JP2010197025A - Heat source machine efficiency management system - Google Patents

Heat source machine efficiency management system Download PDF

Info

Publication number
JP2010197025A
JP2010197025A JP2009063521A JP2009063521A JP2010197025A JP 2010197025 A JP2010197025 A JP 2010197025A JP 2009063521 A JP2009063521 A JP 2009063521A JP 2009063521 A JP2009063521 A JP 2009063521A JP 2010197025 A JP2010197025 A JP 2010197025A
Authority
JP
Japan
Prior art keywords
heat
efficiency
energy
heat source
flow meter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009063521A
Other languages
Japanese (ja)
Inventor
Yukiro Tamaoki
幸郎 玉置
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
First Water Kk
Kur & Hotel Kk
Original Assignee
First Water Kk
Kur & Hotel Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by First Water Kk, Kur & Hotel Kk filed Critical First Water Kk
Priority to JP2009063521A priority Critical patent/JP2010197025A/en
Publication of JP2010197025A publication Critical patent/JP2010197025A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an energy management system capable simultaneously measuring and displaying energy real exchange efficiency of fuel and electricity and exhaust heat utilization efficiency in a system using a heat source machine (boiler, refrigerating machine, heat exchanger and the like) in commercial facilities such as hot bath facilities and the like. <P>SOLUTION: This system for simultaneously measuring and displaying instantaneous and integrated real efficiencies and fuel consumption of a heat source exchange system is constituted by measuring the amount of evaporative water including steam condensate, a temperature, an air ratio and the like in a steam boiler, and relatively operating and analyzing energy heat generation amount obtained by simultaneously measuring usages of primary-side fuel and energy source and costs by using a calorie measuring method by operation based on measurement values of a flowmeter and a pair of temperature sensors disposed at a secondary side of the heat source machine in a hot-water boiler. The energy exchange efficiency of fuel and electricity corresponding to changing energetic load is instantaneously displayed, thus a problem in energy management found when comparison and validation are performed only on the basis of amounts of meters actually used, can be solved. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、温浴施設等の商業施設において、ボイラなどの熱源機や排熱交換器などのシステム効率を測定表示するエネルギー管理技術に関する。  The present invention relates to an energy management technique for measuring and displaying system efficiency of a heat source machine such as a boiler and a waste heat exchanger in a commercial facility such as a hot bath facility.

温暖化防止のためのCO2削減や省エネルギー目的で、様々な高効率の熱源機器や省エネシステムが登場している。個々の省エネ機器は其々のメーカーが効率や性能を謳っているが、様々なメーカーの製品が混在している実際の施設では、システムも複雑で一元的に現状のエネルギー効率を調査することがなかなか難しい状況である。即ち新しい製品は省エネになることは分かっていても、実際どのくらいの削減になるのかは、設置してみないと分からないとすることが殆どで、例年比で比較するほか1年間追いかけてみて始めて省エネ効果が検証できるという状況である。これではなかなか導入に踏み切れないし、システム的なエネルギー管理には程遠い。現在の熱源機の効率がどのくらいなのかを正確に知って、省エネルギー機器を導入した際にどのくらいの省エネになったのかを把握する必要があるのであるが、汎用的なシステムが無い。また掛け流しや温排水、洗い場排水の排熱を利用する省エネ機器も増えているが、連続的に排熱の利用状況と効率を測定するシステムが同時に示されないために、施設全体のエネルギー削減効果の検証が難しい。  Various high-efficiency heat source devices and energy-saving systems have appeared for the purpose of CO2 reduction and energy-saving to prevent global warming. Each energy-saving device has its own efficiency and performance, but in an actual facility where products from various manufacturers are mixed, the system is complex and the current energy efficiency can be investigated centrally. This is a difficult situation. In other words, even though we know that new products will save energy, it is almost impossible to know how much they will actually be saved unless they are installed. It is a situation where the energy saving effect can be verified. This is not easy to introduce and far from systematic energy management. It is necessary to know exactly how much current heat source equipment is efficient, and to know how much energy is saved when energy-saving equipment is introduced, but there is no general-purpose system. In addition, energy-saving equipment that uses waste heat from waste water, warm wastewater, and washroom wastewater is increasing. However, since a system that continuously measures waste heat utilization and efficiency is not shown at the same time, the energy saving effect of the entire facility Is difficult to verify.

一般的な工場や商業施設では、燃料経費などはあまり変動がなく過去のデータを参考に削減金額が出しやすいのであるが、特に温浴施設やホテル旅館などにおいては、集客数によってエネルギーの負荷変動が激しく、比較する過去のデータが参考にならない。
例えば健康ランドでは温水を大量に使用しており、1人あたりの水の使用量が約250〜300リットルである。そのうち概ね150リットルを湯として使用しているが、平日は500人程度であるのに対し、土日は2,000人、繁忙日は3,000人と集客数が大きく変わる。1,000人増えると約42℃の湯が150m3増加し、1,500人増えると225m3の湯が必要になるというように、日々大きく変動するのである。
このような施設では集客のために、毎年健康機器やレジャー機器の増設や変更も行なわれており、過去のエネルギーや経費データが参考にならないため、リアルタイムでその瞬間のエネルギー効率を測定して熱交換機器を管理するとともに、積算したエネルギー量を常に把握する必要があるのである。
In general factories and commercial facilities, fuel costs do not fluctuate so much, and it is easy to reduce the amount by referring to past data, but especially in hot bath facilities and hotel inns, fluctuations in the energy load depend on the number of customers. Intense, past data to compare is not helpful.
For example, health land uses a large amount of hot water, and the amount of water used per person is about 250 to 300 liters. Of these, approximately 150 liters are used as hot water, but the number of customers varies greatly, with around 500 people on weekdays, 2,000 on weekends and 3,000 on busy days. The number of hot water at about 42 ° C. increases by 150 m 3 when 1,000 people increase, and 225 m 3 hot water becomes necessary when 1,500 people increase.
In such facilities, health equipment and leisure equipment are added and changed every year to attract customers, and past energy and expense data are not helpful. It is necessary to manage the exchange equipment and always know the amount of energy accumulated.

また熱源機器メーカーはそれを利用する設備全体や全体の維持管理にタッチしないために、全体システムを把握しておらず調整ができない。熱源機器本体の一般的な効率は示されているが、実際の運用状況は千差万別である。即ち熱源機器に流す流量や風量設定、システム設計が悪いと熱源機器を有効に使用できないのであり、新築時の自動制御の設定がそのまま実際の運営状況にマッチしていないことも多い。即ち、其々の熱源機器の実際の燃費やシステム効率を監視するシステムが無いために、熱源1次側の燃料や電気のエネルギーが無駄なく有効に利用できているのかどうか判らない。  In addition, since the heat source equipment manufacturer does not touch the entire equipment that uses it or the overall maintenance of the equipment, it cannot grasp and adjust the entire system. The general efficiency of the heat source equipment itself is shown, but the actual operating situation is infinite. In other words, if the flow rate or air flow setting to the heat source device or the system design is poor, the heat source device cannot be used effectively, and the automatic control settings at the time of new construction often do not match the actual operating conditions as they are. That is, since there is no system for monitoring the actual fuel consumption and system efficiency of each heat source device, it is not known whether the fuel and electric energy on the primary side of the heat source can be effectively used without waste.

また、温浴施設では温泉などの「掛け流し」も一般に行なわれているが、熱エネルギーを捨てているために最近では再利用が始まっている。また、洗い場の排水についても排熱交換器を通して一部の熱を再利用するシステムがあるが、いずれも後々スケールや汚れで徐々に効率が落ちて、最後には閉塞して再利用が殆ど行なわれていないことも多い。設置後の省エネの検証が行なわれていないのである。  In addition, hot-spring baths and other “run-offs” are commonly performed at hot-spring bath facilities, but recently they have begun to be reused due to the abandonment of heat energy. In addition, there is a system that reuses part of the heat from the wastewater in the washing area through a waste heat exchanger. However, the efficiency gradually decreases later due to scale and dirt, and finally, the wastewater is blocked and reused. Often not. There is no verification of energy saving after installation.

熱源機器や熱量の恒常的な省エネルギーは、設備管理に依るところが大きい。機器本体においては、ボイラなどのシステム効率を常時把握する必要がある。例えば古くなった温水ボイラには徐々にススが付着し、不着火を繰り返して不完全燃焼が連続的に続くと効率は10%〜数十%落ちる。これは、温浴施設においては年間数百万円〜1千万円程度の損失となる。蒸気ボイラについても空気比やブロー量、供給水の水質など効率を落とす要因は多くあるが、これらの管理がされていないために実際の効率は著しく低い。新しい機器を導入してもこれは同じで、メンテナンスをしないといずれ効率が落ちるのである。常に効率を監視するシステムがあると、いち早く対処できて莫大なロスを防ぐことができる。  The constant energy saving of heat source equipment and heat quantity depends largely on facility management. In the equipment body, it is necessary to constantly grasp the system efficiency of the boiler and the like. For example, soot gradually adheres to an old hot water boiler, and the efficiency drops by 10% to several tens of percent when incomplete combustion continues continuously by repeating non-ignition. This is a loss of several million yen to 10 million yen per year in the bathing facility. There are many factors that reduce the efficiency of steam boilers, such as the air ratio, blow rate, and water quality, but the actual efficiency is extremely low because they are not managed. Even if new equipment is introduced, this is the same. If maintenance is not performed, the efficiency will eventually drop. If there is a system that constantly monitors efficiency, it can be dealt with quickly and a huge loss can be prevented.

健康ランドなどは24時間営業のところが多く、休館日などを利用しない限りは、あとから基幹設備である給湯設備の元に大口径の流量計などを設置することが難しい。このため本発明では、電磁流量計が取り付けにくい箇所では超音波流量計を使用し、温度センサーは温度計のタッピングに取り付けるなど、休館日を設けなくても確認機器を取り付けられる方法としている。  Many health lands, etc. are open 24 hours a day, and unless a closed day is used, it will be difficult to install a large-diameter flow meter or the like under the hot water supply equipment that is the main facility. For this reason, in the present invention, an ultrasonic flowmeter is used at a place where it is difficult to attach the electromagnetic flowmeter, and the temperature sensor is attached to the tapping of the thermometer, so that the confirmation device can be attached without providing a closed day.

本発明における第一の解決手段は、熱源機二次側に流量計や温度センサーなどのカロリー計測機器を用いると同時に、1次側の燃料使用量などから導き出される発熱量と実際に利用された二次側エネルギー量を常時演算し、熱源機器本体だけでなくシステム全体の効率をリアルタイムで表示して確認可能なシステムとしたところに特長がある。これは同時に熱源機器本体のメンテナンス時期を判断するものであり、異常を監視するシステムともなる。  The first solution in the present invention was actually used with the calorific value derived from the amount of fuel used on the primary side at the same time as using a calorie measuring device such as a flow meter or a temperature sensor on the secondary side of the heat source machine. The system is characterized in that the secondary energy amount is always calculated and the efficiency of the entire system as well as the heat source equipment can be displayed and confirmed in real time. At the same time, it determines the maintenance time of the heat source device main body, and also serves as a system for monitoring abnormalities.

例えば温水ボイラにおいては、熱源機から実際に利用伝達された2次側の流量に熱源機出入り口の温度差を乗じたものが熱源機2次側で得られた熱量で、単位はkcalで表される。比して、その間に熱源機1次側に供給された燃料がもつエネルギー量は、例えばA重油の場合、1l当りの低位発熱量は8,772kcal/Lであるため、使用された重油量に単位発熱量を乗じたものが、1次側の供給熱量である。この場合の効率(E)は、E=[(熱源機2次側の出口温度−熱源機2次側の入口温度)×(2次側の時間当たり流量:l/h)]÷[(1次側の供給燃料の量:l/h)×(A重油単位当りの低位発熱量:8,772kcal/L)]で表せる。
本発明はこの効率を常時計測して演算し、連続的にエネルギー使用状況を中央監視装置やパソコンに表示し、瞬時値を常時表示し記録しようとするものである。また何らかの要因で効率が落ちた場合に備えて、警報値を設定し移報することでいち早く異常を察知せしめて、メンテナンスなどの対応時期を迅速に実行できることで、経費や燃料の無駄を極力抑えることを可能にした。
For example, in a hot water boiler, the amount of heat obtained on the secondary side of the heat source unit is obtained by multiplying the actual flow of the secondary side transmitted from the heat source unit by the temperature difference at the entrance and exit of the heat source unit, and the unit is expressed in kcal. The On the other hand, the amount of energy of the fuel supplied to the primary side of the heat source unit during that time is, for example, A heavy oil, the lower heating value per liter is 8,772 kcal / L. Multiplying the unit calorific value is the amount of heat supplied on the primary side. The efficiency (E) in this case is E = [(heat source machine secondary side outlet temperature−heat source machine secondary side inlet temperature) × (secondary side flow rate: l / h)] ÷ [(1 The amount of fuel supplied on the next side: l / h) × (low heating value per unit of heavy oil A: 8,772 kcal / L)].
In the present invention, this efficiency is constantly measured and calculated, the energy usage state is continuously displayed on a central monitoring device or a personal computer, and instantaneous values are constantly displayed and recorded. Also, in case the efficiency drops due to some reason, it is possible to quickly detect the abnormality by setting an alarm value and transferring it, and to quickly execute the response time such as maintenance, thereby minimizing the cost and waste of fuel. Made it possible.

本発明における第二の解決手段は、系統が複数で複雑な場合であっても、二次側に利用された複数のシステムの熱交換量の総量をシステム効率の計算に組み入れることにある。前述のエネルギー確認機器やカロリーメータ等を用いて実際に各所で利用されたエネルギー総量や回収された排熱のエネルギー量など、2次側の熱源利用システム全体の系統別使用量と総量の表示と記録を行い、同様に1次側の燃料使用量などから導き出される発熱量と連続的に同期させて、設備全体のシステム効率をパソコンなどで表示させるものとしたものである。複数回路の熱源機の場合は季節的に調整すると効率がアップするが、全体の効率や熱交換スピードを監視するシステム運営上の目安ともなる。  The second solution in the present invention is to incorporate the total amount of heat exchange of the plurality of systems used on the secondary side into the calculation of the system efficiency even when the system is complex with a plurality of systems. Display the total amount of energy used by each system in the secondary side heat source utilization system, such as the total amount of energy actually used at each location and the amount of recovered exhaust heat using the energy check device and calorimeter, etc. Recording is performed, and the system efficiency of the entire equipment is displayed on a personal computer or the like in a continuous synchronization with the calorific value derived from the amount of fuel used on the primary side. In the case of heat source equipment with multiple circuits, the efficiency increases when adjusted seasonally, but it also serves as a guideline for system operation to monitor the overall efficiency and heat exchange speed.

本発明の骨子は、熱源機本体を含めた全体のエネルギー効率を常時表示して変動を把握できる装置の提供にある。即ち運営時の直接的な利用熱と放熱、排熱量や回収熱の運用状況を常時把握することがエネルギー管理につながるのである。多系統の複雑な設備の運用効率を、まとめて%で表示した簡便なエネルギー監視システムを構築できることにある。
A重油などの燃料を他の燃料に転換する場合や、省エネの熱源機や燃料削減システムを検証する場合も、熱源機の一次側と二次側のシステム効率を計測していれば、容易に効率比較が可能となるし、二次側の利用量が変動している場合であっても、同時に計測している「効率」比較で燃費の比較検証ができる。
温水ボイラの場合は二次側で利用された顕熱を測定しやすい。基本的な効率の計算式は、表1の通りである。
The gist of the present invention is to provide a device that can always display the overall energy efficiency including the heat source machine main body and grasp fluctuations. That is, it is energy management to always know the operation status of direct utilization heat and heat dissipation, exhaust heat amount and recovered heat during operation. It is to be able to construct a simple energy monitoring system that displays the operational efficiency of multi-system complex facilities in%.
Even when converting fuel such as A heavy oil to other fuels, or when verifying energy-saving heat source units and fuel reduction systems, it is easy to measure the system efficiency on the primary and secondary sides of the heat source unit. Efficiency comparison is possible, and even if the usage amount on the secondary side is fluctuating, comparative verification of fuel efficiency can be performed by comparing the “efficiency” measured simultaneously.
In the case of a hot water boiler, it is easy to measure the sensible heat used on the secondary side. The basic calculation formula for efficiency is shown in Table 1.

Figure 2010197025
Figure 2010197025

温度センサーの測定値や流量表示とともに、この演算された数値を常時エネルギーモニタ機器(ネットやパソコン)に表示する。メンテナンスやクリーニング実施後に計測された通常の効率に対して何パーセントになっているのかも表示できるものとする。  Along with the temperature sensor measurement value and flow rate display, this calculated value is always displayed on the energy monitor device (net or personal computer). It is also possible to display the percentage of normal efficiency measured after maintenance or cleaning.

蒸気ボイラの場合は効率計算手法が異なる。同様に蒸気流量計を用いることもできるが、サウナなどで使用されて復水(蒸気が冷えて液体となったものを、蒸気トラップを介して回収される高温水)として戻ってこないものもあり、温度や圧力が変動する場合は測定が難しい。
蒸気ボイラの効率検証では簡便な「蒸発倍数」という考え方が浸透している。ただ温水ボイラと同様にリアルタイムで効率を検証する市販のシステムは無い。ボイラの煙道から蒸発する「潜熱」が増えて効率を落としている場合は、同量の燃料に対して蒸発倍数が減る形で表される。この「蒸発倍数」の計算式は例えば重油を燃料とするとき、表2の通りである。
The efficiency calculation method is different for steam boilers. Similarly, a steam flow meter can be used, but there are some that do not return as condensate (high-temperature water recovered through a steam trap) when it is used in a sauna or the like to form a condensate. Measurement is difficult when temperature and pressure fluctuate.
In the verification of the efficiency of steam boilers, the simple concept of “evaporation multiple” has permeated. Just like hot water boilers, there is no commercial system that can verify efficiency in real time. When the “latent heat” that evaporates from the boiler flue is increasing and the efficiency is reduced, it is expressed in the form of a reduced evaporation factor for the same amount of fuel. The calculation formula of “evaporation multiple” is as shown in Table 2 when heavy oil is used as fuel, for example.

Figure 2010197025
Figure 2010197025

本格的に蒸気ボイラの効率を計算する場合は、以下の計算式による。この蒸気ボイラの効率を表す計算式は、例えば重油を燃料とするとき、表3の通りである。  When calculating the efficiency of a steam boiler in earnest, use the following formula. The calculation formula representing the efficiency of this steam boiler is as shown in Table 3, for example, when heavy oil is used as fuel.

Figure 2010197025
Figure 2010197025

蒸気の比エンタルピ及び給水の比エンタルピは温度と圧力で決定されるが、数式の演算の際に予め作成しておいた近似値のエクセル空気線図表等を使用し、測定された温度と圧力によってエンタルピ値を選定して読み込んでくる手法で行なう。  The specific enthalpy of steam and the specific enthalpy of water supply are determined by the temperature and pressure, but the approximate value of the Excel air line chart etc. prepared in advance when calculating the mathematical formula is used. Select and read the enthalpy value.

蒸気ボイラで2次側が全て熱交換器を介して加熱回路を循環させている場合は、温水ボイラの効率検証方法と同様に考えるものとする。生蒸気と熱交換器を使用した加熱回路が混在しているときは、使用割合によって基本的な燃費を把握しておき、数式に組み込んで演算させるものとする。
本発明は、これらの既に利用されている概念の応用や計算式にあるのではなく、これらを組み込んだシステム全体のエネルギー効率を常時表示することにあって、その効率を常時監視することで、無駄やメンテナンス時期などを把握するとともに、エネルギー管理を容易にするものである。
When the secondary side of the steam boiler circulates the heating circuit via the heat exchanger, it is considered in the same way as the efficiency verification method of the hot water boiler. When a heating circuit using live steam and a heat exchanger is mixed, the basic fuel consumption is grasped according to the usage rate, and it is calculated and incorporated into a formula.
The present invention is not in the application or calculation formula of these already used concepts, but in constantly displaying the energy efficiency of the entire system incorporating these, by constantly monitoring the efficiency, In addition to grasping waste and maintenance time, energy management is facilitated.

また本発明は、地域冷暖房の場合と、温泉の掛け流しや温排水、洗い場排水の排湯熱利用の目的で熱交換器を熱源として使用している場合に、一次熱源側と再利用される二次側の交換熱量を測定することによって、常時熱交換効率を計測し表示させる管理システムで、スケールや汚れが付いて熱交換効率が落ちた際は熱交換する前後の温度差を監視してメンテナンスや分解洗浄時期を知らせるシステムとなし、熱再利用システムの自動制御に異常があり、平常の交換効率に比して予め設定した効率を下回ったときは、システム異常を警報として知らせる詳細な管理システムを構築するものである。  In addition, the present invention is reused as the primary heat source side in the case of district cooling and heating, and when a heat exchanger is used as a heat source for the purpose of using hot water flowing from hot springs, hot water drainage, or wastewater from washing facilities. This is a management system that measures and displays the heat exchange efficiency at all times by measuring the amount of heat exchanged on the secondary side, and monitors the temperature difference before and after heat exchange when the heat exchange efficiency drops due to scale or dirt. There is no system to notify the maintenance and decomposition cleaning time, and there is an abnormality in the automatic control of the heat reuse system, and when the efficiency falls below a preset efficiency compared to the normal replacement efficiency, detailed management to notify the system abnormality as an alarm Build a system.

実施例として、例えば重油を燃料とした場合、給湯システムの図1において19(1次側燃料供給ゾーン)で示した重油供給設備側の1時間当たりの供給エネルギー量:Qaは、9の重油流量計で測定した1時間当たりの流量測定値(L/h)×単位発熱量8,772(kcal/h)で示される。また一方で、13(2次側エネルギー使用ゾーン)で示した実際に使用されたエネルギー量:Qbを、3の流量計と4の入口温度センサー及び14の出口温度センサーで測定する。16(温水ボイラ)内の15(加熱コイル)で加熱されたエネルギー量は、

Figure 2010197025
1)}(kcal/h)で示される。加熱回路についてもまったく同様である。
このときの熱交換効率はE=Qb÷Qaで示されるのであり、百分率で表される。6のエネルギー交換効率モニタに常時リアルタイムで表示し、1時間当たり,1日当たり,1ヶ月,年単位の積算値を演算可能なものとする。As an embodiment, for example, when heavy oil is used as fuel, the supply energy amount per hour on the heavy oil supply facility side indicated by 19 (primary side fuel supply zone) in FIG. The measured flow rate per hour (L / h) × unit calorific value 8,772 (kcal / h) measured with a meter. On the other hand, the actually used energy amount Qb shown in 13 (secondary energy use zone) is measured by 3 flow meters, 4 inlet temperature sensors, and 14 outlet temperature sensors. The amount of energy heated by 15 (heating coil) in 16 (hot water boiler) is
Figure 2010197025
1)} (kcal / h). The same applies to the heating circuit.
The heat exchange efficiency at this time is represented by E = Qb ÷ Qa and is expressed as a percentage. It is assumed that the energy exchange efficiency monitor of 6 is always displayed in real time, and the integrated value per hour, per day, per month, and year can be calculated.

例えばボイラが3回路で複数台あったとしても、各系統の交換熱量を同様に計測し、その合計を2次側の交換熱量合計とし、1次側の燃料消費量に単位当たりの発熱量を乗じたもので除すると、システム全体の熱交換効率が決定する。どんなに複雑なシステムであっても、6のエネルギー交換効率モニタに常時「何%」だとリアルタイムで表示させることができる。これまでまったく不可能であった効率変動を常時表示し記録可能とするものである。また、個々の系統について分解分析可能とすることで、効率低下の原因を直ちにつかむ事ができる。  For example, even if there are multiple boilers with three circuits, the exchange heat quantity of each system is measured in the same way, and the total is the total exchange heat quantity on the secondary side, and the calorific value per unit is added to the fuel consumption on the primary side. When divided by the product, the heat exchange efficiency of the entire system is determined. No matter how complicated the system is, it can always be displayed in real time as “%” on the 6 energy exchange efficiency monitors. It is possible to constantly display and record efficiency fluctuations that have never been possible before. In addition, it is possible to immediately understand the cause of the efficiency reduction by making it possible to analyze each system.

蒸気供給システムの図2においては、簡便に表2で示される蒸発倍数を常時表示することによって、実際に使用された1時間当たりの蒸気量を管理することができる。実蒸発量は、8のボイラ供給水量計の測定値から17のブロー水流量計の計測値を減じたものとしてもよい。正確にエネルギー交換量として比エンタルピを測定する場合は、温度と圧力で示される蒸気の比エンタルピから還水槽からボイラへ供される7のボイラ供給水温度計の温度を減じたものに、実蒸発量を乗じた2次側のエネルギー交換量を演算し、1次側の重油発熱量と使用量を乗じたエネルギー量で除することで、熱交換効率を求めることもできる。
蒸気流量計6や加熱系統がある場合は、温水ボイラと同様に交換エネルギー量比で管理することもできる。いずれも6のエネルギー交換効率モニタに常時リアルタイムで表示し、1時間当たり,1日当たり,1ヶ月,年単位の積算値を演算可能なものとする。
In FIG. 2 of the steam supply system, the amount of steam used per hour actually used can be managed by always displaying the evaporation factor shown in Table 2 at all times. The actual evaporation amount may be a value obtained by subtracting the measurement value of 17 blow water flow meters from the measurement value of 8 boiler feed water meters. When measuring the specific enthalpy as the amount of energy exchange accurately, the actual evaporation is obtained by subtracting the temperature of the 7 boiler feed water thermometer supplied from the return water tank to the boiler from the specific enthalpy of steam indicated by temperature and pressure. The amount of energy exchange on the secondary side multiplied by the amount is calculated, and the heat exchange efficiency can be obtained by dividing by the amount of energy multiplied by the amount of heat generated on the primary side heavy oil and the amount used.
If there is a steam flow meter 6 or a heating system, it can be managed by the exchange energy amount ratio as in the case of the hot water boiler. Both are always displayed in real time on the 6 energy exchange efficiency monitors, and the integrated value per hour, per day, per month and year can be calculated.

浴室洗い場排水の熱を回収した場合を、図3に示す。図1と同様の給湯設備によって供給された湯は、水と共に浴室洗い場給湯設備7に設置されたシャワーや洗面用のカラン8に供されるが、この洗い場排水の温度は概ね35〜36℃前後であり、図3の15のような排熱回収ゾーンによって一定の排湯熱を再利用できる。21の排湯熱交換器に給湯に供される水を通すことで、排湯熱の一部を再利用できる仕組みである。この回収された熱エネルギー量Qcは、1次側である{洗い場排湯流量計18の1時間当たりの流量測定値(L/h)}×

Figure 2010197025
(kcal/h)、又は2次側の{余熱原水流量計16の1時間当たりの流量測定値(L/h)}×{(9
Figure 2010197025
(kcal/h)で示される。この排湯熱回収割合をモニターすることで、エネルギー回収効率を測定するほか、排熱交換器の清掃時期などを知る重要な警報を出力することができる。FIG. 3 shows the case where the heat from the bathroom washroom drainage is recovered. The hot water supplied by the same hot water supply equipment as in FIG. 1 is supplied together with water to the shower and washroom curan 8 installed in the bathroom washroom hot water supply equipment 7, but the temperature of this washroom drainage is approximately 35 to 36 ° C. Thus, a certain amount of waste water heat can be reused by the waste heat recovery zone 15 shown in FIG. In this system, a portion of the waste water heat can be reused by passing water supplied to the hot water supply through the waste water heat exchanger 21. The amount Qc of the recovered heat energy is the primary {flow rate measurement value per hour (L / h) of the wash water drainage flow meter 18} ×
Figure 2010197025
(Kcal / h), or {secondary heat raw water flow meter 16 measured flow rate per hour (L / h)} × {(9
Figure 2010197025
(Kcal / h). By monitoring the waste heat recovery rate, the energy recovery efficiency can be measured and an important alarm can be output to know when the exhaust heat exchanger is cleaned.

排湯熱エネルギーの回収効率は、以下の計算で求められる。
給湯用のボイラの2次側で得られたエネルギー量Qb(1時間当り)は、図1の説明で示したように、ボイラ2次側の循環流量(L/h)×温度差(過熱後の温度T2−加熱前の温度T1)で測定できるが、この中で洗い場給湯に供された熱量の一部を回収したQc(排湯回収熱量)をQbで除した割合を、排湯熱回収効率:Ecとして、表4の計算式で求める。
The recovery efficiency of the waste water heat energy can be obtained by the following calculation.
The amount of energy Qb (per hour) obtained on the secondary side of the boiler for hot water supply is, as shown in the description of FIG. 1, the circulation flow rate (L / h) of the boiler secondary side × temperature difference (after overheating) Temperature T2—temperature before heating T1), but the ratio of Qc (waste water recovered heat amount) that recovered a part of the heat supplied to the hot water supply in the wash area divided by Qb can be recovered Efficiency: Ec is calculated by the calculation formula of Table 4.

Figure 2010197025
Figure 2010197025

図3の4のエネルギー交換効率モニタに、熱源の利用状況と熱源機の熱交換効率、排湯熱の温度や排湯熱の交換効率を、常時表示し記録することによって、エネルギー利用の全体を把握し分析することができる。また先述のように警報値を決めておくことによって、清掃やメンテナンス時期のタイミング、或いはシステムの不具合をリアルタイムで知ることができるようになった。  The energy exchange efficiency monitor 4 in FIG. 3 constantly displays and records the use status of the heat source, the heat exchange efficiency of the heat source machine, the temperature of the waste water heat and the heat exchange efficiency of the waste water heat. It is possible to grasp and analyze. In addition, by determining the alarm value as described above, it becomes possible to know in real time the timing of cleaning and maintenance, or the malfunction of the system.

本発明の実施形態で、温水ボイラにおける給湯システムの標準的なシステムフローである。  In embodiment of this invention, it is a standard system flow of the hot water supply system in a hot water boiler.

1.貯湯タンク
2.湯供給口
3.瞬間及び積算流量計
4.入口温度センサー
5.缶水供給口
6.エネルギー交換効率モニタ
7.煙道
8.燃焼バーナー
9.重油流量計
10.オイル(重油)タンク
11.給水口
12.昇温用循環ポンプ
13.2次側エネルギー使用ゾーン
14.出口温度センサー
15.加熱コイル
16.温水ボイラ
17.燃焼空気取入口
18.ストレーナ
19.1次側燃料供給ゾーン
20.重油貯油槽
21.重油供給用オイルギアポンプ
1. 1. Hot water storage tank 2. Hot water supply port 3. Instantaneous and integrated flow meter 4. Inlet temperature sensor Can water supply port 6. 6. Energy exchange efficiency monitor Chimney 8 Combustion burner9. Heavy oil flow meter10. 10. Oil (heavy oil) tank Water inlet 12. Circulation pump for temperature increase 13. Secondary energy use zone 14. Outlet temperature sensor 15. Heating coil 16. Hot water boiler 17. Combustion air intake 18. Strainer 19. Primary side fuel supply zone 20. Heavy oil storage tank 21. Oil gear pump for heavy oil supply

図2FIG.

本発明の実施形態で、蒸気ボイラにおける熱源利用システムの標準的なシステムフローである。  In embodiment of this invention, it is a standard system flow of the heat-source utilization system in a steam boiler.

1.サウナなど生蒸気使用系統
2.自動温調弁
3.復水還り管
4.蒸気ヘッダ
5.エネルギー交換効率表示モニタ
6.蒸気流量計
7.ボイラ供給水温度センサ
8.ボイラ供給水流量計
9.煙道
10.重油流量計
11.オイル(重油)タンク
12.循環昇温システム系統
13.熱交換器
14.蒸気トラップ
15.還水槽供給水量計
16.還水槽
17.ブロー水量計
18.ブロー自動弁
19.蒸気ボイラ
20.ストレーナ
21.1次側燃料供給ゾーン
22.重油貯油槽
23.重油供給用オイルギアポンプ
1. Live steam using system such as sauna 2. 2. Automatic temperature control valve Condensate return pipe 4. 4. Steam header 5. Energy exchange efficiency display monitor 6. Steam flow meter Boiler feed water temperature sensor8. Boiler feed water flow meter9. Flue 10. Heavy oil flow meter 11. Oil (heavy oil) tank 12. Circulation temperature raising system system 13. Heat exchanger 14. Steam trap 15. Return tank supply water meter16. Return water tank 17. Blow water meter 18. Blow automatic valve 19. Steam boiler 20. Strainer 21.1 Primary fuel supply zone 22. Heavy oil storage tank 23. Oil gear pump for heavy oil supply

図3FIG.

本発明の実施形態で、温水ボイラにおける温浴施設の熱源利用システムであって、浴室洗い場の排湯熱を利用した標準的なシステムフローである。  In the embodiment of the present invention, it is a heat source utilization system of a warm bath facility in a warm water boiler, which is a standard system flow utilizing waste heat from a bathroom washing place.

1.貯湯タンク
2.給湯流量計
3.給水流量計
4.エネルギー交換効率表示モニタ
5.給水ライン
6.給湯ライン
7.浴室洗い場給湯設備
8.給湯用カラン
9.余熱水温度センサー
10.給湯設備2次側エネルギー使用ゾーン
11.温水ボイラ
12.重油流量計
13.1次側燃料供給ゾーン
14.余熱原水温度センサー
15.排熱回収ゾーン
16.余熱原水流量計
17.排湯温度センサー
18.洗い場排湯流量計
19.排湯温度センサー
20.排湯槽
21.排熱交換器
1. 1. Hot water storage tank 2. Hot water flow meter 3. Feed water flow meter 4. Energy exchange efficiency display monitor 5. Water supply line 6. Hot water supply line 7. Bathroom hot water supply facilities 8. Karan for hot water supply Residual hot water temperature sensor 10. Hot water supply facility secondary side energy use zone 11. Hot water boiler 12. Heavy oil flow meter 13. Primary side fuel supply zone 14. Residual heat source water temperature sensor 15. Waste heat recovery zone 16. Residual raw water flow meter 17. 18. Waste water temperature sensor 18. Washroom drainage flow meter Waste water temperature sensor 20. Hot water bath 21. Waste heat exchanger

Claims (8)

温浴施設等の商業施設において、省エネルギー的な観点から熱源機(ボイラやヒートポンプ、熱交換器等)の2次側で利用されたエネルギー量と1次側の燃料等のエネルギー源の発熱量を比較演算することによって、リアルタイムでシステムの効率(%)と熱源機の燃費(kcal/L or MJ/L)をパソコンやデジタルレコーダに計測表示することを可能にした、加熱冷却システム全体のエネルギー交換効率管理システム  Compared the amount of energy used on the secondary side of heat source equipment (boilers, heat pumps, heat exchangers, etc.) and the amount of heat generated by energy sources such as fuel on the primary side in commercial facilities such as warm bath facilities By calculating, it is possible to measure and display the efficiency (%) of the system in real time and the fuel consumption (kcal / L or MJ / L) of the heat source unit on a personal computer or digital recorder. Management system 上記の熱源機効率計測表示システムのうち、温水ボイラのシステム効率を平易に測定するために、2次側の利用熱量を測定する超音波流量計(又は電磁流量計)と得られた温度差を測定するために、出入口に設けられた一対の温度センサーによって演算されるカロリー計測手段と、1次側の燃料の流量を超音波流量計(又は電磁流量計)で同時に計測した流量に単位発熱エネルギー量を乗じて得られる発熱量計測手段をもって、加熱冷却システム全体の瞬間の効率と積算値を計測し表示するエネルギー交換効率管理システム  Among the above heat source unit efficiency measurement display system, in order to easily measure the system efficiency of the hot water boiler, the ultrasonic flow meter (or electromagnetic flow meter) that measures the amount of heat used on the secondary side and the obtained temperature difference To measure, calorie measurement means calculated by a pair of temperature sensors provided at the entrance and exit, and the unitary heat energy into the flow rate measured by the ultrasonic flow meter (or electromagnetic flow meter) at the same time the primary fuel flow rate Energy exchange efficiency management system that measures and displays the instantaneous efficiency and integrated value of the entire heating / cooling system with the calorific value measurement means obtained by multiplying the quantity 上記の熱源機効率計測表示システムのうち、蒸気ボイラのシステム効率を平易に測定するために、再利用される復水を含めた補給水量と温度を計測する手段と、ブロー量と温度を測定する超音波流量計(又は電磁流量計)と温度センサーの計測手段で得られる実質蒸発量値を測定し、1次側の燃料の流量を超音波流量計(又は電磁流量計)で同時に計測することによって、瞬間の蒸発倍数と燃費を計測し表示するエネルギー交換効率管理システム  Among the above heat source unit efficiency measurement display systems, in order to easily measure the system efficiency of the steam boiler, means for measuring the amount of makeup water and temperature including condensate to be reused, and the amount of blow and temperature are measured. Measure the actual evaporation value obtained by the ultrasonic flow meter (or electromagnetic flow meter) and temperature sensor measurement means, and simultaneously measure the primary fuel flow rate with the ultrasonic flow meter (or electromagnetic flow meter). Energy exchange efficiency management system that measures and displays the instantaneous evaporation factor and fuel consumption 請求項2と請求項3の上記の熱源機効率計測表示システムにおいて、排ガス温度と取入空気の温度と空気比を同時に計測して効率に反映させることによって、より正確な瞬間の実質効率や蒸発倍数と燃費を計測し表示するエネルギー交換効率管理システム  In the heat source unit efficiency measurement display system according to claim 2 and claim 3, by measuring the exhaust gas temperature, the temperature of the intake air and the air ratio at the same time and reflecting them in the efficiency, the actual efficiency and evaporation in a more accurate moment Energy exchange efficiency management system that measures and displays multiples and fuel consumption 上記のボイラ効率測定システムによって得られた数値が平常値より低下した際に、ボイラの効率異常やメンテナンス時期を警報として知らせる交換効率管理システム  Exchange efficiency management system that notifies the boiler efficiency abnormality and maintenance time as an alarm when the value obtained by the above boiler efficiency measurement system falls below the normal value 地域冷暖房の場合と、温泉の掛け流しや温排水、洗い場排水等の排湯熱利用目的で熱交換器を熱源として使用している場合に、一次熱源側と再利用される二次側の交換熱量を測定する超音波流量計(又は電磁流量計)及び其々一対の温度センサー測定値で得られる流量と差温を乗じて得られる計測値を比較演算することで、瞬間の交換熱量と積算値、及び熱交換効率を計測し表示させる、エネルギー交換効率管理システム  Exchange between the primary heat source side and the secondary side reused when using a heat exchanger as a heat source in the case of district heating and cooling, and for the purpose of using waste heat from hot springs, hot water drainage, washing ground drainage, etc. An ultrasonic flow meter (or electromagnetic flow meter) that measures the amount of heat and a flow rate obtained from a pair of temperature sensor measurement values and a measurement value obtained by multiplying the temperature difference are compared to calculate the instantaneous exchange heat amount and integration. Energy exchange efficiency management system that measures and displays values and heat exchange efficiency 上記の排湯熱再利用システムにおいて、スケールや汚れが付いて熱交換効率が落ちた際に、清掃やメンテナンス時期を警報として知らせる交換効率管理システム  In the above waste heat recycling system, when the heat exchange efficiency drops due to scale or dirt, the replacement efficiency management system notifies the cleaning and maintenance time as an alarm. 上記の熱源機効率計測表示システムや排湯熱再利用システムと、排湯熱交換によって得られた予熱水が有効に再利用されているかどうかを検証する再利用エネルギー計測手段と熱利用効率表示手段を備えた、全体の使用エネルギーフローを表示可能としたシステムで、施設全体のエネルギー使用状況と再利用状況を、ネットやパソコン等を用いてリアルタイムで管理するエネルギー交換効率管理システム  The above heat source efficiency measurement display system and waste water heat reuse system, and reuse energy measurement means and heat utilization efficiency display means for verifying whether preheated water obtained by waste water heat exchange is effectively reused An energy exchange efficiency management system that can display the entire energy usage flow, and manage the energy usage and reuse status of the entire facility in real time using a network or a PC.
JP2009063521A 2009-02-22 2009-02-22 Heat source machine efficiency management system Pending JP2010197025A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009063521A JP2010197025A (en) 2009-02-22 2009-02-22 Heat source machine efficiency management system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009063521A JP2010197025A (en) 2009-02-22 2009-02-22 Heat source machine efficiency management system

Publications (1)

Publication Number Publication Date
JP2010197025A true JP2010197025A (en) 2010-09-09

Family

ID=42821924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009063521A Pending JP2010197025A (en) 2009-02-22 2009-02-22 Heat source machine efficiency management system

Country Status (1)

Country Link
JP (1) JP2010197025A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102201200A (en) * 2011-04-14 2011-09-28 北京联合大学 Method for automatically identifying energy efficiency of refrigeration electrical equipment and electronic energy efficiency identification indicator thereof
JP2012163241A (en) * 2011-02-04 2012-08-30 Yazaki Corp Heat pump water heater with display function of energy reduction amount or the like
CN104566326A (en) * 2014-07-23 2015-04-29 上海大众祥源动力供应有限公司 Conductivity measuring device of water in boiler for steam recovery
CN105444406A (en) * 2015-12-11 2016-03-30 张正怡 Water-storage steam type electric water heater and control method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012163241A (en) * 2011-02-04 2012-08-30 Yazaki Corp Heat pump water heater with display function of energy reduction amount or the like
CN102201200A (en) * 2011-04-14 2011-09-28 北京联合大学 Method for automatically identifying energy efficiency of refrigeration electrical equipment and electronic energy efficiency identification indicator thereof
CN104566326A (en) * 2014-07-23 2015-04-29 上海大众祥源动力供应有限公司 Conductivity measuring device of water in boiler for steam recovery
CN105444406A (en) * 2015-12-11 2016-03-30 张正怡 Water-storage steam type electric water heater and control method thereof

Similar Documents

Publication Publication Date Title
EP2356387B1 (en) Hybrid heating system
US9127866B2 (en) Hybrid heating system
KR200471736Y1 (en) A heated room and hot water controlling system
Walker et al. Utilization of municipal wastewater for cooling in thermoelectric power plants: Evaluation of the combined cost of makeup water treatment and increased condenser fouling
Shen et al. Experimental performance evaluation of a novel anti-fouling wastewater source heat pump system with a wastewater tower
JP2010197025A (en) Heat source machine efficiency management system
RU42291U1 (en) CENTRAL HEATING SYSTEM
JP3836659B2 (en) Combustion equipment
Yliniemi Fault detection in district heating substations
KR101733166B1 (en) Potable heat exchanger performance diagnostic device
KR100997340B1 (en) Heating energy supply system and integrated management method for district heating system
JP4237241B1 (en) Energy consumption analysis device, energy consumption analysis system, and analysis method thereof
SE517497C2 (en) District heating arrangement and method for operating a district heating arrangement
KR101089731B1 (en) System for providing hot-water generated by combined heat and power plant
CN208606637U (en) A kind of heat exchanger operation conditions intelligent on-line monitoring device
WO2016120639A1 (en) Service supply systems
JP4437987B2 (en) Hot water circulation system
JP2007271239A (en) Energy consumption analysis device and analysis method
CN103940848A (en) Method for monitoring thermal resistance of heat-exchange equipment
Cantrell et al. On-line performance model of the convection passes of a pulverized coal boiler
CN208170493U (en) A kind of municipal administration heating system
US9140503B2 (en) Energy measurement system for fluid systems
RU30936U1 (en) Heat supply stand
JP3747055B2 (en) Charge apportionment method for hot water storage system for apartment houses
Morita et al. A cogeneration system for an apartment building based on distributed heat storage technology