 4 has a gas inlet 9a for introducing an inert gas such as Ar gas into the breeding furnace.
  • the gas inlet 9a is connected to the gas inlet 9a. After the flow rate of the inactive raw gas is adjusted by the gas flow rate control device 122 on the inert gas pipe 9 via the active gas pipe 9, the gas is introduced into the growth furnace.
  • a heat insulating material 16 and a lower heat insulating material 3 are provided inside the growth furnace main body 2 in order to efficiently keep the inside of the growth furnace main body 2 warm and to protect the furnace wall.
  • a gas outlet 11 for exhausting the inert gas introduced into the breeding furnace is provided at the bottom of the breeding furnace main body 2. From the breeding furnace through the exhaust gas pipe 7. The exhaust gas pipe 7 is collected in a collecting pipe 17, and a conductance valve 18 is installed in the middle of the pipe 17, and further ahead is a diagram for assisting the exhaust of inert gas from the growth furnace. A vacuum pump is provided to keep the inside of the growth furnace under reduced pressure.
  • the pressure inside the growth furnace is maintained at a furnace pressure suitable for crystal growth (for example, 50 to 200 hPa) by adjusting the conductance pulp 18 provided in the exhaust gas pipe.
  • a furnace pressure suitable for crystal growth for example, 50 to 200 hPa
  • Each exhaust gas pipe 7 has substantially the same axial cross-sectional area and length, and is commonly sucked by the above-described vacuum pump via the collective pipe 17. As a result, the inert gas is exhausted from each exhaust gas port 11 at the same flow rate.
  • the inert gas in the growth furnace main body 2 in order to efficiently and uniformly discharge the inert gas in the growth furnace main body 2 from the growth furnace, as shown in FIG.
  • two points are provided at the center of the growth furnace, that is, at positions symmetrical with respect to the single crystal pulling axis (that is, the formation angle interval around the single crystal pulling axis is approximately 1). 80 ° C).
  • three or more exhaust gas ports 11 may be formed at substantially equal angular intervals with respect to the single crystal pulling shaft. As a result, more uniform inert gas reflux is possible.
  • an exhaust port 61 may be provided in the exhaust projection 7a so as to open to the upper end surface, but in this embodiment, the exhaust projection 7a is provided.
  • a plurality of the exhaust gas ports 11 are formed at predetermined intervals in the circumferential direction of the outer peripheral surface of the exhaust protrusion 7a.
  • the exhaust projection 7a is formed by projecting the upper end of the exhaust gas pipe 7 through the bottom of the growth furnace main body 2 and projecting a predetermined length H from the bottom.
  • the exhaust protrusion 7a can be formed at the same time by the pipe member forming the exhaust gas pipe 7, thereby reducing the number of parts.
  • FIG. 5 (c) a configuration in which a cylindrical exhaust protrusion 67 is separately formed outside the exhaust gas pipe 7 may be adopted.
  • the upper surface side of the exhaust projection 67 is open to form an exhaust gas port 69, and a shielding plate 68 which forms a front end blocking portion at a predetermined interval is located above the exhaust port 69. It is provided.
  • the shielding plate 68 is connected to the annular upper end surface of the exhaust protrusion 67 via a plurality of columns 69 arranged at predetermined intervals in the circumferential direction.
  • the exhaust gas port 11 is filled with the silicon melt from the exhaust gas port 11 even if all of the silicon melt 14 that can be stored in the crucible 12 flows out into the growth furnace. If it is formed at a position where it does not flow, a more reliable device can be obtained.
  • the height to the lower edge of the exhaust gas port 11 is H
  • the volume of the liquid that can fill the growth furnace up to the height H is V (H) crucible 1. It is better to determine H so that V (H) ⁇ VC, where VC is the internal volume of 2.
  • a wire 22 is wound above the recovery space forming part 4 to pull up the silicon single crystal 23 from the silicon melt 14 or to rotate the crystal during the growth of the single crystal. (Not shown) is provided.
  • a seed holder 120 is attached to the tip of the wire 22 unwound from the wire winding and unwinding mechanism, and the seed crystal 21 is locked to the seed holder 20.
  • a polycrystalline silicon material is filled in a quartz crucible 12 b provided in the single crystal manufacturing apparatus 1, and the material is melted by heating the heater 15 to obtain a silicon melt 14. .
  • the wire 22 is unwound by operating the wire winding and unwinding mechanism, and the seed crystal 21 locked on the seed holder 20 is operated. The tip is gently brought into contact with the surface of the silicon melt 14.
  • the wire 22 is wound up while rotating the rutupo 12 and the seed crystal 21 in directions opposite to each other, and the silicon single crystal 23 can be grown below the seed crystal 21 by pulling up. .
  • the inert gas flowing into the recovery space forming part 4 from the gas inlet 9a flows from inside the recovery space forming part 4 as a subsequent upper furnace internal structure. It flows down into the gas straightening tube 5 and is blown out onto the raw material melt surface 14a. Then, along the raw material melt surface 14 a, it goes around upward through the lower edge of the gas flow straightening tube 5, and is heat shielded. After flowing through the gap between the ring 30 and the inner wall of the root 12, it flows into the breeding furnace main body 2. Specifically, by controlling the amount of the inert gas flowing in the growth furnace main body 2 and the furnace pressure, the heat shield ring 30 disposed directly above the silicon melt 14 and the inside of the rupture 12 are controlled.
  • the flow rate of the inert gas flowing through the gap D with the wall is adjusted so that it is 6.5 cm / sec or more. Is almost constant at).
  • some inert gas directly travels around the gas flow straightening tube 5 and reaches near the ceiling of the growth furnace body 2. After that, the gas flows downward from the upper part of the breeding furnace body 2 toward the exhaust gas port 11, while refluxing the inside of the breeding furnace body 2, and substantially uniformly from the respective exhaust gas ports 11 provided on the bottom surface of the breeding furnace body 2.
  • the gas is exhausted to the outside of the growth furnace through the exhaust gas pipe 7 and the collecting pipe 17.
  • the opening shape or axial cross-sectional shape (exhaust gas shape) of the exhaust gas pipe 7 communicating with the exhaust gas outlet at the bottom of the growth furnace is a circle centered on the single crystal pulling shaft.
  • the shape may be elongated along the circumferential path.
  • the shape of the exhaust gas port can be an arc shape along a circumferential path.
  • a plurality of exhaust gas ports may be formed along the plurality of circumferential paths set at different positions in the radial direction with the single crystal pulling axis as a center on the bottom portion of the growth furnace.
  • FIG. 8 shows an example in which the exhaust gas pipe 7 having the shape of the exhaust gas port shown in FIG. 7 is formed in two rows along two concentric circular paths. This As a result, the inert gas can be more uniformly refluxed.
  • the present invention is not limited only to the growth of the silicon single crystal as described above.
  • the method for producing a silicon single crystal and the apparatus for producing a semiconductor single crystal according to the present invention are applied to a method and apparatus for producing a silicon single crystal using the MCZ method in which a single crystal is grown while a magnetic field is applied to the melt.
  • the present invention is naturally possible, and the present invention can be applied to the case where another semiconductor single crystal such as a compound semiconductor is grown by the CZ method.
  • the silicon single crystal Training was conducted.
  • the diameter of the heat shielding ring 30 was 40 O mm.
  • 60 kg of polycrystalline silicon material was filled, and after filling the inside of the growth furnace with Ar gas, the heater 15 was heated.
  • a silicon melt 14 as a raw material melt was obtained.
  • the observation window 8 There was no dirt or fogging, and the diameter of the pulled silicon single crystal 23 had an error of about 1 mm from the target value, so the polycrystalline silicon material was crucible without solidifying the silicon melt 14.
  • the single crystal was grown again.
  • the amount of the raw material melt at this time was 60 kg, and a silicon single crystal 23 having the same diameter of 150 mm was grown from the silicon melt 14.
  • Example 1 using a single crystal manufacturing apparatus shown in FIG. 1 in which a set of exhaust gas pipe 7 and exhaust gas port 11 was provided at two locations, the other conditions were the same as those of Example 1 and silicon single crystal was used. Training was conducted. As a result, as in Example 1, when three silicon single crystals were pulled, clouding occurred in the observation window 8 in the furnace, making it difficult to continue the operation, and the pulling of the single crystal was terminated. After the temperature was sufficiently lowered, the inside of the furnace was observed in the same manner as in Example 1, and it was found that the amount of deposits on the ceiling of the growth furnace main body 2 and the upper part of the outer surface of the gas flow straightening tube 5 was relatively small. The adhesion was relatively uniform with little deviation. This is an inert gas Is returned to the furnace without stagnation, and evaporates from the raw material melt can be smoothly discharged to the outside of the furnace.
  • a silicon single crystal was grown.
  • the same conditions as in Example 2 were adopted except that the diameter of the heat shield ring 30 disposed at the lower end of the flow straightening tube 5 was set to be slightly larger, 410 mm.
  • the distance D between the outer circumference of the heat shield ring 30 and the inner wall of the ruppo was 15 mm, and the flow velocity of the inert gas flowing through the gap D was estimated to be approximately 8 cm / sec.
  • the pressure in the furnace was 100 hPa. Then, even after the growth of the fourth single crystal was completed, no fogging or the like was observed in the observation window portion 8 in the furnace, and the surface of the gas rectifying cylinder 5 was not so much stained by deposits.
  • a silicon single crystal was grown. Note that the same conditions as in Example 2 were adopted except that the diameter of the heat shielding ring 30 disposed at the lower end of the rectifying tube 5 was set to 39 O mm, which was smaller than that in Example 1 or 2. At this time, the distance between the outer periphery of the heat shielding ring 30 and the inner wall of the crucible was 25 mm, and the flow velocity of the inert gas flowing through the gap was estimated to be approximately 5 cmZsec. The pressure inside the furnace was 100 hPa.
  • the polycrystalline silicon raw material can be And the silicon single crystal was pulled again. Even when pulling up the second and subsequent single crystals, the amount of the raw material melt is returned to 60 kg as in the first crystal, and a single crystal with the same diameter of 15 O mm as the first crystal is grown from this raw material melt. did.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

A method of manufacturing a silicon monocrystal and a device for manufacturing a semiconductor monocrystal containing silicon monocrystal; the method of manufacturing the silicon monocrystal, comprising the steps of, inside a cultivating furnace (2), disposing a crucible (12) having molten silicon liquid (14) stored therein, disposing upper in-furnace structures (5, 30) so as to surround a cultivated monocrystal (23), and adjusting the flow velocity of the inert gas allowed to flow out of the tip opening part of the upper in-furnace structure (5) when the inert gas passes through a space surrounded by the inner wall of the crucible (12) and the outer wall of the upper in-furnace structures (5, 30) to 6.5 cm/sec. or higher when the inert gas is discharged to the outside of the cultivating furnace (2) through the space surrounded by the inner and outer walls while the silicon monocrystal (23) is cultivated by the Czochralski method while the inert gas is allowed to flow down from the upper side to a molten silicon liquid level (14a) in the crucible (12) in the upper in-furnace structure (5).

Description

明 細 書 シリコン単結晶の製造方法及び半導体単結晶の製造装置 技術分野  Description: Manufacturing method of silicon single crystal and manufacturing apparatus of semiconductor single crystal
本発明は、 シリコン単結晶の製造方法とシリコン単結晶を含む半導体単結晶の製 造装置に関する。 背景技術  The present invention relates to a method for manufacturing a silicon single crystal and an apparatus for manufacturing a semiconductor single crystal including the silicon single crystal. Background art
半導体単結晶の製造方法として、 いわゆるチヨクラルスキー法 (Czochralski As a method for producing a semiconductor single crystal, a so-called Czochralski method is used.
Method, 以下、 C Z法と称する) が知られている。 この方法では、 単結晶製造装置 の育成炉内に配置されたルツボに原料塊を収容し、 このルツボの周囲に配設された ヒータを高温加熱することによってルツボ内の原料を融液とする。 そして、 融液温 度が安定したところで原料融液面に種結晶を着液させ、 その後、 種結晶を静かに引 上げることによって種結晶の下方に所望の直径と品質とを有する半導体単結晶を育 成する。 Method, hereinafter referred to as CZ method). In this method, a raw material mass is accommodated in a crucible disposed in a growth furnace of a single crystal manufacturing apparatus, and a raw material in the crucible is melted by heating a heater disposed around the crucible to a high temperature. When the temperature of the melt is stabilized, the seed crystal is immersed on the surface of the raw material melt. Thereafter, the seed crystal is gently pulled up to form a semiconductor single crystal having a desired diameter and quality below the seed crystal. Cultivate.
また、 最近の C Z法を用いた半導体単結晶の製造装置では、 自動化の推進や光学 機器の発達により、 育成炉の外部に育成炉内部を観察する撮像装置や、 融液から引 上げられた結晶の直径を検出するための光学式の直径検出装置、 あるいは融液温度 を測定する放射温度計など、 光学式の検出装置を装備したものが使用されるように なってきている。 例えば撮像装置を使用する場合、 育成炉の外に装置本体が取り付 けられ、 育成炉壁ゃ育成炉内部に配設される上部炉内構造物に設けられた炉内観察 窓を介して、 育成炉内部の原料融液面や単結晶育成部が撮影される。 該撮影により 得られた画像データは、 半導体単結晶の育成制御情報として使用される。 このよう な炉内観察窓には、 育成炉の内と外を隔てることや上部炉内構造物の機能を損なう ことなく育成炉の内部を観察し計測できるように、 透明なガラスが嵌め込まれてい るのが一般的であり、 このガラスを通して単結晶の育成状況を確認したり、 育成炉 内部の情報を集めて処理し、 単結晶育成に必要な各種の制御を行ったりしている。 一方、 最近の単結晶製造においては、 単結晶育成時における欠陥を可及的に抑制 するための、 あるいは、 育成された単結晶の冷却速度を高めて単結晶の引上速度ひ いては生産性向上を図るための方法が種々模索されている。 原料融液から引上げら れた単結晶を効率良く冷却する方法としては、 上部炉内構造物を原料融液面の直上 に単結晶を囲繞するように配置し、 ヒータや原料融液面からの輻射熱を遮蔽して速 やかに結晶を冷却する方法が一般的である。 この場合、 使用される上部炉内構造物 としては、 上部育成炉から下垂するように配置される円筒状のガス整流筒や、 逆円 錐状の外観を有する熱遮蔽スクリーンを始め、 育成炉内部の環境や結晶品質に合わ せた様々な形状のものが検討されている。 Recent semiconductor single crystal manufacturing equipment using the CZ method has been developed with the advancement of automation and the development of optical equipment, and an imaging device for observing the inside of the growth furnace outside the growth furnace and a crystal pulled from the melt. Devices equipped with an optical detection device such as an optical diameter detection device for detecting the diameter of a laser or a radiation thermometer for measuring the temperature of a melt have been used. For example, when an imaging device is used, the main body of the device is mounted outside the growth furnace, and through the furnace observation window provided on the growth furnace wall and the upper furnace internal structure disposed inside the growth furnace. The raw material melt surface and the single crystal growing part inside the growing furnace are photographed. The image data obtained by the photographing is used as growth control information for the semiconductor single crystal. Such an observation window inside the furnace may separate the inside and outside of the growth furnace and impair the function of the upper furnace internal structure. In general, transparent glass is inserted so that the inside of the growth furnace can be observed and measured without the need to check the growth status of the single crystal through this glass, and to collect information inside the growth furnace. Processing and performing various controls necessary for single crystal growth. On the other hand, in the recent production of single crystals, in order to suppress defects during single crystal growth as much as possible, or by increasing the cooling rate of the grown single crystal, the pulling rate of the single crystal, and thus the productivity, Various methods have been sought for improvement. As a method for efficiently cooling the single crystal pulled from the raw material melt, the upper furnace internal structure is placed just above the raw material melt surface so as to surround the single crystal, and the heater and the raw material melt surface A common method is to rapidly cool the crystal by shielding radiant heat. In this case, the upper furnace internal structure to be used includes a cylindrical gas rectifying cylinder disposed so as to hang down from the upper growth furnace, a heat shielding screen having an inverted conical appearance, and an inner structure of the growth furnace. Various shapes are being studied according to the environment and crystal quality.
また、 結晶育成時に取り込まれる結晶欠陥を低密度に抑制することや、 結晶の成 長速度を高速ィヒして生産性の向上を図ること等を目的として、 結晶周囲からの輻射 熱を遮蔽するだけでなく、 上部炉内構造物の熱伝導率を改善したり断熱構造を改良 したりすることにより、 積極的に結晶の冷却効率を高める対策を施した上部炉内構 造物も検討され、 実用化されつつある。  It also shields radiant heat from around the crystal for the purpose of suppressing the crystal defects introduced during crystal growth to a low density, and improving the productivity by increasing the crystal growth rate at high speed. In addition, studies were also conducted on upper furnace internal structures, which were designed to improve the thermal conductivity of the upper internal structures and to improve the heat insulation structure, thereby taking measures to actively increase the cooling efficiency of crystals. Is being transformed.
ところで、 ヒータにより 1 4 0 0 °C以上もの高温に加熱された原料融液からは、 S i O (—酸化珪素) などの蒸発物が育成炉内に向けて常に放出されている。 この 蒸発物は、 育成炉内の比較的温度の低い部分に当たると、 その低温部分で蒸発物が 固体となって析出し、 育成炉の炉壁ゃ炉内の構造物に付着して次第に堆積してい く。 このような付着物の量が多くなりすぎると.、 操業の途中で付着物が剥がれ落 ち、 原料融液に落下したり、 あるいは単結晶の育成部に付着したりして、 転位等の 結晶欠陥が発生する原因となり、 正常な単結晶成長が阻害されることがある。 ま た、 付着物により部材が侵食され、 短寿命化してしまう問題もある。 また、 原料融液からの蒸発物が前述の炉内観察窓に付着するとガラスが曇り、 作 業者が単結晶育成部を観察できなくなるとともに、 育成炉の外側に取り付けた光学 式計測機器の測定値を不安定なものとしたりし、 最悪の場合は単結晶の育成作業そ のものを継続することが不可能となる事態をも招く結果となる。 By the way, from the raw material melt heated to a temperature as high as 140 ° C. or more by the heater, evaporates such as SiO 2 (—silicon oxide) are constantly emitted toward the growth furnace. When the evaporant hits a relatively low temperature part in the growth furnace, the evaporate solidifies and precipitates in the low temperature part, adheres to the structure of the furnace wall of the growth furnace and the structure in the furnace, and gradually accumulates. To go. If the amount of such deposits becomes too large, the deposits may come off during the operation, fall into the raw material melt, or adhere to the growing part of the single crystal, causing crystals such as dislocations. This may cause defects and may hinder normal single crystal growth. In addition, there is another problem that the members are eroded by the deposits and the life is shortened. Also, if the evaporation from the raw material melt adheres to the above-mentioned observation window inside the furnace, the glass will become cloudy, and the operator will not be able to observe the single crystal growth part, and the measured values of the optical measuring equipment attached outside the growth furnace May be unstable, or in the worst case, it may be impossible to continue the single crystal growing operation itself.
従来の C Z法を用いた単結晶製造装置では、 上記不具合を回避する手段として、 単結晶の育成時においては、 育成炉の内部を反応性の低い A r (アルゴン) ガス等 の不活性ガスを十分な流量で流通し、 原料融液からの蒸発物を該不活性ガスととも に育成炉外へ排出することが行なわれている。 特に、 単結晶を育成するのに時間を 要する大直径長尺単結晶の引上げや、 いわゆる多重引上法 (Multiple Czochralski Method:単結晶を育成した後に、 ルツボ內の原料融液を固化させることなく原料塊 を再度ルツポに充填することにより、 一つのルツボから複数本の半導体単結晶を育 成する方法) を用いた単結晶の製造においては、 原料融液からの蒸発物を効率良く 育成炉外へ排出し、 操業の開始から終了までの長時間にわたり育成炉内を清浄に保 つことが、 安定した操業を継続するための重要な要件となる。  In a conventional single crystal manufacturing apparatus using the CZ method, as a means for avoiding the above-mentioned problems, when growing a single crystal, an inert gas such as Ar (argon) gas having low reactivity is supplied to the inside of the growth furnace. It is circulated at a sufficient flow rate, and evaporates from the raw material melt are discharged out of the growth furnace together with the inert gas. In particular, large-diameter long single crystals, which require time to grow single crystals, and the so-called Multiple Czochralski Method (single crystal growth), without solidifying the crucible material melt after growing the single crystals. A method of growing multiple semiconductor single crystals from one crucible by refilling the raw material mass into the crucible again). In the production of single crystals using a single crucible, the evaporation from the raw material melt is efficiently removed from the growth furnace. It is an important requirement to keep the growth furnace clean for a long time from the start to the end of the operation, and to maintain a stable operation.
しかし、 単結晶に取り込まれる結晶欠陥の低密度化や生産性向上のために、 前述 のように上部炉内構造物の結晶冷却機能を高めた場合、 冷却機能の強化に伴い上部 炉内構造物自体の温度低下も著しくなり、 蒸発物の付着が却って促進されてしまう 結果を招いている。 また、 上部炉内構造物への蒸発物の付着は、 単結晶製造装置の 大型化に伴いさらに促進されている傾向もある。 具体的な要因としては、 大型単結 晶を育成するための単結晶製造装置では、 大口径のルツボを用いて大量の原料溶融 が保持されていること、 あるいは、 大口径のルツボを保持する必要から育成炉本体 も大容積ィヒし、 熱源から離れた所では比較的温度の低い部分ができやすくなったこ と等が挙げられる。  However, if the crystal cooling function of the upper furnace internal structure is enhanced as described above in order to lower the density of crystal defects incorporated in the single crystal and improve productivity, the upper furnace internal structure The temperature of the gas itself has also dropped significantly, resulting in the accelerated adhesion of evaporants. Also, the attachment of evaporants to the upper furnace internals tends to be further promoted as the size of single crystal manufacturing equipment increases. Specifically, single crystal manufacturing equipment for growing large single crystals uses large-diameter crucibles to hold a large amount of molten material, or it is necessary to hold large-diameter crucibles. As a result, the growth furnace itself also had a large volume, and relatively low-temperature parts were more likely to be formed in places away from the heat source.
本発明の課題は、 C Z法を用いたシリコン単結晶の育成において、 シリコン融液 の直上に配置された上部炉内構造物に、 シリコン融液からの蒸発物が析出し付着す るのを効果的に抑制でき、 例えば単結晶の育成や機器制御のために必要な炉内観測 を妨げることなく長時間にわたり操業が継続可能なシリコン単結晶の製造方法を提 供すること、 及ぴ、 該方法を合理的に実現するために、 単結晶育成時に育成炉内部 に流す不活性ガスを適切に還流することが可能であり、 ひいては、 原料融液から放 出される蒸発物が育成炉内部に滞ることを防止ないし抑制して、 均等且つ速やかに 育成炉の外部へこれを排出する機能を備えた半導体単結晶の製造装置を提供するこ とにある。 発明の開示 An object of the present invention is to grow and deposit silicon vapor from a silicon melt on an upper furnace structure located immediately above a silicon melt in growing a silicon single crystal using the CZ method. To provide a method for producing a silicon single crystal that can effectively suppress the occurrence of a single crystal, for example, can continue operation for a long time without obstructing in-reactor observation necessary for growing a single crystal and controlling equipment. In order to realize the method rationally, it is possible to appropriately recirculate the inert gas flowing into the growth furnace during the growth of the single crystal. It is an object of the present invention to provide an apparatus for manufacturing a semiconductor single crystal having a function of uniformly or promptly discharging the growth out of the growth furnace while preventing or suppressing the stagnation. Disclosure of the invention
上記の問題を解決するため、 本発明に係るシリコン単結晶の製造方法は、 育成炉 の内部において、 シリコン融液を収容したルツボを配置し、 また、 育成した単結晶 を囲繞するように上部炉内構造物を配設し、 該上部炉内構造物内にて上方からルツ ポ内のシリコン融液面に向かって不活性ガスを下流しながら、 チヨクラルスキー法 によりシリコン単結晶を育成するとともに、 該シリコン単結晶の育成中において、 上部炉内構造物の先端開口部から流出した不活性ガスを、 ルツボの内壁と上部炉内 構造物の外壁とに囲まれた空間を経て育成炉外へ排出させる際に、 該不活性ガスが 上記の空間を通過する時の流速を 6 . 5 c m/ s e c以上となるよう調整すること を特徴とする。  In order to solve the above-mentioned problems, a method for producing a silicon single crystal according to the present invention comprises: disposing a crucible containing a silicon melt inside a growing furnace; and forming an upper furnace so as to surround the grown single crystal. An internal structure is provided, and a silicon single crystal is grown by the Czochralski method while flowing an inert gas downstream from above in the upper furnace internal structure toward the silicon melt surface in the rutupo. During the growth of the silicon single crystal, the inert gas flowing out of the opening at the tip of the upper furnace internal structure is transferred to the outside of the growth furnace via a space surrounded by the inner wall of the crucible and the outer wall of the upper furnace internal structure. When discharging, the flow rate of the inert gas when passing through the space is adjusted to be 6.5 cm / sec or more.
上記本発明の方法によると、 融液面を伝って上部炉内構造物外壁とルツボ内壁と の間から育成炉内部へ流れ出る不活性ガスの流速を 6 . 5 c m/ s e c以上となる ように調整することで、 育成炉の上方にまで対流する不活性ガスの量を増すことが でき、 炉内上方の温度の低い部分、 特に冷却効果を高めて低温化している上部炉内 構造物に蒸発物が析出して付着物となることを効果的に抑制することができる。 な お、 本明細書において不活性ガスの流量は、 ルツボの内壁と上部炉内構造物の外壁 との、 単結晶引上軸に関する半径方向の間隔が最小となる位置での値にて代表させ るものとする。 According to the method of the present invention, the flow rate of the inert gas flowing into the growth furnace from the space between the outer wall of the upper furnace structure and the inner wall of the crucible along the melt surface is adjusted to be 6.5 cm / sec or more. By doing so, the amount of inert gas convection up to the upper part of the growth furnace can be increased, and the evaporant is reduced in the lower temperature part above the furnace, especially in the upper furnace structure where the cooling effect is enhanced and the temperature is lowered. Can be effectively suppressed from being deposited and becoming a deposit. In this specification, the flow rate of the inert gas is represented by the value at the position where the radial distance between the inner wall of the crucible and the outer wall of the upper furnace internal structure with respect to the single crystal pulling axis in the radial direction is minimum. Shall be.
上記本発明の方法においては、 育成炉の外から、 該育成炉及び上部炉内構造物に それぞれ形成された透明材料 (例えば石英ガラス等の耐熱ガラスである) からなる 炉内観察窓部を経て、 上部炉内構造物の内側の状態を光学的に検出ないし観察しつ つシリコン単結晶の育成を行なうことができる。 本発明の採用により、 炉内観察窓 部が設けられる上部炉内構造物の温度が比較的低温となる状況下であっても、 炉内 観察窓部が前記付着物により曇ったりする不具合が生じ難くなる。 これにより、 力 メラ等の撮影手段による育成中の単結晶の撮影 ·観察や、 結晶直径検出装置等の光 学系検出器による測定を、 長期間問題なく継続することが可能となる。 特に、 融液 面と結晶の境界にできる照環 (フュージョンリング) を検出して育成結晶の直径制 御を行なう半導体単結晶製造においては、 炉内観察窓に蒸発物が付着した際に引き 起こされる測定誤差が長時間にわたり軽減されるため、 精度の高い直径制御が可能 となり、 ひいては単結晶の生産性と歩留り向上とを図ることが可能となる。 また、 誤差の少ない所望の直径を持つ結晶の引上げを継続できることから、 結晶全長にわ たって品質が安定し、 酸素等の不純物パラツキを抑制した単結晶が育成可能とな る。  In the above method of the present invention, from the outside of the growth furnace, through the furnace observation window made of a transparent material (for example, heat-resistant glass such as quartz glass) formed on the growth furnace and the upper furnace internal structure, respectively. It is possible to grow a silicon single crystal while optically detecting or observing the state inside the upper furnace internal structure. By adopting the present invention, even in a situation where the temperature of the upper furnace internal structure in which the furnace observation window is provided is relatively low, the furnace observation window may be fogged by the deposits. It becomes difficult. This makes it possible to continue photographing and observing a single crystal during growth by a photographing means such as a force camera or the like and measurement by an optical system detector such as a crystal diameter detecting device without any problem for a long time. In particular, in the production of semiconductor single crystals in which the diameter of the grown crystal is controlled by detecting the illuminated ring (fusion ring) formed at the boundary between the melt surface and the crystal, it is caused when evaporates adhere to the observation window in the furnace. Since the measurement error is reduced over a long period of time, it is possible to control the diameter with high accuracy, and it is possible to improve the productivity and yield of the single crystal. Further, since it is possible to continue pulling a crystal having a desired diameter with a small error, it is possible to grow a single crystal in which the quality is stable over the entire length of the crystal and the dispersion of impurities such as oxygen is suppressed.
上記本発明の効果は、 結晶育成に時間を要する大直径結晶の生産や長尺結晶の引 上げにおいて特に顕著である。 特に、 育成炉本体の天井部の空間が比較的大きく、 口径が 5 0 c mを超え、 1 0 0 k gあるいはそれ以上の多結晶シリコン原料を溶融 可能な大口径のルツポを収容可能な大型単結晶製造装置においても、 その効果を十 分に発揮することができる。 また、 単結晶を引上げた後に原料融液を固化させるこ となく同じルツボに多結晶原料を再充填して、 一つの石英製ルツボから複数本の単 結晶を育成する多重引上げ法を用いた単結晶製造においても、 十分に満足のいく効 果が得られる。  The effects of the present invention are particularly remarkable in the production of large-diameter crystals, which require time for crystal growth, and in pulling long crystals. In particular, the space in the ceiling of the growth furnace main body is relatively large, the diameter exceeds 50 cm, and a large single crystal capable of accommodating a large-diameter rutupo capable of melting 100 kg or more of polycrystalline silicon material. The effect can also be fully exhibited in manufacturing equipment. Also, after pulling the single crystal, the same crucible is refilled with the polycrystalline raw material without solidifying the raw material melt, and a single pulling method using a multiple pulling method to grow a plurality of single crystals from one quartz crucible is used. Satisfactory effects can be obtained in crystal production.
次に、 本発明においては、 前述の不活性ガスの流速を、 上記の効果が十分に達成 されるよう、 6 . 5 c m/ s e cを下限として定めるが、 必要以上に流速を上昇さ せることは、 不活性ガスを無駄に消費することにもなり、 製造コスト等を考慮すれ ば好ましいことではない。 このような状況に鑑みて、 上部炉内構造物外壁とルツボ 内壁とに囲まれた空間 (隙間) 力 流出する不活性ガスの流速は、 最大でも 2 0 c m/ s e cを超えないことが望ましい。 なお、 該流速は、 より望ましくは、 6 . 5 〜8 . 5 c mZ s e cの範囲にて設定するのがよい。 Next, in the present invention, the above-mentioned effect is sufficiently achieved by controlling the flow rate of the inert gas. The lower limit is set at 6.5 cm / sec, but increasing the flow rate more than necessary wastes inert gas, which is not desirable in view of manufacturing costs. Absent. In view of this situation, the space (gap) between the outer wall of the upper furnace internal structure and the inner wall of the crucible Force (flow rate) It is desirable that the flow rate of the inert gas flowing out does not exceed 20 cm / sec at the maximum. The flow rate is more desirably set in the range of 6.5 to 8.5 cmZ sec.
次に、 上記上部炉内構造物は、 育成される単結晶の熱履歴を調整する手段として 機能するよう、 育成された単結晶を囲繞するように配設され、 この融液面直上に置 かれた上部炉内構造物によりヒータや原料融液等からの輻射熱が直接結晶に当たる のを防ぐ役割を果たす。 この場合、 原料融液面と育成された単結晶とが接する結晶 育成部は、 これら融液直上に配置された上部炉内構造物の陰となって、 育成炉の外 部から直接観察するのは難しくなるから、 前記炉内観察窓部を設けることが特に有 効であり、 その曇り等を防止する観点において、 本発明の効果が一層顕著に発揮さ れる。 なお、 上部炉内構造物は、 例えば金属や黒鉛等の熱伝導性の良好な材質にて 構成することができ、 また、 単結晶が引上げられた直後からその効果を発揮するよ うに、 構造物下端が原料融液面と 5〜 5 O mm程度のわずかの隙間を保って配置さ れることがある。  Next, the upper furnace internal structure is arranged so as to surround the grown single crystal so as to function as a means for adjusting the thermal history of the grown single crystal, and is placed immediately above the melt surface. The upper furnace internal structure serves to prevent radiant heat from the heater, raw material melt, etc. from directly hitting the crystal. In this case, the crystal growth part where the melt surface of the raw material and the grown single crystal are in contact is the shadow of the upper furnace internal structure placed just above these melts, and can be directly observed from outside the growth furnace. Therefore, it is particularly effective to provide the in-furnace observation window, and the effect of the present invention is more remarkably exhibited from the viewpoint of preventing fogging and the like. The upper furnace internal structure can be made of a material having good thermal conductivity such as metal or graphite, and the structure is designed so as to exhibit its effect immediately after the single crystal is pulled. In some cases, the lower end is placed with a slight gap of about 5 to 5 Omm from the surface of the raw material melt.
上部炉内構造物は、 熱伝導率や断熱構造を工夫したりすることで、 上部炉内構造 物に囲まれた単結晶部分の冷却温度雰囲気を調整することができる。 特に、 熱遮蔽 スクリーン等のような円錐台を逆さにした形状の上部炉内構造物であれば、 融液表 面から吹き上げられた不活 1"生ガスが上部炉内構造物の表面に当たり易いので効果的 に蒸発物が構造物表面に付着するのを抑制できる。 他方、 ガス整流筒のように略円 筒状の形状を有した上部炉構造物であっても、 上部炉内構造物外壁とルツポ内壁の 間から流れ出る不活 I1生ガスの流速が 6 . 5 c m/ s e c以上となるように調整する ことによって、 原料融液から蒸発した蒸発物の付着を効果的に抑制することが可能 である。 For the upper furnace internal structure, the cooling temperature atmosphere of the single crystal part surrounded by the upper furnace internal structure can be adjusted by devising the thermal conductivity and the heat insulation structure. In particular, in the case of an upper furnace internal structure such as a heat shield screen with a truncated cone inverted, the inert 1 "raw gas blown up from the melt surface easily hits the surface of the upper furnace internal structure. On the other hand, even in the case of an upper furnace structure having a substantially cylindrical shape such as a gas flow control cylinder, the outer wall of the upper furnace internal structure can be effectively suppressed. the flow rate of inert I 1 product gas flowing out from between the the Rutsupo inner wall 6. by adjusting such that the 5 cm / sec or more, is possible to effectively suppress the adhesion of vaporized substances evaporated from the raw material melt Possible It is.
また、 原料融液表面を保温して結晶成長界面付近での融液の温度変動を抑え、 単 結晶の育成がスムーズに行われるように、 ガス整流筒として、 原料融液面と対向す る下端側に熱遮蔽リングを一体ィ匕したものを用いることができる。 このような上部 炉内構造物は、 一層低温ィヒしゃすい傾向にあるといえるが、 本発明の方法を用いる とにより効果的に蒸発物の付着を抑制できる。 この場合、 熱遮蔽リングの外周面と ルツボ内壁との間から育成炉本体の内部へ流れる不活性ガスの流速を 6 . 5 c m/ s e c以上となるように調整するようにする。  In addition, a gas rectifying cylinder is provided at the lower end facing the surface of the raw material melt so that the surface of the raw material melt is kept warm to suppress temperature fluctuations of the melt near the crystal growth interface and grow the single crystal smoothly. A heat shield ring integrally formed on the side can be used. Although it can be said that such an upper furnace internal structure tends to have a lower temperature and a lower temperature, the use of the method of the present invention can effectively suppress the adhesion of evaporants. In this case, the flow velocity of the inert gas flowing from the space between the outer peripheral surface of the heat shield ring and the inner wall of the crucible into the growth furnace main body is adjusted to be 6.5 cm / sec or more.
この他にも、 C Z法を用いた単結晶製造においては、 複雑で様々な形状の上部炉 内構造物を原料融液の直上に配置して単結晶育成を行なうことが実施されている ヽ 何れの場合においても上部炉内構造物と原料融液を収容したルツボ内壁の間に 流れる不活性ガスの流速を 6 . 5 c m/ s e c以上となるように調整して育成炉内 に流せばその効果を得ることができる。  In addition, in the production of single crystals using the CZ method, single crystals are grown by arranging upper furnace structures of complicated and various shapes directly above the raw material melt. In this case, the effect can be obtained by adjusting the flow rate of the inert gas flowing between the upper furnace internal structure and the crucible inner wall containing the raw material melt to 6.5 cm / sec or more and flowing it into the growth furnace. Can be obtained.
次に、 本発明の方法においては、 育成炉の内部を 2 0 0 h P a以下の減圧に保つ てシリコン単結晶を育成することが望ましい。 これにより、 比較的低圧操業となる ので育成炉の炉壁や上部炉内構造物の表面に原料融液からの蒸発物が堆積すること をより軽減できる。 また、■育成炉内部に流す不活 I"生ガスの量も少なくて済み経済的 でもある。 なお、 操業中の育成炉内の圧力は、 低くとも下限を 5 0 h P a程度に止 めて操業を行なうことが望ましい。 これは、 必要とする不活性ガスの流速が容易に 得られることと、 これとは別に以下の理由にもよる。 すなわち、 融液表面から蒸発 する S i中の酸素は、 原料融液を収容している石英ルツボ壁から酸素が溶出するこ とにより賄われている。 そのため原料融液が保持されている育成炉内部の圧力が必 要以上に低くなると、 融液表面から蒸発する S i Oの量が増え、 結果として原料融 液を収容している石英製ルツボ壁の劣化を早め長時間の操業継続が困難となる場合 がある。 従って、 このような事態を回避するために、 育成炉の炉內圧力を低くする 場合でも 5 0 h P a程度に留めて単結晶育成を行なうのが好ましい。 Next, in the method of the present invention, it is desirable to grow a silicon single crystal while keeping the inside of the growth furnace at a reduced pressure of 200 hPa or less. As a result, the operation at a relatively low pressure is performed, so that the evaporation of the evaporation from the raw material melt on the furnace wall of the growth furnace and the surface of the upper internal structure can be further reduced. In addition, (1) the amount of inactive I "raw gas flowing into the breeding furnace is small and it is economical. The pressure inside the breeding furnace during operation should be kept at a lower limit of at least 50 hPa. This is because the required flow rate of the inert gas can be easily obtained, and separately from the following reasons: that is, the amount of Si in the evaporating from the melt surface Oxygen is supplied by the elution of oxygen from the wall of the quartz crucible containing the raw material melt, so that if the pressure inside the growth furnace holding the raw material melt becomes lower than necessary, the melting will occur. In some cases, the amount of SiO 2 evaporating from the liquid surface increases, and as a result, the quartz crucible wall containing the raw material melt deteriorates quickly and it becomes difficult to continue the operation for a long time. Lower the pressure of the breeding furnace to avoid Even in this case, it is preferable to grow the single crystal while keeping the pressure at about 50 hPa.
また、 長時間にわたる操業により、 S¾液からの蒸発物が、 断熱材やヒータ、 ヒー タ電極等が配置される育成炉底部に堆積することも多い。 従って、 このような堆積 を少なく抑えるためには、 製造装置の育成炉底面部に排ガス口を設けるのが好まし い。 例えば、 育成炉本体の上部に半導体単結晶の回収空間を形成する回収空間形成 部が一体化された形態の育成炉を使用する場合、 ガス整流筒を、 その回収空間の下 端側から育成炉本体の内部に延出する形態で設け、 不活性ガスを上記回収空間内に 導入するとともに、 育成炉本体の底面部に接続された排ガス管を経て育成炉外へ排 出するようにする。 このような方式の採用は、 育成炉本体内でのスムーズなガス流 を可能とし、 不活性ガスの流速を 6 . 5 c m/ s e c以上に高める上でも有効であ る。  In addition, over a long period of operation, evaporates from the sulfuric acid solution often accumulate on the bottom of the growth furnace where the heat insulator, heater, heater electrode, etc. are located. Therefore, in order to suppress such deposition, it is preferable to provide an exhaust gas port at the bottom of the growth furnace of the manufacturing apparatus. For example, when using a growth furnace in which a recovery space forming part for forming a semiconductor single crystal recovery space is integrated in the upper part of the growth furnace main body, the gas rectification cylinder is placed in the growth furnace from the lower end side of the recovery space. An inert gas is provided so as to extend inside the main body, and the inert gas is introduced into the above-mentioned recovery space, and is discharged out of the growth furnace through an exhaust gas pipe connected to the bottom of the growth furnace main body. The adoption of such a method enables a smooth gas flow in the growth furnace main body and is effective in increasing the flow rate of the inert gas to 6.5 cm / sec or more.
排ガス口を育成炉本体の底部に備え、 上部炉内構造物を配した単結晶の製造装置 においては、 育成炉本体上方から導入された不活性ガスは、 例えばガス整流筒内を 経て原料融液面を伝い、 一部がルツボ外周から一部は上部炉内構造物の外周付近を 通り育成炉本体の天井部にまで達した後に、 育成炉の下部へと下流し排ガス口から 炉外へと排出される。 この場合、 ガス排出口の位置が一つであると、 育成炉内を還 流するガスの流れにムラができやすく、 不活性ガスの流速が遅くなるところや、 十 分に不活性ガスが還流しない場所において、 蒸発物が付着しやすくなる場合があ る。  In a single-crystal manufacturing device equipped with an exhaust gas port at the bottom of the growth furnace main body and an upper furnace internal structure, the inert gas introduced from the upper part of the growth furnace main body passes through, for example, a gas flow straightening tube to melt the raw material. After passing partly from the outer periphery of the crucible to the ceiling of the breeding furnace body, partly from the outer periphery of the crucible to the ceiling of the breeding furnace body, it flows downstream to the lower part of the breeding furnace and out of the furnace through the exhaust gas port. Is discharged. In this case, if there is only one gas outlet, the flow of the gas returning to the breeding furnace tends to be uneven, and the flow rate of the inert gas is slow, and the inert gas is sufficiently recirculated. In places where evaporation does not occur, there is a possibility that evaporates may easily adhere.
このような不具合を防止するには、 育成炉本体の底面部において、 前記単結晶引 上軸の周囲に複数箇所に設けられたガス排出口から不活性ガスを排出することが有 効である。 また、 本発明の半導体単結晶の製造装置は、 育成炉の内部に、 原料融液 を収容したルツボが配置され、 育成した単結晶を囲繞するように上部炉内構造物が 配設され、 チヨクラルスキー法によるシリコン単結晶育成のために該上部炉内構造 物内にて育成炉上方からルツポ内の原料融液面に向かつて不活性ガスが下流される ようになつており、 さらに、 不活性ガスを排気するための排ガス口を、 育成炉の底 面部において、 単結晶引上軸を中心とする円周径路上に略等角度間隔にて複数形成 したことを特徴とする。 In order to prevent such a problem, it is effective to discharge an inert gas from gas outlets provided at a plurality of locations around the single crystal pulling shaft on the bottom of the growth furnace main body. Further, in the apparatus for producing a semiconductor single crystal of the present invention, a crucible containing a raw material melt is arranged inside a growth furnace, and an upper furnace internal structure is arranged so as to surround the grown single crystal. In order to grow a silicon single crystal by the Kralski method, an inert gas is flowed down from the upper part of the growth furnace toward the raw material melt surface in the rutupo in the upper furnace internal structure. In addition, a plurality of exhaust ports for exhausting inert gas are formed at substantially equal angular intervals on a circumferential path centered on the single crystal pulling shaft on the bottom surface of the growth furnace. It is characterized by the following.
すなわち、 上記本発明の半導体単結晶の製造装置によると、 育成炉内に流れる不 活性ガスを滞ることなく還流して育成炉外へと排出することが可能となり、 本発明 の単結晶育成方法により得られる効果をより確実なものとすることができる。 ま た、 育成炉に流れる不活性ガスを育成炉内に滞らせることなく円滑に育成炉の外部 で排出することができるため、 原料融液から蒸発した S i O等の酸化物を育成炉内 の低温部分に析出させることを抑制し、 育成炉内部を長時間にわたり清浄に保つこ とが可能となる。 これにより炉内上部に析出物が堆積し難くなるので、 操業中に原 料融液に析出物が落下し、 育成中の単結晶に付着する等して結晶にスリップ転位を もたらしたりする不具合も軽減できるようになり、 結晶成長そのものを阻害する要 因をも抑制して操業を行なうことが達成される。  That is, according to the semiconductor single crystal manufacturing apparatus of the present invention, the inert gas flowing in the growth furnace can be refluxed and discharged out of the growth furnace without stagnation. The obtained effect can be made more reliable. In addition, since the inert gas flowing through the growth furnace can be smoothly discharged outside the growth furnace without stagnation in the growth furnace, oxides such as SiO 2 evaporated from the raw material melt can be removed from the growth furnace. Precipitation in the low-temperature portion of the furnace is suppressed, and the inside of the growth furnace can be kept clean for a long time. This makes it difficult for precipitates to accumulate in the upper part of the furnace, causing precipitates to fall into the raw material melt during operation and attaching to the growing single crystal, causing slip dislocation in the crystal. As a result, it is possible to reduce the factors that hinder the crystal growth itself, and to achieve operations.
この場合、 結晶の品質や長時間にわたる安定した操業の継続を考えると、 結晶の 引上軸を中心として可能な限り均等に不活性ガスを育成炉内に還流することが望ま しく、 具体的には、 複数のガス排出口を、 育成炉本体の底面部において、 単結晶引 上軸を中心とする円周径路上に略等角度間隔に形成するのがよい。 また、 育成炉本 体内部を不活 14ガスがより均等に還流するようにするためには、 炉内底面部に排ガ スロを 2つ以上設け、 それぞれ同程度のガス排気能力を持つように製造装置を構成 することが望ましい。 特に、 育成炉内部の容積が大きい大型の単結晶育成装置では より効果的に作用するものであり、 単結晶製造装置をこのような構造とすることに より、 上部炉内構造物と原料融液を収容したルツボ内壁の間から流出する不活性ガ スを、 隙間全体にわたって均一に保つことが可能とされる。 これによつて、 育成炉 本体の融液上方に流れる不活性ガスが澱みなく均一に還流されるため、 育成炉の炉 壁や上部炉内構造物に偏って蒸発物が付着することを防止できる。 図面の簡単な説明 In this case, considering the quality of the crystal and the continuation of stable operation for a long time, it is desirable to recirculate the inert gas into the growth furnace as uniformly as possible about the crystal pulling axis. Preferably, a plurality of gas outlets are formed at substantially equal angular intervals on a circumferential path centered on the single crystal pulling axis on the bottom portion of the growth furnace main body. Also, in order to make the inactive 14 gas recirculate more evenly inside the breeding furnace body, two or more exhaust gas slots should be provided at the bottom of the furnace so that each has the same gas exhaust capacity. It is desirable to configure manufacturing equipment. In particular, a single crystal growing apparatus having a large volume inside the growing furnace works more effectively, and by adopting such a structure of the single crystal manufacturing apparatus, the structure in the upper furnace and the material melt can be improved. The inert gas flowing out from between the crucible inner walls accommodating the gas can be kept uniform throughout the gap. As a result, the inert gas flowing above the melt in the growth furnace body is uniformly recirculated without stagnation, so that it is possible to prevent evaporation substances from adhering to the furnace wall of the growth furnace and the upper furnace internal structure. . BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の単結晶製造装置の一例を縦断面にて示す模式図。  FIG. 1 is a schematic diagram showing an example of a single crystal manufacturing apparatus of the present invention in a longitudinal section.
図 2は、 図 1の単結晶製造装置において、 ガス整流筒下端の熱遮蔽リングを熱反 射板に変更した変形例を示す模式図。  FIG. 2 is a schematic diagram showing a modified example of the single crystal manufacturing apparatus of FIG. 1, in which a heat shield ring at the lower end of the gas flow straightening tube is replaced with a heat reflecting plate.
図 3は、 同じく、 ガス擎流筒に代えて逆円錐状の熱遮蔽スクリーンを設けた変形 例を示す模式図。  FIG. 3 is a schematic view showing a modification in which an inverted conical heat shielding screen is provided instead of the gas flow tube.
図 4は、 図 1の、 育成炉本体底部付近における横断面図。  Fig. 4 is a cross-sectional view of Fig. 1 near the bottom of the growth furnace main body.
図 5は、 排気用突出部を、 その種々の変形例とともに示す模式図。  FIG. 5 is a schematic diagram showing the exhaust protrusion together with various modifications thereof.
図 6は、 排ガス口及び排ガス管の組を 3つ等間隔に形成した変形例を横断面及び 部分縦断面にて示す模式図。  FIG. 6 is a schematic view showing a modified example in which three sets of exhaust gas ports and exhaust gas pipes are formed at equal intervals in a cross section and a partial vertical section.
図 7は、 排ガス口形状の変形例を示す横断面図。  FIG. 7 is a cross-sectional view showing a modification of the exhaust gas port shape.
図 8は、 同じくさらに別の変形例を示す横断面図。 発明を実施するための最良の形態  FIG. 8 is a cross-sectional view showing still another modified example. BEST MODE FOR CARRYING OUT THE INVENTION
以下に本発明の実施の形態を、 添付図面を参照しながら、 C Z法により製造され るシリコン単導体単結晶の育成を例に取り説明する。 図 1は、 本発明の C Z法によ る半導体単結晶製造装置の一つの実施形態を示す断面概略図である。 該半導体単結 晶製造装置 (以下、 単に単結晶製造装置ともう) 1は、 原料融液たるシリコン融液 1 4を満たしたルツポ 1 2を収容し、 その育成炉は、 シリコン単結晶 2 3が育成さ れる育成炉本体 2と、 該育成炉本体 2の上方に一体形成され、 シリコン融液 1 4か ら引上げられたシリコン単結晶 2 3を収容保持する回収空間形成部 4を有する。 育 成炉本体 2内部の略中央には、 ルツボ支持軸 1 3を介して内側に石英製ルツボ 1 2 aを、 外側に黒鉛製ルツボ 1 2 bを配したルツボ 1 2が置かれている。 このルツボ 1 2は、 ルツボ支持軸 1 3の下端に取り付けられているルツボ駆動機構 1 9によ り、 シリコン単結晶 2 3の育成条件や作業工程に合わせて回転自在および上下動自 在に動作可能なものである。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings, taking as an example the growth of a silicon single conductor single crystal manufactured by the CZ method. FIG. 1 is a schematic cross-sectional view showing one embodiment of a semiconductor single crystal manufacturing apparatus according to the CZ method of the present invention. The semiconductor single crystal manufacturing apparatus (hereinafter simply referred to as “single crystal manufacturing apparatus”) 1 accommodates a rutupo 12 filled with a silicon melt 14 as a raw material melt, and a growing furnace for the silicon single crystal 2 3 And a recovery space forming part 4 integrally formed above the growth furnace main body 2 and containing and holding the silicon single crystal 23 pulled up from the silicon melt 14. A crucible 12 having a quartz crucible 12a on the inside and a graphite crucible 12b on the outside is placed at approximately the center of the inside of the growth furnace body 2 via a crucible support shaft 13. The crucible 12 is driven by a crucible drive mechanism 19 attached to the lower end of the crucible support shaft 13. In other words, it is freely rotatable and vertically operable in accordance with the growth conditions and work process of the silicon single crystal 23.
ルツボ 1 2に収容されたシリコン融液 1 4の上方には、 上部炉内構造物としての ガス整流筒 5が、 その下端面がシリコン融液 1 4の直上かつ直近に位置し、 かつ引 上げられるシリコン単結晶 2 3を囲繞するように配置されている。 なお、 本実施の 形態では、 融液面 1 4 aと対向する形で、 ガス整流筒 5の下端部に熱遮蔽リング 3 0を取り付けている。 熱遮蔽リング 3 0は、 多孔質あるいは繊維質の断熱材からな る断熱層からなり、 シリコン融液 1 4力 らの輻射熱をより効果的に遮蔽し、 融液の 保温効果を高めて融液 1 4の温度変動をより小さくすることができる。 特に、該断熱 層を、 カーボンファイバー製の繊維質断熱材等、 断熱効果の高い材質にて構成すれ ば、 より大きな保温効果が得られ、 一層安定した結晶成長を行なうことができる。 なお、 断熱層の周囲は、 融液に対する断熱層に由来したカーボンコンタミの影響を 低減する等の目的で、 黒鉛等からなる被覆層にて覆うことができる。  Above the silicon melt 14 housed in the crucible 12, a gas rectifying cylinder 5 as an upper furnace internal structure is positioned, with its lower end surface located immediately above and immediately adjacent to the silicon melt 14, and pulled up It is arranged so as to surround the silicon single crystal 23 to be formed. In the present embodiment, a heat shield ring 30 is attached to the lower end of the gas flow straightening tube 5 so as to face the melt surface 14a. The heat shield ring 30 is made of a heat insulating layer made of a porous or fibrous heat insulating material, and more effectively shields the radiant heat from the silicon melt 14 to enhance the heat retaining effect of the melt. The temperature fluctuation of 14 can be further reduced. In particular, if the heat insulating layer is made of a material having a high heat insulating effect such as a fibrous heat insulating material made of carbon fiber, a larger heat retaining effect can be obtained, and more stable crystal growth can be performed. The periphery of the heat insulating layer can be covered with a coating layer made of graphite or the like for the purpose of, for example, reducing the influence of carbon contamination derived from the heat insulating layer on the melt.
次に、 育成炉本体 2と、 上部炉内構造物であるガス整流筒 5にはそれぞれ、 石英 ガラスからなる炉内観察窓部 4 4及び 8が形成されている。 これら炉内観察窓部 4 Next, the in-furnace observation windows 44 and 8 made of quartz glass are formed in the growth furnace main body 2 and the gas flow straightening tube 5 as the upper furnace internal structure, respectively. These furnace observation windows 4
4及ぴ 8を経てガス整流筒 5の内側の状態が、 カメラ 6等の撮影手段よりに検出な いし観察されつつ、 シリコン単結晶の育成が行なわれる。 The silicon single crystal is grown while the state inside the gas rectifying cylinder 5 is not detected or observed by the photographing means such as the camera 6 after passing through steps 4 and 8.
ここで、 図 2に示すように、 熱遮蔽リング 3 0に代えて、 逆円錐台上の外径を有 する板状の熱反射リング 1 3 0 (例えば等方性黒鉛製である) を設けてもよい。 ま た、 図 3は、 上部炉内構造物として、 下端部が狭められた円錐台状の外形を有する 黒鉛製の熱遮蔽スクリーン 5 5を設けた例である。 この場合、 その下端部には、 内 向きに突出する形で鍔状の熱反射板 5 5 a (ここでは、 融液面と略平行なもの) を 設けることができる。 なお、 図 2及ぴ図 3において、 図 1と共通の要素には同一の 符号を付与し、 詳細な説明は省略する。  Here, as shown in FIG. 2, instead of the heat shielding ring 30, a plate-like heat reflecting ring 130 (for example, made of isotropic graphite) having an outer diameter on an inverted truncated cone is provided. You may. FIG. 3 shows an example in which a graphite heat shielding screen 55 having a truncated conical outer shape with a narrowed lower end is provided as an upper furnace internal structure. In this case, a flange-shaped heat reflection plate 55a (here, substantially parallel to the melt surface) can be provided at the lower end so as to protrude inward. 2 and 3, the same reference numerals are given to the same elements as those in FIG. 1, and the detailed description will be omitted.
図 1に戻り、 ルツボ 1 2の外側には、 ルツボ 1 2に入れられた多結晶原料を融解 し、 シリコン融液 1 4を所望の温度に保っためのヒータ 1 5が図示しないヒータ電 極部を支えとして育成炉本体 2の底面上に立設されている。 単結晶育成時において は、 そのヒータ電極部からヒータ 1 5に電力を供給することによりヒータ 1 5を発 熱させ、 シリコン融液 1 4を高温に保つようにする。 Returning to Fig. 1, the outside of the crucible 12 melts the polycrystalline raw material put in the crucible 12 A heater 15 for maintaining the silicon melt 14 at a desired temperature is provided upright on the bottom surface of the growth furnace main body 2 with a heater electrode (not shown) as a support. When growing a single crystal, the heater 15 is heated by supplying electric power from the heater electrode to the heater 15 so that the silicon melt 14 is kept at a high temperature.
次に、 回収空間形成部 4には、 育成炉に A rガス等の不活性ガスを導入するため のガス導入口 9 aがあり、 操業時においては、 ガス導入口 9 aに接続された不活性 ガス管 9を介して不活·生ガスが、 該不活性ガス管 9上にあるガス流量制御装置 1 2 2により流量調整された後、 育成炉内部に導入される。  Next, the recovery space forming section 4 has a gas inlet 9a for introducing an inert gas such as Ar gas into the breeding furnace. In operation, the gas inlet 9a is connected to the gas inlet 9a. After the flow rate of the inactive raw gas is adjusted by the gas flow rate control device 122 on the inert gas pipe 9 via the active gas pipe 9, the gas is introduced into the growth furnace.
他方、 育成炉本体 2の内部には、 該育成炉本体 2の内部を効率よく保温すること と炉壁を保護するために、 断熱材 1 6及び下部保温材 3が設けられている。 そし て、 育成炉本体 2の底面部には、 育成炉内に導入された不活性ガスを排気するため のガス排出口 1 1が設けられ、 育成炉内の不活性ガスはこの排ガス口 1 1から排ガ ス管 7を経由して育成炉外へと排出される。 なお、 排ガス管 7は集合配管 1 7に集 められるとともに、 その途中にはコンダクタンスバルブ 1 8が設置され、 さらにそ の先には、 育成炉からの不活性ガスの排気を補助するための図示しない真空ポンプ が設けられており、 育成炉の内部が減圧状態に保たれるようになつている。 なお、 育成炉内部の圧力は、 排ガス管に設けられたコンダクタンスパルプ 1 8を調節する ことによって、 結晶育成に適した炉内圧 (例えば 5 0〜2 0 0 h P a ) を保持して いる。 そして、 各排ガス管 7は、 略同じ軸断面積及び長さを有していて、 集合配管 1 7を介して前述の真空ポンプにより共通吸引される。 これにより、 各排ガス口 1 1からは、 各々等しい流量にて不活性ガスが排気される。  On the other hand, a heat insulating material 16 and a lower heat insulating material 3 are provided inside the growth furnace main body 2 in order to efficiently keep the inside of the growth furnace main body 2 warm and to protect the furnace wall. In addition, a gas outlet 11 for exhausting the inert gas introduced into the breeding furnace is provided at the bottom of the breeding furnace main body 2. From the breeding furnace through the exhaust gas pipe 7. The exhaust gas pipe 7 is collected in a collecting pipe 17, and a conductance valve 18 is installed in the middle of the pipe 17, and further ahead is a diagram for assisting the exhaust of inert gas from the growth furnace. A vacuum pump is provided to keep the inside of the growth furnace under reduced pressure. The pressure inside the growth furnace is maintained at a furnace pressure suitable for crystal growth (for example, 50 to 200 hPa) by adjusting the conductance pulp 18 provided in the exhaust gas pipe. Each exhaust gas pipe 7 has substantially the same axial cross-sectional area and length, and is commonly sucked by the above-described vacuum pump via the collective pipe 17. As a result, the inert gas is exhausted from each exhaust gas port 11 at the same flow rate.
本実施形態では、 育成炉本体 2内の不活性ガスを効率よく均一に育成炉内から排 出するために、 図 4に示すように、 排ガス口 1 1 (及ぴ対応する排ガス管 7 ) を、 育成炉本体 2の底部において育成炉中心位置、 すなわち単結晶引上軸に関して対称 な位置に 2箇所設けている (すなわち、 単結晶引上軸の周りの形成角度間隔は略 1 8 0 °Cである) 。 なお、 図 6に示すように、 3箇所あるいはそれ以上の排ガス口 1 1 (及び対応する排ガス管 7 ) を、 単結晶引上軸に関して略等角度間隔に形成する こともできる。 これにより、 より均一な不活性ガスの還流が可能となる。 In the present embodiment, in order to efficiently and uniformly discharge the inert gas in the growth furnace main body 2 from the growth furnace, as shown in FIG. At the bottom of the growth furnace main body 2, two points are provided at the center of the growth furnace, that is, at positions symmetrical with respect to the single crystal pulling axis (that is, the formation angle interval around the single crystal pulling axis is approximately 1). 80 ° C). As shown in FIG. 6, three or more exhaust gas ports 11 (and corresponding exhaust gas pipes 7) may be formed at substantially equal angular intervals with respect to the single crystal pulling shaft. As a result, more uniform inert gas reflux is possible.
また、 本実施形態では図 1に示すように、 何らかの原因によりルツポ 1 2からシ リコン融液 1 4が漏れ出し、 育成炉本体 2の下部に達した場合に、 高温のシリコン 融液 1 4が排ガス口 1 1から直接育成炉外部へ流れ出すことを防止できるように、 以下のような工夫が施されている。 すなわち、 育成炉本体 (育成炉) 2の底面には、 排ガス管 7の連通位置に対応する形で、 排気用突出部 7 aが底面から突出形成さ れ、 排ガス口 1 1はその排気用突出部 7 aに対し、 開口下縁位置が底面から所定高 さ Hだけ離間する形にて形成されている。 なお、 図 5 ( b ) に示すように、 排気用 突出部 7 aにおいて排ガス口 6 1を、 上端面に開口する形で設けてもよいが、 本実 施形態では、 排気用突出部 7 aは、 先端部を閉塞する先端閉塞部 7 cを有し、 排ガ スロ 1 1を該排気用突出部 7 aの側面に開口させる形としている。 これにより、 上 方から落下してくる融液 1 4の飛沫などが排ガス管 7内に直接侵入することを効果 的に防止できる。 図 5 ( a ) に示すように、 この排ガス口 1 1は、 ここでは、 排気 用突出部 7 aの外周面周方向に所定の間隔で複数個形成されている。  In this embodiment, as shown in FIG. 1, when the silicon melt 14 leaks out of the root 12 for some reason and reaches the lower part of the growth furnace main body 2, the high-temperature silicon melt 14 is discharged. The following measures have been taken to prevent the gas from flowing out of the growth furnace directly from the exhaust gas port 11. That is, on the bottom surface of the growth furnace body (growth furnace) 2, an exhaust protrusion 7a is formed to project from the bottom surface in a form corresponding to the communication position of the exhaust gas pipe 7, and the exhaust gas port 11 The opening lower edge position is formed to be separated from the bottom surface by a predetermined height H with respect to the portion 7a. In addition, as shown in FIG. 5 (b), an exhaust port 61 may be provided in the exhaust projection 7a so as to open to the upper end surface, but in this embodiment, the exhaust projection 7a is provided. Has a distal end closing portion 7c for closing the distal end portion, and has a shape in which the exhaust gas slot 11 is opened on the side surface of the exhaust projecting portion 7a. This can effectively prevent splashes of the melt 14 falling from above from directly entering the exhaust gas pipe 7. As shown in FIG. 5 (a), here, a plurality of the exhaust gas ports 11 are formed at predetermined intervals in the circumferential direction of the outer peripheral surface of the exhaust protrusion 7a.
また、 本実施形態では、 排ガス管 7の上端部を、 育成炉本体 2の底部を貫いて、 該底面から所定長さ Hだけ突出させることにより排気用突出部 7 aを形成してい る。 これにより、 排ガス管 7を形成する管部材により排気用突出部 7 aも同時に形 成できるので、 部品点数の削減が達成されている。 ただし、 図 5 ( c ) に示すよう に、 排ガス管 7の外側に筒状の排気用突出部 6 7を別途形成する構成としてもよ レ、。 図 5 ( c ) では、 排気用突出部 6 7の上面側が開放して排ガス口 6 9を形成し ており、 その上方には、 所定の間隔をおいて先端閉塞部をなす遮蔽板 6 8が設けら れている。 該遮蔽板 6 8は、 排気用突出部 6 7の環状の上端面に、 周方向に所定の 間隔で並ぶ複数の支柱部 6 9を介して結合されている。 なお、 いずれの場合においても、 排ガス口 1 1は、 ルツボ 1 2に収容可能なシリ コン融液 1 4の全てが育成炉内に流出した場合においても、 排ガス口 1 1からシリ コン融液が流れ出さない位置に形成しておけば、 より信頼性の高い装置とすること ができる。 具体的には、 例えば図 1において、 排ガス口 1 1の下縁に至るまでの高 さを H、 当該高さ Hまで育成炉内を満たすことのできる液体の体積を V (H) ルツ ボ 1 2の内容積を V Cとして、 V (H) ≥V Cを満足するように Hを定めるのがよ い。 In the present embodiment, the exhaust projection 7a is formed by projecting the upper end of the exhaust gas pipe 7 through the bottom of the growth furnace main body 2 and projecting a predetermined length H from the bottom. As a result, the exhaust protrusion 7a can be formed at the same time by the pipe member forming the exhaust gas pipe 7, thereby reducing the number of parts. However, as shown in FIG. 5 (c), a configuration in which a cylindrical exhaust protrusion 67 is separately formed outside the exhaust gas pipe 7 may be adopted. In FIG. 5 (c), the upper surface side of the exhaust projection 67 is open to form an exhaust gas port 69, and a shielding plate 68 which forms a front end blocking portion at a predetermined interval is located above the exhaust port 69. It is provided. The shielding plate 68 is connected to the annular upper end surface of the exhaust protrusion 67 via a plurality of columns 69 arranged at predetermined intervals in the circumferential direction. In any case, the exhaust gas port 11 is filled with the silicon melt from the exhaust gas port 11 even if all of the silicon melt 14 that can be stored in the crucible 12 flows out into the growth furnace. If it is formed at a position where it does not flow, a more reliable device can be obtained. Specifically, for example, in FIG. 1, the height to the lower edge of the exhaust gas port 11 is H, and the volume of the liquid that can fill the growth furnace up to the height H is V (H) crucible 1. It is better to determine H so that V (H) ≥ VC, where VC is the internal volume of 2.
次に、 回収空間形成部 4の上方には、 シリコン融液 1 4からシリコン単結晶 2 3 を引上げるためにワイヤー 2 2を卷き取ったり、 単結晶育成時に結晶を回転させた りするための図示しないワイヤー卷取り卷出し機構が設けられている。 そして、 そ のワイヤー卷取り巻出し機構から巻き出されたワイヤー 2 2の先端には、 種ホルダ 一 2 0が取り付けられ、 該種ホルダー 2 0に種結晶 2 1が係止されている。  Next, a wire 22 is wound above the recovery space forming part 4 to pull up the silicon single crystal 23 from the silicon melt 14 or to rotate the crystal during the growth of the single crystal. (Not shown) is provided. A seed holder 120 is attached to the tip of the wire 22 unwound from the wire winding and unwinding mechanism, and the seed crystal 21 is locked to the seed holder 20.
以下に、 上記単結晶製造装置 1を用いたシリコン単結晶の製造方法の例について 説明する。 始めに、 単結晶製造装置 1内に設けられた石英製ルツボ 1 2 bに多結晶 シリコン原料を充填し、 ヒータ 1 5を発熱させることによりこれを融解して、 シリ コン融液 1 4とする。 そして、 所望の温度で融液 1 4が安定したら、 前述のワイヤ ー卷取り卷出し機構を操作してワイヤー 2 2を卷き出し、 種ホルダー 2 0に係止さ れている種結晶 2 1先端をシリコン融液 1 4の表面に静かに接触させる。 その後、 ルツポ 1 2と種結晶 2 1とを互いに反対方向に回転させながらワイヤー 2 2を卷き 取り、 引上げることによって、 種結晶 2 1の下方にシリコン単結晶 2 3を育成する ことができる。  Hereinafter, an example of a method for manufacturing a silicon single crystal using the single crystal manufacturing apparatus 1 will be described. First, a polycrystalline silicon material is filled in a quartz crucible 12 b provided in the single crystal manufacturing apparatus 1, and the material is melted by heating the heater 15 to obtain a silicon melt 14. . Then, when the melt 14 is stabilized at the desired temperature, the wire 22 is unwound by operating the wire winding and unwinding mechanism, and the seed crystal 21 locked on the seed holder 20 is operated. The tip is gently brought into contact with the surface of the silicon melt 14. Thereafter, the wire 22 is wound up while rotating the rutupo 12 and the seed crystal 21 in directions opposite to each other, and the silicon single crystal 23 can be grown below the seed crystal 21 by pulling up. .
上記シリコン単結晶 2 3の育成時には、 ガス導入口 9 aから回収空間形成部 4に 流入した不活性ガスが、 該回収空間形成部 4内から、 これに続く上部炉内構造物と してのガス整流筒 5内へと流下し、 原料融液面 1 4 a上に吹き出される。 そして、 該原料融液面 1 4 aを伝つて、 ガス整流筒 5の下縁を経て上方へ回り込み、 熱遮蔽 リング 3 0とルツポ 1 2の内壁との隙間を経て、 育成炉本体 2内へと流出する。 具 体的には、 育成炉本体 2内に流れる不活性ガスの量と炉内圧力をコントロールする ことで、 シリコン融液 1 4の直上に配置した熱遮蔽リング 3 0と、 ルツポ 1 2の内 壁との隙間 Dを流れる不活性ガスの流速が 6 . 5 c m/ s e c以上となるように調 整される (ここでは、 単結晶引上軸に関する半径方向の隙間 Dの大きさは、 周方向 においてほぼ一定である) 。 また、 一部の不活性ガスは、 そのままガス整流筒 5付 近を伝って育成炉本体 2の天井近傍にまで達する。 そして、 その後、 育成炉本体 2 の上方から排ガス口 1 1に向かって流下し、 育成炉本体 2内を還流しつつ、 育成炉 本体 2の底面に設けられた各排ガス口 1 1から略均等に、 排ガス管 7及ぴ集合管 1 7を経て育成炉外部へと排気される。 During the growth of the silicon single crystal 23, the inert gas flowing into the recovery space forming part 4 from the gas inlet 9a flows from inside the recovery space forming part 4 as a subsequent upper furnace internal structure. It flows down into the gas straightening tube 5 and is blown out onto the raw material melt surface 14a. Then, along the raw material melt surface 14 a, it goes around upward through the lower edge of the gas flow straightening tube 5, and is heat shielded. After flowing through the gap between the ring 30 and the inner wall of the root 12, it flows into the breeding furnace main body 2. Specifically, by controlling the amount of the inert gas flowing in the growth furnace main body 2 and the furnace pressure, the heat shield ring 30 disposed directly above the silicon melt 14 and the inside of the rupture 12 are controlled. The flow rate of the inert gas flowing through the gap D with the wall is adjusted so that it is 6.5 cm / sec or more. Is almost constant at). In addition, some inert gas directly travels around the gas flow straightening tube 5 and reaches near the ceiling of the growth furnace body 2. After that, the gas flows downward from the upper part of the breeding furnace body 2 toward the exhaust gas port 11, while refluxing the inside of the breeding furnace body 2, and substantially uniformly from the respective exhaust gas ports 11 provided on the bottom surface of the breeding furnace body 2. The gas is exhausted to the outside of the growth furnace through the exhaust gas pipe 7 and the collecting pipe 17.
これにより、 回収空間形成部 4の天井壁やガス整流筒 5の外面等に、 シリコン融 液 1 4からの S i O等の蒸発物が付着することを効果的に抑制できる。 特に、 ガス 整流筒 5の炉内観察窓ガラス 8への蒸発物の付着が防止されることで、 炉内観察窓 ガラス 8が曇り、 単結晶育成部位が観察できなくなる不具合を回避することができ る。  Thereby, it is possible to effectively suppress the evaporation of the SiO 2 and the like from the silicon melt 14 from adhering to the ceiling wall of the recovery space forming section 4, the outer surface of the gas rectifying tube 5, and the like. In particular, by preventing evaporation substances from adhering to the in-furnace observation window glass 8 of the gas flow straightening tube 5, the in-furnace observation window glass 8 becomes cloudy and a problem that a single crystal growing portion cannot be observed can be avoided. You.
なお、 上記単結晶製造装置 1においては、 排ガス口に連通する排ガス管 7の、 育 成炉底面における開口形状又は軸断面形状 (排ガス口形状) を、 単結晶引上軸を中 心とする円周経路に沿って引き延ばされた形状とすることができる。 一例として、 図 7に示すように、 該排ガス口形状を、 円周経路に沿う円弧状形態とすることがで ' きる。 このような形状とすることによって、 ムラ無くより均一に育成炉内に不活性 ガスを還流することができるようになる。  In the single crystal production apparatus 1, the opening shape or axial cross-sectional shape (exhaust gas shape) of the exhaust gas pipe 7 communicating with the exhaust gas outlet at the bottom of the growth furnace is a circle centered on the single crystal pulling shaft. The shape may be elongated along the circumferential path. As an example, as shown in FIG. 7, the shape of the exhaust gas port can be an arc shape along a circumferential path. By adopting such a shape, the inert gas can be recirculated into the growth furnace more uniformly without unevenness.
また、 排ガス口を、 育成炉の底面部において、 単結晶引上軸を中心として半径方 向に互いに異なる位置に設定された複数の円周径路のそれぞれに沿って複数個ずつ 形成することもできる。 図 8においては、 図 7に示す排ガス口形状の排ガス管 7 を、 同心的に設定された 2つの円周径路に沿って 2列形成した例である。 これによ り、 不活性ガスをさらに均一に還流することができるようになる。 Further, a plurality of exhaust gas ports may be formed along the plurality of circumferential paths set at different positions in the radial direction with the single crystal pulling axis as a center on the bottom portion of the growth furnace. . FIG. 8 shows an example in which the exhaust gas pipe 7 having the shape of the exhaust gas port shown in FIG. 7 is formed in two rows along two concentric circular paths. This As a result, the inert gas can be more uniformly refluxed.
なお、 本発明は、 上記のようなシリコン単結晶の育成のみに限定されるものでは ない。 例えば、 本発明のシリコン単結晶の製造方法や半導体単結晶製造装置は、 原 料融液に磁場を印加しながら単結晶を育成する M C Z法を用いたシリコン単結晶の 育成方法並びに製造装置に利用できることは当然可能であり、 さらには化合物半導 体等の他の半導体単結晶を C Z法により育成する場合においても本発明を適用でき る。  The present invention is not limited only to the growth of the silicon single crystal as described above. For example, the method for producing a silicon single crystal and the apparatus for producing a semiconductor single crystal according to the present invention are applied to a method and apparatus for producing a silicon single crystal using the MCZ method in which a single crystal is grown while a magnetic field is applied to the melt. The present invention is naturally possible, and the present invention can be applied to the case where another semiconductor single crystal such as a compound semiconductor is grown by the CZ method.
(実施例)  (Example)
以下、 実験例を挙げて本発明をより具体的に説明するが、 本発明はこれらに限定 して解釈されるものではない。  Hereinafter, the present invention will be described more specifically with reference to experimental examples, but the present invention is not construed as being limited thereto.
(実施例 1 )  (Example 1)
育成炉底面部にある排ガス管 7及ぴ排ガス口 1 1の組を 1つのみとした点を除 き、 他は図 1と同様に構成された単結晶製造装置を用いて、 シリコン単結晶の育成 を行った。 なお、 熱遮蔽リング 3 0の直径は 4 0 O mmとした。 そして、 直径が 4 4 0 mmの石英製のルツボ 1 2 bを使用し、 多結晶シリコン原料を 6 0 k g充填し て、 育成炉の内部を A rガスで満たした後にヒータ 1 5を発熱させることにより原 料融液であるシリコン融液 1 4とした。 その後、 シリコン融液 1 4の温度を単結晶 育成に適した温度に安定するのを待って、 種結晶 2 1をシリコン融液 1 4の表面に 着液し、 ルツボ 1 2と反対方向に回転させながら静かに融液上方に引上げることに よって、 種結晶の下方に直径 1 5 0 mmの単結晶を育成した。 なお、 シリコン融液 1 4から出る蒸発物を育成炉外へ排出するため、 1 0 0リツトル Zm i nの A rガ スを還流した。 熱遮蔽リング 3 0の外周とルツボ内壁との間隔 Dは 2 0 mmであ り、 この隙間 Dを流れる不活性ガスの流速は、 約 6 . 5 c m/ s e cと見積もられ た。 また、 炉内の圧力は 1 0 0 h P aであった。  Except that only one set of the exhaust gas pipe 7 and the exhaust gas port 11 on the bottom of the growth furnace was used, the silicon single crystal Training was conducted. The diameter of the heat shielding ring 30 was 40 O mm. Then, using a quartz crucible 12b with a diameter of 44 mm, 60 kg of polycrystalline silicon material was filled, and after filling the inside of the growth furnace with Ar gas, the heater 15 was heated. As a result, a silicon melt 14 as a raw material melt was obtained. After that, wait for the temperature of silicon melt 14 to stabilize to a temperature suitable for single crystal growth, then immerse seed crystal 21 on the surface of silicon melt 14 and rotate in the opposite direction to crucible 12 A single crystal with a diameter of 150 mm was grown below the seed crystal by gently pulling the melt upward. The Ar gas of 100 liters Zmin was refluxed in order to discharge the evaporated matter from the silicon melt 14 to the outside of the growth furnace. The distance D between the outer periphery of the heat shield ring 30 and the inner wall of the crucible was 20 mm, and the flow rate of the inert gas flowing through the gap D was estimated to be about 6.5 cm / sec. The pressure in the furnace was 100 hPa.
この時、 育成炉外部から内部を観察したところ、 ガス整流筒 5の炉内観察窓部 8 に汚れや曇りはなく、 引上げられシリコン単結晶 2 3の直径も目標値に対し土 1 m m程度の誤差であったため、 シリコン融液 1 4を固化させることなく多結晶シリコ ン原料をルツボ 1 2に再充填して、 再度単結晶の育成を行った。 この時の原料融液 量も 6 0 k gであり、 このシリコン融液 1 4から同じ直径 1 5 0 mmのシリコン単 結晶 2 3を成長させた。 At this time, when the inside of the growth furnace was observed from outside, the observation window 8 There was no dirt or fogging, and the diameter of the pulled silicon single crystal 23 had an error of about 1 mm from the target value, so the polycrystalline silicon material was crucible without solidifying the silicon melt 14. The single crystal was grown again. The amount of the raw material melt at this time was 60 kg, and a silicon single crystal 23 having the same diameter of 150 mm was grown from the silicon melt 14.
この操作を繰り返し、 3本目の単結晶育成が終了した時点で育成炉内を確認した ところ、 炉内観察窓部 8に曇りが現れ、 ガス整流筒 5の下方にシリコンの酸化物の 付着が見られたため、 これ以上単結晶製造を継続することは難しいものと判断し、 ヒータ 1 5の電源を切って育成炉内を降温し、 作業を終了した。 この時、 3本目の 単結晶の育成が終了したのは、 操業開始から 8 0時間が経過した後である。 そし て、 最後に育成したシリコン単結晶 2 3の直径を確認したところ、 炉内観察窓部 8 に曇りが出た辺りから誤差が大きくなり、 シリコン単結晶 2 3の後半では目標値に 対し ± 2 mmの直径バラツキが観察された。 なお、 温度が常温近くまで下がってか ら、 育成炉内部の酸ィヒ物の付着状態を確認したところ、 排ガス口 1 1の形成側にお いて、 育成炉本体 2の天井付近やガス整流筒 5の外面上部には、 S i O等の付着物 が多少観察された。 また、 その裏側の、 排ガス口 1 1から遠い位置では、 ガス整流 筒 5の上部や育成炉本体 2の天井付近に、 より多くの付着物が見られた。  This operation was repeated, and when the growth of the third single crystal was completed, the inside of the growth furnace was confirmed.Haze appeared in the observation window 8 in the furnace, and adhesion of silicon oxide under the gas rectification cylinder 5 was observed. Therefore, it was judged that it was difficult to continue the production of the single crystal any more, so the power of the heater 15 was turned off, the temperature in the growth furnace was lowered, and the work was completed. At this time, the growth of the third single crystal was completed after a lapse of 80 hours from the start of operation. When the diameter of the finally grown silicon single crystal 23 was confirmed, the error became large from the point where the observation window 8 in the furnace became cloudy, and in the latter half of the silicon single crystal 23, ± A diameter variation of 2 mm was observed. After the temperature dropped to near normal temperature, the state of adhesion of oxidized substances inside the growth furnace was confirmed. At the top of the outer surface of No. 5, some deposits such as SiO 2 were observed. On the other side, farther from the exhaust gas port 11, more deposits were found in the upper part of the gas flow straightening tube 5 and near the ceiling of the growth furnace main body 2.
(実施例 2 )  (Example 2)
次に、 図 1に示す、 排ガス管 7及ぴ排ガス口 1 1の組を 2箇所に設けた単結晶製 造装置を用いて、 その他の条件は実施例 1と同一の条件でシリコン単結晶の育成を 行った。 その結果、 実施例 1と同様にシリコン単結晶を 3本引上げたところで炉内 観察窓部 8に曇りが発生したため操業継続が困難となり、 単結晶の引上げを終了し た。 そして、 温度が十分低下してから実施例 1と同様に炉内を観察したところ、 育 成炉本体 2の天井部やガス整流筒 5の外面上部への付着物は比較的少なく抑えられ ており、 また、 付着状態は偏りが少なく比較的一様であった。 これは、 不活性ガス が滞留することなく炉内に還流し、 順調に原料融液からの蒸発物を炉外へ排出でき ていることを意味するものである。 Next, using a single crystal manufacturing apparatus shown in FIG. 1 in which a set of exhaust gas pipe 7 and exhaust gas port 11 was provided at two locations, the other conditions were the same as those of Example 1 and silicon single crystal was used. Training was conducted. As a result, as in Example 1, when three silicon single crystals were pulled, clouding occurred in the observation window 8 in the furnace, making it difficult to continue the operation, and the pulling of the single crystal was terminated. After the temperature was sufficiently lowered, the inside of the furnace was observed in the same manner as in Example 1, and it was found that the amount of deposits on the ceiling of the growth furnace main body 2 and the upper part of the outer surface of the gas flow straightening tube 5 was relatively small. The adhesion was relatively uniform with little deviation. This is an inert gas Is returned to the furnace without stagnation, and evaporates from the raw material melt can be smoothly discharged to the outside of the furnace.
(実施例 3 )  (Example 3)
図 1に示す単結晶製造装置 1を用いて、 シリコン単結晶の育成を行った。 なお、 整流筒 5の下端に配置した熱遮蔽リング 3 0の直径を、 多少大きい 4 1 0 mmとし た以外は、 実施例 2と同様の条件を採用した。 この時の熱遮蔽リング 3 0の外周と ルツポ内壁との間隔 Dは 1 5 mmであり、 隙間 Dを流れる不活性ガスの流速は略 8 c m/ s e cと見積もられた。 また、 炉内の圧力は 1 0 0 h P aであった。 する と、 4本目の単結晶の育成が終了したところでも、 炉内観察窓部 8に曇り等は認め られず、 ガス整流筒 5の表面にも付着物による汚れはそれ程見られなかった。 他 方、 この時点で操業時間が 1 0 0時間を超えたため、 ルツボ 1 2の耐久性が限界に 近づいているものと判断し、 単結晶の育成作業を終了した。 そして、 4本目の単結 晶の直径を確認したところ、 結晶直径に大きなパラツキは見られず、 目標値に対し 土 1 mm程度の直径誤差があつたのみでり、 操業時間が 1 0 0時間以上を経過して いても検出装置の測定機能は十分確保できていたことがわかった。  Using the single crystal manufacturing apparatus 1 shown in FIG. 1, a silicon single crystal was grown. The same conditions as in Example 2 were adopted except that the diameter of the heat shield ring 30 disposed at the lower end of the flow straightening tube 5 was set to be slightly larger, 410 mm. At this time, the distance D between the outer circumference of the heat shield ring 30 and the inner wall of the ruppo was 15 mm, and the flow velocity of the inert gas flowing through the gap D was estimated to be approximately 8 cm / sec. The pressure in the furnace was 100 hPa. Then, even after the growth of the fourth single crystal was completed, no fogging or the like was observed in the observation window portion 8 in the furnace, and the surface of the gas rectifying cylinder 5 was not so much stained by deposits. On the other hand, since the operation time exceeded 100 hours at this point, it was judged that the durability of the crucible 12 was approaching its limit, and the work of growing the single crystal was completed. When the diameter of the fourth single crystal was confirmed, there was no large variation in the crystal diameter, and there was only a diameter error of about 1 mm in soil from the target value, and the operating time was 100 hours. It was found that the measurement function of the detector was sufficiently ensured even after the above.
(比較例)  (Comparative example)
図 1に示す単結晶製造装置 1を用いて、 シリコン単結晶の育成を行った。 なお、 整流筒 5の下端に配置した熱遮蔽リング 3 0の直径を、 実施例 1あるいは 2より小 さい 3 9 O mmとした以外は、 実施例 2と同様の条件を採用した。 この時の熱遮蔽 リング 3 0の外周とルツボ内壁との間隔は 2 5 mmであり、 隙間を流れる不活性ガ スの流速は略 5 c mZ s e cと見積もられた。 また、 炉内の圧力は 1 0 0 h P aで あった。  Using the single crystal manufacturing apparatus 1 shown in FIG. 1, a silicon single crystal was grown. Note that the same conditions as in Example 2 were adopted except that the diameter of the heat shielding ring 30 disposed at the lower end of the rectifying tube 5 was set to 39 O mm, which was smaller than that in Example 1 or 2. At this time, the distance between the outer periphery of the heat shielding ring 30 and the inner wall of the crucible was 25 mm, and the flow velocity of the inert gas flowing through the gap was estimated to be approximately 5 cmZsec. The pressure inside the furnace was 100 hPa.
そして、 単結晶を 1本引上げたところで育成炉内部を観察したところ、 炉内観察 窓部 8に汚れや曇りはなく、 引上げられた結晶の直径も目標値に対し土 1 mm程度 の誤差であったため、 シリコン融液 1 4を固化させることなく多結晶シリコン原料 を再充填して、 再度シリコン単結晶の引上げを行った。 2本目以降の単結晶の引上 げにおレ、ても 1本目と同様に原料融液量を 6 0 k gまで戻し、 この原料融液から 1 本目と同じ直径 1 5 O mmの単結晶を育成した。 When the single crystal was pulled up and the inside of the growth furnace was observed, there was no dirt or fogging in the observation window 8 inside the furnace, and the diameter of the pulled crystal had an error of about 1 mm soil from the target value. Therefore, the polycrystalline silicon raw material can be And the silicon single crystal was pulled again. Even when pulling up the second and subsequent single crystals, the amount of the raw material melt is returned to 60 kg as in the first crystal, and a single crystal with the same diameter of 15 O mm as the first crystal is grown from this raw material melt. did.
しかし、 2本目の単結晶の育成が終了し、 3本目の単結晶を育成するための多結 晶シリコン原料の溶融が完了したあたりで炉内観察窓部 8の曇りが認められ始め、 種結晶 2 1をシリコン融液 1 4に着液させる段階では曇りがー層激しくなり、 育成 されたシリコン単結晶 2 3とシリコン融液 1 4との境に見られる照環の確認も困難 となったので、 この時点で操業を中止した。 この時の製造時間は、 操業を開始して から 5 0時間を経過していた。 その後、 育成炉内部の状態を観察したところ、 ガス 整流 5の外面上部や育成炉本体 2の上方には酸化物等の付着物が多量に堆積してお り、 ガス整流筒 5の外面の略全体が付着物により覆われていた。 また、 炉内観察窓 部 8の一部にも酸ィ匕物の付着が顕著に観察された。  However, when the growth of the second single crystal was completed and the melting of the polycrystalline silicon material for growing the third single crystal was completed, clouding of the observation window 8 in the furnace began to be observed, and the seed crystal was started. At the stage where 21 is immersed in the silicon melt 14, the fogging became intense, making it difficult to confirm the illuminated ring seen at the boundary between the grown silicon single crystal 23 and the silicon melt 14. The operation was stopped at this point. At this time, 50 hours had passed since the start of operation. After that, when the inside of the growth furnace was observed, a large amount of deposits such as oxides were deposited on the upper surface of the gas flow straightener 5 and above the growth furnace body 2, and the outer surface of the gas flow straightener 5 was substantially removed. The whole was covered by the deposit. In addition, the adhesion of the oxidized substance was remarkably observed also in a part of the observation window portion 8 in the furnace.

Claims

請 求 の 範 囲 The scope of the claims
1 . 育成炉の内部において、 シリコン融液を収容したルツボを配置し、 また、 .育 成した単結晶を囲繞するように上部炉内構造物を配設し、 該上部炉内構造物内にて 上方から前記ルツボ内のシリコン融液面に向かって不活性ガスを下流しながら、 チ ョクラルスキー法によりシリコン単結晶を育成するとともに、 該シリコン単結晶の 育成中において、 前記上部炉内構造物の先端開口部から流出した前記不活性ガス を、 前記ルツポの内壁と前記上部炉内構造物の外壁とに囲まれた空間を経て育成炉 外へ排出させる際に、 該不活性ガスが前記空間を通過する時の流速を 6 . 5 c m/ s e c以上となるよう調整することを特徴とするシリコン単結晶の製造方法。1. A crucible containing the silicon melt is placed inside the growth furnace, and an upper furnace structure is arranged so as to surround the grown single crystal. A silicon single crystal is grown by the Czochralski method while an inert gas is downstream from above toward the silicon melt surface in the crucible, and during the growth of the silicon single crystal, When discharging the inert gas flowing out of the tip opening through the space surrounded by the inner wall of the rutupo and the outer wall of the upper furnace internal structure, the inert gas removes the space from the growth furnace. A method for producing a silicon single crystal, characterized in that a flow velocity at the time of passing is adjusted to be 6.5 cm / sec or more.
2 . 前記育成炉の外から、 該育成炉及び前記上部炉内構造物にそれぞれ形成され た透明材料からなる炉内観察窓部を経て、 前記上部炉内構造物の内側の状態を光学 的に検出ないし観察しつつ前記シリコン単結晶の育成を行なうことを特徴とする請 求の範囲第 1項記載のシリコン単結晶の製造方法。 2. From outside the breeding furnace, optically change the state inside the upper furnace structure through the furnace observation windows made of a transparent material formed on the growth furnace and the upper furnace structure, respectively. 2. The method for producing a silicon single crystal according to claim 1, wherein said silicon single crystal is grown while detecting or observing.
3 . 前記上部炉内構造物はガス整流筒であることを特徴とする請求の範囲第 1項 又は第 2項に記載のシリコン単結晶の製造方法。 3. The method for producing a silicon single crystal according to claim 1, wherein the internal structure of the upper furnace is a gas straightening cylinder.
4 . 前記ガス整流筒として、 前記シリコン融液面と対向する下端側に熱遮蔽リン グを一体化したものを用いることを特徴とする請求の範囲第 1項ないし第 3項のい ずれかに記載のシリコン単結晶の製造方法。  4. The gas rectifying cylinder according to any one of claims 1 to 3, wherein a heat shielding ring is integrated with a lower end side facing the silicon melt surface. The method for producing a silicon single crystal according to the above.
5 . 前記育成炉の内部を 2 0 0 h P a以下の減圧状態に保つて前記シリコン単結 晶を育成することを特徴とする請求の範囲第 1項ないし第 4項のいずれかに記載の シリコン単結晶の製造方法。  5. The method according to any one of claims 1 to 4, wherein the silicon single crystal is grown while keeping the inside of the growth furnace at a reduced pressure of 200 hPa or less. A method for producing a silicon single crystal.
6 . 前記育成炉は、 育成炉本体の上部に前記シリコン単結晶の回収空間を形成す る回収空間形成部が一体化されたものであり、 前記ガス整流筒は、 その回収空間の 下端側から前記育成炉本体の内部に延出する形態で設けられるとともに、 前記不活 性ガスは前記回収空間内に導入され、 前記育成炉本体の底面部に接続された排ガス 管を経て育成炉外へ排出されることを特徴とする請求の範囲第 1項ないし第 5項の いずれかに記載のシリコン単結晶の製造方法。 6. In the growth furnace, a recovery space forming portion that forms a recovery space for the silicon single crystal is integrated with an upper portion of a growth furnace main body, and the gas rectifying cylinder is provided from a lower end side of the recovery space. It is provided in a form extending inside the growth furnace main body, and The gas according to any one of claims 1 to 5, wherein the reactive gas is introduced into the recovery space, and is discharged out of the growth furnace through an exhaust gas pipe connected to a bottom portion of the growth furnace body. A method for producing a silicon single crystal according to any one of the above.
7 . 前記育成炉本体の底面部において、 前記単結晶引上軸の周囲において複数箇 所に設けられたガス排出口から前記不活性ガスを排出することを特徴とする請求の 範囲第 6項記載のシリコン単結晶の製造方法。  7. The inert gas is discharged from gas outlets provided at a plurality of places around the single crystal pulling shaft in a bottom portion of the growth furnace main body. Production method of silicon single crystal.
8 . 複数の前記ガス排出口は、 前記育成炉本体の底面部において、 前記単結晶引 上軸を中心とする円周径路上に略等角度間隔に形成される請求の範囲第 7項記載の シリコン単結晶の製造方法。  8. The method according to claim 7, wherein the plurality of gas outlets are formed at substantially equal angular intervals on a circumferential path centered on the single crystal pulling axis on a bottom surface of the growth furnace main body. A method for producing a silicon single crystal.
9 . 育成炉の内部に、 原料融液を収容したルツボが配置され、 また、 育成した単 結晶を囲繞するように上部炉内構造物が配設され、 チヨクラルスキー法によるシリ コン単結晶育成のために該上部炉内構造物内にて育成炉上方からルツボ内の原料融 液面に向かって不活性ガスが下流されるようになっており、 さらに、 不活性ガスを 排気するための排ガス口を、 前記育成炉の底面部において、 前記単結晶引上軸を中 心とする円周径路上に略等角度間隔にて複数形成したことを特徴とする半導体単結  9. A crucible containing the raw material melt is placed inside the growth furnace, and an upper furnace structure is arranged so as to surround the grown single crystal. Silicon single crystal growth by the Chiyoklarski method For this reason, an inert gas is caused to flow downstream from the upper part of the growth furnace toward the surface of the raw material melt in the crucible in the upper furnace internal structure, and furthermore, an exhaust gas for exhausting the inert gas. A plurality of openings formed at substantially equal angular intervals on a circumferential path centered on the single crystal pulling axis in a bottom portion of the growth furnace;
1 0 . 複数の前記排ガス口から、 各々等しい流量にて前記不活性ガスを排気する ようにしたことを特徴とする請求の範囲第 9項記載の半導体単結晶の製造装置。10. The apparatus for producing a semiconductor single crystal according to claim 9, wherein said inert gas is exhausted from each of said plurality of exhaust gas ports at an equal flow rate.
1 1 . 前記排ガス口に連通する排ガス管の、 前記育成炉底面における開口形状又 は軸断面形状 (以下、 排ガス口形状という) 力 単結晶引上軸を中心とする円周経 路に沿って引き延ばされた形状を呈することを特徴とする請求の範囲第 1 0項記載 の半導体単結晶の製造装置。 1 1. Opening or axial cross-sectional shape (hereinafter referred to as “exhaust gas port shape”) of the exhaust gas pipe communicating with the exhaust gas port at the bottom surface of the growth furnace, along a circumferential path centered on the single crystal pulling shaft. 12. The apparatus for producing a semiconductor single crystal according to claim 10, wherein the apparatus has an elongated shape.
1 2 . 前記排ガス口形状は、 前記円周経路に沿う円弧状形態をなす請求の範囲第 1 1項記載の半導体単結晶の製造装置。  12. The apparatus for manufacturing a semiconductor single crystal according to claim 11, wherein the exhaust gas port shape has an arc shape along the circumferential path.
1 3 . 前記排ガス口が、 前記育成炉の底面部において、 前記単結晶引上軸を中心 として半径方向に互いに異なる位置に設定された複数の円周径路のそれぞれに沿つ て複数個ずつ形成されている請求の範囲第 1 1項又は第 1 2項に記載の半導体単結 1 3. The exhaust gas port is centered on the single crystal pulling axis at the bottom of the growing furnace. 13. The semiconductor single unit according to claim 11 or 12, wherein a plurality of the plurality of circumferential paths set at different positions in the radial direction are formed along each of the plurality of circumferential paths.
1 4 . 前記育成炉の底面には排ガス管の連通位置に対応する形で、 排気用突出部 が前記底面から突出形成され、 前記排ガス口はその排気用突出部に対し、 開口下縁 位置が前記底面から所定高さ離間する形にて形成されていることを特徴とする請求 の範囲第 9項ないし第 1 3項のいずれかに記載の半導体単結晶の製造装置。 14. An exhaust protrusion is formed on the bottom surface of the growth furnace so as to correspond to the communication position of the exhaust gas pipe from the bottom surface, and the exhaust gas port has an opening lower edge position with respect to the exhaust protrusion. The apparatus for producing a semiconductor single crystal according to any one of claims 9 to 13, wherein the apparatus is formed so as to be separated from the bottom surface by a predetermined height.
1 5 . 前記排ガス管の上端部は、 前記育成炉の底部を貫いて前記底面から所定長 さ突出することにより前記排気用突出部を形成していることを特徴とする請求の範 囲第 1 4項記載の半導体単結晶の製造装置。  15. An exhaust projection formed by projecting a predetermined length from the bottom surface through the bottom of the growth furnace at an upper end portion of the exhaust gas pipe. Item 5. An apparatus for producing a semiconductor single crystal according to item 4.
1 6 . 前記排気用突出部は、 先端部を閉塞する先端閉塞部を有し、 前記排ガス口 は該排気用突出部の側面に開口していることを特徴とする請求の範囲第 1 4項又は 第 1 5項に記載の半導体単結晶の製造装置。 16. The exhaust port according to claim 14, wherein the exhaust protrusion has a distal end closing portion that closes a distal end portion, and the exhaust gas port is opened on a side surface of the exhaust protrusion. Or the apparatus for producing a semiconductor single crystal according to Item 15.
Figure imgf000025_0001
Figure imgf000025_0001
PCT/JP2001/008408 2000-09-26 2001-09-26 Method of manufacturing silicon monocrystal and device for manufacturing semiconductor monocrystal WO2002027077A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-291637 2000-09-26
JP2000291637A JP3838013B2 (en) 2000-09-26 2000-09-26 Method for producing silicon single crystal

Publications (1)

Publication Number Publication Date
WO2002027077A1 true WO2002027077A1 (en) 2002-04-04

Family

ID=18774686

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/008408 WO2002027077A1 (en) 2000-09-26 2001-09-26 Method of manufacturing silicon monocrystal and device for manufacturing semiconductor monocrystal

Country Status (3)

Country Link
JP (1) JP3838013B2 (en)
TW (1) TWI289614B (en)
WO (1) WO2002027077A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007314375A (en) * 2006-05-26 2007-12-06 Shin Etsu Handotai Co Ltd Apparatus for manufacturing single crystal
JP4716331B2 (en) * 2006-09-29 2011-07-06 コバレントマテリアル株式会社 Single crystal manufacturing method
JP4907396B2 (en) * 2007-03-16 2012-03-28 コバレントマテリアル株式会社 Single crystal manufacturing method
KR100894295B1 (en) 2008-02-15 2009-04-24 주식회사 실트론 Method for controlling mass flow in apparatus of manufacturing silicon single crystal ingot and method of manufacturing silicon single crystal ingot using the same
US8961686B2 (en) 2008-07-25 2015-02-24 Sumco Techxiv Corporation Method of manufacturing monocrystal, flow straightening cylinder, and monocrystal pulling-up device
KR100966755B1 (en) * 2009-05-25 2010-06-29 (주)원익머트리얼즈 Method and apparatus for refining silicon
KR101427219B1 (en) 2012-09-17 2014-08-14 (주) 다애테크 View port and manufacturing equipment for sapphire ingot having the same
CN104562184B (en) * 2015-01-26 2017-03-29 麦斯克电子材料有限公司 A kind of argon gas fills constant-current stabilizer
TWI593836B (en) * 2016-04-13 2017-08-01 環球晶圓股份有限公司 A method of controlling a liquid level of a melt flow
JP7006573B2 (en) * 2018-11-30 2022-01-24 株式会社Sumco Single crystal pulling device and method for manufacturing silicon single crystal
CN110205675A (en) * 2019-06-26 2019-09-06 西安奕斯伟硅片技术有限公司 The manufacturing method and monocrystalline silicon of the current stabilization adjusting method of inert gas, monocrystalline silicon
CN113755944A (en) * 2020-06-05 2021-12-07 西安奕斯伟材料科技有限公司 Single crystal furnace thermal field structure, single crystal furnace and crystal bar
CN112481693A (en) * 2020-12-01 2021-03-12 西安奕斯伟硅片技术有限公司 Crystal pulling furnace
JP7052912B1 (en) 2021-06-14 2022-04-12 信越半導体株式会社 Single crystal pulling device
CN114197059A (en) * 2021-12-14 2022-03-18 西安奕斯伟材料科技有限公司 Single crystal furnace

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5826095A (en) * 1981-07-31 1983-02-16 Toshiba Ceramics Co Ltd Pulling apparatus for single crystal silicon
EP0568183A1 (en) * 1992-03-31 1993-11-03 Shin-Etsu Handotai Company Limited Device for pulling silicon single crystal
JPH05306190A (en) * 1992-04-30 1993-11-19 Shin Etsu Handotai Co Ltd Production of silicon single crystal
EP0702100A1 (en) * 1993-05-31 1996-03-20 Sumitomo Sitix Corporation Apparatus and method for manufacturing single-crystal material
JP2000233994A (en) * 1999-02-10 2000-08-29 Mitsubishi Materials Silicon Corp Production of silicon single crystal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5826095A (en) * 1981-07-31 1983-02-16 Toshiba Ceramics Co Ltd Pulling apparatus for single crystal silicon
EP0568183A1 (en) * 1992-03-31 1993-11-03 Shin-Etsu Handotai Company Limited Device for pulling silicon single crystal
JPH05306190A (en) * 1992-04-30 1993-11-19 Shin Etsu Handotai Co Ltd Production of silicon single crystal
EP0702100A1 (en) * 1993-05-31 1996-03-20 Sumitomo Sitix Corporation Apparatus and method for manufacturing single-crystal material
JP2000233994A (en) * 1999-02-10 2000-08-29 Mitsubishi Materials Silicon Corp Production of silicon single crystal

Also Published As

Publication number Publication date
JP2002097098A (en) 2002-04-02
TWI289614B (en) 2007-11-11
JP3838013B2 (en) 2006-10-25

Similar Documents

Publication Publication Date Title
WO2002027077A1 (en) Method of manufacturing silicon monocrystal and device for manufacturing semiconductor monocrystal
US8152921B2 (en) Crystal manufacturing
US9217208B2 (en) Apparatus for producing single crystal
EP0538048B1 (en) A single crystal pulling apparatus
WO2001063027A1 (en) Method for preparing silicon single crystal and silicon single crystal
JP4184725B2 (en) Single crystal semiconductor manufacturing method and single crystal semiconductor manufacturing apparatus
JP2580197B2 (en) Single crystal pulling device
JPH10158091A (en) Device for producing single crystal and production of single crystal, using the same
JP2002316896A (en) Manufacturing apparatus and manufacturing method for silicon single crystal
JP2002321997A (en) Apparatuses for making silicon single crystal and method for making silicon single crystal using the same
JP6777908B1 (en) Single crystal growth device, how to use the single crystal growth device, and single crystal growth method
JP2009184863A (en) Apparatus and method for manufacturing single crystal
JP3123155B2 (en) Single crystal pulling device
KR0130180B1 (en) Device for pulling up single crysta l
JP2000007488A (en) Single crystal silicon pulling-up equipment and single crystal pulling-up method using the same
JP2705810B2 (en) Single crystal pulling device
JP2620999B2 (en) Single crystal pulling device
JPH07223894A (en) Apparatus for production of semiconductor single crystal
JP3640940B2 (en) Semiconductor single crystal manufacturing equipment
JP2710433B2 (en) Single crystal pulling device
JP2580198B2 (en) Single crystal pulling device
JPH09309787A (en) Eater-cooling tower for single crystal-pulling up apparatus
JP2783049B2 (en) Method and apparatus for manufacturing single crystal silicon rod
JP3835063B2 (en) Single crystal pulling device
JP2849165B2 (en) Silicon single crystal pulling device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase