JP3843818B2 - ガス分解装置 - Google Patents

ガス分解装置 Download PDF

Info

Publication number
JP3843818B2
JP3843818B2 JP2001364031A JP2001364031A JP3843818B2 JP 3843818 B2 JP3843818 B2 JP 3843818B2 JP 2001364031 A JP2001364031 A JP 2001364031A JP 2001364031 A JP2001364031 A JP 2001364031A JP 3843818 B2 JP3843818 B2 JP 3843818B2
Authority
JP
Japan
Prior art keywords
inner conductor
waveguide
plasma
conductor
gas decomposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001364031A
Other languages
English (en)
Other versions
JP2003164723A (ja
Inventor
啓行 浅野
豊一 後藤
真彦 鈴木
雅司 樋野
清彦 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2001364031A priority Critical patent/JP3843818B2/ja
Publication of JP2003164723A publication Critical patent/JP2003164723A/ja
Application granted granted Critical
Publication of JP3843818B2 publication Critical patent/JP3843818B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/30Capture or disposal of greenhouse gases of perfluorocarbons [PFC], hydrofluorocarbons [HFC] or sulfur hexafluoride [SF6]

Landscapes

  • Plasma Technology (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、マイクロ波プラズマを利用してPFC(Per Fluoro Compound)等のガスを分解するガス分解装置に関するものである。
【0002】
【従来の技術】
従来、この種のガス分解装置としては、例えば図5に示す構成のものがあった。図5は、従来のマイクロ波プラズマジェット型トーチと呼ばれるプラズマ発生装置がある。このプラズマ発生装置は、マイクロ波発振器2から出力されたマイクロ波を矩形導波管1により伝搬し、同軸導波管変換器22により同軸導波管23に導き、その同軸導波管23の摺動可能な内導体24とその同軸導波管23の外導体25との電極間にプラズマ放電を起こさせる。このとき、同軸導波管23側から反応器26に供給された被処理ガスは、高温粒子の衝突により原子間の結合が切れて分解される。
【0003】
また、キャビテイを利用したプラズマ発生装置としては、例えば特開2000−12283号公報に記載されたような構成のものがあった。このようなキャビテイ型プラズマ発生装置では、マイクロ波発振器で発生したマイクロ波は矩形導波管により伝送され、このマイクロ波は金属導体及びプローブアンテナを介して円筒形空洞共振器に伝送される。このとき、円筒形空洞共振器内の電界は、電界強度の大きいTM010モードが形成される。放電管内にガスを供給し、これにマイクロ波を照射すると、放電管内は電子エネルギが高く、温度が2000K〜6000Kの熱プラズマが発生するため、ガスは容易に原子レベルに解離し易い状態となって分解する。
【0004】
【発明が解決しようとする課題】
しかしながら、上記のような従来のマイクロ波プラズマジェット型プラズマ発生装置では、運転開始時にプラズマを点火させるために、一旦同軸導波管の内導体を移動させてその内導体と外導体の間隔を小さくして放電させることによりプラズマを点火させ、その後にその内導体を元の位置まで戻す必要があり、これを人手により行う必要があるという課題があった。一方、上記のような従来のキャビテイ型プラズマ発生装置では、運転開始時にコイルを利用する等の方法により放電管内で放電を起こさせ、これをトリガとしてプラズマを点火させる必要があるため装置自体の構成が複雑になるほか、電界強度を調整するためにプローブアンテナをスライドするような構成ではやはり人手に依らざるをえないという課題があった。さらに、プラズマ状態はガスの種類や流量等の影響を受けてマイクロ波の反射波が刻々と変化するが、従来のプラズマ発生装置において、反射波の電力を最小にするためには、スタブチューナ等を用いて反射波を相殺する必要があり、更に自動化のためにはオートチューナ等の高価なコンポーネントを必要とするという課題もあった。
【0005】
この発明はかかる課題を解決するためになされたもので、プラズマの点火を開始するための特別な装置を必要とせず、自動的に電極間距離を調整し、その電極の長期間の使用を可能としうる新規なガス分解装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
この発明の請求項1に係るガス分解装置は、マイクロ波発振器と、このマイクロ波発振器からのマイクロ波を伝搬する第1の導波管と、この第1の導波管に連結され、マイクロ波によりプラズマを発生させる外導体及び内導体を有する第2の導波管と、この第2の導波管に連通され、プラズマによりガスの分解反応を行う反応器と、前記内導体に接続され、前記外導体に対して前記内導体を移動させる駆動手段と、前記反応器側から前記第1の導波管側に反射される反射波電力を検出する検出手段と、この検出手段による検出出力に基いて前記外導体に対する前記内導体の移動量を制御する制御手段とを備えたものである。
【0007】
この発明の請求項2に係るガス分解装置は、前記制御手段は、前記検出手段の検出出力が最小となるように、前記駆動手段により前記内導体の位置を設置することを特徴とする請求項1に記載のものである。
【0008】
この発明の請求項3に係るガス分解装置は、前記内導体が前記外導体に接触したことを感知する感知手段を設け、前記制御手段は前記感知手段の出力に基いて前記駆動手段を停止するようにしたことを特徴とする請求項1に記載のものである。
【0009】
この発明の請求項4に係るガス分解装置は、前記駆動手段の回転軸と前記内導体の導体棒とを同軸上に配置したことを特徴とする請求項1に記載のものである。
【0010】
この発明の請求項5に係るガス分解装置は、マイクロ波発振器と、このマイクロ波発振器からのマイクロ波を伝搬する第1の導波管と、この第1の導波管に連結され、マイクロ波によりプラズマを発生させる外導体及び内導体を有する第2の導波管と、この第2の導波管に連通され、プラズマによりガスの分解反応を行う反応器と、前記内導体に接続され、前記外導体に対して前記内導体を移動させる駆動手段と、前記反応器側から前記第1の導波管側に反射される反射波電力に応じて前記外導体に対する前記内導体の移動量を制御する制御手段と、前記駆動手段を支持する貫通孔を設けた支持部材と、この支持部材を冷却する冷却手段とを備えたものである。
【0012】
【発明の実施の形態】
実施の形態1.
以下、この発明の実施の形態1について、図1を用いて説明する。図1は、この実施の形態1に係るガス分解装置の主要な概略構成図である。図1において、1はマグネトロン等のマイクロ波発振器2から発せられたマイクロ波を導く矩形導波管で、その中央部にはガス供給口21を配設している。22はマイクロ波の伝送路を矩形導波管1から同軸導波管23に変換する同軸導波管変換器、23は同軸導波管で、先端が尖った棒状の構造であって摺動可能な内導体24と円筒状の構造であって結合口26を形成した外導体25とにより構成されている。マイクロ波発振器2から発せられたマイクロ波は矩形導波管1により導かれ、同軸導波管変換器22に到達する。同軸導波管23の先端では、内導体24と外導体25を電極として放電が生じてマイクロ波のプラズマ29が発生し、そのプラズマ29は供給されるマイクロ波電力により維持される。このときのプラズマ29は熱プラズマであり、全ての粒子が一定の温度になっている。
【0013】
5は同軸導波管23の外導体25と結合する結合口26により連通した反応器で、外導体25と内導体24との電極間において発生したマイクロ波プラズマ29によりガス供給口21から供給したガスを分解するための空間を形成するとともに、分解後の高温ガスを冷却してガス排出口27からガスを排出する。28は窓で、ガス供給口21のマイクロ波発振器2側の矩形導波管1内に配置している。このため、ガス供給口21から供給される被処理ガスはマイクロ波発振器2側には流れず、矩形導波管1から同軸導波管23を通過して反応器5内でマイクロ波プラズマ29中を通過する。
【0014】
20は矩形導波管1の略中間部に設置した方向性結合器で、それぞれマイクロ波発振器2から反応器5の方向に進むマイクロ波電力及び反応器5からマイクロ波発振器2の方向に進むマイクロ波電力(以下、反射波電力という。)を検出し、それぞれの電力に対応した電圧を出力するものである。33はモータで、支え35により矩形導波管1の管壁に固定するとともに、その回転軸にはねじ棒31を固定している。30は内部に雌ねじを切ったブロック、32はねじ棒31とモータ33の回転軸とを接続するためのジョイントである。なお、ブロック30と内導体24とは接続バー40により接続している。したがって、モータ33を駆動させるとその回転軸の正逆方向の回転により、ねじ棒31、ブロック30及び接続バー40を介して内導体24を上下方向に移動させることが可能となる。
【0015】
34は制御装置で、方向性結合器20により検出される反射波電力を一意的に決まる電圧に変換し、その電圧値に応じてモータ33の駆動を制御するものである。次に、制御装置34の制御方法について説明する。まず、プラズマの点火をする前の状態では、内導体24は初期位置(元の位置)に設定する。プラズマを点火させるときには、制御装置34により、モータ33を駆動して内導体24を移動させて外導体25に接近させる。内導体24が外導体25に接近すると、内導体24と外導体25との電極間は電界が大きくなって絶縁破壊が生じ、放電が発生する。その放電を契機としてプラズマが点火することになる。このとき、内導体24の位置を所定位置として設定する。内導体24が所定位置に移動したときにプラズマが点火すれば、プラズマはマイクロ波の電力をよく吸収するためにマイクロ波の電力はプラズマを維持するために消費され、反射波電力は急激に小さくなる。したがって、方向性結合器20によりその反射波電力を検出すれば、その反射波電力が急激に小さくなったときの内導体24の位置が所定位置に対応することになる。一旦、プラズマが点火すれば、制御装置34はモータ33を駆動させて内導体24を元の位置に戻す。内導体24を元の位置に戻しても、マイクロ波の電力が供給されている間、プラズマは消えることなく維持される。
【0016】
そのプラズマ29は、熱プラズマであって全ての粒子が一定の温度になっている。このとき、被処理ガスは、高温粒子の衝突により原子間の結合が切れて分解される。分解されたガスは、反応器5内で冷却され、ガス排出口27を通して排出される。
【0017】
プラズマが点火している個所におけるマイクロ波の反射率は、プラズマ密度や内導体24と外導体25との位置関係により決定されるが、その反射率が小さい方がプラズマ発生装置として効率よくプラズマを点火し、更には効率よくガス分解を行えることになる。そのため、方向性結合器20から得られる反射波の電力を最小にするように、制御装置34はモータ33の駆動を制御して内導体24の外導体25に対する位置を最適な所定位置に移動させる。一方、プラズマが維持されている間において、内導体24の先端部を高温に曝した状態にしておくと僅かづづではあるが損耗するため、制御装置34のモータ33の駆動制御により内導体24をわずかに外導体25に近づけることができ、内導体24の先端部の損耗による電極形状の変化を補償するようにして、結果的に、内導体24の電極の使用期間を長くすることができる。
【0018】
実施の形態2.
次に、実施の形態2について、図2を用いて説明する。図2は、この実施の形態2に係るガス分解装置の主要な概略構成図である。図2における図1と同一符号は同一又は相当部分を示すため説明を省略する。図2において、41は内導体24の先端部の軸が外導体25に接触したときに、その接触を感知する機能、例えば感知手段を有する駆動手段である。この駆動手段41は内導体24の先端部の軸と外導体25との接触を感知したときに、モータ33に流す電流を小さくし、モータ33による駆動力を小さくする。また、この駆動手段41が内導体24の先端部が外導体25に接触したことを制御装置42に伝達し、制御装置42がモータ33の駆動力を停止又は小さくするように構成してもよい。このように構成することにより、内導体24が外導体25に接触したときにも無理な力がかからず、内導体24の電極構造が破損することが少なくなり、装置自体の信頼性が向上するほか、電極構造の寿命を長くすることができる。
【0019】
実施の形態3.
次に、この実施の形態3について、図3を用いて説明する。図3は、この実施の形態3に係るガス分解装置の主要な概略構成図である。通常、実施の形態1又は2によるガス分解装置は、内導体24を冷却するために内導体24の上端部には冷却水の出入り口を設けている。このため、駆動手段41と内導体24とは接続バー40により接続していた。しかし、冷却水の出入り口を他の場所に配置すれば、図3に示すように、駆動手段41の駆動軸と内導体24の棒状の軸とを同軸上に配設することが可能となる。このように構成すれば、内導体24の上下方向の移動がよりスムーズに行えるという効果を奏する。
【0020】
実施の形態4.
次に、この実施の形態4について、図4を用いて説明する。図4は、この実施の形態4に係るガス分解装置の主要な概略構成図である。前述のように、実施の形態1乃至3では、内導体24を移動させるための駆動手段41、モータ33は、モータ支え35駆動手段支え43により支えているが、これらは同軸導波管変換器22上に設置しているため、同軸導波管変換器22は内部をマイクロ波が通過するので、温度上昇することがある。その熱が駆動手段41、モータ33に伝わってこれらを損傷するおそれがある。このため、実施の形態4では、支え35に通風用穴45を設け、ファン44を取り付けることにより、支え35を空冷し、熱の伝達を阻止するように構成したものである。したがって、装置自体の信頼性が更に向上するという効果を奏する。なお、冷却方法は、空冷に限らず、水冷でもよい。
【0021】
【発明の効果】
以上のように、この発明に係るガス分解装置は、プラズマの点火を開始するための特別な装置を必要とせず、自動的に電極間距離を調整し、その電極の長期間の使用を可能とすることができるという効果を奏する。
【図面の簡単な説明】
【図1】 実施の形態1に係るガス分解装置の主要な構成図である。
【図2】 実施の形態2に係るガス分解装置の主要な構成図である。
【図3】 実施の形態3に係るガス分解装置の主要な構成図である。
【図4】 実施の形態4に係るガス分解装置の主要な構成図である。
【図5】 従来のガス分解装置を示す主要構成図である。
【符号の説明】
1…矩形導波管、2…マイクロ波発振器、3…円筒形空胴共振器、5…反応器、20…方向性結合器、21…ガス供給口、22…同軸導波管変換器、23…同軸導波管、24…内導体、25…外導体、26…結合口、27…ガス排出口、29…プラズマ、34、42…制御装置、33…モータ、40…接続バー、44…ファン、45…通風用穴。

Claims (5)

  1. マイクロ波発振器と、このマイクロ波発振器からのマイクロ波を伝搬する第1の導波管と、この第1の導波管に連結され、マイクロ波によりプラズマを発生させる外導体及び内導体を有する第2の導波管と、この第2の導波管に連通され、プラズマによりガスの分解反応を行う反応器と、前記内導体に接続され、前記外導体に対して前記内導体を移動させる駆動手段と、前記反応器側から前記第1の導波管側に反射される反射波電力を検出する検出手段と、この検出手段による検出出力に基いて前記外導体に対する前記内導体の移動量を制御する制御手段とを備えたことを特徴とするガス分解装置。
  2. 前記制御手段は、前記検出手段の検出出力が最小となるように、前記駆動手段により前記内導体の位置を設置することを特徴とする請求項に記載のガス分解装置。
  3. 前記内導体が前記外導体に接触したことを感知する感知手段を設け、前記制御手段は前記感知手段の出力に基いて前記駆動手段を停止するようにしたことを特徴とする請求項に記載のガス分解装置。
  4. 前記駆動手段の回転軸と前記内導体の導体棒とを同軸上に配置したことを特徴とする請求項に記載のガス分解装置。
  5. マイクロ波発振器と、このマイクロ波発振器からのマイクロ波を伝搬する第1の導波管と、この第1の導波管に連結され、マイクロ波によりプラズマを発生させる外導体及び内導体を有する第2の導波管と、この第2の導波管に連通され、プラズマによりガスの分解反応を行う反応器と、前記内導体に接続され、前記外導体に対して前記内導体を移動させる駆動手段と、前記反応器側から前記第1の導波管側に反射される反射波電力に応じて前記外導体に対する前記内導体の移動量を制御する制御手段と、前記駆動手段を支持する貫通孔を設けた支持部材と、この支持部材を冷却する冷却手段とを備えたことを特徴とするガス分解装置。
JP2001364031A 2001-11-29 2001-11-29 ガス分解装置 Expired - Fee Related JP3843818B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001364031A JP3843818B2 (ja) 2001-11-29 2001-11-29 ガス分解装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001364031A JP3843818B2 (ja) 2001-11-29 2001-11-29 ガス分解装置

Publications (2)

Publication Number Publication Date
JP2003164723A JP2003164723A (ja) 2003-06-10
JP3843818B2 true JP3843818B2 (ja) 2006-11-08

Family

ID=19174277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001364031A Expired - Fee Related JP3843818B2 (ja) 2001-11-29 2001-11-29 ガス分解装置

Country Status (1)

Country Link
JP (1) JP3843818B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103648635A (zh) * 2011-06-28 2014-03-19 雷卡邦股份有限公司 气体转化系统
CN103796411A (zh) * 2014-02-24 2014-05-14 佛山市韦达尔自动化设备有限公司 一种等离子表面处理器移动装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7164095B2 (en) * 2004-07-07 2007-01-16 Noritsu Koki Co., Ltd. Microwave plasma nozzle with enhanced plume stability and heating efficiency
JP4963360B2 (ja) * 2006-01-31 2012-06-27 国立大学法人茨城大学 携帯型大気圧プラズマ発生装置
JP4680095B2 (ja) * 2006-02-28 2011-05-11 株式会社サイアン ワーク処理装置及びプラズマ発生装置
JP2012045500A (ja) * 2010-08-27 2012-03-08 Chube Univ 二酸化炭素分解処理装置及び二酸化炭素分解処理方法
CN103796410B (zh) * 2014-02-24 2017-02-01 佛山市韦达尔自动化设备有限公司 一种等离子喷枪转动装置
JP6006393B1 (ja) * 2015-10-09 2016-10-12 アルファ株式会社 プラズマ処理装置
CN112689376B (zh) * 2021-03-15 2021-06-18 四川大学 一种采用压电材料的微波等离子体射流激发装置
JP7430429B1 (ja) 2023-01-11 2024-02-13 株式会社アドテックプラズマテクノロジー 同軸型マイクロ波プラズマトーチ

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103648635A (zh) * 2011-06-28 2014-03-19 雷卡邦股份有限公司 气体转化系统
CN103648635B (zh) * 2011-06-28 2015-04-08 雷卡邦股份有限公司 气体转化系统
CN103796411A (zh) * 2014-02-24 2014-05-14 佛山市韦达尔自动化设备有限公司 一种等离子表面处理器移动装置
CN103796411B (zh) * 2014-02-24 2016-08-17 广东韦达尔科技有限公司 一种等离子表面处理器移动装置

Also Published As

Publication number Publication date
JP2003164723A (ja) 2003-06-10

Similar Documents

Publication Publication Date Title
JP3843818B2 (ja) ガス分解装置
US4611108A (en) Plasma torches
US6558635B2 (en) Microwave gas decomposition reactor
CN107801286B (zh) 一种基于介质阻挡放电预电离的微波等离子体激发系统
US8552650B2 (en) Plasma formation region control apparatus and plasma processing apparatus
US6522150B2 (en) Corona discharge apparatus
JP2008066159A (ja) プラズマ発生装置およびそれを用いるワーク処理装置
JP3553021B2 (ja) マイクロウエーブプラズマバーナー
CN101346032A (zh) 大气压微波等离子体发生装置
US3353060A (en) High-frequency discharge plasma generator with an auxiliary electrode
Al-Shamma'a et al. Atmospheric microwave plasma jet for material processing
US7022935B1 (en) Plasma-cutting torch with integrated high frequency starter
WO1998056215A1 (en) A safety circuit for a blow forward contact start plasma arc torch
US20050016970A1 (en) Laser-plasma hybrid welding method
JP5252387B2 (ja) 寿命判定機能を有するマグネトロンの駆動装置
JP3019239B2 (ja) 電子レンジ
JP2005108449A (ja) マイクロ波加熱装置
JP2007227069A (ja) プラズマ発生方法および装置ならびにそれを用いるワーク処理装置
KR100897237B1 (ko) 방산탑 보조버너의 전극갭 조절장치
JP2004303439A (ja) マイクロ波プラズマトーチ装置
JP2007273096A (ja) プラズマ発生装置およびそれを用いるワーク処理装置
JPH09223595A (ja) 高周波誘導結合アークプラズマの点火方法およびプラズマ発生装置
Gower Development of a high power microwave plasma beam applicator
JP3162425B2 (ja) ジャイロトロン発振装置
JP2007220499A (ja) プラズマ発生装置およびそれを用いるワーク処理装置

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060807

LAPS Cancellation because of no payment of annual fees