JP5491878B2 - Hot water storage hot water supply system using solar heat - Google Patents

Hot water storage hot water supply system using solar heat Download PDF

Info

Publication number
JP5491878B2
JP5491878B2 JP2010013176A JP2010013176A JP5491878B2 JP 5491878 B2 JP5491878 B2 JP 5491878B2 JP 2010013176 A JP2010013176 A JP 2010013176A JP 2010013176 A JP2010013176 A JP 2010013176A JP 5491878 B2 JP5491878 B2 JP 5491878B2
Authority
JP
Japan
Prior art keywords
hot water
heat
heat medium
temperature
water storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010013176A
Other languages
Japanese (ja)
Other versions
JP2011149662A (en
Inventor
佳幹 可児
宏明 佐々木
浩彰 森
晃太郎 木村
秀二 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Rinnai Corp
Original Assignee
Tokyo Gas Co Ltd
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd, Rinnai Corp filed Critical Tokyo Gas Co Ltd
Priority to JP2010013176A priority Critical patent/JP5491878B2/en
Publication of JP2011149662A publication Critical patent/JP2011149662A/en
Application granted granted Critical
Publication of JP5491878B2 publication Critical patent/JP5491878B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Description

本発明は、貯湯タンク内に貯湯したタンク湯水を太陽熱を利用して加熱して給湯使用する太陽熱利用の貯湯式給湯システムに関する。   The present invention relates to a hot water storage hot water supply system that uses solar heat to heat tank hot water stored in a hot water storage tank using solar heat.

太陽熱利用の貯湯式給湯システムは、太陽熱集熱器と貯湯タンクとの間で熱媒体を循環する熱媒体循環路を設け、この熱媒体循環路の一部を貯湯タンク内に配置することにより貯湯タンクに給水された水を熱媒体で加熱して貯湯し、この貯湯タンクのタンク湯水を必要に応じて給湯器などの補助熱源機で再加熱して給湯使用する(特許文献1)。上記太陽熱利用の貯湯式給湯システムは、さらに、太陽熱によってどれだけの熱量が節約できたのかを知るために、貯湯タンクへの入水量及び入水温と、貯湯タンクからの出水温とを検出して、これらの検出結果に基づいて流入熱量と流出熱量とを算出し、流出熱量から流入熱量を減算することにより節約熱量を算出している。   A hot water storage hot water supply system using solar heat is provided with a heat medium circulation path for circulating a heat medium between a solar heat collector and a hot water storage tank, and a part of the heat medium circulation path is disposed in the hot water storage tank. The water supplied to the tank is heated with a heat medium to store hot water, and the tank hot water in the hot water storage tank is reheated with an auxiliary heat source device such as a water heater as needed (Patent Document 1). The above-mentioned hot water storage hot water supply system further detects the amount of heat input to the hot water storage tank, the incoming water temperature, and the outgoing water temperature from the hot water storage tank in order to know how much heat was saved by solar heat. Based on these detection results, the inflow heat amount and the outflow heat amount are calculated, and the saved heat amount is calculated by subtracting the inflow heat amount from the outflow heat amount.

特開2002−147870号公報JP 2002-147870 A 特開2006−322650号公報JP 2006-322650 A

ところで、貯湯式給湯システムでは、タンク湯水が長期間利用されないと貯湯タンク内にレジオネラ菌等の有害な細菌が繁殖する可能性が懸念され得る。また、熱媒体循環路の熱媒体の循環状態を定期的に検査することや、熱媒体循環路内での熱媒体の凍結防止を行なうことが望まれる。そのため、貯湯運転や給湯運転時以外で熱媒体循環路内の熱媒体を加熱する熱媒体加熱運転を行う必要があるが、発電用ガスエンジン等の排熱を利用して貯湯タンク内に貯湯したタンク湯水を給湯使用するコージェネレーションシステムの場合とは異なり、太陽熱利用の貯湯式給湯システムでは、太陽熱集熱器の集熱量が日射量に依存するため、日射量が十分でない場合は、太陽熱集熱器による熱媒体加熱運転を行なえない場合がある。   By the way, in the hot water storage type hot water supply system, if the tank hot water is not used for a long period of time, there is a concern that harmful bacteria such as Legionella bacteria may propagate in the hot water storage tank. Further, it is desired to periodically inspect the circulation state of the heat medium in the heat medium circulation path and to prevent the heat medium from freezing in the heat medium circulation path. Therefore, it is necessary to perform a heat medium heating operation that heats the heat medium in the heat medium circuit other than during hot water storage operation or hot water supply operation, but hot water is stored in a hot water storage tank using exhaust heat from a power generation gas engine or the like. Unlike a cogeneration system that uses hot water from a tank, in a hot water storage system using solar heat, the amount of solar heat collected depends on the amount of solar radiation. In some cases, the heating medium heating operation cannot be performed by the vessel.

一方、上記のような補助熱源機を有する太陽熱利用の貯湯式給湯システムでは、補助熱源機で任意の温度を有する温水を生成可能であるため、補助熱源機と熱媒体循環路との間を温水を循環させる温水循環路で接続し、上記のような再加熱運転が必要となった場合に、補助熱源機を作動させて温水を生成し、この温水を温水循環路に循環させれば、太陽熱集熱器以外の加熱源により熱媒体循環路内の熱媒を加熱することができる。   On the other hand, in the hot water storage hot water supply system using the solar heat having the auxiliary heat source device as described above, hot water having an arbitrary temperature can be generated by the auxiliary heat source device, so that hot water is provided between the auxiliary heat source device and the heat medium circulation path. When a reheating operation as described above is required, the auxiliary heat source unit is operated to generate hot water and circulate this hot water through the hot water circulation path. The heating medium in the heating medium circulation path can be heated by a heating source other than the heat collector.

しかしながら、補助熱源機を用いて再加熱運転を行って熱媒体循環路内の熱媒体を加熱すると、貯湯タンク内のタンク湯水が再加熱運転時にも加熱されるため、上述したように流出熱量から流入熱量を減算しただけでは節約熱量の誤差が大きくなる。   However, if the reheating operation is performed using the auxiliary heat source unit to heat the heat medium in the heat medium circulation path, the tank hot water in the hot water storage tank is also heated during the reheating operation. By simply subtracting the amount of inflow heat, the error in the amount of heat saved increases.

本発明は、上記事情に鑑みてなされ、太陽熱以外のエネルギーを用いて貯湯タンク内のタンク湯水を加熱した場合があっても、太陽熱による加熱で消費した太陽熱熱量を算出して、節約熱量を算出する際の誤差を低減することができる太陽熱利用の貯湯式給湯システムを提供することを課題とする。   The present invention is made in view of the above circumstances, and even if the tank hot water in the hot water storage tank is heated using energy other than solar heat, the amount of solar heat consumed by heating by solar heat is calculated, and the amount of saved heat is calculated. It is an object of the present invention to provide a hot water storage hot water supply system using solar heat that can reduce an error in performing.

本発明に係る太陽熱利用の貯湯式給湯システムは、
太陽熱を集熱する太陽熱集熱器と
湯水を貯湯する貯湯タンクと、
太陽熱集熱器と貯湯タンクとの間で熱媒体の循環経路を形成し、循環経路の一部を貯湯タンク内に配設して循環する熱媒体により貯湯タンク内の湯水を加熱する放熱部を備える熱媒体循環路と、
貯湯タンクに給水される給水温度を検出する給水温度検出器と、
貯湯タンクの出口に接続される給湯路を流れる湯水の出湯温度を検出する出湯温度検出器と、
貯湯タンクの出口に接続される給湯路を流れる湯水の給湯流量を検出する給湯流量検出器と、
熱媒体循環路を循環する熱媒体を熱交換加熱する温水が循環する温水循環路と、
温水循環路を循環する温水を加熱する補助熱源機と、
検出された給水温度と出湯温度と給湯流量とに基づいて給湯熱量を算出すると共に、温水循環路を循環する温水を補助熱源機で加熱した際に消費された補助熱源熱量を算出して、給湯熱量から給湯使用量に対応する補助熱源熱量を減算して給湯のために使用された太陽熱熱量を算出する制御手段と、
制御手段で算出した太陽熱熱量を表示する表示部とを備えることを特徴としている。
The hot water storage hot water supply system using solar heat according to the present invention,
A solar collector that collects solar heat, a hot water storage tank that stores hot water,
A heat dissipation circuit that forms a heat medium circulation path between the solar heat collector and the hot water storage tank, and heats the hot water in the hot water storage tank with a circulating heat medium by arranging a part of the circulation path in the hot water storage tank. A heat medium circuit comprising:
A feed water temperature detector for detecting a feed water temperature supplied to the hot water storage tank;
A tapping temperature detector for detecting tapping temperature of hot water flowing through a hot water supply path connected to the outlet of the hot water storage tank;
A hot water flow rate detector for detecting the hot water flow rate of hot water flowing through the hot water path connected to the outlet of the hot water storage tank;
A hot water circulation path in which hot water for heat exchange heating of the heat medium circulating in the heat medium circulation path circulates;
An auxiliary heat source machine for heating the hot water circulating in the hot water circuit,
Based on the detected hot water temperature, hot water temperature, and hot water flow rate, the hot water supply heat quantity is calculated, and the hot water circulating through the hot water circulation path is heated by the auxiliary heat source machine to calculate the auxiliary heat source heat quantity consumed. A control means for calculating the amount of solar heat used for hot water supply by subtracting the auxiliary heat source heat amount corresponding to the amount of hot water supply from the amount of heat;
And a display unit that displays the amount of solar heat calculated by the control means.

このような構成により、補助熱源機を用いて温水循環路を循環する温水を再加熱して貯湯タンク内の殺菌や、熱媒体循環路の凍結防止、さらには熱媒循環状態の定期検査を行なったりすることがあっても、補助熱源機の使用により消費した補助熱源熱量における給湯使用量に対応した補助熱源熱量を給湯熱量から除外することによりタンク湯水を太陽熱で加熱した太陽熱熱量を算出することができるので、節約熱量の誤差を低減することができる。   With such a configuration, the hot water circulating through the hot water circulation path is reheated by using the auxiliary heat source unit to sterilize the hot water storage tank, prevent the heat medium circulation path from freezing, and perform periodic inspection of the heat medium circulation state. Calculate the amount of solar heat by heating the tank hot water with solar heat by excluding the amount of auxiliary heat source corresponding to the amount of hot water used corresponding to the amount of heat supplied from the auxiliary heat source consumed by the auxiliary heat source. Therefore, an error in the amount of saved heat can be reduced.

さらに、補助熱源熱量を算出するために、貯湯タンク内のタンク湯水の温度を検出するタンク温度検出器を備え、制御手段は、温水循環路を循環する温水により熱媒体循環路を循環する熱媒体の熱交換加熱が行なわれた場合に、熱媒体加熱開始時の貯湯タンク内のタンク湯水の検出温度と熱媒体加熱終了時の貯湯タンク内のタンク湯水の検出温度との温度差、及び、貯湯タンクに貯湯されている湯量に基づいて補助熱源熱量を算出する構成とすることが好ましい。   Furthermore, in order to calculate the amount of auxiliary heat source heat, a tank temperature detector that detects the temperature of the tank hot water in the hot water storage tank is provided, and the control means is a heat medium that circulates in the heat medium circulation path using the hot water circulating in the hot water circulation path The difference in temperature between the detected temperature of the hot water in the hot water storage tank at the start of heating of the heat medium and the detected temperature of the hot water in the hot water tank at the end of the heating of the heat medium, and the hot water storage It is preferable that the auxiliary heat source heat amount be calculated based on the amount of hot water stored in the tank.

このような構成により、給湯停止時に補助熱源機で加熱された温水を温水循環路に循環させて再加熱運転を行なう時は、タンク温度検出器により貯湯タンク内のタンク湯水の温度を検出して、再加熱開始時の検出温度と再加熱終了時の検出温度との温度差、及び、貯湯タンクに貯湯されている湯量(タンク容量)に基づいて簡単に補助熱源熱量を算出することができる。   With such a configuration, when the hot water heated by the auxiliary heat source device is circulated through the hot water circulation path when the hot water supply is stopped and the reheating operation is performed, the temperature of the tank hot water in the hot water storage tank is detected by the tank temperature detector. The auxiliary heat source heat quantity can be easily calculated based on the temperature difference between the detected temperature at the start of reheating and the detected temperature at the end of reheating, and the amount of hot water stored in the hot water storage tank (tank capacity).

さらに、補助熱源熱量を算出するために、熱媒体循環路における熱媒体の温度を検出する熱媒体温度検出器を備え、制御手段は、温水循環路を循環する温水により熱媒体循環路を循環する熱媒体の熱交換加熱が行なわれた場合に、所定時間経過毎に検出する熱媒体の温度と前記所定時間内に熱媒体循環路を流れる熱媒体の流量とに基づいて補助熱源熱量を算出する構成とすることが好ましい。   Further, in order to calculate the amount of heat of the auxiliary heat source, a heat medium temperature detector for detecting the temperature of the heat medium in the heat medium circuit is provided, and the control means circulates the heat medium circuit by the hot water circulating in the hot water circuit. When heat exchange heating of the heat medium is performed, the auxiliary heat source heat amount is calculated based on the temperature of the heat medium detected every predetermined time and the flow rate of the heat medium flowing through the heat medium circulation path within the predetermined time. A configuration is preferable.

このような構成により、給湯停止時に補助熱源機で加熱された温水を温水循環路に循環させて再加熱運転を行なう時だけでなく、給湯中に温水循環路及び熱媒体循環路の凍結防止や熱動弁等の作動状態を良好にするための定期検査を行なったりするために再加熱運転を行なうことがあっても、所定時間経過毎に検出する熱媒体の温度と前記所定時間内に熱媒体循環路を流れた熱媒体の流量とに基づいて補助熱源熱量を算出して節約熱量を算出することができる。なお、この場合の補助熱源熱量の算出は、熱媒体循環路の所定箇所を流れる熱媒体の所定時間毎の前後の温度差に所定時間内に流れる流量を乗算して求めることもできるし、熱媒体循環路における放熱部の上流側と下流側との温度差に所定時間内に流れる流量を乗算して求めることもできる。   With such a configuration, not only when the hot water heated by the auxiliary heat source device is circulated through the hot water circulation path when the hot water supply is stopped, but also when the reheating operation is performed, the hot water circulation path and the heat medium circulation path are prevented from being frozen during hot water supply. Even if a reheating operation is performed to perform a periodic inspection to improve the operating state of a thermal valve or the like, the temperature of the heat medium detected every predetermined time and the heat within the predetermined time The amount of heat saved can be calculated by calculating the auxiliary heat source heat amount based on the flow rate of the heat medium flowing through the medium circulation path. In this case, the calculation of the amount of heat of the auxiliary heat source can be obtained by multiplying the temperature difference before and after every predetermined time of the heat medium flowing through the predetermined portion of the heat medium circuit by the flow rate flowing within the predetermined time. It can also be obtained by multiplying the temperature difference between the upstream side and the downstream side of the heat radiating section in the medium circulation path by the flow rate flowing within a predetermined time.

熱媒体循環路における放熱部の上流側と下流側との温度差を求める場合には、熱媒体温度検出器が、熱媒体循環路における放熱部の上流側の熱媒体の温度を検出する第1熱媒体温度検出器と、放熱部の下流側の熱媒体の温度を検出する第2熱媒体温度検出器であり、制御手段は、熱媒体循環路における放熱部の下流側と上流側との所定時間毎の温度差と、前記所定時間内に熱媒体循環路を流れた熱媒体の流量とに基づいて補助熱源熱量を算出する構成とする。   When obtaining the temperature difference between the upstream side and the downstream side of the heat dissipating part in the heat medium circuit, the heat medium temperature detector detects the temperature of the heat medium upstream of the heat dissipating part in the heat medium circuit. A heat medium temperature detector and a second heat medium temperature detector for detecting the temperature of the heat medium downstream of the heat radiating unit, and the control means is a predetermined unit between the downstream side and the upstream side of the heat radiating unit in the heat medium circuit. The auxiliary heat source heat quantity is calculated on the basis of the temperature difference for each time and the flow rate of the heat medium flowing through the heat medium circulation path within the predetermined time.

このような構成により、熱媒体循環路における放熱部の下流側と上流側との所定時間毎の温度差と、前記所定時間内に熱媒体循環路を流れた熱媒体の流量とに基づいて補助熱源熱量を所定時間毎に算出するので、給湯中に再加熱運転が行なわれてもリアルタイムで補助熱源熱量を除いた太陽熱熱量を表示部に表示することができる。   With such a configuration, the heat medium circulation path is assisted based on the temperature difference for each predetermined time between the downstream side and the upstream side of the heat radiating section and the flow rate of the heat medium that has flowed through the heat medium circulation path within the predetermined time. Since the heat source heat amount is calculated every predetermined time, the solar heat amount excluding the auxiliary heat source heat amount can be displayed on the display unit in real time even if the reheating operation is performed during hot water supply.

制御手段は、算出された太陽熱熱量と二酸化炭素換算係数とにより二酸化炭素削減量を算出して、二酸化炭素削減量を表示部に表示させる構成とすることが好ましい。
このような構成により、表示部に太陽熱熱量だけでなく二酸化炭素削減量も表示することができるので、ユーザーに太陽熱の貢献度を知らせることができる。
The control means preferably has a configuration in which the carbon dioxide reduction amount is calculated based on the calculated solar heat amount and the carbon dioxide conversion coefficient, and the carbon dioxide reduction amount is displayed on the display unit.
With such a configuration, not only the amount of solar heat but also the amount of carbon dioxide reduction can be displayed on the display unit, so the user can be informed of the degree of contribution of solar heat.

以上のように、本発明に係る太陽熱利用の貯湯式給湯システムによれば、温水循環路を循環する温水を補助熱源機で加熱して貯湯タンク内のタンク湯水の加熱を行なうことがあっても、補助熱源機の使用で消費した補助熱源熱量における給湯使用量に対応した補助熱源熱量を給湯熱量から除外することによりタンク湯水を太陽熱で加熱した太陽熱熱量を算出することができるので、節約熱量を求める際の誤差を低減することができる。   As described above, according to the hot water storage hot water supply system using solar heat according to the present invention, the hot water circulating in the hot water circulation path is heated by the auxiliary heat source unit to heat the tank hot water in the hot water storage tank. By excluding the auxiliary heat source heat amount corresponding to the amount of hot water used in the auxiliary heat source heat consumed by the use of the auxiliary heat source device from the hot water supply amount, it is possible to calculate the solar heat amount by heating the tank hot water with solar heat. It is possible to reduce an error in obtaining.

実施形態における太陽熱利用の貯湯式給湯システムの全体構成を示す模式図である。It is a schematic diagram which shows the whole structure of the hot water storage type hot-water supply system using solar heat in embodiment. 実施形態における太陽熱利用の貯湯式給湯システムのリモコンに設ける表示部の表示状態を示す説明図である。It is explanatory drawing which shows the display state of the display part provided in the remote control of the hot water storage type hot-water supply system using solar heat in embodiment. 実施形態における太陽熱利用の貯湯式給湯システムの給湯停止時に再加熱運転を行なった時の補助熱源熱量(ガス熱量)を算出する制御を示すフローチャートである。It is a flowchart which shows the control which calculates the auxiliary | assistant heat source calorie | heat amount (gas calorie | heat amount) at the time of performing reheating operation at the time of the hot water supply stop of the hot water storage type hot-water supply system in embodiment. 実施形態における太陽熱利用の貯湯式給湯システムの給湯停止時に再加熱運転を行なった時の太陽熱熱量を算出する制御を示すフローチャートである。It is a flowchart which shows the control which calculates the amount of solar heat when the reheating operation is performed at the time of the hot water supply stop of the hot water storage type hot water supply system in the embodiment. 実施形態における太陽熱利用の貯湯式給湯システムの給湯停止時又は給湯運転中に再加熱運転を行なった時の補助熱源熱量(ガス熱量)及び太陽熱熱量を算出する制御を示すフローチャートである。It is a flowchart which shows the control which calculates the auxiliary | assistant heat source calorie | heat amount (gas calorie | heat amount) and solar calorie | heat amount when the reheating operation is performed at the time of the hot water supply stop of the hot water storage hot water supply system using solar heat in embodiment or during hot water supply operation.

以下に、本発明の一実施形態をなす太陽熱利用の貯湯式給湯システムについて、図面を参照しながら説明する。
図1に示すように、本実施形態による太陽熱利用の貯湯式給湯システム1は、湯水を貯湯する貯湯タンク2と、太陽熱を集熱する太陽熱集熱器9と、太陽熱集熱器9と貯湯タンク2との間で熱媒体(例えば、不凍液)の循環経路を形成する熱媒体循環路7と、熱媒体循環路7内の熱媒体を循環させる循環ポンプ31と、貯湯タンク2から出湯される給湯路6の湯水を必要に応じて加熱して給湯使用したり、後述する温水循環路41を循環する温水を加熱して暖房及び加熱殺菌運転に使用したりする給湯器等の補助熱源機4とを備える。
Hereinafter, a hot water storage hot water supply system using solar heat according to an embodiment of the present invention will be described with reference to the drawings.
As shown in FIG. 1, a hot water storage hot water supply system 1 using solar heat according to this embodiment includes a hot water storage tank 2 for storing hot water, a solar heat collector 9 for collecting solar heat, a solar heat collector 9 and a hot water storage tank. 2, a heat medium circulation path 7 that forms a heat medium (for example, antifreeze) circulation path, a circulation pump 31 that circulates the heat medium in the heat medium circulation path 7, and hot water discharged from the hot water storage tank 2 Auxiliary heat source unit 4 such as a hot water heater that heats hot water in the path 6 as necessary and uses hot water supply, or heats hot water circulating in a hot water circulation path 41 to be described later and uses it for heating and heat sterilization operation; Is provided.

貯湯タンク2は、耐食性に優れた金属製(例えば、ステンレス製)のタンクであり、外周部に図示しない断熱材を配置して高温のタンク湯水を長時間にわたって保温する。貯湯タンク2は縦長形状であり、その底部には水道水を導入する給水管5が接続される導入口21が設けられている。なお、給水管5には、水道管側から順に給水元弁51、水フィルタ52、減圧弁53、貯湯タンク2へ供給される給水の温度を検出する給水温度検出器54、逆止弁55及び排水弁56が設けられている。   The hot water storage tank 2 is a metal (for example, stainless steel) tank excellent in corrosion resistance, and a heat insulating material (not shown) is disposed on the outer peripheral portion to keep hot hot water in the tank for a long time. The hot water storage tank 2 has a vertically long shape, and an introduction port 21 to which a water supply pipe 5 for introducing tap water is connected is provided at the bottom thereof. The water supply pipe 5 includes a water supply source valve 51, a water filter 52, a pressure reducing valve 53, a water supply temperature detector 54 for detecting the temperature of water supplied to the hot water storage tank 2, a check valve 55, and a water supply pipe. A drain valve 56 is provided.

貯湯タンク2の上部にはタンク湯水を出湯するための導出口22が設けられ、この導出口22に給湯路6が接続されている。さらに、貯湯タンク2の壁面における上下4箇所には、貯湯タンク2内のタンク湯水の温度を検知するタンク温度検出器23が取り付けられている。   In the upper part of the hot water storage tank 2, a discharge port 22 for discharging hot water from the tank is provided, and the hot water supply path 6 is connected to the discharge port 22. Furthermore, tank temperature detectors 23 for detecting the temperature of the tank hot water in the hot water storage tank 2 are attached to the upper and lower four locations on the wall surface of the hot water storage tank 2.

そして、給湯路6の途中には、圧力逃し弁62が設けられた排出管63を接続している。さらに給湯路6における排出管63との接続部より上流側には貯湯タンク2から出湯されたタンク湯水の温度を検出するタンク湯水温度検出器64が設けられている。また、給湯路6における排出管63との接続部より下流側には、常閉のソーラー電磁弁65が設けられている。   A discharge pipe 63 provided with a pressure relief valve 62 is connected in the middle of the hot water supply path 6. Further, a tank hot water temperature detector 64 for detecting the temperature of the hot water in the hot water discharged from the hot water storage tank 2 is provided on the upstream side of the hot water supply path 6 connected to the discharge pipe 63. Further, a normally closed solar electromagnetic valve 65 is provided on the downstream side of the hot water supply passage 6 with respect to the connection portion with the discharge pipe 63.

給湯路6におけるソーラー電磁弁65の下流側には、給水管5から分岐する給水分岐管57の一端が接続されており、この給水分岐管57の他端は、給水管5の給水温度検出器54よりも下流側に接続されている。なお、給水分岐管57には、逆止弁58が設けられている。給湯路6における給水分岐管57との接続部には貯湯タンク2から出湯されたタンク湯水と水道水とを混合する混合弁66が設けられている。混合弁66は後述する制御装置10による制御でタンク湯水と水道水を混合する量を調整するようになっており、混合弁66においてタンク湯水と給水分岐管57からの水道水とを所定の混合比で混合することによりタンク湯水は設定された給湯温度に調整される。   One end of a water supply branch pipe 57 branched from the water supply pipe 5 is connected to the downstream side of the solar solenoid valve 65 in the hot water supply path 6, and the other end of the water supply branch pipe 57 is a water supply temperature detector of the water supply pipe 5. It is connected to the downstream side of 54. The water supply branch pipe 57 is provided with a check valve 58. A mixing valve 66 that mixes the tank hot water discharged from the hot water storage tank 2 and tap water is provided at a connection portion of the hot water supply path 6 to the water supply branch pipe 57. The mixing valve 66 is configured to adjust the amount of mixing of the tank hot water and tap water under the control of the control device 10 to be described later. In the mixing valve 66, the tank hot water and the tap water from the water supply branch pipe 57 are mixed with each other. By mixing at a ratio, the tank hot water is adjusted to a set hot water supply temperature.

給湯路6における混合弁66の下流側には、タンク湯水と水道水との混合後の混合湯水の流量を検出する水量センサ67、混合湯水の温度を検出する混合温度検出器68及びハイカットサーミスタ69が設けられている。水量センサ67は、例えば、羽根車式水量センサが用いられており、水流によって回る羽根車の回転数をパルス信号に変換した水量情報により流量を検出するようになっている。また、混合温度検出器68で検出した混合温水の温度(本発明の出湯温度)の情報と、水量センサ67の水量情報は電気的に接続される制御装置10に出力される。   On the downstream side of the mixing valve 66 in the hot water supply path 6, a water amount sensor 67 for detecting the flow rate of the mixed hot water after mixing of the tank hot water and tap water, a mixing temperature detector 68 for detecting the temperature of the mixed hot water, and a high cut thermistor 69. Is provided. As the water amount sensor 67, for example, an impeller-type water amount sensor is used, and the flow rate is detected by water amount information obtained by converting the rotation speed of the impeller rotating by the water flow into a pulse signal. Further, the information on the temperature of the mixed hot water (the tapping temperature of the present invention) detected by the mixing temperature detector 68 and the water amount information of the water amount sensor 67 are output to the controller 10 that is electrically connected.

給湯路6におけるハイカットサーミスタ69よりも下流側に、ガス給湯器からなる補助熱源機4が接続されている。この補助熱源機4は、内部に給湯路6から供給される混合湯水を給湯用熱交換器40aにおいて給湯用ガスバーナ401aにより加熱する給湯用加熱ユニット4aと、給湯路6とは別途に形成される温水循環路41を循環する温水(不凍液を混入する温水等も含む。)を再加熱用熱交換器40bにおいて再加熱用ガスバーナ401bにより加熱する再加熱用加熱ユニット4bとを備えている。   Auxiliary heat source device 4 composed of a gas water heater is connected to the hot water supply path 6 downstream of the high-cut thermistor 69. The auxiliary heat source unit 4 is formed separately from the hot water supply heating unit 4a for heating the mixed hot water supplied from the hot water supply passage 6 therein by the hot water supply gas burner 401a in the hot water supply heat exchanger 40a, and the hot water supply passage 6. There is provided a reheating heating unit 4b that heats warm water circulating in the warm water circulation path 41 (including warm water mixed with antifreeze liquid) by the reheating gas burner 401b in the reheating heat exchanger 40b.

温水循環路41内の温水は補助熱源機4内に設ける循環ポンプ47の駆動により循環される。温水循環路41は補助熱源機4の外部において、暖房機44に接続される暖房用循環路41aと、熱媒体循環路7を流れる熱媒体を加熱するための液々熱交換部8に接続される再加熱用循環路41bとに分岐され、再び合流して補助熱源機4内の再加熱用加熱ユニット4bに戻るようになっている。暖房用循環路41aには常閉の熱動弁45が設けられ、再加熱用循環路41bにおける液々熱交換部8よりも上流側に常閉の熱動弁46が設けられている。   Hot water in the hot water circulation path 41 is circulated by driving a circulation pump 47 provided in the auxiliary heat source unit 4. The hot water circulation path 41 is connected to the heating circulation path 41 a connected to the heater 44 and the liquid heat exchanger 8 for heating the heat medium flowing through the heat medium circulation path 7 outside the auxiliary heat source unit 4. The reheating circulation path 41b is branched and joined again to return to the reheating heating unit 4b in the auxiliary heat source unit 4. A normally closed thermal valve 45 is provided in the heating circulation path 41a, and a normally closed thermal valve 46 is provided upstream of the liquid heat exchanger 8 in the reheating circulation path 41b.

さらに、補助熱源機4の内部には、コントローラ42が配置されており、このコントローラ42は、台所等に設置されたリモコン43との間で各種信号の送受信を行うようになっている。リモコン43は、運転ボタン、給湯温度設定ボタン等の各種スイッチや、図2に示すように給湯設定温度、太陽熱熱量、CO2累積削減量等を表示する表示部43aを備えている。 Furthermore, a controller 42 is disposed inside the auxiliary heat source unit 4, and this controller 42 transmits and receives various signals to and from a remote controller 43 installed in a kitchen or the like. The remote controller 43 includes various switches such as an operation button and a hot water supply temperature setting button, and a display unit 43a that displays a hot water supply set temperature, a solar heat amount, a CO 2 cumulative reduction amount, and the like as shown in FIG.

貯湯タンク2内に貯湯されたタンク湯水は、太陽熱による加熱が不十分で給湯設定温度に至らない場合には、給湯路6から供給される湯水を補助熱源機4の給湯用加熱ユニット4aにおいて給湯設定温度まで加熱した後に出湯口61から出湯する。一方、太陽熱の加熱により給湯設定温度以上にタンク湯水が加熱されている場合には、混合弁66で水道水を混合して給湯設定温度に調整し、補助熱源機4の給湯用加熱ユニット4aにより加熱することなくそのまま出湯口61から出湯する。   When the hot water stored in the hot water storage tank 2 is not sufficiently heated by solar heat to reach the hot water supply set temperature, the hot water supplied from the hot water supply passage 6 is supplied to the hot water supply heating unit 4a of the auxiliary heat source unit 4 as hot water supply. After heating to the set temperature, the hot water is discharged from the hot water outlet 61. On the other hand, when the tank hot water is heated to the hot water supply set temperature or higher by the solar heat, the tap water is mixed by the mixing valve 66 and adjusted to the hot water set temperature, and the hot water supply heating unit 4a of the auxiliary heat source unit 4 is used. The hot water is discharged from the hot water outlet 61 without heating.

太陽熱集熱器9は、集合住宅のベランダに縦置きされたり、建物の屋根などに設置されたりするパネル状をしており、内部には日射により熱せられる熱媒体の流路が形成されている。この流路は熱媒体循環路7の一部を構成している。更に、太陽熱集熱器9は、太陽光発電を行なう太陽電池が設置されたソーラー発電部91を備えている。ソーラー発電部91は制御装置10に電気的に接続されている。   The solar heat collector 9 is in the form of a panel that is placed vertically on the veranda of an apartment house or installed on the roof of a building, and a heat medium flow path that is heated by solar radiation is formed inside. . This flow path constitutes a part of the heat medium circulation path 7. Furthermore, the solar heat collector 9 includes a solar power generation unit 91 in which a solar cell that performs solar power generation is installed. The solar power generation unit 91 is electrically connected to the control device 10.

貯湯タンク2内に配設される熱媒体循環路7の一部は、貯湯タンク2内のタンク湯水と熱媒体との間で熱交換が行なわれる放熱部70を構成する。放熱部70は、貯湯タンク2内の下方にU字状等に屈曲して配置された配管で形成されている。   A part of the heat medium circulation path 7 disposed in the hot water storage tank 2 constitutes a heat radiating section 70 in which heat is exchanged between the hot water in the hot water storage tank 2 and the heat medium. The heat radiating portion 70 is formed of a pipe that is bent in a U shape or the like below the hot water storage tank 2.

なお、貯湯タンク2内は底部に水道水が導入される導入口21が形成されていることから、放熱部70は常温の水道水を加熱するように貯湯タンク2内の下部に配設している。このような構成により、放熱部70において貯湯タンク2に給水される水を熱媒体により加熱して対流により下方から上方にわたり貯湯タンク2内全体のタンク湯水を加熱する。   Since the hot water storage tank 2 has an introduction port 21 through which tap water is introduced at the bottom, the heat radiating unit 70 is disposed in the lower part of the hot water storage tank 2 so as to heat normal temperature tap water. Yes. With such a configuration, the water supplied to the hot water storage tank 2 in the heat radiating section 70 is heated by the heat medium, and the entire hot water in the hot water storage tank 2 is heated from below to above by convection.

そして、熱媒体循環路7は、太陽熱集熱器9から放熱部70へ熱媒体が流れる循環往路71と、放熱部70から太陽熱集熱器9へ熱媒体が流れる循環復路72と、これら循環往路71及び循環復路72を連通させるバイパス路73とを有している。   The heat medium circulation path 7 includes a circulation forward path 71 through which the heat medium flows from the solar heat collector 9 to the heat radiating section 70, a circulation return path 72 through which the heat medium flows from the heat radiation section 70 to the solar heat collector 9, and these circulation forward paths. 71 and a bypass path 73 that allows the circulation return path 72 to communicate with each other.

熱媒体循環路7の循環復路72には熱媒体を圧送する循環ポンプ31が設けられている。この循環ポンプ31の駆動により、太陽熱集熱器9で加熱された熱媒体が循環往路71を介して放熱部70に送られ、放熱部70で熱交換された後の熱媒体が循環復路72を介して太陽熱集熱器9に戻される。循環ポンプ31は、通常は、太陽熱集熱器9のソーラー発電部91で太陽光発電された電力で駆動するようになっており、太陽光発電が行なえない場合と殺菌などの再加熱運転を行なう場合には、制御装置10を介して商用電源により駆動される。   A circulation pump 31 that pumps the heat medium is provided in the circulation return path 72 of the heat medium circulation path 7. By driving the circulation pump 31, the heat medium heated by the solar heat collector 9 is sent to the heat radiating section 70 via the circulation forward path 71, and the heat medium after heat exchange in the heat radiating section 70 passes through the circulation return path 72. To the solar heat collector 9. The circulation pump 31 is normally driven by the power generated by the solar power generation section 91 of the solar heat collector 9 and performs reheating operation such as sterilization when solar power generation cannot be performed. In this case, it is driven by a commercial power supply via the control device 10.

さらに、循環復路72における放熱部70と循環ポンプ31との間には、シスターン32が設けられており、このシスターン32には、熱媒体の異常高水位を検出する第1水位センサ33と、熱媒体の異常低水位を検出する第2水位センサ34と、循環ポンプ31の空転を防止するための水位スイッチ35とを設けている。第1・第2水位センサ33,34の検出結果は制御装置10に出力される。   Further, a cistern 32 is provided between the heat radiating section 70 and the circulation pump 31 in the circulation return path 72. The cistern 32 includes a first water level sensor 33 that detects an abnormally high water level of the heat medium, A second water level sensor 34 for detecting an abnormally low water level of the medium and a water level switch 35 for preventing idling of the circulation pump 31 are provided. The detection results of the first and second water level sensors 33 and 34 are output to the control device 10.

また、循環往路71におけるバイパス路73の接続部と放熱部70との間に熱媒体の温度を検出する上流側熱媒体温度検出器74a(第1熱媒体温度検出器)を設け、循環復路72におけるバイパス路73の接続部と循環ポンプ31との間に熱媒体の温度を検出する下流側熱媒体温度検出器74b(第2熱媒体温度検出器)を設けている。上流側熱媒体温度検出器74a及び下流側熱媒体温度検出器74bで検出された熱媒体の温度検出結果は電気的に接続される制御装置10に出力される。   Further, an upstream side heat medium temperature detector 74 a (first heat medium temperature detector) for detecting the temperature of the heat medium is provided between the connection part of the bypass path 73 and the heat radiating part 70 in the circulation forward path 71, and the circulation return path 72. A downstream heat medium temperature detector 74 b (second heat medium temperature detector) for detecting the temperature of the heat medium is provided between the connection portion of the bypass path 73 and the circulation pump 31. The temperature detection results of the heat medium detected by the upstream heat medium temperature detector 74a and the downstream heat medium temperature detector 74b are output to the electrically connected control device 10.

さらに、バイパス路73には液々熱交換部8が形成されている。この液々熱交換部8は、再加熱用循環路41bの一部をバイパス路73に接触又は隣接させることにより熱媒体循環路7を流れる熱媒体を再加熱用循環路41bを流れる温水で熱交換加熱する。液々熱交換部8の具体的な構成は、例えば、バイパス路73を構成する配管の周囲を覆うように再加熱用循環路41bを構成する配管を設けた二重管構造や、隔壁を隔てて一方の室にバイパス路73を接続して熱媒体を流通させ、他方の室に再加熱用循環路41bを接続して温水を流通させる構造等とすることができる。   Further, a liquid heat exchanger 8 is formed in the bypass path 73. The liquid heat exchanger 8 heats the heat medium flowing through the heat medium circulation path 7 with hot water flowing through the reheating circulation path 41b by bringing a part of the reheating circulation path 41b into contact with or adjacent to the bypass path 73. Heat by exchange. The specific configuration of the liquid-liquid heat exchanging unit 8 is, for example, a double-pipe structure in which a pipe constituting the reheating circulation path 41b is provided so as to cover the circumference of the pipe constituting the bypass path 73, and a partition is separated. For example, the heat medium can be circulated by connecting the bypass path 73 to one chamber, and the hot water can be circulated by connecting the reheating circulation path 41b to the other chamber.

また、循環復路72におけるバイパス路73との接続部より下流側に太陽熱集熱器9への熱媒体の流れを連通・遮断する常開熱動弁75を設けている。さらに、バイパス路73には循環復路72から循環往路71への熱媒体の流れを連通・遮断する常閉熱動弁76を設けている。再加熱運転時に常開熱動弁75が閉弁し、常閉熱動弁76が開弁するようになっており、この時、再加熱用循環路41bに設ける常閉の熱動弁46は開弁する。   In addition, a normally open heat valve 75 that communicates and blocks the flow of the heat medium to the solar heat collector 9 is provided on the downstream side of the circulation return path 72 connected to the bypass path 73. Further, the bypass path 73 is provided with a normally closed thermal valve 76 for communicating and blocking the flow of the heat medium from the circulation return path 72 to the circulation forward path 71. During the reheating operation, the normally open heat valve 75 is closed and the normally closed heat valve 76 is opened. At this time, the normally closed heat valve 46 provided in the reheating circuit 41b is Open the valve.

制御装置10は、マイクロコンピュータを主体として構成され、内蔵のROM(図示せず)には、予め設定された制御プログラムが設けられており、各種温度検出器や水位センサなど各種検出器からの検出結果情報等に基づいて循環ポンプ31、補助熱源機4及び各種開閉弁等の各機器を制御する。なお、制御装置10には、リモコン43で入力された情報が補助熱源機4に設けるコントローラ42を介して入力される。   The control device 10 is mainly composed of a microcomputer, and a built-in ROM (not shown) is provided with a preset control program, and is detected from various detectors such as various temperature detectors and water level sensors. Based on the result information and the like, the devices such as the circulation pump 31, the auxiliary heat source unit 4, and various on-off valves are controlled. In addition, the information input with the remote control 43 is input into the control apparatus 10 via the controller 42 provided in the auxiliary heat source unit 4.

さらに、制御装置10は、太陽熱集熱器9のソーラー発電部91で発電した電力も入力され、ソーラー発電部91の電圧の上昇具合に応じて循環ポンプ31をソーラー発電部91で発電した電力により駆動する場合と商用電源を用いて駆動する場合とを切換制御する。そして、制御装置10は、加熱殺菌運転を開始する際には天候に関係なく商用電源を用いて循環ポンプ31を駆動するように制御する。   Further, the control device 10 is also supplied with the power generated by the solar power generation unit 91 of the solar heat collector 9 and uses the power generated by the solar power generation unit 91 for the circulation pump 31 in accordance with the increase in voltage of the solar power generation unit 91. Switching control is performed between driving and using a commercial power source. And the control apparatus 10 is controlled to drive the circulation pump 31 using a commercial power source, regardless of the weather when starting the heat sterilization operation.

そして、制御装置10により定期的に貯湯タンク2内のタンク湯水を殺菌するなどの再加熱運転制御を行なう。まず、補助熱源機4の再加熱用加熱ユニット4bにより再加熱用循環路41bを循環する温水を加熱する。そして、液々熱交換部8において熱媒体循環路7を流れる熱媒体を再加熱用循環路41bを流れる温水で熱交換加熱し、加熱された熱媒体により貯湯タンク2内のタンク湯水を熱交換加熱する。タンク湯水は、例えば殺菌に必要な温度(例えば、60℃)以上となる温度が所定時間(例えば、15分)継続するまで加熱される。   And the reheating operation control of sterilizing the tank hot water in the hot water storage tank 2 regularly is performed by the control apparatus 10. First, the warm water circulating through the reheating circuit 41b is heated by the reheating heating unit 4b of the auxiliary heat source unit 4. Then, the heat medium flowing through the heat medium circulation path 7 is heat-exchanged and heated with hot water flowing through the reheating circuit 41b in the liquid heat exchanger 8, and the hot water in the hot water storage tank 2 is heat-exchanged with the heated heat medium. Heat. The tank hot water is heated until, for example, a temperature equal to or higher than a temperature necessary for sterilization (for example, 60 ° C.) continues for a predetermined time (for example, 15 minutes).

ところで、本実施形態に係る太陽熱利用の貯湯式給湯システムでは、太陽熱集熱器9による集熱は日射量に依存するため、貯湯タンク2内のタンク湯水は常に太陽熱で加熱されるとは限らない。従って、ガス給湯器である補助熱源機4を用いて再加熱用循環路41bを循環する温水を加熱し、熱交換により熱媒体循環路7の熱媒体を加熱し、さらに、熱媒体で貯湯タンク2内のタンク湯水を所定温度になるまで加熱して加熱処理を行なっている。このように、再加熱運転によるタンク湯水の加熱処理は補助熱源機4を用いるので、給湯総熱量[kcal]から補助熱源機4の使用により消費した補助熱源総熱量[kcal]を除くことにより、給湯に消費された太陽熱熱量[kcal]を算出する際の誤差を低減できる。   By the way, in the hot water storage type hot water supply system using solar heat according to the present embodiment, since the heat collection by the solar heat collector 9 depends on the amount of solar radiation, the tank hot water in the hot water storage tank 2 is not always heated by solar heat. . Therefore, the hot water circulating through the reheating circuit 41b is heated using the auxiliary heat source device 4 which is a gas water heater, the heat medium in the heat medium circuit 7 is heated by heat exchange, and the hot water storage tank is further heated by the heat medium. Heat processing is performed by heating the tank hot water in 2 to a predetermined temperature. Thus, since the heat treatment of the tank hot water by the reheating operation uses the auxiliary heat source unit 4, by subtracting the total heat amount [kcal] of the auxiliary heat source consumed by using the auxiliary heat source unit 4 from the total amount of hot water supply [kcal], The error in calculating the amount of solar heat [kcal] consumed for hot water supply can be reduced.

本実施形態では、再加熱運転が行なわれても制御装置10により給湯総熱量[kcal]及び補助熱源熱量[kcal]を算出して太陽熱熱量[kcal]を算出するのであって、まず、制御装置10は、給水温度検出器54で検出された給水温度と、混合温度検出器68で検出された出湯温度と、水量センサ67で検出された給湯流量とに基づいて給湯総熱量[kcal]を算出する。そして、再加熱運転時に再加熱用循環路41bを循環する温水を補助熱源機4で加熱した際に消費された補助熱源総熱量(ガス総熱量)[kcal]を算出する。そして、給湯総熱量[kcal]から補助熱源総熱量[kcal]を減算することにより、給湯のために消費された太陽熱熱量[kcal]を算出する。補助熱源総熱量[kcal]は、例えば、後述する再加熱運転で補助熱源機4を使用することによって消費された総熱量に基づいて算出される。   In the present embodiment, even if the reheating operation is performed, the controller 10 calculates the total amount of hot water supply [kcal] and the auxiliary heat source heat [kcal] to calculate the solar heat calorie [kcal]. 10 calculates the total hot water supply heat amount [kcal] based on the feed water temperature detected by the feed water temperature detector 54, the hot water temperature detected by the mixed temperature detector 68, and the hot water flow rate detected by the water amount sensor 67. To do. Then, the auxiliary heat source total heat amount (total gas heat amount) [kcal] consumed when the hot water circulating in the reheating circulation path 41b during the reheating operation is heated by the auxiliary heat source unit 4 is calculated. Then, by subtracting the auxiliary heat source total heat quantity [kcal] from the hot water supply total heat quantity [kcal], the solar heat heat quantity [kcal] consumed for hot water supply is calculated. The auxiliary heat source total heat quantity [kcal] is calculated based on, for example, the total heat quantity consumed by using the auxiliary heat source device 4 in the reheating operation described later.

さらに、算出された太陽熱熱量[kcal]と二酸化炭素換算係数とにより二酸化炭素削減量[kg]も算出する。
まず、太陽熱熱量[m3]=太陽熱熱量[kcal]/(体積換算係数×熱量係数×仮熱効率)の式により、太陽熱熱量[kcal]を体積(m3)に換算する。なお、体積換算係数は10,750、熱量係数は0.966、仮熱効率は0.9である。
その後、二酸化炭素削減量[kg]=太陽熱熱量[m3]×二酸化炭素換算係数の式により、二酸化炭素削減量[kg]を求める。なお、二酸化炭素換算係数は2.21[kg/m3]である。
そして、算出された二酸化炭素削減量[kg]と太陽熱熱量[kcal]とを表示部43aに表示させる。
Further, a carbon dioxide reduction amount [kg] is also calculated from the calculated solar heat calorie [kcal] and the carbon dioxide conversion coefficient.
First, the solar heat calorie [kcal] is converted into volume (m 3 ) by the formula of solar heat calorie [m 3 ] = solar heat calorie [kcal] / (volume conversion coefficient × caloric coefficient × temporary heat efficiency). The volume conversion coefficient is 10,750, the calorie coefficient is 0.966, and the temporary heat efficiency is 0.9.
Thereafter, the amount of carbon dioxide reduction [kg] is obtained by the equation of carbon dioxide reduction [kg] = solar heat quantity [m 3 ] × carbon dioxide conversion coefficient. The carbon dioxide conversion coefficient is 2.21 [kg / m 3 ].
Then, the calculated carbon dioxide reduction amount [kg] and solar heat quantity [kcal] are displayed on the display unit 43a.

[太陽熱熱量の算出制御1]
図3のフローチャートを参照して、給湯停止時に殺菌のための加熱処理などを行なうために再加熱運転が行なわれた場合の補助熱源機4のガス総熱量の算出制御について具体的に説明する。
[Calculation control of solar heat 1]
With reference to the flowchart of FIG. 3, calculation control of the total gas heat amount of the auxiliary heat source unit 4 when the reheating operation is performed in order to perform a heating process for sterilization when hot water supply is stopped will be specifically described.

まず、制御装置10において給湯運転制御が開始されると、再加熱運転が開始されたか否かの判定が行なわれる(ステップS11)。再加熱運転が開始される場合には(ステップS11でYes)、給湯路6に設けるソーラー電磁弁65を閉弁する(ステップS12)。これにより、貯湯タンク2内のタンク湯水の使用が禁止される。   First, when the hot water supply operation control is started in the control device 10, it is determined whether or not the reheating operation is started (step S11). When the reheating operation is started (Yes in step S11), the solar electromagnetic valve 65 provided in the hot water supply path 6 is closed (step S12). Thereby, use of the tank hot water in the hot water storage tank 2 is prohibited.

次に、補助熱源機4において循環ポンプ47を駆動させると共に再加熱用加熱ユニット4bにより温水循環路41の温水を加熱し、再加熱用循環路41bに設ける熱動弁46を開弁する(ステップS13)。これにより、補助熱源機4の再加熱用加熱ユニット4bで加熱された温水が再加熱用循環路41bを循環する。また、熱媒体循環路7において常開熱動弁75を閉弁すると共に常閉熱動弁76を開弁して循環ポンプ31を駆動させる(ステップS14)。循環ポンプ31の駆動開始時における貯湯タンク2内のタンク湯水の温度を検出し制御装置10内のメモリに記憶する(ステップS15)。タンク湯水の温度は、最上部のタンク温度検出器23で検出した温度を記憶する。   Next, the circulation pump 47 is driven in the auxiliary heat source unit 4 and the warm water in the warm water circulation path 41 is heated by the reheating heating unit 4b, and the thermal valve 46 provided in the reheating circulation path 41b is opened (step). S13). Thereby, the hot water heated by the reheating heating unit 4b of the auxiliary heat source unit 4 circulates in the reheating circulation path 41b. Further, the normally open heat valve 75 is closed in the heat medium circulation path 7 and the normally closed heat valve 76 is opened to drive the circulation pump 31 (step S14). The temperature of the hot water in the hot water storage tank 2 at the start of driving the circulation pump 31 is detected and stored in the memory in the control device 10 (step S15). As the tank hot water temperature, the temperature detected by the uppermost tank temperature detector 23 is stored.

液々熱交換部8において熱媒体循環路7を流れる熱媒体が再加熱用循環路41bを流れる温水で熱交換加熱され、加熱された熱媒体は太陽熱集熱器9側に流れることなく放熱部70に流れて貯湯タンク2内のタンク湯水が加熱される。そして、再加熱運転が終了すると(ステップS16でYes)、再加熱運転終了時における貯湯タンク2内のタンク湯水の温度を検出しメモリに記憶する(ステップS17)。   In the liquid heat exchanger 8, the heat medium flowing through the heat medium circulation path 7 is heat-exchanged and heated with hot water flowing through the reheating circuit 41b, and the heated heat medium does not flow toward the solar heat collector 9 side. Then, the hot water in the hot water storage tank 2 is heated. When the reheating operation is completed (Yes in step S16), the temperature of the tank hot water in the hot water storage tank 2 at the end of the reheating operation is detected and stored in the memory (step S17).

さらに、補助熱源機4において再加熱用循環路41bの熱動弁46を閉弁し、再加熱用加熱ユニット4bによる温水循環路41の温水の加熱と再加熱用循環路41bの温水を循環させる循環ポンプ47の駆動を停止する(ステップS18)。また、熱媒体循環路7において常開熱動弁75を開弁すると共に常閉熱動弁76を閉弁し、循環ポンプ31を停止する(ステップS19)。   Further, in the auxiliary heat source unit 4, the heat valve 46 of the reheating circulation path 41b is closed to heat the hot water in the hot water circulation path 41 by the reheating heating unit 4b and to circulate the hot water in the reheating circulation path 41b. The driving of the circulation pump 47 is stopped (step S18). In addition, the normally open heat valve 75 is opened in the heat medium circulation path 7 and the normally closed heat valve 76 is closed to stop the circulation pump 31 (step S19).

次に、再加熱運転中に補助熱源機4の使用により消費された補助熱源熱量であるガス熱量[kcal]を算出する。ガス熱量[kcal]は、再加熱運転終了時(再加熱終了時)の貯湯タンク2内のタンク湯水の検出温度と再加熱運転開始時(再加熱開始時)の貯湯タンク2内のタンク湯水の検出温度との温度差にタンク容量(例えば100リットル)を乗算して算出する(ステップS20)。算出したガス熱量[kcal]は制御装置10のメモリに記憶する。   Next, the gas heat quantity [kcal] that is the auxiliary heat source heat quantity consumed by the use of the auxiliary heat source device 4 during the reheating operation is calculated. The amount of gas heat [kcal] is the detected temperature of the hot water in the hot water storage tank 2 at the end of the reheating operation (at the end of reheating) and the hot water in the hot water tank 2 at the start of the reheating operation (at the start of reheating). The temperature difference from the detected temperature is calculated by multiplying the tank capacity (for example, 100 liters) (step S20). The calculated gas heat quantity [kcal] is stored in the memory of the control device 10.

そして、前回の給湯運転終了からこの再加熱運転を行なう前までに行なった過去の再加熱運転により消費したガス総熱量[kcal]に、ステップS20で算出したガス熱量[kcal]をさらに積算してガス総熱量[kcal]を求め(ステップS21)、算出されたガス総熱量[kcal]を制御装置10のメモリに記憶する。   And the gas calorie | heat amount [kcal] calculated by step S20 is further integrated | accumulated to the gas total calorie | heat amount [kcal] consumed by the past reheating operation performed before performing this reheating operation after the end of the last hot water supply operation. The total gas heat quantity [kcal] is obtained (step S21), and the calculated total gas heat quantity [kcal] is stored in the memory of the control device 10.

次に、図4のフローチャートを参照して、貯湯タンク2内のタンク湯水の太陽熱熱量及び二酸化炭素削減量の算出制御について具体的に説明する。
使用者が出湯口61におけるカラン等を開栓すると、給水分岐管57から混合弁66を介して給湯路6に水が供給される。そして、水量センサ67で所定流量以上の流水が検知されると、給湯運転が開始されたと判断して(ステップS31でYes)、給湯路6に設けるソーラー電磁弁65が開弁されて貯湯タンク2から給湯される(ステップS32)。
Next, with reference to the flowchart of FIG. 4, calculation control of the solar heat amount and the carbon dioxide reduction amount of the tank hot water in the hot water storage tank 2 will be specifically described.
When the user opens the currant or the like at the hot water outlet 61, water is supplied from the water supply branch pipe 57 to the hot water supply path 6 through the mixing valve 66. When the water amount sensor 67 detects flowing water of a predetermined flow rate or more, it is determined that the hot water supply operation has started (Yes in step S31), the solar electromagnetic valve 65 provided in the hot water supply passage 6 is opened, and the hot water storage tank 2 is opened. Hot water is supplied (step S32).

そして、1秒毎に混合温度検出器68で検出された出湯温度と給水温度検出器54で検出された給水温度の温度差を算出して、この温度差に水量センサ67で検出された給湯流量[リットル/分/60]を乗算して給湯熱量[kcal/秒]を算出しメモリに記憶する(ステップS33)。   Then, a temperature difference between the hot water temperature detected by the mixed temperature detector 68 and the feed water temperature detected by the feed water temperature detector 54 is calculated every second, and the hot water flow rate detected by the water amount sensor 67 is calculated based on this temperature difference. Multiply [liter / min / 60] to calculate the hot water supply heat [kcal / sec] and store it in the memory (step S33).

また、出湯温度と給水温度との温度差は以下のようにして求める。まず、給水温度が検出された水が出湯温度を検出する位置に到達するまでの時間を流量センサ67で検出した流量に基づいて算出し、検出された給水温度と算出された時間経過後に検出した出湯温度とにより温度差を求める。   The temperature difference between the hot water temperature and the feed water temperature is determined as follows. First, the time until the water at which the feed water temperature is detected reaches the position for detecting the tapping temperature is calculated based on the flow rate detected by the flow sensor 67, and detected after the detected feed water temperature and the calculated time have elapsed. Find the temperature difference based on the tapping temperature.

さらに、ステップS33で算出した給湯熱量[kcal/秒]を積算して給湯総熱量[kcal]を求めてメモリに記憶する(ステップS34)。算出された給湯総熱量[kcal]から上記したメモリに記憶されているガス総熱量[kcal]におけるタンク容量に対する給湯運転で使用された給湯流量分を減算して太陽熱熱量[kcal]を算出する(ステップS35)。算出された太陽熱熱量[kcal]を図2示すようにリモコン43の表示部43aに表示する(ステップS36)。なお、給湯が行なわれずに再加熱運転のみが行われている状態では、太陽熱熱量は0[kcal]が表示される。   Further, the hot water supply heat quantity [kcal / second] calculated in step S33 is integrated to obtain the total hot water supply heat quantity [kcal] and stored in the memory (step S34). The solar heat calorific value [kcal] is calculated by subtracting the hot water flow rate used in the hot water supply operation with respect to the tank capacity in the gas total calorific value [kcal] stored in the memory from the calculated hot water hot water calorie [kcal] ( Step S35). The calculated amount of solar heat [kcal] is displayed on the display unit 43a of the remote controller 43 as shown in FIG. 2 (step S36). In the state where only the reheating operation is performed without hot water supply, 0 [kcal] is displayed as the amount of solar heat.

そして、算出された太陽熱熱量[kcal]と二酸化炭素換算係数とにより二酸化炭素削減量[kg]を算出し(ステップS37)、二酸化炭素削減量[kg]を表示部43aに表示する(ステップS38)。給湯運転制御中に、再度給湯運転が行なわれた場合にはステップS31に戻ってステップS32からステップS38を行ない、給湯が停止されて再加熱運転が行なわれた場合には図3のステップS11からステップS21を行なう。   Then, a carbon dioxide reduction amount [kg] is calculated from the calculated solar heat quantity [kcal] and the carbon dioxide conversion coefficient (step S37), and the carbon dioxide reduction amount [kg] is displayed on the display unit 43a (step S38). . If the hot water supply operation is performed again during the hot water supply operation control, the process returns to step S31 and steps S32 to S38 are performed. If the hot water supply is stopped and the reheating operation is performed, the process starts from step S11 of FIG. Step S21 is performed.

このように、本実施形態では、給湯停止時に補助熱源機4を用いて再加熱用循環路41bを循環する温水を加熱して再加熱運転を行なった時は、貯湯タンク2内のタンク湯水の再加熱開始時の検出温度と再加熱終了時の検出温度との温度差を求めて、この温度差に貯湯タンク2に貯湯されている湯水の量となるタンク容量を乗算するだけで簡単に補助熱源機4の使用により消費したガス熱量[kcal]を算出することができる。   Thus, in this embodiment, when hot water circulating through the reheating circuit 41b is heated using the auxiliary heat source unit 4 when hot water supply is stopped and the reheating operation is performed, the tank hot water in the hot water storage tank 2 is used. Simply find the temperature difference between the detected temperature at the start of reheating and the detected temperature at the end of reheating, and multiply this temperature difference by the tank capacity that is the amount of hot water stored in the hot water storage tank 2 to assist The amount of gas heat [kcal] consumed by using the heat source unit 4 can be calculated.

そして、メモリに記憶されているガス総熱量[kcal]におけるタンク容量に対する給湯運転で使用された給湯流量分を給湯総熱量[kcal]から除外することにより、太陽熱でタンク湯水を加熱した場合の太陽熱熱量[kcal]を算出することができるので、給湯停止時に補助熱源機4を用いて再加熱運転を行なっても、この再加熱運転時に消費した熱量を除いた節約熱量を把握することができる。   Then, by excluding the hot water supply flow rate used in the hot water supply operation for the tank capacity in the gas total heat quantity [kcal] stored in the memory from the hot water supply total heat quantity [kcal], solar heat when the tank hot water is heated by solar heat Since calorie | heat amount [kcal] can be calculated, even if it performs reheating operation using the auxiliary heat source apparatus 4 at the time of a hot water supply stop, it can grasp | ascertain the energy-saving amount except the calorie | heat amount consumed at this reheating operation.

給湯停止時に行なわれる上記殺菌などの加熱処理時においては、ソーラー電磁弁65が閉弁された状態で再加熱運転が行われるため、再加熱運転中のタンク湯水内の温度差のみを検知することにより、補助熱源機4の使用により消費したガス総熱量[kcal]を算出することができる。   At the time of heat treatment such as sterilization performed when hot water supply is stopped, the reheating operation is performed with the solar solenoid valve 65 closed, so that only the temperature difference in the tank hot water during the reheating operation is detected. Thus, the total gas heat [kcal] consumed by using the auxiliary heat source device 4 can be calculated.

[太陽熱熱量の算出制御2]
図3及び図4のフローチャートに基づく熱量算出制御では、給湯総熱量から再加熱運転時における貯湯タンク2内のタンク湯水の温度差から求められる消費したガス総熱量を減算することにより太陽熱熱量を算出したが、再加熱運転時における熱媒体循環路7内の熱媒体の温度差から求められる消費したガス熱量を給湯総熱量から減算することにより太陽熱熱量を算出してもよい。
[Calculation control of solar heat 2]
In the calorific value calculation control based on the flowcharts of FIG. 3 and FIG. 4, the solar heat calorie is calculated by subtracting the consumed gas total calorific value obtained from the temperature difference of the tank hot water in the hot water storage tank 2 during the reheating operation from the total hot water supply calorie. However, the solar heat calorie may be calculated by subtracting the consumed gas calorific value obtained from the temperature difference of the heat medium in the heat medium circulation path 7 during the reheating operation from the total hot water supply calorie.

例えば、凍結防止や熱媒体の循環状態を検査するために行なわれる再加熱運転では同時に給湯運転も行われる場合もあるため、給湯に伴って貯湯タンク2内に水が給水され、それによって貯湯タンク2内のタンク湯水の温度が低下する。従って、再加熱運転前後における貯湯タンク2内のタンク湯水の温度差を検知するだけでは、補助熱源機4で消費された熱量を正確に算出できないこととなる。このような場合に、以下の熱量算出制御を用いることができる。   For example, in a reheating operation performed to prevent freezing or to check the circulation state of the heat medium, a hot water supply operation may be performed at the same time, so that water is supplied into the hot water storage tank 2 along with the hot water supply. The temperature of the tank hot water in 2 falls. Therefore, the amount of heat consumed by the auxiliary heat source unit 4 cannot be accurately calculated only by detecting the temperature difference of the tank hot water in the hot water storage tank 2 before and after the reheating operation. In such a case, the following calorific value calculation control can be used.

図5のフローチャートを参照して、殺菌処理だけでなく凍結防止や熱媒体循環路7における熱媒体循環状態の定期検査のために再加熱運転を行なう場合の太陽熱熱量及び二酸化炭素削減量の算出制御について説明する。   Referring to the flowchart of FIG. 5, calculation control of the amount of solar heat and carbon dioxide reduction when performing reheating operation not only for sterilization but also for freezing prevention and periodic inspection of the heat medium circulation state in the heat medium circulation path 7. Will be described.

まず、再加熱運転が開始されたか否かの判定が行なわれる(ステップS41)。なお、凍結防止や定期検査のために再加熱運転が行われる場合、同時に給湯運転させることが可能であるため、ソーラー電磁弁65を閉弁させる必要はない。
次に、補助熱源機4において循環ポンプ47を駆動させると共に再加熱用加熱ユニット4bにより温水循環路41の温水を加熱し、再加熱用循環路41bに設ける熱動弁46を開弁する(ステップS42)。また、熱媒体循環路7において常開熱動弁75を閉弁すると共に常閉熱動弁76を開弁して循環ポンプ31を駆動させる(ステップS43)。循環ポンプ31の駆動が開始されると開始時から1秒毎に、上流側熱媒体温度検出器74aにより検出した熱媒体の温度と下流側熱媒体温度検出器74bにより検出した熱媒体の温度とを制御装置10内のメモリに記憶していく。
First, it is determined whether or not the reheating operation has been started (step S41). In addition, when reheating operation is performed for freeze prevention or periodic inspection, it is possible to perform hot water supply operation at the same time. Therefore, it is not necessary to close the solar solenoid valve 65.
Next, the circulation pump 47 is driven in the auxiliary heat source unit 4 and the warm water in the warm water circulation path 41 is heated by the reheating heating unit 4b, and the thermal valve 46 provided in the reheating circulation path 41b is opened (step). S42). Further, the normally open heat valve 75 is closed in the heat medium circulation path 7 and the normally closed heat valve 76 is opened to drive the circulation pump 31 (step S43). When the driving of the circulation pump 31 is started, the temperature of the heat medium detected by the upstream heat medium temperature detector 74a and the temperature of the heat medium detected by the downstream heat medium temperature detector 74b are detected every second from the start. Are stored in a memory in the control device 10.

次に、再加熱運転中に補助熱源機4の使用により消費された補助熱源熱量であるガス熱量[kcal/秒]を算出する。ガス熱量[kcal/秒]は、熱媒体循環路7に設ける上流側熱媒体温度検出器74aと下流側熱媒体温度検出器74bとにより検出した熱媒体温度に基づき、放熱部70の上流側と下流側との温度差を1秒毎に算出して、この1秒間に熱媒体循環路7を流れる熱媒体の流量[リットル/分/60]を乗算してガス熱量[kcal/秒]を算出する(ステップS44)。算出したガス熱量[kcal/秒]は制御装置10のメモリに記憶する。   Next, the gas heat quantity [kcal / second], which is the auxiliary heat source heat quantity consumed by using the auxiliary heat source device 4 during the reheating operation, is calculated. The amount of gas heat [kcal / second] is determined based on the heat medium temperature detected by the upstream heat medium temperature detector 74a and the downstream heat medium temperature detector 74b provided in the heat medium circulation path 7, and on the upstream side of the heat radiating unit 70. The temperature difference from the downstream side is calculated every second, and the gas heat quantity [kcal / second] is calculated by multiplying the flow rate [liter / minute / 60] of the heat medium flowing through the heat medium circulation path 7 per second. (Step S44). The calculated gas heat quantity [kcal / second] is stored in the memory of the control device 10.

なお、放熱部70の上流側と下流側との温度差は以下のようにして求める。まず、上流側で温度が検出された熱媒体が下流側の温度を検出する位置に到達するまでの時間を循環ポンプ31の流量に基づいて算出し、上流側の検出温度と算出された時間経過後に検出した下流側の検出温度とにより温度差を求める。
さらに、ステップS44で算出したガス熱量[kcal/秒]を積算してガス総熱量[kcal]を求めてメモリに記憶する(ステップS45)。
Note that the temperature difference between the upstream side and the downstream side of the heat radiating unit 70 is obtained as follows. First, the time until the heat medium whose temperature is detected on the upstream side reaches the position for detecting the temperature on the downstream side is calculated based on the flow rate of the circulation pump 31, and the detected temperature on the upstream side and the calculated time passage The temperature difference is obtained from the downstream detected temperature detected later.
Further, the gas calorific value [kcal / sec] calculated in step S44 is integrated to obtain the total gas calorific value [kcal] and stored in the memory (step S45).

次に、給湯運転中であるか否かの判定を行い(ステップS46)、給湯停止中の場合には(ステップS46でNo)、再加熱運転が続行されているか否かの判定を行い(ステップS47)、続行されている場合には(ステップS47でNo)、ステップS44に戻ってガス熱量[kcal/秒]を算出する。再加熱運転が終了すると(ステップS47でYes)、補助熱源機4において、再加熱用循環路41bの熱動弁46を閉弁し、再加熱用加熱ユニット4bによる温水循環路41の温水の加熱と再加熱用循環路41bの温水を循環させる循環ポンプ47の駆動を停止する(ステップS48)。また、熱媒体循環路7において常開熱動弁75を開弁すると共に常閉熱動弁76を閉弁し、循環ポンプ31を停止する(ステップS49)。   Next, it is determined whether or not the hot water supply operation is being performed (step S46). If the hot water supply is stopped (No in step S46), it is determined whether or not the reheating operation is being continued (step S46). S47) If the process is continued (No in step S47), the process returns to step S44 to calculate the amount of gas heat [kcal / sec]. When the reheating operation is completed (Yes in step S47), the heat valve 46 of the reheating circuit 41b is closed in the auxiliary heat source unit 4, and the hot water in the hot water circuit 41 is heated by the reheating heating unit 4b. Then, the driving of the circulation pump 47 for circulating the hot water in the reheating circulation path 41b is stopped (step S48). Further, in the heat medium circulation path 7, the normally open heat valve 75 is opened, the normally closed heat valve 76 is closed, and the circulation pump 31 is stopped (step S49).

なお、給湯停止時の再加熱運転が終了して給湯運転が行なわれると、図4のステップS32からステップS38と同様の制御が行なわれ、算出された給湯総熱量[kcal]からステップS45によりメモリに記憶されているガス総熱量[kcal]におけるタンク容量に対する給湯運転で使用された給湯流量分を減算して太陽熱熱量[kcal]を算出し、算出された太陽熱熱量[kcal]及び二酸化炭素削減量[kg]を図2示すようにリモコン43の表示部43aに表示する。   In addition, when the reheating operation at the time of hot water supply stop is completed and the hot water supply operation is performed, the same control as step S32 to step S38 in FIG. 4 is performed, and memory is calculated from the calculated total hot water supply heat [kcal] in step S45. The solar heat calorie [kcal] is calculated by subtracting the hot water flow rate used in the hot water supply operation for the tank capacity in the total gas calorie [kcal] stored in, and the calculated solar heat calorie [kcal] and carbon dioxide reduction amount [kg] is displayed on the display unit 43a of the remote controller 43 as shown in FIG.

また、給湯運転中に再加熱運転が行なわれている場合には(ステップS46でYes)、図4のステップS33〜S35と同様に、1秒毎に混合温度検出器68で検出された出湯温度と給水温度検出器54で検出された給水温度の温度差を算出して、この温度差に水量センサ67で検出された給湯流量[リットル/分/60]を乗算して給湯熱量[kcal/秒]を算出して積算していき、積算された給湯総熱量[kcal]からステップS45で算出したガス総熱量[kcal]を減算して太陽熱熱量[kcal]を算出した後、算出された太陽熱熱量[kcal]を図2示すようにリモコン43の表示部43aに表示する(ステップS50)。そして、算出された太陽熱熱量[kcal]と二酸化炭素換算係数とにより二酸化炭素削減量[kg]を算出し、二酸化炭素削減量[kg]を表示部43aに表示する(ステップS51)。なお、給湯運転中に再加熱運転が行なわれている場合には、1秒毎にリアルタイムで太陽熱熱量[kcal]と二酸化炭素削減量[kg]とを表示部43aに表示することが好ましい。   Further, when the reheating operation is performed during the hot water supply operation (Yes in step S46), similarly to steps S33 to S35 of FIG. 4, the hot water temperature detected by the mixed temperature detector 68 every second. And the temperature difference between the feed water temperature detected by the feed water temperature detector 54 and multiplying this temperature difference by the hot water flow rate [liter / minute / 60] detected by the water amount sensor 67, the amount of hot water supply [kcal / second] ] Is calculated and integrated, and after calculating the solar heat calorie [kcal] by subtracting the gas total calorie [kcal] calculated in step S45 from the accumulated hot water total calorie [kcal], the calculated solar heat calorie [kcal] is displayed on the display unit 43a of the remote controller 43 as shown in FIG. 2 (step S50). Then, the carbon dioxide reduction amount [kg] is calculated from the calculated solar heat calorie [kcal] and the carbon dioxide conversion coefficient, and the carbon dioxide reduction amount [kg] is displayed on the display unit 43a (step S51). When the reheating operation is performed during the hot water supply operation, it is preferable to display the solar heat amount [kcal] and the carbon dioxide reduction amount [kg] on the display unit 43a in real time every second.

そして、再加熱運転が続行されている場合には(ステップS52でNo)、ステップS44に戻ってガス熱量[kcal/秒]を算出し、再加熱運転が終了すると(ステップS52でYes)、補助熱源機4において、再加熱用循環路41bの熱動弁46を閉弁し、再加熱用加熱ユニット4bによる温水循環路41の温水の加熱と再加熱用循環路41bの温水を循環させる循環ポンプ47の駆動を停止する(ステップS48)。   If the reheating operation is continued (No in step S52), the process returns to step S44 to calculate the amount of gas heat [kcal / sec], and when the reheating operation ends (Yes in step S52), the auxiliary In the heat source device 4, a circulation pump that closes the heat valve 46 of the reheating circulation path 41b and circulates the warm water in the warm water circulation path 41 by the reheating heating unit 4b and the hot water in the reheating circulation path 41b. The drive of 47 is stopped (step S48).

このように、熱媒体循環路7における放熱部70の下流側と上流側との1秒毎の温度差と1秒間に熱媒体循環路7を流れる熱媒体の流量とに基づいて算出した補助熱源熱量を積算して補助熱源総熱量を算出することにより、給湯停止時に行なった再加熱運転時に消費した熱量だけでなく、給湯運転中に行なった再加熱運転時に消費した熱量も除いた太陽熱熱量を算出することができる。   As described above, the auxiliary heat source calculated based on the temperature difference per second between the downstream side and the upstream side of the heat radiating section 70 in the heat medium circulation path 7 and the flow rate of the heat medium flowing in the heat medium circulation path 7 per second. By calculating the total heat quantity of the auxiliary heat source by integrating the heat quantity, the solar heat quantity excluding not only the heat quantity consumed during the reheating operation performed during the hot water supply stop but also the heat quantity consumed during the reheating operation performed during the hot water supply operation is calculated. Can be calculated.

1 貯湯式給湯システム
2 貯湯タンク
4 補助熱源機
6 給湯路
7 熱媒体循環路
8 液々熱交換部
9 太陽熱集熱器
10 制御装置
23 タンク温度検出器
31 循環ポンプ
41 温水循環路
41b 再加熱用循環路
43 リモコン
43a 表示部
54 給水温度検出器
67 水量センサ(給湯流量検出器)
68 混合温度検出器(出湯温度検出器)
70 放熱部
74a 上流側熱媒体温度検出器(第1熱媒体温度検出器)
74b 下流側熱媒体温度検出器(第2熱媒体温度検出器)
DESCRIPTION OF SYMBOLS 1 Hot water storage type hot water supply system 2 Hot water storage tank 4 Auxiliary heat source machine 6 Hot water supply path 7 Heat medium circulation path 8 Liquid heat exchange part 9 Solar heat collector 10 Controller 23 Tank temperature detector 31 Circulation pump 41 Hot water circulation path 41b For reheating Circulation path 43 Remote control 43a Display unit 54 Water supply temperature detector 67 Water amount sensor (hot water supply flow rate detector)
68 Mixing temperature detector (hot water temperature detector)
70 Heat Dissipation Section 74a Upstream Heat Medium Temperature Detector (First Heat Medium Temperature Detector)
74b Downstream heat medium temperature detector (second heat medium temperature detector)

Claims (5)

太陽熱を集熱する太陽熱集熱器と
湯水を貯湯する貯湯タンクと、
太陽熱集熱器と貯湯タンクとの間で熱媒体の循環経路を形成し、循環経路の一部を貯湯タンク内に配設して循環する熱媒体により貯湯タンク内の湯水を加熱する放熱部を備える熱媒体循環路と、
貯湯タンクに給水される給水温度を検出する給水温度検出器と、
貯湯タンクの出口に接続される給湯路を流れる湯水の出湯温度を検出する出湯温度検出器と、
貯湯タンクの出口に接続される給湯路を流れる湯水の給湯流量を検出する給湯流量検出器と、
熱媒体循環路を循環する熱媒体を熱交換加熱する温水が循環する温水循環路と、
温水循環路を循環する温水を加熱する補助熱源機と、
検出された給水温度と出湯温度と給湯流量とに基づいて給湯熱量を算出すると共に、温水循環路を循環する温水を補助熱源機で加熱した際に消費された補助熱源熱量を算出して、給湯熱量から給湯使用量に対応する補助熱源熱量を減算して給湯のために使用された太陽熱熱量を算出する制御手段と、
制御手段で算出した太陽熱熱量を表示する表示部とを備える太陽熱利用の貯湯式給湯システム。
A solar collector that collects solar heat, a hot water storage tank that stores hot water,
A heat dissipation circuit that forms a heat medium circulation path between the solar heat collector and the hot water storage tank, and heats the hot water in the hot water storage tank with a circulating heat medium by arranging a part of the circulation path in the hot water storage tank. A heat medium circuit comprising:
A feed water temperature detector for detecting a feed water temperature supplied to the hot water storage tank;
A tapping temperature detector for detecting tapping temperature of hot water flowing through a hot water supply path connected to the outlet of the hot water storage tank;
A hot water flow rate detector for detecting the hot water flow rate of hot water flowing through the hot water path connected to the outlet of the hot water storage tank;
A hot water circulation path through which hot water for heat exchange heating the heat medium circulating in the heat medium circulation path circulates;
An auxiliary heat source machine for heating the hot water circulating in the hot water circuit,
Calculates the hot water supply heat quantity based on the detected hot water temperature, tapping temperature and hot water flow rate, and calculates the auxiliary heat source heat quantity consumed when the hot water circulating in the hot water circulation path is heated by the auxiliary heat source machine. A control means for calculating the amount of solar heat used for hot water supply by subtracting the auxiliary heat source heat amount corresponding to the amount of hot water supply from the amount of heat;
A hot water storage hot water supply system using solar heat, comprising a display unit for displaying the amount of solar heat calculated by the control means.
請求項1に記載の太陽熱利用の貯湯式給湯システムにおいて、
貯湯タンク内のタンク湯水の温度を検出するタンク温度検出器を備え、
制御手段は、温水循環路を循環する温水により熱媒体循環路を循環する熱媒体の熱交換加熱が行なわれた場合に、熱媒体加熱開始時の貯湯タンク内のタンク湯水の検出温度と熱媒体加熱終了時の貯湯タンク内のタンク湯水の検出温度との温度差、及び、貯湯タンクに貯湯されている湯量に基づいて補助熱源熱量を算出する構成としている太陽熱利用の貯湯式給湯システム。
In the hot water storage type hot water supply system according to claim 1,
It has a tank temperature detector that detects the temperature of hot water in the hot water storage tank,
When the heat exchange heating of the heat medium circulating in the heat medium circulation path is performed by the hot water circulating in the hot water circulation path, the control means detects the detected temperature of the tank hot water in the hot water storage tank and the heat medium when the heat medium heating starts. A solar-powered hot water storage hot water supply system configured to calculate an auxiliary heat source heat amount based on a temperature difference from a detected temperature of hot water in a hot water storage tank at the end of heating and the amount of hot water stored in the hot water storage tank.
請求項1に記載の太陽熱利用の貯湯式給湯システムにおいて、
熱媒体循環路における熱媒体の温度を検出する熱媒体温度検出器を備え、
制御手段は、温水循環路を循環する温水により熱媒体循環路を循環する熱媒体の熱交換加熱が行なわれた場合に、所定時間経過毎に検出する熱媒体の温度と前記所定時間内に熱媒体循環路を流れる熱媒体の流量とに基づいて補助熱源熱量を算出する構成としている太陽熱利用の貯湯式給湯システム。
In the hot water storage type hot water supply system according to claim 1,
A heat medium temperature detector for detecting the temperature of the heat medium in the heat medium circuit;
When the heat exchange of the heat medium circulating in the heat medium circulation path is performed by the hot water circulating in the hot water circulation path, the control means detects the temperature of the heat medium detected every predetermined time and the heat within the predetermined time. A solar-powered hot water storage hot water supply system configured to calculate an auxiliary heat source heat quantity based on the flow rate of the heat medium flowing through the medium circulation path.
請求項3に記載の太陽熱利用の貯湯式給湯システムにおいて、
熱媒体温度検出器が、熱媒体循環路における放熱部の上流側の熱媒体の温度を検出する第1熱媒体温度検出器と、放熱部の下流側の熱媒体の温度を検出する第2熱媒体温度検出器であり、
制御手段は、熱媒体循環路における放熱部の下流側と上流側との所定時間毎の温度差と、前記所定時間内に熱媒体循環路を流れた熱媒体の流量とに基づいて補助熱源熱量を算出する構成としている太陽熱利用の貯湯式給湯システム。
In the hot water storage hot water supply system using solar heat according to claim 3,
The heat medium temperature detector detects the temperature of the heat medium upstream of the heat radiating part in the heat medium circuit, and the second heat detects the temperature of the heat medium downstream of the heat radiating part. A medium temperature detector,
The control means is based on the temperature difference for each predetermined time between the downstream side and the upstream side of the heat dissipating part in the heat medium circuit and the flow rate of the heat medium that has flowed through the heat medium circuit within the predetermined time. A hot water storage hot water supply system using solar heat.
請求項1から4の何れかに記載の太陽熱利用の貯湯式給湯システムにおいて、
制御手段は、算出された太陽熱熱量と二酸化炭素換算係数とにより二酸化炭素削減量を算出して、二酸化炭素削減量を表示部に表示させる構成としている太陽熱利用の貯湯式給湯システム。
In the hot water storage type hot water supply system using solar heat according to any one of claims 1 to 4,
The control means calculates the amount of carbon dioxide reduction based on the calculated amount of solar heat and the carbon dioxide conversion coefficient, and displays the amount of carbon dioxide reduction on the display unit.
JP2010013176A 2010-01-25 2010-01-25 Hot water storage hot water supply system using solar heat Expired - Fee Related JP5491878B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010013176A JP5491878B2 (en) 2010-01-25 2010-01-25 Hot water storage hot water supply system using solar heat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010013176A JP5491878B2 (en) 2010-01-25 2010-01-25 Hot water storage hot water supply system using solar heat

Publications (2)

Publication Number Publication Date
JP2011149662A JP2011149662A (en) 2011-08-04
JP5491878B2 true JP5491878B2 (en) 2014-05-14

Family

ID=44536806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010013176A Expired - Fee Related JP5491878B2 (en) 2010-01-25 2010-01-25 Hot water storage hot water supply system using solar heat

Country Status (1)

Country Link
JP (1) JP5491878B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6043538B2 (en) * 2011-08-10 2016-12-14 矢崎エナジーシステム株式会社 Flow rate calibration method, flow rate calibration device, and reduced heat amount calculation device
JP2013036712A (en) * 2011-08-10 2013-02-21 Yazaki Energy System Corp Device for calculating reduction heat amount and method for calculating flow rate
JP2014153849A (en) * 2013-02-07 2014-08-25 Tokyo Gas Co Ltd Shade simulation system
CN108286794A (en) * 2017-01-09 2018-07-17 芜湖美的厨卫电器制造有限公司 Water heater and its control method
JP6845759B2 (en) * 2017-07-14 2021-03-24 トヨタホーム株式会社 Calculation system
CN111998539B (en) * 2020-07-24 2023-12-15 华帝股份有限公司 Control method for intelligent preheating of zero-cooling water gas water heater
CN116006128B (en) * 2023-01-04 2023-11-28 河北瑞丁自动化设备有限公司 Paraffin preventing device for well bore of oil extraction well heated by solar energy

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5928282Y2 (en) * 1979-11-29 1984-08-15 松下電器産業株式会社 Hot water supply system using solar heat
JP2002147870A (en) * 2000-11-08 2002-05-22 Hitachi Chem Co Ltd Solar water heater
JP2003279144A (en) * 2002-03-25 2003-10-02 Toto Ltd Water heater
JP4287838B2 (en) * 2005-05-18 2009-07-01 リンナイ株式会社 Hot water storage hot water supply system
JP3140747U (en) * 2008-01-07 2008-04-10 秀次 西原 Solar heat storage tank with integrated calorimeter
JP5334876B2 (en) * 2009-05-19 2013-11-06 株式会社長府製作所 Solar water heating system and control method of solar water heating system

Also Published As

Publication number Publication date
JP2011149662A (en) 2011-08-04

Similar Documents

Publication Publication Date Title
JP5491878B2 (en) Hot water storage hot water supply system using solar heat
JP5461318B2 (en) Solar water heating system
JP5462009B2 (en) Solar water heating system
JP2005214452A (en) Hot water storage type water heater
JP2008232576A (en) Hot water supply apparatus
JP5537971B2 (en) Solar water heating system
JP2004144327A (en) Hot water storage type water heater
JP4670894B2 (en) Hot water storage water heater
JP4114930B2 (en) Heat pump water heater / heater
JP5200578B2 (en) Water heater
JP5546264B2 (en) Solar water heater
JP5577109B2 (en) Solar water heater
JP2004020013A (en) Hot water storage type hot water supply device
JP5537967B2 (en) Hot water storage hot water supply system using solar heat
JP2009293868A (en) Hot water supply system
JP2002147870A (en) Solar water heater
JP2004226011A (en) Storage type water heater
JP6088771B2 (en) Heat source equipment
JP5965731B2 (en) Hot water storage tank boiling method and hot water storage water heater
JP5317810B2 (en) Water heater
JP3869426B2 (en) Hot water storage water heater
JP5800490B2 (en) Heat source device, heat source control method, and heat source control program
JP5797616B2 (en) Water heater
JP5606141B2 (en) Heat source device and hot water supply device
JP5462007B2 (en) Solar water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140228

R150 Certificate of patent or registration of utility model

Ref document number: 5491878

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees