JP3836659B2 - Combustion equipment - Google Patents

Combustion equipment Download PDF

Info

Publication number
JP3836659B2
JP3836659B2 JP2000158661A JP2000158661A JP3836659B2 JP 3836659 B2 JP3836659 B2 JP 3836659B2 JP 2000158661 A JP2000158661 A JP 2000158661A JP 2000158661 A JP2000158661 A JP 2000158661A JP 3836659 B2 JP3836659 B2 JP 3836659B2
Authority
JP
Japan
Prior art keywords
heat
hot water
combustion
water supply
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000158661A
Other languages
Japanese (ja)
Other versions
JP2001336826A (en
Inventor
達範 原
哲司 森田
浩 市川
易司 佐野
直輝 石井
直樹 影山
雅収 久保田
信吉 三井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takagi Industrial Co Ltd
Osaka Gas Co Ltd
Original Assignee
Takagi Industrial Co Ltd
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takagi Industrial Co Ltd, Osaka Gas Co Ltd filed Critical Takagi Industrial Co Ltd
Priority to JP2000158661A priority Critical patent/JP3836659B2/en
Publication of JP2001336826A publication Critical patent/JP2001336826A/en
Application granted granted Critical
Publication of JP3836659B2 publication Critical patent/JP3836659B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Regulation And Control Of Combustion (AREA)
  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)
  • Details Of Fluid Heaters (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、燃焼排気から顕熱や潜熱を回収して給湯や暖房に利用する燃焼機器に関する。
【0002】
【従来の技術】
従来、燃焼排気から顕熱や潜熱を回収する燃焼機器においては、潜熱を回収する熱交換器に酸性の凝縮水が発生することが知られているが、この凝縮水は中和剤等によって中和処理した後、排水している。中和剤が消耗すると、凝縮水の中和が不十分となる。このため、排出される凝縮水のpHから中和剤の消耗を検出し、又はバーナ等への燃料供給量を計測してバーナの発熱量(インプット)を推定演算して凝縮水の発生量を予測し、中和剤の消耗告知をすることが行われている。
【0003】
【発明が解決しようとする課題】
凝縮水のpH測定では、測定温度を常に一定に保持し、検出電極を測定毎に乾燥させる必要があるが、このような測定形態は実現性に乏しい。
【0004】
また、燃料供給量の計測は、都市ガス等の供給ガス圧(1次ガス圧)を機器に設けたガバナ等によって所定の2次ガス圧に調整された値を基に発熱量を演算することであり、かかる方法は、供給ガス圧値が地域によって異なり、かつ需要者の使用量に応じて大きく変動するため、誤差が大きい。また、同一の燃料種であっても地域が異なるとガスの発熱量が異なり、凝縮水は燃料ガスの発熱量に比例して発生するので、かかる値から中和剤の消耗時期を予測することは困難である。
【0005】
そこで、本発明は、中和剤の交換時期及び告知時期の精度を高めた燃焼機器を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明の燃焼機器は、熱交換手段(熱交換器62、82)により生じた凝縮水(D)を中和する中和剤(116)を備えており、バーナ等の燃焼手段(バーナ10、12又はバーナ32、34)の燃焼によって被加熱流体(給水W、温水MW)に加えられる熱量(Q)を演算し、その積算値(Qm)から前記中和剤(116)の交換時期の予測及び告知を行い、中和処理が不完全な凝縮水(D)の廃棄を防止している。
【0007】
請求項1に係る本発明の燃焼機器は、燃料を燃焼させる燃焼手段と、前記燃焼手段が発生した燃焼排気から顕熱又は潜熱を回収して被加熱流体を加熱する給湯側熱交換手段と、前記燃焼手段が発生した燃焼排気から顕熱又は潜熱を回収して被加熱流体を加熱する暖房側熱交換手段と、前記給湯側熱交換手段及び前記暖房側熱交換手段の各熱交換により生じた凝縮水を集め、この凝縮水を中和剤を用いて中和させる中和手段と、暖房時に前記暖房側熱交換手段から前記被加熱流体に加えられる熱量を積算し、その積算値を実際の凝縮水の発生量より大きい発生量を想定して補正した積算値と、給湯時に前記給湯側熱交換手段から前記被加熱流体に加えられる熱量の積算値とを加算し、その加算値から前記中和剤の交換時期を判定する判定手段と、この判定手段の判定結果により、前記中和剤の交換時期を告知する告知手段とを備えたことを特徴とする。
【0008】
被加熱流体に与えられる熱量と熱交換手段で発生する凝縮水とは比例関係にあるため、燃焼手段で発生する熱量を積算し、その積算値を以て中和剤の消耗状態を把握できる。そこで、被加熱流体に与えられる熱量を積算し、その積算値を燃焼の度に更新記憶すれば、この積算値により中和剤の交換時期を判定することができる。その判定結果に基づき、中和剤の補充や交換時期を告知すれば、中和剤の効果が消失する前に中和剤の補充や交換が可能となる。したがって、未処理状態の凝縮水の廃棄による環境汚染等を未然に防止できる。
【0009】
請求項2に係る本発明の燃焼機器は、給湯時の前記熱量は前記給湯側熱交換手段の出湯温度、前記給湯側熱交換手段への給水量及び給水温度を用いて演算することを特徴とする。即ち、給湯時の熱量は燃焼手段から給湯側熱交換手段を通じて被加熱流体に加えられるものであるから、給湯側熱交換手段の出湯温度、給湯側熱交換手段への給水量及び給水温度を用いて算出することができる。この理論値を用いて中和剤の交換時期を予測することができる。
【0010】
請求項3に係る本発明の燃焼機器は、前記燃焼手段から前記被加熱流体に加えられる前記熱量を所定の時間間隔でサンプリングして前記判定手段に取り込むことを特徴とする。即ち、熱量は実測値を利用することができる。そこで、被加熱流体に加えられる熱量を所定の時間間隔でサンプリングしてそれを積算し、その積算値を中和剤の交換時期の予測に用いる。
【0011】
請求項4に係る本発明の燃焼機器は、前記燃焼排気から主として顕熱を回収する第1の熱交換器と、前記燃焼排気から主として潜熱を回収する第2の熱交換器とを以て前記給湯側熱交換手段又は前記暖房側熱交換手段を構成したことを特徴とする。即ち、熱交換手段は単一の熱交換器又は複数の熱交換器で構成したものを含み、その一例として燃焼排気から主として顕熱を回収する第1の熱交換器、燃焼排気から主として潜熱を回収する第2の熱交換器とを以て給湯側熱交換手段又は暖房側熱交換手段を構成したものである。この場合、第2の熱交換器から主として凝縮水が発生するが、燃焼手段から被加熱流体に加えられる熱量を積算することで、その積算値から中和剤の交換時期を予測することができる。
【0012】
【発明の実施の形態】
図1は、本発明の燃焼機器の実施形態である給湯・暖房装置の熱交換系統を示している。
【0013】
この給湯・暖房装置には給湯装置2と暖房装置4とが併設されており、給湯装置2側には被加熱流体である給水Wを加熱する第1及び第2の熱交換手段として熱交換器61、62が設置され、また、暖房装置4側には被加熱流体である給水Wを熱媒として加熱する第1及び第2の熱交換手段として熱交換器81、82が設置されている。
【0014】
熱交換器61、62側には燃焼手段としてバーナ10、12が設置されており、各バーナ10、12には燃焼ガスGが管路14を通じて供給され、管路14には燃料元弁16、給湯側燃料元弁18及び燃料比例弁20が設けられ、バーナ12側の分岐管22には開閉弁24が設けられている。各バーナ10、12には放電器26及び炎検出器28が設けられるとともに、燃焼空気を供給する手段として共通の給気ファン30が設けられている。即ち、燃料元弁16及び給湯側燃料元弁18を開き、燃料比例弁20によってバーナ10の燃焼量が調整され、開閉弁24を開くことによってバーナ12を燃焼させることができ、この燃焼排気EGが燃焼室31から排気路33に流れる。したがって、熱交換器61ではその燃焼排気EGから主として顕熱が回収され、熱交換器62では主として潜熱が回収される。
【0015】
また、熱交換器81、82側には燃焼手段としてバーナ32、34が設置されており、各バーナ32、34には燃焼ガスGが管路14から分岐された管路36を通じて供給され、管路36には暖房側燃料元弁38及び燃料比例弁40が設けられ、バーナ34側の分岐管42には開閉弁44が設けられている。各バーナ32、34には放電器46及び炎検出器48が設けられるとともに、燃焼空気を供給する手段として共通の給気ファン50が設けられている。即ち、燃料元弁16及び暖房側燃料元弁38を開き、燃料比例弁40によってバーナ32の燃焼量が調整され、開閉弁44を開くことによってバーナ34を燃焼させることができ、この燃焼排気EGが燃焼室45から排気路47に流れる。したがって、熱交換器81ではその燃焼排気EGから主として顕熱が回収され、熱交換器82では顕熱又は潜熱が回収される。
【0016】
そして、管路52には被加熱流体である給水Wが供給され、この給水Wは熱交換器62で加熱された後、管路54を通じて熱交換器61に供給され、管路56、57を通じて温水Whが図示しない浴槽等の一般給湯に供される。管路54には給湯装置2への給水量を検出する手段として給水量センサ55が設けられ、管路56には流量調整弁58が設けられ、この流量調整弁58によって給湯量の調整が可能である。管路54と管路56との間にはバイパス管路60が設けられ、このバイパス管路60には流量センサ63、流量調整弁65が設けられている。即ち、バイパス管路60の流量は流量調整弁65で調整され、その流量は流量センサ63によって検出される。また、管路52、54、56、57にはそれぞれ温度センサ66、68、70、72が設けられており、温度センサ66によって給水温度、温度センサ68によって熱交換器62の出口温度、温度センサ70によって熱交換器61の出口温度、温度センサ72によって出湯温度が夫々検出される。
【0017】
管路52の給水Wは管路52を分岐した管路74を通じて暖房装置4側の膨張タンク76に供給される。管路74には開閉弁78が設けられており、膨張タンク76への被加熱流体としての給水Wは、開閉弁78の開閉によって選択的に行われ、熱媒となる。
【0018】
この暖房装置4には、温水MWを熱媒とする図示しない室内温風発生装置や床暖房パネル等の高温暖房機器又は低温暖房機器が設置されており、これら高温又は低温暖房機器又は双方を通過した温水MWは管路80に回収され、熱交換器82によって加熱された後、管路84を通して膨張タンク76及び管路86を通してポンプ88に至る。ポンプ88は、暖房装置4側の被加熱流体である熱媒を圧送する手段であって、ポンプ88の出口側には管路90、92が設けられ、熱交換器82で加熱された温水MW(給水時には給水W)は管路90を通して熱交換器81に流れて加熱された後、管路94に流れ、管路96を通じて高温水HWとして高温暖房機器側に供給される。管路92に流れる温水MWには、管路96から分岐された管路98を通して高温水HWの一部が混合され、管路100を通して低温水LWとして低温暖房機器側に供給される。管路98には、逆止弁102が設けられており、高温水HWに低温側の温水MWの混合が阻止されている。また、管路80には温度センサ103が設置されて温水MWの温度が検出され、管路94には温度センサ104が設置されて熱交換器81の出口側温度、即ち、出湯温度が検出され、また、管路100には温度センサ106が設置されており、低温水LWの温度が検出される。
【0019】
ところで、高温暖房機器を使用するときには、温度センサ104の検出温度が設定温度として例えば80℃に到達するように燃料比例弁40を調整し、必要に応じて開閉弁44を開いてバーナ32、34を同時に燃焼させる。また、低温暖房機器のみ、又は低温暖房機器及び高温暖房機器を使用する場合には、温度センサ106の検出温度が設定温度として例えば、60℃になるように燃料比例弁40、開閉弁44を調整する。
【0020】
そして、熱交換器62側には凝縮水Dの回収手段としてトレイ110、熱交換器82側には凝縮水Dの回収手段としてトレイ112が設置されているとともに、各トレイ110、112で回収された凝縮水Dの中和手段として中和器114が設けられている。中和器114には、中和剤116が装填されており、管路118、120によって中和器114に導かれた凝縮水Dは中和剤116で中和処理された後、管路122から排水される。
【0021】
この給湯・暖房装置の制御装置の要部を図2を参照して説明すると、この制御装置には、熱量を積算するとともに、その積算値から中和剤116の消耗を予測し、交換時期の予測又は告知を行う判定手段を含む制御部130が設置されており、この制御部130には中央演算処理手段としてCPU132、演算制御データを一時的に記憶させる記憶手段としてRAM134、CPU132の動作プログラム、固定データ等が格納された記憶手段としてROM136、外部回路とのインターフェイスとしての入出力装置138等からなる演算制御手段に加え、外部回路との通信を行う通信装置140が設けられている。入出力装置138には炎検出器28、48等の各種のセンサ142からの入力が加えられ、燃料比例弁20、40等の各種のアクチュエータ144への駆動出力が取り出される。そして、この制御部130によって中和剤116の交換や補充時期が演算される。また、通信装置140には、給湯・追焚リモコン装置等のリモコン装置146、高温暖房機器制御部148、低温暖房機器制御部150が無線、有線等の通信媒体を介して接続されている。また、リモコン装置146には、告知情報を音声によって発生させる音声発生装置152、告知情報を表示する表示装置154が接続されている。音声発生装置152にはブザー等の警報器を含み、表示装置154はLED、液晶パネル、蛍光表示管、ブラウン管等の表示手段で構成することができる。
【0022】
このような給湯・暖房装置において、給湯装置2側ではバーナ10又はバーナ10、12の燃焼によって発生する熱量が熱交換器61、62を通じて管路52からの給水Wに与えられ、管路57を通じて浴槽やシャワーその他の給湯に供される。また、暖房装置4側では暖房の必要に応じてバーナ32又はバーナ32、34を燃焼し、熱交換器81、82を通じて温水MWを加熱し、ポンプ88の圧送により管路96を通じて高温暖房機器に供給され、管路100を通じて低温暖房機器に供給される。
【0023】
ところで、燃焼排気EGから主として潜熱を回収する熱交換器62又は熱交換器82より回収される凝縮水Dと、被加熱流体である給水W又は温水MWに与えた熱量Qとの間には、図3に示すような比例関係がある。即ち、凝縮水Dの発生量は給水W又は温水MWに与えた熱量Qa又はQbの積算値Qmに比例している。そこで、単位時間当たりの熱量Qa、Qbと凝縮水Dの発生量との関係から、熱量の積算値Qmから凝縮水Dの発生量を予測でき、その水量による中和剤116の消耗量を予測でき、その結果、熱量の積算値Qmから中和剤116の補充又は交換時期を知ることができる。
【0024】
この動作を図4に示すフローチャートを参照して説明すると、給湯又は暖房又は浴槽側の追焚の動作において、ステップS1では、炎検出器28又は48より炎検出が行われたか否かが判定される。炎検出が得られた場合にはステップS2に移行し、炎検出が得られない場合にはステップS9に移行する。
【0025】
ステップS2では所定時間として例えば、1秒が経過したか否かが判定され、1秒経過したらステップS3に移行し、1秒経過していなければステップS10に移行する。この1秒間は熱量検出のためのサンプリングタイムである。このサンプリング数をカウントし、積算した熱量から例えば1時間等の単位時間当たりの熱量を演算することができる。
【0026】
ステップS3では、給湯装置2側のバーナ10又は12が燃焼中であるか否かが判定される。即ち、給湯装置2側の炎検出器28より燃焼火炎が検出されているときは、ステップS4に移行する。また、この炎が検出されていなければ、暖房装置4側の燃焼としてステップS5に移行する。
【0027】
ステップS4では、出湯温度、給水温度及び給水量を演算情報として給水Wに与えられた熱量Qaを演算し、この熱量QaをRAM134に記憶させるとともに、RAM134に既に記憶されている全熱量Qの積算値Qm(初期値はQm=0)に加算し、従前の積算値Qmを更新する。
【0028】
即ち、給湯装置2は、図5に示すように、熱交換器61、62を直列に接続したものであり、給水Wに加えられる熱量Qa(アウトプット値)は、式(1)より出湯温度Th、給水温度Tw、給水量Wmを用いて演算することができる。
Qa=(Th−Tw)×Wm (kcal) ・・・(1)
【0029】
この式(1)において、出湯温度Thは温度センサ72の検出温度、給水温度Twは温度センサ66の検出温度、給水量Wmは給水量センサ55の検出水量である。演算された熱量Qaは実際にバーナ10又はバーナ10、12の燃焼によって給水Wに加えられた熱量であり、ガス圧の変動、ガス発熱量の違い等による誤差成分のない正確な値である。この熱量Qaを1秒毎にサンプリングしてRAM134に積算し、積算値Qmを更新して記憶させる。
【0030】
そして、ステップS5では、暖房装置4のバーナ32又は34が燃焼中であるか否かを判定する。即ち、炎検出器48によって燃焼火炎の有無を検出する。燃焼火炎が検出された場合にはステップS6に移行し、燃焼火炎が検出されていない場合にはステップS7に移行する。
【0031】
ステップS6は、暖房装置4側の燃焼によって熱媒である温水MWに与えられた熱量Qbを計測し、積算記憶するルーチンである。即ち、暖房装置4側においても、同様に熱交換器81、82を直列に接続したものであり、温水MWに加えられる熱量Qb(アウトプット値)は、高温水HWの温度Th、温水MWの温度Tw、温水量Wmを用いて演算できる。
Qb=(Th−Tw)×Wm (kcal) ・・・(2)
【0032】
この式(2)において、温度Thは温度センサ104の検出温度、温度Twは温度センサ103の検出温度であって、40℃〜60℃程度であり、また、温水量Wmは予め測定した既知量である。演算された熱量Qbは実際にバーナ32又はバーナ32、34の燃焼によって温水MWに加えられた熱量であり、ガス圧の変動、ガス発熱量の違い等による誤差成分のない正確な値である。この熱量Qbを1秒毎にサンプリングしてRAM134に積算する。
【0033】
ところで、この積算値をQnとすると、積算値Qmに加算すべき暖房装置4側の積算値Qは、
Q=Qn×K ・・・(3)
とし、実際の積算値Qnに係数Kを乗算して補正して実際の凝縮水Dの量より多くの発生量を想定し、給湯装置2側の発生量との関係を調整している。そして、この積算値Qを積算値Qmに加算し、積算値Qmを更新して記憶させている。
【0034】
ステップS7ではRAM134に記憶された熱量の積算値Qmが中和剤116の補充の予告熱量Qsを越えたか否かが判定される。予告熱量Qsを越えたときにはステップS8に移行し、越えていないときにはステップS1に移行する。
【0035】
ステップS8では、中和剤116の補充や交換時期が到来することを予告し、その予告は、視覚的、聴覚的に表示や告知によって行われる。なお、熱量Qは既存のセンサを使用することができ、計測した値を用いてもよい。
【0036】
即ち、ステップS8ではリモコン装置146の音声発生装置152又は表示装置154を動作させて、音声発生装置152にその告知メッセージとして例えば「中和剤がもうすぐなくなります。補充して下さい。」の音声発生やアラーム音等を発生させ、表示装置154にその告知メッセージとして文字表示やアラームコードを表示させ、使用者に中和剤116の消耗及び交換を促す。
【0037】
そして、ステップS9では炎検出器28、48で燃焼火炎が検出されていないため、熱量の積算演算を停止するとともに、燃焼制御を終了する。また、ステップS2でサンプリングの所定時間である1秒を経過していないときにはステップS10に移行し、積算した熱量Qmが中和剤116の予告熱量Qsを越えたか否かを判定する。越えていないときにはステップS1に移行し、ステップS1、S2、S10を繰り返して時間の計測を継続し、越えていたときにはステップS11に移行し、中和剤116が消耗して補充や交換を必要とする熱量を越えたか否かが判定される。越えていないときにはステップS1に移行してサンプリングを継続する。また、越えていたときにはステップS12に移行する。
【0038】
ステップS12では、中和剤116が消耗して凝縮水Dが未処理のまま外部に排出されるおそれがある場合には、給湯装置2又は暖房装置4の燃焼を強制的に停止させ、中和剤116の交換や補充を行った後、RAM134に記憶されている積算値Qmがリセット操作によって消去されるまで、燃焼動作を禁止する。
【0039】
ところで、図6は、燃料比例弁20又は40の動作を示し、給湯装置2、暖房装置4等の燃料供給量を可変させて温度設定を行う場合には、給水Wや温水MWに与えられる熱量と燃料比例弁20、40の開度調整を示す比例弁電流値iとの相関関係があり、燃料比例弁20、40の電流値iを変化させて燃焼量を細かく制御し、設定温度を実現している。図6において、直線L1 は例えば、バーナ10又は32の熱量を示し、直線L2 はバーナ10、12又はバーナ32、34を燃焼させた場合である。流量センサ63又は給水量センサ55を設置しない場合には、比例弁電流値iから現在の熱量を逆算し、これを積算して記憶することにより中和剤116の補充時期や交換時期の告知に利用することができる。
【0040】
そこで、ステップS6について、この実施形態では燃料比例弁40を調整して設定温度に制御しているから、図6に示す燃焼号数と比例弁電流値iとの関係を参照し、燃料比例弁40に加えられる電流値iに対応する熱量Qbを参照し、これをRAM134に記憶させるとともに、RAM134に記憶されている熱量Qa、Qbの積算値Qmに今回サンプリングした熱量Qbを積算し、熱量の積算値Qmを更新してもよい。
【0041】
この実施形態では給湯装置2と暖房装置4とが併設された場合について説明したが、本願発明は、給湯装置2又は暖房装置4を別個に構成した場合にも適応できる。この場合、給湯装置に使用する場合には図4のフローチャートのステップS5〜S6は不要となり、暖房装置として使用するときにはステップS3〜S4のルーチンが不要である。中和剤116の交換や補充に代えて新たな中和器114に交換することも可能である。また、中和剤116の消耗予告を表すステップS7〜S8、S10を省略してもよい。また、中和剤116の予告時に次回燃焼を禁止してもよい。
【0042】
次に、他の実施の形態について説明すると、図7は熱交換器61、62を直列に接続するとともに、給水側と出湯側とを短絡するバイパス管156を設けて、出湯と給水を混合して出湯させてもよい。この場合、給水と出湯の混合された後の出湯温度、給水温度、給水量をパラメータとして式(1)より給水Wに加えられた熱量Qaを求め、熱量の積算値Qmから中和剤116の補充又は交換時期を知ることができる。
【0043】
また、図8は熱交換器61、62を直列に接続して、熱交換器61側にバイパス管158を設けて出湯させるものである。この場合、熱交換器62に全水量が通過するため、熱交換器62の熱回収効率が向上する。この実施形態においても、混合後の出湯温度、給水温度、給水量を用いて式(1)より給水Wに与えられた熱量Qaを求め、熱量の積算値Qmから中和剤116の補充又は交換時期を知ることができる。
【0044】
この場合、出湯温度Thに代えて設定温度をパラメータとして給水Wに与える熱量Qaを計測し、この熱量の積算値Qmから中和剤116の補充又は交換時期を知ることができる。
【0045】
なお、実験によれば、全負荷相当燃焼時間に対する中和器出口pHを測定したところ、図9に示すように、中和器によって水質基準値rpを越えるpHに中和処理が得られるが、全負荷相当燃焼時間が2000時間を越えると、急激に中和機能が低下することが確認されている。このような実験結果から明らかなように、燃焼による熱量を積算し、その積算値に基づいて中和剤の補充や中和器の交換時期を設定することが環境の汚染防止等から有効であることが判る。
【0046】
【発明の効果】
以上説明したように、本発明によれば、次の効果が得られる。
a ガス圧の変動、燃料の発熱量の違いに関係なく正確な熱量を演算し、この熱量の積算値を用いて凝縮水の中和剤の補充又は交換時期を告知でき、凝縮水による汚染を防止できる。
b 給湯装置、暖房装置に使用されている既存のセンサ等を使用して熱量を測定し、凝縮水の中和剤の補充又は交換時期を告知できるので、特別な計測装置を不要とし、取り扱いが容易である。
【図面の簡単な説明】
【図1】本発明の燃焼機器の一実施形態である給湯・暖房装置における熱交換系統を示す構成図である。
【図2】給湯・暖房装置の制御装置を示すブロック図である。
【図3】凝縮水と熱量との関係を示す図である。
【図4】給湯・暖房装置の動作を示すフローチャートである。
【図5】図1に示す給湯・暖房装置における給水又は温水に加えられる熱量を表す説明図である。
【図6】燃焼号数と比例弁電流値とを示す図である。
【図7】他の給湯・暖房装置における給水に加えられる熱量を表す説明図である。
【図8】他の給湯・暖房装置における給水に加えられる熱量を表す説明図である。
【図9】全負荷相当燃焼時間に対する中和器出口pHを示す図である。
【符号の説明】
10、12、32、34 バーナ(燃焼手段)
62、82 熱交換器(熱交換手段)
114 中和器(中和手段)
116 中和剤
130 制御部(判定手段)
W 給水(被加熱流体)
MW 温水(被加熱流体)
D 凝縮水
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a combustion device that recovers sensible heat or latent heat from combustion exhaust and uses it for hot water supply or heating.
[0002]
[Prior art]
Conventionally, in combustion equipment that recovers sensible heat or latent heat from combustion exhaust, it is known that acidic condensed water is generated in a heat exchanger that recovers latent heat. Drained after Japanese treatment. When the neutralizing agent is consumed, the condensed water is not sufficiently neutralized. Therefore, the consumption of the neutralizing agent is detected from the pH of the discharged condensed water, or the amount of fuel generated to the burner is measured by estimating the amount of fuel supplied to the burner, etc. Predicting and giving notice of neutralizer consumption.
[0003]
[Problems to be solved by the invention]
In the measurement of the pH of condensed water, it is necessary to keep the measurement temperature constant and to dry the detection electrode for each measurement, but such a measurement form is not feasible.
[0004]
In addition, the fuel supply amount is measured by calculating the calorific value based on a value obtained by adjusting the supply gas pressure (primary gas pressure) of city gas or the like to a predetermined secondary gas pressure by a governor or the like provided in the equipment. Such a method has a large error because the supply gas pressure value varies depending on the region and fluctuates greatly according to the usage amount of the consumer. In addition, even if the fuel type is the same, the calorific value of the gas differs from region to region, and condensed water is generated in proportion to the calorific value of the fuel gas. It is difficult.
[0005]
Then, an object of this invention is to provide the combustion apparatus which raised the precision of the replacement | exchange time of a neutralizing agent, and the notification time.
[0006]
[Means for Solving the Problems]
The combustion device of the present invention includes a neutralizing agent (116) for neutralizing the condensed water (D) generated by the heat exchange means (heat exchangers 62 and 82), and combustion means such as a burner (burner 10, 12 or the burners 32, 34) calculates the amount of heat (Q) applied to the heated fluid (feed water W, hot water MW) and predicts the replacement time of the neutralizing agent (116) from the integrated value (Qm). In addition, the disposal of condensed water (D) incompletely neutralized is prevented.
[0007]
Combustion device of the present invention according to claim 1, combustion means for burning fuel, hot water supply side heat exchange means for recovering sensible heat or latent heat from the combustion exhaust generated by the combustion means to heat the fluid to be heated, It was generated by each heat exchange of the heating side heat exchange means for recovering sensible heat or latent heat from the combustion exhaust generated by the combustion means to heat the fluid to be heated, the hot water supply side heat exchange means and the heating side heat exchange means The condensed water is collected, neutralizing means for neutralizing the condensed water using a neutralizing agent , and the amount of heat applied to the heated fluid from the heating side heat exchange means during heating is integrated, and the integrated value is actually An integrated value corrected by assuming a generation amount larger than the generation amount of condensed water and an integrated value of the amount of heat applied to the heated fluid from the hot water supply side heat exchanging means during hot water supply are added. Judgment means for judging the replacement timing of the Japanese medicine and The determination result of the determination means, characterized by comprising a notification means for notifying the exchange timing of the neutralizing agent.
[0008]
Since the amount of heat given to the fluid to be heated and the condensed water generated by the heat exchanging means are in a proportional relationship, the amount of heat generated by the combustion means is integrated, and the consumption state of the neutralizing agent can be grasped using the integrated value. Therefore, if the amount of heat given to the fluid to be heated is integrated and the integrated value is updated and stored for each combustion, the replacement time of the neutralizing agent can be determined from this integrated value. If the replenishment and replacement timing of the neutralizing agent is notified based on the determination result, the neutralizing agent can be replenished or replaced before the effect of the neutralizing agent disappears. Accordingly, it is possible to prevent environmental pollution caused by disposal of untreated condensed water.
[0009]
Combustion equipment of the present invention according to claim 2, wherein the amount of heat when hot water is a feature that operation using the hot water temperature, water quantity and water temperature to the hot water supply side heat exchanger means of said hot water supply-side heat exchange means To do. That is, since it is intended to be added to the heated fluid, hot water temperature of the hot water supply side heat exchanger means, the water supply amount and the water supply temperature to the hot water supply side heat exchanger means using heat during the hot water supply, through the hot water supply-side heat exchange means from the combustion unit Can be calculated. This theoretical value can be used to predict the replacement time of the neutralizing agent.
[0010]
A combustion apparatus according to a third aspect of the present invention is characterized in that the amount of heat applied from the combustion means to the heated fluid is sampled at a predetermined time interval and taken into the determination means . That is, an actual measurement value can be used for the amount of heat. Therefore, the amount of heat applied to the fluid to be heated is sampled at a predetermined time interval, integrated, and the integrated value is used for predicting the replacement time of the neutralizing agent.
[0011]
Combustion equipment of the present invention according to claim 4, wherein the hot water supply side and the first heat exchanger which mainly recovering sensible heat from the combustion exhaust, with a second heat exchanger which mainly recovering latent heat from the combustion exhaust The heat exchange means or the heating side heat exchange means is configured. That is, each heat exchanging means includes a single heat exchanger or a plurality of heat exchangers. For example, a first heat exchanger that mainly recovers sensible heat from the combustion exhaust, a latent heat mainly from the combustion exhaust. The hot water supply side heat exchanging means or the heating side heat exchanging means is constituted by the second heat exchanger that collects the heat. In this case, condensate is mainly generated from the second heat exchanger. By integrating the amount of heat applied from the combustion means to the fluid to be heated, the replacement time of the neutralizing agent can be predicted from the integrated value. .
[0012]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows a heat exchange system of a hot water supply / heating device which is an embodiment of a combustion apparatus of the present invention.
[0013]
The hot water supply / heating device is provided with a hot water supply device 2 and a heating device 4, and a heat exchanger is provided on the hot water supply device 2 side as first and second heat exchange means for heating the feed water W that is a fluid to be heated. 61 and 62 are installed, and heat exchangers 81 and 82 are installed on the heating device 4 side as first and second heat exchanging means for heating the feed water W, which is a fluid to be heated, as a heat medium.
[0014]
Burners 10 and 12 are installed as combustion means on the side of the heat exchangers 61 and 62, and the combustion gas G is supplied to each of the burners 10 and 12 through the pipeline 14, and the fuel main valve 16, A hot water supply side fuel main valve 18 and a fuel proportional valve 20 are provided, and a branch pipe 22 on the burner 12 side is provided with an open / close valve 24. Each of the burners 10 and 12 is provided with a discharger 26 and a flame detector 28, and a common air supply fan 30 as means for supplying combustion air. That is, the fuel main valve 16 and the hot water supply side fuel main valve 18 are opened, the combustion amount of the burner 10 is adjusted by the fuel proportional valve 20, and the burner 12 can be burned by opening the on-off valve 24. This combustion exhaust EG Flows from the combustion chamber 31 to the exhaust passage 33. Accordingly, the heat exchanger 61 mainly recovers sensible heat from the combustion exhaust EG, and the heat exchanger 62 mainly recovers latent heat.
[0015]
Also, burners 32 and 34 are installed as combustion means on the heat exchangers 81 and 82 side, and the combustion gas G is supplied to each burner 32 and 34 through a pipeline 36 branched from the pipeline 14. A heating side fuel main valve 38 and a fuel proportional valve 40 are provided in the passage 36, and an opening / closing valve 44 is provided in the branch pipe 42 on the burner 34 side. Each burner 32, 34 is provided with a discharger 46 and a flame detector 48, and a common air supply fan 50 as means for supplying combustion air. That is, the fuel main valve 16 and the heating side fuel main valve 38 are opened, the combustion amount of the burner 32 is adjusted by the fuel proportional valve 40, and the burner 34 can be burned by opening the on-off valve 44. This combustion exhaust EG Flows from the combustion chamber 45 to the exhaust passage 47. Accordingly, the heat exchanger 81 mainly recovers sensible heat from the combustion exhaust EG, and the heat exchanger 82 recovers sensible heat or latent heat.
[0016]
The water supply W, which is a fluid to be heated, is supplied to the pipe line 52, and this water supply W is heated by the heat exchanger 62 and then supplied to the heat exchanger 61 through the pipe line 54 and through the pipe lines 56 and 57. Hot water Wh is provided for general hot water supply such as a bathtub (not shown). The pipe 54 is provided with a water supply amount sensor 55 as means for detecting the amount of water supplied to the hot water supply device 2, and the pipe 56 is provided with a flow rate adjusting valve 58, and the flow rate adjusting valve 58 can adjust the amount of hot water supply. It is. A bypass pipeline 60 is provided between the pipeline 54 and the pipeline 56, and a flow rate sensor 63 and a flow rate adjustment valve 65 are provided in the bypass pipeline 60. That is, the flow rate of the bypass pipe 60 is adjusted by the flow rate adjustment valve 65, and the flow rate is detected by the flow rate sensor 63. The pipes 52, 54, 56, 57 are provided with temperature sensors 66, 68, 70, 72, respectively. The temperature sensor 66 supplies the feed water temperature, the temperature sensor 68 uses the outlet temperature of the heat exchanger 62, and the temperature sensor. The outlet temperature of the heat exchanger 61 is detected by 70, and the tapping temperature is detected by the temperature sensor 72, respectively.
[0017]
The water supply W of the pipe 52 is supplied to the expansion tank 76 on the heating device 4 side through a pipe 74 branched from the pipe 52. An opening / closing valve 78 is provided in the pipe line 74, and the water supply W as the fluid to be heated to the expansion tank 76 is selectively performed by opening / closing the opening / closing valve 78 and becomes a heat medium.
[0018]
The heating device 4 is provided with a high temperature heating device or a low temperature heating device such as an indoor warm air generator (not shown) using a hot water MW as a heat medium or a floor heating panel, and passes through these high temperature or low temperature heating devices or both. The heated hot water MW is collected in the pipe 80, heated by the heat exchanger 82, and then reaches the pump 88 through the pipe 84 and the expansion tank 76 and the pipe 86. The pump 88 is a means for pressure-feeding a heating medium that is a fluid to be heated on the heating device 4 side. Pipes 90 and 92 are provided on the outlet side of the pump 88, and the hot water MW heated by the heat exchanger 82 is provided. (Water supply W at the time of water supply) flows to the heat exchanger 81 through the pipe 90 and is heated, then flows to the pipe 94, and is supplied to the high-temperature heating equipment side through the pipe 96 as high-temperature water HW. A part of the high-temperature water HW is mixed with the hot water MW flowing through the pipe 92 through a pipe 98 branched from the pipe 96 and supplied to the low-temperature heating equipment side through the pipe 100 as low-temperature water LW. A check valve 102 is provided in the pipeline 98, and mixing of the hot water MW on the low temperature side with the high temperature water HW is prevented. Further, the temperature sensor 103 is installed in the pipe line 80 to detect the temperature of the hot water MW, and the temperature sensor 104 is installed in the pipe line 94 to detect the outlet side temperature of the heat exchanger 81, that is, the hot water temperature. Moreover, the temperature sensor 106 is installed in the pipe line 100, and the temperature of the low temperature water LW is detected.
[0019]
By the way, when using high-temperature heating equipment, the fuel proportional valve 40 is adjusted so that the temperature detected by the temperature sensor 104 reaches, for example, 80 ° C. as a set temperature, and the on-off valve 44 is opened as necessary to burners 32, 34. Burn at the same time. In addition, when using only the low-temperature heating device, or when using the low-temperature heating device and the high-temperature heating device, the fuel proportional valve 40 and the on-off valve 44 are adjusted so that the temperature detected by the temperature sensor 106 is, for example, 60 ° C. To do.
[0020]
A tray 110 is installed as a means for collecting condensed water D on the heat exchanger 62 side, and a tray 112 is installed as a means for collecting condensed water D on the heat exchanger 82 side. A neutralizer 114 is provided as a means for neutralizing the condensed water D. The neutralizer 114 is charged with a neutralizing agent 116, and the condensed water D introduced to the neutralizer 114 by the pipe lines 118 and 120 is neutralized by the neutralizing agent 116, and then the pipe line 122. Drained from.
[0021]
The main part of the control device for the hot water supply / heating device will be described with reference to FIG. 2. The control device accumulates the amount of heat, predicts the consumption of the neutralizing agent 116 from the accumulated value, and determines the replacement time. A control unit 130 including a determination unit that performs prediction or notification is installed. The control unit 130 includes a CPU 132 as a central processing unit, a RAM 134 as a storage unit that temporarily stores calculation control data, an operation program for the CPU 132, A communication device 140 that communicates with an external circuit is provided in addition to arithmetic control means including a ROM 136 as a storage means for storing fixed data and the like, an input / output device 138 as an interface with the external circuit, and the like. Inputs from various sensors 142 such as the flame detectors 28 and 48 are applied to the input / output device 138, and drive outputs to various actuators 144 such as the fuel proportional valves 20 and 40 are taken out. The controller 130 calculates the replacement and replenishment timing of the neutralizing agent 116. In addition, a remote control device 146 such as a hot water supply / remembrance remote control device, a high temperature heating appliance control unit 148, and a low temperature heating appliance control unit 150 are connected to the communication device 140 via a wireless or wired communication medium. Also connected to the remote control device 146 are a sound generating device 152 for generating notification information by sound and a display device 154 for displaying the notification information. The sound generation device 152 includes an alarm device such as a buzzer, and the display device 154 can be configured by display means such as an LED, a liquid crystal panel, a fluorescent display tube, and a cathode ray tube.
[0022]
In such a hot water supply / heating device, the amount of heat generated by the combustion of the burner 10 or the burners 10, 12 is given to the water supply W from the pipe 52 through the heat exchangers 61, 62, and through the pipe 57. It is used for hot water such as bathtubs and showers. On the heating device 4 side, the burner 32 or the burners 32 and 34 are combusted as necessary for heating, the hot water MW is heated through the heat exchangers 81 and 82, and the pump 88 pumps the high-temperature heating equipment through the pipe 96. Is supplied and supplied to the low-temperature heating equipment through the conduit 100.
[0023]
By the way, between the condensed water D recovered from the heat exchanger 62 or the heat exchanger 82 mainly recovering latent heat from the combustion exhaust EG, and the amount of heat Q given to the feed water W or the hot water MW as the heated fluid, There is a proportional relationship as shown in FIG. That is, the amount of the condensed water D generated is proportional to the integrated value Qm of the heat quantity Qa or Qb given to the feed water W or the hot water MW. Therefore, from the relationship between the heat amounts Qa and Qb per unit time and the amount of condensed water D generated, the amount of condensed water D generated can be predicted from the integrated value Qm of the heat amount, and the amount of consumption of the neutralizing agent 116 due to the amount of water can be predicted. As a result, it is possible to know the replenishment or replacement time of the neutralizing agent 116 from the integrated value Qm of the heat amount.
[0024]
This operation will be described with reference to the flowchart shown in FIG. 4. In step S1, in the hot water supply or heating operation or the bath-side memorial operation, it is determined whether or not flame detection has been performed by the flame detector 28 or 48. The If flame detection is obtained, the process proceeds to step S2, and if flame detection is not obtained, the process proceeds to step S9.
[0025]
In step S2, for example, it is determined whether or not 1 second has elapsed as a predetermined time. If 1 second has elapsed, the process proceeds to step S3, and if 1 second has not elapsed, the process proceeds to step S10. This one second is a sampling time for detecting the amount of heat. The number of samples is counted, and the amount of heat per unit time such as one hour can be calculated from the amount of heat accumulated.
[0026]
In step S3, it is determined whether or not the burner 10 or 12 on the hot water supply device 2 side is burning. That is, when a combustion flame is detected by the flame detector 28 on the hot water supply device 2 side, the process proceeds to step S4. Moreover, if this flame is not detected, it will transfer to step S5 as combustion by the side of the heating apparatus 4.
[0027]
In step S4, the calorific value Qa given to the feed water W is calculated using the tapping temperature, the feed water temperature and the feed water amount as computation information, the calorie Qa is stored in the RAM 134, and the total calorie Q already stored in the RAM 134 is integrated. It is added to the value Qm (the initial value is Qm = 0), and the previous integrated value Qm is updated.
[0028]
That is, as shown in FIG. 5, the hot water supply device 2 is formed by connecting heat exchangers 61 and 62 in series, and the amount of heat Qa (output value) applied to the water supply W is calculated from the formula (1). Calculation can be performed using Th, the feed water temperature Tw, and the feed water amount Wm.
Qa = (Th−Tw) × Wm (kcal) (1)
[0029]
In this formula (1), the tapping temperature Th is the temperature detected by the temperature sensor 72, the water supply temperature Tw is the temperature detected by the temperature sensor 66, and the water supply amount Wm is the detected water amount of the water supply amount sensor 55. The calculated heat quantity Qa is the heat quantity actually applied to the feed water W by the combustion of the burner 10 or the burners 10 and 12, and is an accurate value free from error components due to fluctuations in gas pressure, differences in gas heat generation, and the like. The amount of heat Qa is sampled every second, integrated in the RAM 134, and the integrated value Qm is updated and stored.
[0030]
And in step S5, it is determined whether the burner 32 or 34 of the heating apparatus 4 is burning. That is, the presence or absence of a combustion flame is detected by the flame detector 48. When the combustion flame is detected, the process proceeds to step S6, and when the combustion flame is not detected, the process proceeds to step S7.
[0031]
Step S6 is a routine for measuring the heat quantity Qb given to the hot water MW, which is a heat medium, by combustion on the heating device 4 side, and accumulating and storing it. That is, on the heating device 4 side, the heat exchangers 81 and 82 are similarly connected in series, and the amount of heat Qb (output value) applied to the hot water MW is the temperature Th of the high-temperature water HW and that of the hot water MW. Calculation can be performed using the temperature Tw and the hot water amount Wm.
Qb = (Th−Tw) × Wm (kcal) (2)
[0032]
In this formula (2), the temperature Th is the temperature detected by the temperature sensor 104, the temperature Tw is the temperature detected by the temperature sensor 103, and is about 40 ° C. to 60 ° C. The hot water amount Wm is a known amount measured in advance. It is. The calculated amount of heat Qb is the amount of heat actually applied to the hot water MW by the combustion of the burner 32 or the burners 32, 34, and is an accurate value free from error components due to variations in gas pressure, differences in gas heat generation, and the like. This amount of heat Qb is sampled every second and integrated in the RAM 134.
[0033]
By the way, if this integrated value is Qn, the integrated value Q on the heating device 4 side to be added to the integrated value Qm is:
Q = Qn × K (3)
Then, the actual integrated value Qn is corrected by multiplying by a coefficient K, and a generation amount larger than the actual amount of condensed water D is assumed, and the relationship with the generation amount on the hot water supply device 2 side is adjusted. The integrated value Q is added to the integrated value Qm, and the integrated value Qm is updated and stored.
[0034]
In step S7, it is determined whether or not the integrated value Qm of the heat quantity stored in the RAM 134 has exceeded the preliminary heat quantity Qs for replenishment with the neutralizing agent 116. When it exceeds the amount of predicted heat Qs, the process proceeds to step S8, and when it does not exceed, the process proceeds to step S1.
[0035]
In step S8, the time for replenishment or replacement of the neutralizing agent 116 is notified, and the notification is made visually or audibly by display or notification. As the heat quantity Q, an existing sensor can be used, and a measured value may be used.
[0036]
That is, in step S8, the voice generating device 152 or the display device 154 of the remote control device 146 is operated and the voice generating device 152 generates a voice message such as “Neutralizing agent will soon be exhausted. And an alarm sound are generated, and a character display and an alarm code are displayed on the display device 154 as a notification message, prompting the user to consume and replace the neutralizing agent 116.
[0037]
In step S9, since the combustion flame is not detected by the flame detectors 28, 48, the heat amount integration calculation is stopped and the combustion control is ended. If 1 second which is the predetermined sampling time has not elapsed in step S2, the process proceeds to step S10, and it is determined whether or not the integrated heat quantity Qm exceeds the preliminary heat quantity Qs of the neutralizing agent 116. If not, the process proceeds to step S1, and steps S1, S2, and S10 are repeated to continue the time measurement. If the time is exceeded, the process proceeds to step S11, and the neutralizing agent 116 is consumed and needs to be replenished or replaced. It is determined whether the amount of heat to be exceeded has been exceeded. If not, the process proceeds to step S1 and sampling is continued. If it has exceeded, the process proceeds to step S12.
[0038]
In step S12, when there is a possibility that the neutralizing agent 116 is consumed and the condensed water D is discharged to the outside without being treated, the combustion of the hot water supply device 2 or the heating device 4 is forcibly stopped and neutralized. After the agent 116 is replaced or replenished, the combustion operation is prohibited until the integrated value Qm stored in the RAM 134 is erased by a reset operation.
[0039]
FIG. 6 shows the operation of the fuel proportional valve 20 or 40. When the temperature is set by varying the fuel supply amount of the hot water supply device 2, the heating device 4, etc., the amount of heat given to the water supply W or the hot water MW. And the proportional valve current value i indicating the opening degree adjustment of the fuel proportional valves 20 and 40, and the current value i of the fuel proportional valves 20 and 40 is changed to finely control the combustion amount to realize the set temperature. is doing. In FIG. 6, for example, a straight line L 1 indicates the amount of heat of the burner 10 or 32, and a straight line L 2 is a case where the burners 10, 12 or the burners 32, 34 are burned. When the flow rate sensor 63 or the water supply amount sensor 55 is not installed, the current amount of heat is calculated backward from the proportional valve current value i, and this is accumulated and stored to notify the replenishment time or replacement time of the neutralizing agent 116. Can be used.
[0040]
Therefore, in step S6, the fuel proportional valve 40 is adjusted and controlled to the set temperature in this embodiment. Therefore, referring to the relationship between the combustion number and the proportional valve current value i shown in FIG. The heat quantity Qb corresponding to the current value i applied to 40 is referred to and stored in the RAM 134, and the heat quantity Qb sampled this time is added to the integrated value Qm of the heat quantities Qa and Qb stored in the RAM 134, The integrated value Qm may be updated.
[0041]
Although this embodiment demonstrated the case where the hot-water supply apparatus 2 and the heating apparatus 4 were provided side by side, this invention is applicable also when the hot-water supply apparatus 2 or the heating apparatus 4 is comprised separately. In this case, steps S5 to S6 in the flowchart of FIG. 4 are unnecessary when used in a hot water supply device, and the routines of steps S3 to S4 are unnecessary when used as a heating device. It is also possible to replace the neutralizer 116 with a new neutralizer 114 instead of replacement or replenishment. In addition, steps S7 to S8 and S10 that indicate the exhaustion notice of the neutralizing agent 116 may be omitted. Further, the next combustion may be prohibited when the neutralizer 116 is notified.
[0042]
Next, another embodiment will be described. In FIG. 7, the heat exchangers 61 and 62 are connected in series, and a bypass pipe 156 for short-circuiting the water supply side and the hot water side is provided to mix the hot water and the water supply. You may let it come out. In this case, the calorific value Qa applied to the feed water W is obtained from the equation (1) using the hot water temperature, the feed water temperature and the feed water amount after the feed water and the hot water are mixed as parameters. Know when to refill or replace.
[0043]
In FIG. 8, heat exchangers 61 and 62 are connected in series, and a bypass pipe 158 is provided on the side of the heat exchanger 61 so that the hot water is discharged. In this case, since the total amount of water passes through the heat exchanger 62, the heat recovery efficiency of the heat exchanger 62 is improved. Also in this embodiment, the heat quantity Qa given to the feed water W is obtained from the formula (1) using the tapping temperature, the feed water temperature, and the feed water amount after mixing, and the neutralizing agent 116 is replenished or replaced from the integrated value Qm of the heat quantity. You can know when.
[0044]
In this case, it is possible to measure the amount of heat Qa applied to the feed water W using the set temperature as a parameter instead of the tapping temperature Th, and know the replenishment or replacement timing of the neutralizing agent 116 from the integrated value Qm of the amount of heat.
[0045]
In addition, according to the experiment, when the neutralizer outlet pH with respect to the combustion time corresponding to the full load was measured, as shown in FIG. 9, the neutralizer can obtain a neutralization treatment at a pH exceeding the water quality reference value rp. It has been confirmed that when the combustion time corresponding to the full load exceeds 2000 hours, the neutralization function rapidly decreases. As is clear from these experimental results, it is effective from the standpoint of preventing environmental pollution and the like to accumulate the amount of heat generated by combustion and to set the replenishment of the neutralizing agent and the replacement time of the neutralizer based on the accumulated value. I understand that.
[0046]
【The invention's effect】
As described above, according to the present invention, the following effects can be obtained.
a Accurate calorific value is calculated regardless of the difference in gas pressure and the calorific value of the fuel, and the accumulated value of this calorific value can be used to notify the timing of replenishment or replacement of the condensate neutralizer. Can be prevented.
b The amount of heat can be measured using existing sensors, etc. used in water heaters and heaters, and the time for replenishment or replacement of the neutralizing agent for condensed water can be notified. Easy.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing a heat exchange system in a hot water supply / heating device which is an embodiment of a combustion apparatus of the present invention.
FIG. 2 is a block diagram showing a controller for a hot water supply / heating device.
FIG. 3 is a diagram showing a relationship between condensed water and heat quantity.
FIG. 4 is a flowchart showing the operation of the hot water supply / heating device.
5 is an explanatory diagram showing the amount of heat applied to water supply or hot water in the hot water supply / heating device shown in FIG. 1. FIG.
FIG. 6 is a diagram showing a combustion number and a proportional valve current value.
FIG. 7 is an explanatory diagram showing the amount of heat applied to water supply in another hot water supply / heating device.
FIG. 8 is an explanatory diagram showing the amount of heat applied to water supply in another hot water supply / heating device.
FIG. 9 is a graph showing the neutralizer outlet pH with respect to the full load equivalent combustion time.
[Explanation of symbols]
10, 12, 32, 34 Burner (combustion means)
62, 82 heat exchanger (heat exchange means)
114 Neutralizer (neutralizing means)
116 Neutralizing agent 130 Control unit (determination means)
W Water supply (heated fluid)
MW warm water (heated fluid)
D Condensate

Claims (4)

燃料を燃焼させる燃焼手段と、
前記燃焼手段が発生した燃焼排気から顕熱又は潜熱を回収して被加熱流体を加熱する給湯側熱交換手段と、
前記燃焼手段が発生した燃焼排気から顕熱又は潜熱を回収して被加熱流体を加熱する暖房側熱交換手段と、
前記給湯側熱交換手段及び前記暖房側熱交換手段の各熱交換により生じた凝縮水を集め、この凝縮水を中和剤を用いて中和させる中和手段と、
暖房時に前記暖房側熱交換手段から前記被加熱流体に加えられる熱量を積算し、その積算値を実際の凝縮水の発生量より大きい発生量を想定して補正した積算値と、給湯時に前記給湯側熱交換手段から前記被加熱流体に加えられる熱量の積算値とを加算し、その加算値から前記中和剤の交換時期を判定する判定手段と、
この判定手段の判定結果により、前記中和剤の交換時期を告知する告知手段と、
を備えたことを特徴とする燃焼機器。
Combustion means for burning fuel;
Hot water supply side heat exchange means for recovering sensible heat or latent heat from the combustion exhaust generated by the combustion means and heating the fluid to be heated;
Heating-side heat exchange means for recovering sensible heat or latent heat from the combustion exhaust generated by the combustion means to heat the fluid to be heated;
Neutralizing means for collecting condensed water generated by each heat exchange of the hot water supply side heat exchange means and the heating side heat exchange means, and neutralizing the condensed water using a neutralizing agent;
An integrated value obtained by integrating the amount of heat applied to the heated fluid from the heating-side heat exchanging means during heating, and correcting the integrated value assuming an amount larger than the actual amount of condensed water generated, and the hot water supply during hot water supply A determination means for adding the integrated value of the amount of heat applied to the heated fluid from the side heat exchange means, and determining the replacement time of the neutralizer from the added value ;
According to the determination result of the determination means, notification means for notifying the replacement time of the neutralizing agent,
Combustion equipment characterized by comprising:
給湯時の前記熱量は前記給湯側熱交換手段の出湯温度、前記給湯側熱交換手段への給水量及び給水温度を用いて演算することを特徴とする請求項1記載の燃焼機器。Burning appliance as claimed in claim 1, wherein the amount of heat, characterized in that the calculation using the hot water temperature, water quantity and water temperature to the hot water supply side heat exchanger means of said hot water supply-side heat exchange means during hot water supply. 前記燃焼手段から前記被加熱流体に加えられる前記熱量を所定の時間間隔でサンプリングして前記判定手段に取り込むことを特徴とする請求項1記載の燃焼機器。The combustion apparatus according to claim 1, wherein the amount of heat applied to the heated fluid from the combustion means is sampled at a predetermined time interval and taken into the determination means . 前記燃焼排気から主として顕熱を回収する第1の熱交換器と、前記燃焼排気から主として潜熱を回収する第2の熱交換器とを以て前記給湯側熱交換手段又は前記暖房側熱交換手段を構成したことを特徴とする請求項1記載の燃焼機器。The hot water supply side heat exchange means or the heating side heat exchange means is constituted by a first heat exchanger that mainly recovers sensible heat from the combustion exhaust and a second heat exchanger that mainly recovers latent heat from the combustion exhaust. The combustion apparatus according to claim 1, wherein
JP2000158661A 2000-05-29 2000-05-29 Combustion equipment Expired - Lifetime JP3836659B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000158661A JP3836659B2 (en) 2000-05-29 2000-05-29 Combustion equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000158661A JP3836659B2 (en) 2000-05-29 2000-05-29 Combustion equipment

Publications (2)

Publication Number Publication Date
JP2001336826A JP2001336826A (en) 2001-12-07
JP3836659B2 true JP3836659B2 (en) 2006-10-25

Family

ID=18663095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000158661A Expired - Lifetime JP3836659B2 (en) 2000-05-29 2000-05-29 Combustion equipment

Country Status (1)

Country Link
JP (1) JP3836659B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4701755B2 (en) * 2005-03-09 2011-06-15 株式会社ノーリツ Condensate neutralizer and hot water supply apparatus provided with the same
JP4687272B2 (en) * 2005-06-23 2011-05-25 株式会社ノーリツ Water heater
JP4815902B2 (en) * 2005-07-08 2011-11-16 株式会社ノーリツ Heat source equipment
JP2007309590A (en) * 2006-05-19 2007-11-29 Rinnai Corp Connection hot water supply system
JP5080896B2 (en) * 2007-08-03 2012-11-21 株式会社ガスター Water heater
JP2009036477A (en) * 2007-08-03 2009-02-19 Gastar Corp Combustion device
JP2009036476A (en) * 2007-08-03 2009-02-19 Gastar Corp Combustion device
JP5370807B2 (en) * 2008-04-25 2013-12-18 株式会社ノーリツ Latent heat recovery water heater
JP5587358B2 (en) * 2012-03-06 2014-09-10 パーパス株式会社 Heat source device and control method thereof
JP5463384B2 (en) * 2012-05-30 2014-04-09 株式会社ガスター Combustion device
JP6862915B2 (en) * 2017-02-28 2021-04-21 株式会社ノーリツ Hot water device
JP7183575B2 (en) * 2018-05-30 2022-12-06 株式会社ノーリツ water heater
CN114898812B (en) * 2022-01-29 2023-03-10 哈尔滨工业大学 Basin pollution hotspot identification method based on improved equal-standard pollution load

Also Published As

Publication number Publication date
JP2001336826A (en) 2001-12-07

Similar Documents

Publication Publication Date Title
JP3836659B2 (en) Combustion equipment
JPH0131106B2 (en)
JP3589610B2 (en) Combustion equipment
JP5491878B2 (en) Hot water storage hot water supply system using solar heat
CN113357825A (en) Water heater system and control method thereof
JP5323363B2 (en) Neutralizing device, combustion device equipped with neutralizing device, and control method of neutralizing device
KR20000041753A (en) Method for controlling circulation pump in gas boiler in response to flow quantity and velocity of circulating flow
JP5353497B2 (en) Hybrid hot water supply system
JP2004245451A (en) Storage type hot water supply system
JP2010197025A (en) Heat source machine efficiency management system
JP2004286395A (en) Latent heat recovery type heat source machine
WO2007105677A1 (en) Cogeneration system
JP2004036982A (en) Hot-water supply device and preheating amount calculating method
JP2004286394A (en) Latent heat recovery type heat source machine
JP6906164B2 (en) Cogeneration system and its operation method
KR20040106651A (en) Hot Water Supply System
CN113007767A (en) Gas water heating equipment, preheating circulation control method thereof and readable storage medium
CN113154498A (en) Pump station and hot water system adopting same
JP2003269736A (en) Cogeneration system
KR100283257B1 (en) A energy save feed forward and feed back boiling controlling method
JP3963745B2 (en) Gas consumption estimation method and system
JP2011174664A (en) Water heater with heat storage-type tank using solar heat
JP4398653B2 (en) Cogeneration system controller
CN210921831U (en) Heating combustion system of gas wall-mounted boiler and wall-mounted boiler
JP3744472B2 (en) Water heater

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060727

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3836659

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130804

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term