JPS5826095A - Pulling apparatus for single crystal silicon - Google Patents

Pulling apparatus for single crystal silicon

Info

Publication number
JPS5826095A
JPS5826095A JP12015481A JP12015481A JPS5826095A JP S5826095 A JPS5826095 A JP S5826095A JP 12015481 A JP12015481 A JP 12015481A JP 12015481 A JP12015481 A JP 12015481A JP S5826095 A JPS5826095 A JP S5826095A
Authority
JP
Japan
Prior art keywords
single crystal
pulling
inert gas
crystal silicon
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12015481A
Other languages
Japanese (ja)
Other versions
JPH021117B2 (en
Inventor
Hitoshi Hasebe
長谷部 等
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP12015481A priority Critical patent/JPS5826095A/en
Publication of JPS5826095A publication Critical patent/JPS5826095A/en
Publication of JPH021117B2 publication Critical patent/JPH021117B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To prevent the occurrence of dislocation in single crystal Si due to SiO when the single crystal Si is pulled up from a polycrystalline Si melt in an inert gaseous atmosphere, by feeding the atmospheric gas symmetrically with respect to a shaft for pulling up single crystal Si. CONSTITUTION:A seed crystal 15 for single crystal Si is dipped in molten polycrystalline Si 17 in a quartz curcible 2 in a chamber 1 and slowly pulled up with a chain 16 to deposit single crystal Si on the crystal 15 and to pull up it. At this time, a plurality of holes 18 for introducing an inert gas such as Ar are pierced symmetrically with respect to the pulling shaft (chain) in the side wall of the cylindrical protruded part 5 of the chamber 1, and a plurality of holes 19 for exhausting the inert gas are also pierece symmetrically with respect to the pulling shaft. Since the inert gas can be fed symmetrically to the periphery of single crystal Si during pulling, the occurrence of dislocation in the Si due to gaseous SiO can be prevented, and single crystal Si of superior quality can be pulled up.

Description

【発明の詳細な説明】 本発明は単結晶シリコン引上装置の改良に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in single crystal silicon pulling equipment.

LSIに使用される単結晶シリコン基板には無転位単結
晶シリコンが用いられる。ここで、単結晶シラコンの口
径が太き(、また長さが長いほど単結晶シリコンからと
れるデッグ数が増加し、tラグ当りの原価を低減するこ
とができるので、近年単結晶シリコンの大口径化および
長尺化が図られている。この結果、単結晶を引上げる時
間も長くなる傾向にある。
Dislocation-free single crystal silicon is used for single crystal silicon substrates used in LSIs. Here, as the diameter (and length) of single crystal silicon increases, the number of degs that can be obtained from single crystal silicon increases, and the cost per t lag can be reduced. As a result, the time it takes to pull a single crystal tends to become longer.

ところで、従来、単結晶シリコンは主にチョコラルスキ
ー法CC2法)によって製造されている。この方法は石
莱ルツデ内に多結晶シリコン原料を入れ、周囲から加熱
して該多結晶シリコンを溶融させ、その溶融物を種結晶
を用い。
By the way, conventionally, single crystal silicon is mainly manufactured by Czochralski method (CC2 method). In this method, a raw material of polycrystalline silicon is placed in a quarry, the polycrystalline silicon is melted by heating from the surroundings, and the molten material is used as a seed crystal.

上方に引上げ、単結晶シリコンを造るものである。この
際、単結晶シリコンに不純物が含まれるのを防止するた
め、tヤンノぐ一内にアルゴン等の不活性ガスを導入す
ることが一般に行われている。
It is pulled upward to create single-crystal silicon. At this time, in order to prevent impurities from being contained in the single crystal silicon, it is common practice to introduce an inert gas such as argon into the tank.

以下、従来の単結晶シリコン引上装置を第1図を参照し
て説明する。
Hereinafter, a conventional single crystal silicon pulling apparatus will be explained with reference to FIG.

図中1は上部1mと下部1bが開口したデャンノ+−で
ある。このチャンパー1内には1石英ルツ?2が配置さ
れ、かつ該ルッ?2の外周面は黒鉛製保護体3によって
包囲されている。この保護体Sの底面には、皇紀デャン
Δ−1の下部1b開口から挿入された回転自在な支持棒
4が連結されている。また、上記保護体Sの外周には1
図示しない筒状の黒鉛製ヒータお上び筒状の遣熱体の順
次配設されている。さら(二、上記デャンΔ−2の上部
Imには、該上部1sの開口と合致する筒状突起部5を
有する上蓋6が設けられている。また、上記筒状突起部
5上には、r−トパルf1を介して、単結晶シリコン除
冷後一時的にインジットを収納するためのプルチャンΔ
−Iが搭載されている。また、上記上蓋−の筒状突起部
5の側壁には、第2図t1)に示す如(不活性ガス導入
口9が、f−ヤンパーlの下部xhには第2図(b)に
示す如く不活性ガス排気口10がそれぞれ設けられてい
る。また、プルデャyΔ−8の上部側壁には、不活性ガ
ス導入口11が、fルデャン/4−8の下部側壁には、
不活性ガス排気口I2がそれぞれ設けられている。また
、上記プルデャンΔ−8内部の下部には、fルデャンパ
−8内に除冷後の単結晶シリコンを収納する時にゾルチ
ャンバ−8下部を閉鎖するための回転自在なゾルチャン
バー中蓋13が設けられている。また、上記上蓋6には
、チャンバ−1の上部1mまで挿入される測定用窓14
が設けられ、かつ上蓋6の筒状突起部5には図示しない
炉内観察用窓が設けられている。さらに、上記プルチャ
ンバ−8からチャンバ−1内に亘って、下端に種結晶1
5を保持した引上デエーンICが回転可能に吊下されて
いる。
In the figure, numeral 1 indicates a dianno+- whose upper portion 1m and lower portion 1b are open. Is there 1 quartz rutz in this Champer 1? 2 is placed and the Lu? The outer peripheral surface of 2 is surrounded by a graphite protector 3. A rotatable support rod 4 inserted through the opening of the lower part 1b of the Koki Dang Δ-1 is connected to the bottom surface of the protector S. Moreover, on the outer periphery of the above-mentioned protector S, 1
A cylindrical graphite heater and a cylindrical heat transfer body (not shown) are arranged in this order. Furthermore, (2) the upper part Im of the above-mentioned Dandan Δ-2 is provided with an upper lid 6 having a cylindrical protrusion 5 that matches the opening of the upper part 1s; Through the r-topal f1, a pull channel Δ for temporarily storing the injector after cooling the single crystal silicon is installed.
-I is installed. In addition, the side wall of the cylindrical protrusion 5 of the upper lid has an inert gas inlet 9 as shown in FIG. 2 (t1), and the lower part In addition, an inert gas inlet 11 is provided on the upper side wall of the prudian yΔ-8, and an inert gas inlet 11 is provided on the lower side wall of the prudian/4-8.
Inert gas exhaust ports I2 are provided respectively. Further, a rotatable sol chamber inner lid 13 is provided at the lower part of the inside of the pull damper Δ-8 to close the lower part of the sol chamber 8 when the monocrystalline silicon after being slowly cooled is stored in the pull damper 8. ing. In addition, a measurement window 14 is inserted into the upper lid 6 up to 1 m above the chamber 1.
The cylindrical protrusion 5 of the upper cover 6 is provided with a furnace interior observation window (not shown). Furthermore, a seed crystal 1 is placed at the lower end of the pull chamber 8 into the chamber 1.
A lifting device IC holding 5 is rotatably suspended.

上述した引上装置によって、単結晶シリコンを引上げる
には、不活性ガスをチャンバー1内に導入するとともに
、引上チェーン16下端の種結晶z5を石英ルッ?2内
の溶融シリコン11に浸し、引上デエーン16を引上げ
ることにより行り、しかし、従来の引上装置では、溶融
シリコンに接した石英ルッ?から発生する1110 ガ
スに起因して、単結晶シリコンの有転位化が結晶引上げ
中に起きるという問題があった。
To pull single crystal silicon using the above-mentioned pulling device, an inert gas is introduced into the chamber 1, and the seed crystal z5 at the lower end of the pulling chain 16 is pulled up from a quartz crystal. However, in the conventional pulling device, the quartz silicon 11 in contact with the molten silicon is immersed in the molten silicon 11 in the molten silicon and pulled up. There is a problem in that single crystal silicon becomes dislocated during crystal pulling due to the 1110 gas generated from the 1110 gas.

そこで、零発“明者は、上記従来の引上装置による単結
晶シリコンの引上げ中における有転位化の原因について
種々検討した結果、以下に示すことによることを究明し
た。
Therefore, the inventors of Zero Invention conducted various studies on the causes of formation of dislocations during the pulling of single crystal silicon using the above-mentioned conventional pulling apparatus, and as a result, discovered the following.

すなわち、従来の引上装置の場合(二は、第2図(1m
) 、 (b)に示すように、不活性ガスの導入口9お
よび排気口10が1つづつしか設けられていないため、
テヤンノ4−1内で不活性ガス流が乱れ(第1図矢印図
示)、単結晶v5コンの周囲には、不活性ガスの流れが
ほとんどない停滞層が局所的シー化じる。このような不
活性ガスの停滞層付近では、810粉がtヤンバー内に
付着し。
In other words, in the case of a conventional lifting device (see Fig. 2 (1 m
) and (b), since only one inert gas inlet 9 and one exhaust port 10 are provided,
The inert gas flow is disturbed within Teyanno 4-1 (as shown by the arrow in FIG. 1), and a stagnation layer in which there is almost no inert gas flow forms locally around the single crystal V5 condenser. Near such a stagnant layer of inert gas, 810 powder adheres to the t-yam bar.

引上げ中に810粉がルッ?内に落下するため単結晶V
5プンの有転位化率が大きくなる。しかも、近年は引上
げ結晶の大口径化、長尺化にともない引上げ時間の長時
間化の趨勢下にあるため、ますます上記あ傾向が助長さ
れる。
Is there 810 powder during pulling? Single crystal V
The dislocation rate of 5pun increases. Moreover, in recent years, the pulling time has tended to become longer as pulled crystals have become larger in diameter and longer, so the above-mentioned tendency is becoming more and more prevalent.

しかして1本発明者は上記穴明結果に基づいて、y−ヤ
ンΔ−下部の排気口を引上軸(引上デヱーン)を中心と
して対称的に複数個設けること(二よって、fヤンパー
上部の導入口から不活性ガスを導入した場合、引上げ中
の単結晶シリコンの周囲に不活性ガスを引上軸を中心と
して対称的に流すことができ、 810ガスによる単結
晶シリコンの有転位化を防止し、高品質の単結晶シリコ
ンの引上げを可能とした引上装置な見い出した。
Therefore, 1. Based on the above-mentioned hole drilling results, the present inventor proposed that a plurality of exhaust ports in the lower part of the y-yang Δ- be provided symmetrically around the pulling axis (pulling dean) (2). When inert gas is introduced from the inlet of the 810 gas, it can be flowed symmetrically around the pulling axis around the single crystal silicon being pulled, and the formation of dislocations in the single crystal silicon by the 810 gas can be prevented. We have discovered a pulling device that prevents this problem and makes it possible to pull high-quality single crystal silicon.

以下、本発明の一実施例を第3図及び第4図(a) @
 (b)を参照して説明する。ただし、第3図において
、第1図と同じ部材は第1図と同番号を付し、説明を省
略する。
An embodiment of the present invention will be described below with reference to FIGS. 3 and 4 (a).
This will be explained with reference to (b). However, in FIG. 3, the same members as in FIG. 1 are given the same numbers as in FIG. 1, and their explanations are omitted.

チャンバ−1の上蓋6の筒状突起部5側壁には、第4図
(1)に示す如く、不活性がス導入口18が引上軸を中
心として対称的ζ二複数個設けられている。該不活性ガ
ス導入口18は、ゲートパルfr下端から、r−トパル
プrとデャyパー1上端間の長さの丁の長さ以内に設け
られている。チャンバ−1の下部1bi二は、第4図(
b)に示す如く、不活性ガス排気口19が引上軸を中心
として対称的に複数個設けられ℃いる。
On the side wall of the cylindrical protrusion 5 of the upper lid 6 of the chamber 1, as shown in FIG. . The inert gas inlet 18 is provided within a length of the length between the lower end of the gate pal fr and the upper end of the r-pulp r and the day par 1. The lower part 1bi2 of chamber 1 is shown in Fig. 4 (
As shown in b), a plurality of inert gas exhaust ports 19 are provided symmetrically about the pulling axis.

但し、該不活性ガス排気口19は、チャンバ−1の下部
1bに限らず、その下端からチャンバ−高さの丁の長さ
以内に設ければよい。プルデャンノ母−8の上部側壁に
は、不活性ガス導入口20が引上軸を中心として対称的
に複数個設けられている。該不活性ガス導入口20は%
ゾルチャンパー8上端から!ルデャン/4−高さの1の
長さ以内に設けられている。また、fルデャンパ−8下
部の不活性ガス排気口I2は、!ルチャンバ−8下端か
らプルデャンパー高さの丁の長さ以内に設けられている
。こうしたグルチャン/4−8は、単結晶シリコン引上
げ工程において、多結晶シラコン溶融、結晶引上げ、除
冷の各段階を経たインデントを一時的に収納するための
ものである。
However, the inert gas exhaust port 19 is not limited to the lower part 1b of the chamber 1, and may be provided within a length of the height of the chamber from the lower end thereof. A plurality of inert gas inlet ports 20 are provided in the upper side wall of the Purudanno motherboard 8 symmetrically with respect to the pulling axis. The inert gas inlet 20 is %
From the top of Sol Champer 8! Redian/4-provided within 1 length of the height. In addition, the inert gas exhaust port I2 at the bottom of the f-rudy damper 8 is! It is provided within the length of the pull damper height from the lower end of the pull chamber 8. The Gluchan/4-8 is used to temporarily store an indentation that has gone through the steps of polycrystalline silicon melting, crystal pulling, and slow cooling in the single-crystal silicon pulling process.

さらに、チャンバ−1の上蓋6上の測定用窓14および
炉内観察用窓(図示せず)も引上軸を中心として複数個
設けられている。
Furthermore, a plurality of measurement windows 14 and furnace observation windows (not shown) on the upper lid 6 of the chamber 1 are also provided around the pulling axis.

以上のような構成によれば、石英ルッ?2内(:多結晶
シラコン原料を入れ、図示しないヒータを通電して1石
英ルツ?を加熱すると、多結晶シリコン原料が溶融して
溶融シリコン11となる。こうした状態で、例えばアル
ゴンガスをチャン/4−1の上蓋6の筒状突起部5側壁
およびグルチャンバ−8の上部側壁にそれぞれ開孔した
不活性ガス導入口18.20から導入し。
According to the above configuration, quartz Ru? When the polycrystalline silicon raw material is put in the inside of 2 (2) and a heater (not shown) is turned on to heat the quartz crystal, the polycrystalline silicon raw material melts and becomes molten silicon 11. In this state, for example, argon gas is The gas is introduced through inert gas inlet ports 18 and 20 formed in the side wall of the cylindrical protrusion 5 of the upper lid 6 of 4-1 and the upper side wall of the glu chamber 8, respectively.

チャンバ−1下 19から排気する。この場合、アルゴンガスの代りにヘ
リウムガス等の他の不活性ガスを供給してもよい.この
後、支持棒4により,保護体3で包囲された石英ルツ?
2を回転しながら、引上tヱーン16下端の種結晶15
を石英ルツ?2内の溶融シリコンz1に浸し1回転しな
がら引上げると、所定の結晶方位をもつ単結晶シリコン
が引上げられる。このような引上時礪=おいて、排気口
19が引上軸を中心として対称的に配置されているため
,導入口xtt,goが供給されるアルゴンのガス流は
引上軸を中心として対称的::流れ(第3図矢印図示)
、引上装置内部においてアルがンガス流の停滞層が生じ
ず。
Exhaust air from the bottom 19 of chamber 1. In this case, other inert gas such as helium gas may be supplied instead of argon gas. After this, the quartz ruts surrounded by the protective body 3 are supported by the support rod 4.
While rotating 2, pull up the seed crystal 15 at the lower end of the
Quartz Ruth? When it is immersed in molten silicon z1 in 2 and pulled up while rotating once, single crystal silicon having a predetermined crystal orientation is pulled up. During such a pulling process, since the exhaust ports 19 are arranged symmetrically around the pulling axis, the argon gas flow supplied to the inlets xtt and go is centered around the pulling axis. Symmetrical:: Flow (as shown by the arrow in Figure 3)
, there is no stagnation layer of the aluminium gas flow inside the pulling device.

したがって、8轟0ガスが引上装置内部に付着すること
を軽減することができる。その結果,有転位化率の低い
単結晶シリコンを引上げることができる。
Therefore, it is possible to reduce the amount of gas adhering to the inside of the pulling device. As a result, single crystal silicon with a low dislocation rate can be pulled.

事実1次に示す実験例からも,無転位シリコンを従来の
引上装置よりも多く製造できることが確認された。
Fact 1 From the experimental example shown below, it was confirmed that more dislocation-free silicon can be produced than with conventional pulling equipment.

実験例1 r−)パルプ1下方5cIRのデャンノ青−1の上蓋C
の筒状突起部5の上部側壁に不活性ガス導入口18を引
上げ軸を中心として対称的に4ケ所(第4図(a)図示
)、チャンバー1の下部1bのチャンバ−1の中心から
チャンバー内径の1の長さの所t:20u幅のスリット
状の不活性がス排気ロー#を引上げ軸を中心として対称
的に4ケ所(第4図(b)図示)%ゾルチャンパー8上
端より下方4cssのグルチャンバー側壁に不活性ガス
導入口20を引上げ軸を中心として対称的に4ケ所、お
よび!ルデャンパー8下端より上方55!のプルチャン
バー側壁に直径250の不活性ガス排気口12を1ケ所
それぞれ設けた。
Experimental Example 1 r-) Upper lid C of Dianno Blue-1 of Pulp 1 lower 5cIR
The inert gas inlet 18 is installed in the upper side wall of the cylindrical protrusion 5 at four locations symmetrically about the axis (as shown in FIG. 4(a)), from the center of the chamber 1 in the lower part 1b of the chamber 1. A slit-shaped inert pipe with a width of 20 u is placed at 1 length of the inner diameter at 4 locations symmetrically around the axis (as shown in Figure 4(b)) below the upper end of the % sol chamberer 8. The inert gas inlets 20 are placed on the side wall of the 4css glu chamber at four locations symmetrically around the pull-up axis, and! 55 above the lower end of Ludan Camper 8! An inert gas exhaust port 12 with a diameter of 250 mm was provided at one location on the side wall of the pull chamber.

また、チャンバー上蓋6上に長方形の炉内観察用窓(図
示せず)と直径85uの測定用窓14を引上げ軸を中心
として対称的にそれぞれ2ケ所づつ設けた。ここで、炉
内観察用窓は引上軸を中心として90°回転すると測定
用窓14に同位する位置に設けた。また石英ルッが2と
しては寸法が直径12インチ、高さ9インデのものを用
いた。
Furthermore, two rectangular furnace observation windows (not shown) and two measurement windows 14 each having a diameter of 85 u were provided on the upper chamber lid 6 symmetrically about the pulling axis. Here, the in-furnace observation window was provided at the same position as the measurement window 14 when rotated by 90 degrees around the pulling axis. The quartz lugs 2 used had dimensions of 12 inches in diameter and 9 inches in height.

以上のような構成の引上装置を用いて、ルッかに15印
の多結晶シリコンを入れ、溶融し。
Using the pulling device configured as described above, polycrystalline silicon with a mark of 15 was placed in Rukka and melted.

チャンバー内を1 0 torr  のアルfン′ガス
減圧雰囲気にして不活性がス導入口Ill,110から
アルゴンガスを導入し、不活性がス排気口1gからアル
ゴンガスを排気するとともに,定径部の直径4インデの
単結晶シリコン4〇−引上げた。この引上げ工程におい
て、炉内観察用窓がら810の流れ状態を観察したとこ
ろ、5toifスが引上軸を中心として対称的に流れて
,排気口19に導かれることが観察された(第3図矢印
図示)。このため、引上げ後の装置内部での8106粉
の付着が軽減されるとともに、その付着の仕方も引上軸
を中心として対称的であることが確認された。
The inside of the chamber is made into an argon gas reduced pressure atmosphere of 10 torr, and argon gas is introduced from the inert gas inlet Ill, 110, and the argon gas is exhausted from the inert gas exhaust port 1g, and the constant diameter part A piece of single crystal silicon with a diameter of 4 inches was pulled up. During this pulling process, when the flow state of the furnace observation window 810 was observed, it was observed that the 5toif gas flowed symmetrically around the pulling axis and was guided to the exhaust port 19 (see Fig. 3). arrow shown). For this reason, it was confirmed that the adhesion of 8106 powder inside the device after pulling was reduced, and that the manner of adhesion was also symmetrical about the pulling axis.

また、上記装置を用いて、120時間の連結稼動で得ら
れる無転位単結晶シリコンの本数を調べ、従来の装置を
用いた場合と比較した。10回の稼動の平均を算出した
ところ、従来の装置を用いた場合、1回(120時間)
あたり6.2本しか無転位単結晶シリコンが得られなか
ったが、上記装置を用いた場合、1回あたり8.4本の
無転位単結晶シリフンを得ることができた。
Furthermore, using the above device, the number of dislocation-free single crystal silicon obtained in 120 hours of continuous operation was investigated and compared with the case using a conventional device. When the average of 10 operations was calculated, it was found that when using conventional equipment, 1 operation (120 hours)
Only 6.2 dislocation-free single-crystalline silicon pieces were obtained per run, but when the above-mentioned apparatus was used, 8.4 dislocation-free single-crystalline silicon pieces could be obtained per run.

実験例2 ダートパルプ1下方53のチャンパーlの上蓋σの筒状
突起部5の上部側壁に不活性ガス導入口18′を引上軸
を中心として対称的に20ケ所(第5図(麿)図示)、
チャンパー底部のチャンパー2中心からチャンパー内径
の1の長さの所に、直径30m11の不活性ガス排気口
19′を引上げ軸を中心として対称的に12ケ所(第5
図(b1図示)およびプルチャンパー8上端より下方4
傷のグルチャンパー側壁に不活性ガス導入口20を引上
軸を中心として対称的に20ケ所それぞれ設けた。ここ
で、アルゴンガス常圧雰囲気とした以外、他の条件は実
験例1と同一にして単結晶シリコン引上げを行った。
Experimental Example 2 Inert gas inlet ports 18' were placed on the upper side wall of the cylindrical protrusion 5 of the upper cover σ of the chamberer L in the lower part 53 of the dirt pulp 1 at 20 locations symmetrically about the lifting axis (Fig. 5 (Maro)). (Illustrated)
Inert gas exhaust ports 19' with a diameter of 30 m11 are installed at 12 locations (5th
Figure (b1 shown) and the lower part 4 from the upper end of the pull champer 8
Inert gas inlets 20 were provided at 20 locations symmetrically about the pulling axis on the side wall of the glue chamber in the wound. Here, single-crystal silicon was pulled under the same conditions as in Experimental Example 1 except for an argon gas atmosphere at normal pressure.

以上のような構成の引上装置を用いて、120時間の連
続稼動で得られる無転位単結晶シリコンの本数を調べ、
従来の装置を用いた場合と比較した。10回の稼動の平
均を算出したところ。
Using the pulling device with the above configuration, we investigated the number of dislocation-free single crystal silicon that could be obtained in 120 hours of continuous operation.
A comparison was made with the case using a conventional device. The average of 10 operations was calculated.

従来の装置を用いた場合%1回(120時間)あたり5
.1本しか無転位単結晶シリコンが得られなかったが、
上記装置を用いた場合、7.2本の無転位単結晶シリコ
ンを得ることができた。
5 per % (120 hours) using conventional equipment
.. Although only one dislocation-free single crystal silicon was obtained,
When the above-mentioned apparatus was used, 7.2 dislocation-free single crystal silicon could be obtained.

上記実験例1.2から明らかなように1本発明の装置を
使用した場合、アルプンガスの流れが引上軸を中心とし
て対称的となるため、従来の装置を使用した場合と比較
して、1回の稼動で得られる無転位単結晶V9コンの本
数が多くなることがわかる。
As is clear from Experimental Example 1.2 above, when the apparatus of the present invention is used, the flow of alponic gas becomes symmetrical about the pulling axis, so compared to the case where the conventional apparatus is used, It can be seen that the number of dislocation-free single-crystal V9 capacitors obtained in one operation increases.

以上詳述したように1本発明によれば不活性ガスの流れ
が引上軸を中心として対称的となるため、単結晶シリコ
ンの有転位化が抑制され、引上げ単結晶シリコンの大口
径化、長尺化およびその結果としての引上げ時間の長時
間化の傾向に十分応じることができる単結晶シリコンを
製造しつる引上装置を提供できるものである。
As detailed above, according to the present invention, the flow of the inert gas becomes symmetrical about the pulling axis, so dislocation formation in the single crystal silicon is suppressed, and the diameter of the pulled single crystal silicon is increased. It is possible to provide a vine pulling apparatus for producing single crystal silicon that can sufficiently respond to the trend of longer lengths and longer pulling times as a result.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の単結晶シリコン引上装置を示す断面図、
第2図葎)は第1図の人−入断面図、第2図(b)は第
1図のB−B断面図、第3図は本発明の単結晶シリコン
引上装置を示す断面図、第4図(1)は第3図のC−C
断面図、第4図(b)は第3図のD−D断面図、第5図
(a) * (b) #よ第4図(a) 、 (b)に
対応する他の形態の不活性ガス導入口。 排気口を示す断面図である。 1・・・チャンΔ−12・・・石英ルツ&、l・・・黒
鉛製保護体、4・・・支持棒、6・・・上蓋、8・・・
ゾルチャンΔ−,9,11,18,111’ 、20・
・・不活性ガス導入0.10.12 、19 、19 
’ −・不活性ガス排気口、I4・・・測定用窓、15
・・・種結晶、16・・・引上デエーン、17・・・溶
融シリコンO 出願人代理人 弁理士 鈴 江 武 彦II  図 第 2 図 (a) (b) !13m     第4図 19 第511 (a) (b) 19゛
Fig. 1 is a cross-sectional view showing a conventional single crystal silicon pulling device;
Fig. 2(a) is a cross-sectional view of the person in Fig. 1, Fig. 2(b) is a sectional view taken along line B-B of Fig. 1, and Fig. 3 is a cross-sectional view showing the single-crystal silicon pulling apparatus of the present invention. , Figure 4 (1) is C-C in Figure 3.
The cross-sectional view, FIG. 4(b) is a cross-sectional view taken along line DD in FIG. 3, and other forms of defects corresponding to FIGS. Active gas inlet. It is a sectional view showing an exhaust port. 1... Chan Δ-12... Quartz rutz &, l... Graphite protector, 4... Support rod, 6... Upper lid, 8...
Solchan Δ-, 9, 11, 18, 111', 20・
... Inert gas introduction 0.10.12 , 19 , 19
'--Inert gas exhaust port, I4...Measurement window, 15
... Seed crystal, 16... Pull-up dean, 17... Molten silicon O Applicant's agent Patent attorney Takehiko Suzue II Figure 2 (a) (b)! 13m Figure 4 19 511 (a) (b) 19゛

Claims (1)

【特許請求の範囲】 デャンパー内に石英ガラス製ルツ?を載置し。 該ルツ1内の溶融νリプンを常圧以下の不活性ガス雰囲
気下で引上げて単結晶シリコンを造る装置において、上
記デャンパー上部の所望位置に不活性ガス導入口を設け
るとともに、該チャンバーの下部付近に複数個の不活性
ガス排気口を引上軸を中心として対称的に配置されるよ
うに設けたことを特徴とする単結晶シリコン引上装置。
[Claims] Is there a quartz glass bolt inside the damper? Place it. In an apparatus for producing single-crystal silicon by pulling the molten νRipun in the melt 1 under an inert gas atmosphere below normal pressure, an inert gas inlet is provided at a desired position above the damper, and an inert gas inlet is provided near the bottom of the chamber. 1. A single-crystal silicon pulling apparatus characterized in that a plurality of inert gas exhaust ports are arranged symmetrically about a pulling axis.
JP12015481A 1981-07-31 1981-07-31 Pulling apparatus for single crystal silicon Granted JPS5826095A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12015481A JPS5826095A (en) 1981-07-31 1981-07-31 Pulling apparatus for single crystal silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12015481A JPS5826095A (en) 1981-07-31 1981-07-31 Pulling apparatus for single crystal silicon

Publications (2)

Publication Number Publication Date
JPS5826095A true JPS5826095A (en) 1983-02-16
JPH021117B2 JPH021117B2 (en) 1990-01-10

Family

ID=14779288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12015481A Granted JPS5826095A (en) 1981-07-31 1981-07-31 Pulling apparatus for single crystal silicon

Country Status (1)

Country Link
JP (1) JPS5826095A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61111990A (en) * 1984-11-05 1986-05-30 Kokusai Electric Co Ltd Device for pulling up single crystal
JPS61122184A (en) * 1984-11-15 1986-06-10 Kokusai Electric Co Ltd Gas-blasting method in single crystal pull up apparatus
WO2002027077A1 (en) * 2000-09-26 2002-04-04 Shin-Etsu Handotai Co.,Ltd. Method of manufacturing silicon monocrystal and device for manufacturing semiconductor monocrystal

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5177064A (en) * 1974-12-27 1976-07-03 Shinetsu Handotai Kk HANDOTAITANKETSUSHOHIKIAGESOCHINIOKERU GEETOBARUBU
JPS57180759U (en) * 1981-05-06 1982-11-16

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5177064A (en) * 1974-12-27 1976-07-03 Shinetsu Handotai Kk HANDOTAITANKETSUSHOHIKIAGESOCHINIOKERU GEETOBARUBU
JPS57180759U (en) * 1981-05-06 1982-11-16

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61111990A (en) * 1984-11-05 1986-05-30 Kokusai Electric Co Ltd Device for pulling up single crystal
JPS61122184A (en) * 1984-11-15 1986-06-10 Kokusai Electric Co Ltd Gas-blasting method in single crystal pull up apparatus
WO2002027077A1 (en) * 2000-09-26 2002-04-04 Shin-Etsu Handotai Co.,Ltd. Method of manufacturing silicon monocrystal and device for manufacturing semiconductor monocrystal

Also Published As

Publication number Publication date
JPH021117B2 (en) 1990-01-10

Similar Documents

Publication Publication Date Title
US6214109B1 (en) Apparatus for controlling the oxygen content in silicon wafers heavily doped with antimony or arsenic
US6280522B1 (en) Quartz glass crucible for pulling silicon single crystal and production process for such crucible
JPS5826095A (en) Pulling apparatus for single crystal silicon
US4141779A (en) Method and apparatus for avoiding undesirable deposits in crystal growing operations
JPH092892A (en) Pull up apparatus for semiconductor single crystal
JP2519459B2 (en) Single crystal pulling device
JP2868204B2 (en) Equipment for producing lithium tetraborate single crystal
JPS5933552B2 (en) crystal growth equipment
JPS6018638B2 (en) Silicon single crystal pulling equipment
JPH0364478B2 (en)
JPS6041037B2 (en) Manufacturing equipment for high dissociation pressure compound single crystal for semiconductors
JP2504875B2 (en) Single crystal manufacturing equipment
JP3392245B2 (en) Method for manufacturing compound semiconductor single crystal
JPH09278582A (en) Production of single crystal and apparatus therefor
JPH0154318B2 (en)
JP2733898B2 (en) Method for manufacturing compound semiconductor single crystal
JP2533686B2 (en) Semiconductor single crystal manufacturing equipment
JP2781856B2 (en) Method for manufacturing compound semiconductor single crystal
JPH04202084A (en) Single crystal producing apparatus
JPH06247788A (en) Method for producing silicon single crystal and device therefor
JPH0297481A (en) Pulling up device for silicon single crystal
JPH0535119B2 (en)
JP3938674B2 (en) Method for producing compound semiconductor single crystal
JPH0558772A (en) Production of compound semiconductor single crystal
JPS59141494A (en) Production unit for single crystal