JP3836315B2 - 半導体メモリ集積回路 - Google Patents

半導体メモリ集積回路 Download PDF

Info

Publication number
JP3836315B2
JP3836315B2 JP2000349602A JP2000349602A JP3836315B2 JP 3836315 B2 JP3836315 B2 JP 3836315B2 JP 2000349602 A JP2000349602 A JP 2000349602A JP 2000349602 A JP2000349602 A JP 2000349602A JP 3836315 B2 JP3836315 B2 JP 3836315B2
Authority
JP
Japan
Prior art keywords
cell array
circuit
fuse
output
fuse circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000349602A
Other languages
English (en)
Other versions
JP2002157896A (ja
Inventor
秀夫 向井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2000349602A priority Critical patent/JP3836315B2/ja
Publication of JP2002157896A publication Critical patent/JP2002157896A/ja
Application granted granted Critical
Publication of JP3836315B2 publication Critical patent/JP3836315B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • For Increasing The Reliability Of Semiconductor Memories (AREA)
  • Dram (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、不良セル救済のための冗長回路方式を採用した半導体メモリ集積回路に関する。
【0002】
【従来の技術】
DRAM等の半導体メモリでは一般に、不良セル救済のために冗長回路方式が採用されている。冗長回路方式では、ノーマルセルアレイに対して冗長セルアレイを用意し、テストの結果ノーマルセルアレイに不良があった場合にこれを冗長セルアレイで置換する。不良セルの置換制御のためには、不良アドレスを記憶し、外部から供給されるアドレスと不良アドレスの一致検出を行って、置換制御信号を出力するような不良アドレス記憶回路が設けられる。不良アドレス記憶回路には通常、ヒューズ回路が用いられ、テストの結果に基づいてヒューズ回路のプログラミングが行われる。
【0003】
図13は、その様な冗長回路方式のDRAMの基本構成を示している。DRAMのコア部は、メモリセルアレイ1と、そのワード線WLの選択を行うロウデコーダ2と、ビット線BLの選択を行うカラムデコーダ3により構成される。メモリセルアレイ1は、大容量の場合、図では省略しているが、多くのバンク(或いはサブセルアレイ)に分けられ、各バンク毎に不良セルの置換を行うための冗長セルアレイが設けられる。
【0004】
不良アドレスを記憶するヒューズ回路4は、複数のヒューズセットFSの配列により構成される。図では、不良ワード線の置換制御を行うロウリダンダンシの場合を示しているが、ヒューズ回路4の各ヒューズセットFSには、各バンク内の不良ロウアドレスと、その不良ロウをどの冗長セルアレイで置換するかを決定するための情報をプログラミングするヒューズが用意される。ヒューズセットFSは、ノーマルセルアレイの活性、非活性を制御する信号SWLONと、冗長ロウデコーダの活性、非活性を制御する信号SRDactを出力する。これらの信号は、それぞれドライバ5,6を介して、ロウデコーダ(冗長ロウデコーダを含む)2に転送される。
【0005】
【発明が解決しようとする課題】
この様な冗長回路方式のDRAMにおいて、メモリセルアレイ1の容量が大きいとき、それに応じてヒューズ回路4は大きな面積を占める。具体的に、メモリセルアレイ1の容量が、1バンクにつき1024本のワード線と16本のスペアワード線、2048対のビット線で、16バンク用意されるとすると、ヒューズ回路4としては、例えば54個のヒューズセットFS<0>〜FS<53>が配列される。
【0006】
この様な多数のヒューズセットFSがメモリセルアレイ1のワード線方向に一列に配置されると、各ヒューズセットFSからの信号SWLON,SRDactは、位置に応じて大きく異なる距離を転送されることになる。各ヒューズセットにはアドレスの一致検出のためにアドレス信号も入るので、アドレス線も長い距離を走ることになる。この結果、配線遅延の影響が大きくなり、具体的にはワード線の選択立ち上げに直接影響し、アクセス時間が増大してしまう。
【0007】
この発明は、上記事情を考慮してなされたもので、不良アドレス記憶回路のレイアウトを改善して配線遅延によるアクセス時間増大を抑制した半導体メモリ集積回路を提供することを目的としている。
【0008】
【課題を解決するための手段】
この発明に係る半導体メモリ集積回路は、ノーマルセルアレイ及びこのノーマルセルアレイの不良セルを置換するための冗長セルアレイを有するメモリセルアレイと、前記ノーマルセルアレイの不良アドレスを記憶し外部から供給されるアドレスと不良アドレスの一致検出を行って前記ノーマルセルアレイの不良セルを前記冗長セルアレイで置換するための複数の記憶回路セットにより構成される不良アドレス記憶回路とを備え、前記不良アドレス記憶回路を構成する複数の記憶回路セットは、複数段の記憶回路列に分割され、各記憶回路列内の記憶回路セットが第1の方向に、前記複数段の記憶回路列が前記第1の方向と直交する第2の方向に並べられていることを特徴とする。
【0009】
この発明によると、複数の記憶回路セットからなる不良アドレス記憶回路を複数段の記憶回路列に分割して、これらの記憶回路列を記憶回路セットの配列方向と直交する方向に配列することにより、従来のように複数の記憶回路セットを一列に並べる場合に比べて、各記憶回路セットからメモリセルアレイ領域まで配設される制御信号線の配線遅延を小さいものとすることができる。これにより、冗長回路方式を採用した半導体メモリのアクセス時間の増大を抑制することができる。
【0010】
メモリセルアレイは例えば、少なくとも二つのセルアレイ領域に分けられ、各セルアレイ領域がノーマルセルアレイとこのノーマルセルアレイの不良セルを置換するための冗長セルアレイとを有するものとする。このとき不良アドレス記憶回路を構成する複数段の記憶回路列は、例えばそれぞれ各セルアレイ領域に対応して、各セルアレイ領域内の不良セル置換を行うものとして配置される。
またこの場合、複数段の記憶回路列の一部の記憶回路セットが、複数のセルアレイ領域の不良セル置換に対応可能とすることもできる。
【0011】
各記憶回路セットは、具体的には、不良アドレスを記憶するための第1のヒューズ回路と、記憶回路セットの使用の可否を指定するための第2のヒューズ回路と、冗長セルアレイの一つを選択するための第3のヒューズ回路と、第1のヒューズ回路の出力と外部から供給されるアドレスとの一致検出を行う比較器と、この比較器の出力と第2のヒューズ回路の出力の積をとって置換制御信号を出力するための論理ゲートと、この論理ゲートの出力により活性化されて第3のヒューズ回路のデータをデコードしてスペア選択信号を出力するためのデコーダとを備えて構成される。
【0012】
また、複数のセルアレイ領域に対応可能に設定される一部の記憶回路セットは例えば、不良アドレスを記憶するための第1のヒューズ回路と、複数のセルアレイ領域を指定するための第2のヒューズ回路と、冗長セルアレイの一つを選択するための第3のヒューズ回路と、第1のヒューズ回路の出力と外部から供給されるアドレスとの一致検出を行う比較器と、この比較器の出力と第2のヒューズ回路の各一つずつの出力との積をとって複数のセルアレイ領域に対する各置換制御信号を出力するための複数の論理ゲートと、これらの論理ゲートの出力によりそれぞれ活性化されて第3のヒューズ回路のデータをデコードして対応するセルアレイ領域に対する各スペア選択信号を出力するための複数のデコーダとを備えて構成される。
【0013】
或いは、複数のセルアレイ領域に対応可能に設定される一部の記憶回路セットは、不良アドレスを記憶するための第1のヒューズ回路と、記憶回路セットの使用の可否を指定するための第2のヒューズ回路と、冗長セルアレイの一つを選択するための第3のヒューズ回路と、第1のヒューズ回路の出力と外部から供給されるアドレスとの一致検出を行う比較器と、この比較器の出力と第2のヒューズ回路の出力の積をとって置換制御信号を出力するための論理ゲートと、この論理ゲートの出力により活性化されて第3のヒューズ回路のデータをデコードしてスペア選択信号を出力するためのデコーダとを有し、且つ、論理ゲート及びデコーダの出力信号配線が、複数のセルアレイ領域のいずれかに対する置換制御信号線及びスペア選択信号線として、マスクオプションにより配設されるように構成することもできる。
【0014】
【発明の実施の形態】
以下、図面を参照して、この発明の実施の形態を説明する。
[実施の形態1]
図1は、この発明をDRAMを含む半導体集積回路に適用した実施の形態の要部構成を示している。メモリセルアレイ10は、この実施の形態の場合、上部セルアレイ10aと下部セルアレイ10bに分けられ、それぞれが8個のバンクBANK<0>〜<7>により構成されている。上部セルアレイ10aと下部セルアレイ10bとで同じ番号が割り当てられたバンクは、同時に活性化され、プリチャージされる。あるバンクの組が活性化され、その後プリチャージされるとき、そのプリチャージが始まる前に別のバンクの組が活性化されることもあり得る。
【0015】
図2は、図1の上部セルアレイ10aの一つのバンクBANK<i>に着目して、具体的な構成を示している。バンクBANK<i>は、通常のワード線WLにより構成される範囲のノーマルセルアレイ11と、不良ワード線を置換するためのスペアワード線SWLにより構成される冗長セルアレイ12とから構成される。具体的に一つのバンクBANK<i>は、図3に示すように、1024本のワード線WLと、16本のスペアワード線SWLを含み、これらと交差して配設された2048対のビット線BL,bBLを含む。ビット線センスアンプは、ビット線BL,bBLの両側に交互に配置されて、センスアンプ列13,14を構成する。
【0016】
メモリセルアレイ10の一辺に沿って、ワード線を選択するロウデコーダ列20が配置され、他の一辺に沿ってビット線を選択するカラムデコーダ30が配置されている。ロウデコーダ列20は、図2に示すように、一つのバンクBANK<i>について、256個のロウデコーダRD<0>〜<255>と、4個のスペアロウデコーダSRD<0>〜<3>により構成される。各ロウデコーダRDは、4本のワード線WLを受け持ち、各スペアロウデコーダSRDも4本のスペアワード線SWLを受け持つことになる。
【0017】
図1に示すように、不良ロウアドレスの置換制御を行う不良アドレス記憶回路であるヒューズ回路40は、2段のヒューズ回路列40a,40bにより構成されている。上部のヒューズ回路列40aは、上部セルアレイ10aの不良ロウアドレスを記憶して、外部から供給されるロウアドレスRA及びバンクアドレスBAが入り、これと不良アドレスとの一致検出を行う27個のヒューズセットFS<0>T〜FS<26>Tにより構成されている。下部のヒューズ回路列40bは、下部セルアレイ10bの不良ロウアドレスを記憶して、外部から供給されるアドレスと不良アドレスとの一致検出を行う27個のヒューズセットFS<0>B〜FS<26>Bにより構成されている。
【0018】
即ち、通常一列に配置されているヒューズセットが、この実施の形態の場合は、2分割されて、メモリセルアレイ10のワード線方向に並ぶ27個ずつのヒューズセットFSからなるヒューズ回路列40a,40bがビット線方向に2段に重ねられた状態にレイアウトされている。
【0019】
ヒューズ回路列40a,40bの各ヒューズセットは、上述したアドレス一致検出による置換制御信号bSWLONT,bSWLONBと、スペア選択信号SRDact<0:3>T,SRDact<0:3>Bを出力する。置換制御信号bSWLONT,bSWLONBは、不良アドレスでロウデコーダRDを非活性にし、代わりにスペアロウデコーダSRDを活性にする信号である。従ってこれらの置換制御信号bSWLONT,bSWLONBは、中継ドライバ60a,60bによりそれぞれ、相補信号(NWLONT,SWLONT),(NWLONB,SWLONB)に変換されて、上部セルアレイ10a,下部セルアレイ10bのロウデコーダRD,スペアロウデコーダSRDに活性化信号として供給される。
【0020】
具体的に、上部セルアレイ10aについて説明すれば、アドレス一致がない場合には、置換制御信号bSWLONTは“H”である。アドレス一致が検出されると、置換制御信号bSWLONTは“L”となり、中継ドライバ60aにより、ノーマルセレアレイ11を非活性にする信号NWLONT=“L”と、冗長セルアレイ12を活性にする信号SWLONT=“H”が得られる。下部セルアレイ10bについても同様である。
【0021】
スペア選択信号SRDact<0:3>T,SRDact<0:3>Bは、上部セルアレイ10aについて図2に具体的に示したように、4個のスペアロウデコーダSRD<0:3>に対応して、アドレス一致が検出されたときに一つのスペアロウデコーダを選択する信号として出力される。このスペア選択信号SRDact<0:3>T,SRDact<0:3>Bは、それぞれ同相再駆動する中継ドライバ50a,50bを介して、上部セルアレイ10a,下部セルアレイ10bの各バンク内の4個のスペアロウデコーダSRD<0:3>のいずれかを活性化する信号となる。
【0022】
ヒューズ回路40の各ヒューズセットは同じように構成される。代表的に、ヒューズ回路列40aのヒューズセットFS<j>Tについて、その構成を示すと、図4のようになる。ヒューズはf0−f13の14本である。このうち、ヒューズf0−f10の部分は、上部セルアレイ10aの不良アドレスを記憶するためのヒューズ回路を構成している。ヒューズf11はこのヒューズセットを使用するか否かを指定するためのヒューズ回路である。残りのヒューズf12とf13は、バンク内の4つのスペアロウデコーダSRDのいずれで置換するかを決定するためのヒューズ回路を構成している。
【0023】
不良アドレス指定用のヒューズf0−f10のうち、f0−f7は、バンク内の256個のロウデコーダのどれを非活性にするかを指定するものであり、残りの3本が8個のバンクBANK<0>−<7>の一つを選択するアドレス情報を記憶する。
【0024】
ヒューズはいずれも、プリチャージ用PMOSトランジスタQPと選択用NMOSトランジスタQNと共に、電源VCCと接地VSS間に直列接続されている。ヒューズデータは、PMOSトランジスタQPをオン、NMOSトランジスタQNをオフとして、プリチャージを行い、PMOSトランジスタQPをオフ、NMOSトランジスタQNをオンとして読み出しが行われる。ヒューズが切断されていれば、”H”が出力され、切断されていなければ”L”が出力される。
【0025】
不良アドレス指定用のヒューズf0−f10の出力は、比較器401により、ロウアドレスRA<0>−RA<7>及びバンクアドレスBA<0>−BA<2>との一致検出が行われる。一致が検出されたとき、比較器401の出力は、”H”になるが、ANDゲート402によって、全11個の比較器401の出力とイネーブルヒューズf11の出力の積がある制御パルス期間とられる。従って、入力アドレスとヒューズデータの一致が検出されかつ、このヒューズセットがイネーブルであるときにのみ、ANDゲート402に”H”の出力が得られる。
【0026】
他の26個のヒューズセットからも同様の出力が出され、計27個の出力信号(すべて”L”か又は一つだけ”H”となる)がNORゲート404に入り、置換すべき不良アドレスにおいて、置換制御信号bSWONTが得られる。即ち、上部セルアレイ10aをアクセスしたとき、置換の必要がある場合に、置換制御信号bSWLONT=”L”が出力される。
【0027】
ANDゲート402の出力は、デコーダ403に活性化信号として入る。デコーダ403は、ヒューズf12,f13のデータをデコードして、4つの出力の一つを”H”にする。これが、4つのスペアデコーダSRDの一つを選択する信号である。このデコーダ403の4出力も他の26個のヒューズセットにあり、これらの論理和がORゲート405によりとられて、スペア選択信号SRDact<0:3>Tが発生される。
【0028】
従って、不良ロウ置換の必要があり、置換制御信号bSWLONTが”L”になる場合に、スペア選択信号SRDact<0:3>Tのいずれか一つが”H”になり、スペアロウデコーダSRDの選択がなされることになる。
【0029】
この実施の形態においては、図1に示したように、ヒューズ回路40を従来のようにワード線方向一列ではなく、ワード線WLと直交する方向に重ねた2段のヒューズ回路列40a,40bとして配置し、それぞれが上部セルアレイ10a,下部セルアレイ10bを担当するようにしている。このような配置を採用することにより、ヒューズ回路40からロウデコーダ列20までに配設されるアドレス線、置換制御信号線及びスペア選択信号線の配線長の差が小さくなり、配線遅延によるアクセス時間の増大を抑制することが可能になる。
【0030】
[実施の形態2]
図5は、別の実施の形態によるDRAM部の構成を図1に対応させて示している。近年の半導体メモリの開発においては、同一世代の技術を用いた派生品展開が頻繁に行われる。ある容量のDRAMを開発すると同時に、その半分の容量のDRAMを開発するということも行われる。図5の例は、図1のDRAMの上部セルアレイ10a、下部セルアレイ10bの一方のみ、即ち8個のバンクBANK<0>〜<7>でメモリセルアレイ10を構成した例である。
【0031】
この場合、ヒューズ回路40も本来半分の容量になっていいはずであるが、ここではヒューズ回路40は、図1と同じ構成のままとしている。これは、派生品展開の際の設計効率をよくするために、できるだけ手直しを少なくするという配慮に基づく。図1と同様に、ヒューズ回路40は、上下のヒューズ回路列40a,40bの2段構成として、配線遅延の影響を低減している。上下のヒューズ回路列40a,40b共に、メモリセルアレイ10の不良置換を担当することができる。
【0032】
上部のヒューズ回路列40aのヒューズセットFS<0>〜FS<26>からは、置換制御信号bSWLONTとスペア選択信号SRDact<0:3>Tが出力され、下部のヒューズ回路列40bのヒューズセットFS<27>〜FS<53>からは、置換制御信号bSWLONBとスペア選択信号SRDact<0:3>Bが出力される。各ヒューズセットの構成は、図4に示したものと同じである。
【0033】
置換制御信号bSWLONT,bSWLONBは、ANDゲート80に入り、積がとられて、中継ドライバ60に入る。この中継ドライバ60により、ノーマル置換制御信号NWLONとスペア置換制御信号SWLONが発生される。また、スペア選択信号SRDact<0:3>T,SRDact<0:3>BはORゲート70を介し、中継ドライバ50を介して、メモリセルアレイ10の各バンクの4つのスペアロウデコーダSRD<0:3>に入る。
【0034】
先の実施の形態と同様に、ヒューズ回路40は不良アドレスを記憶し、外部から供給されるアドレスと不良アドレスの一致検出を行う。54個のヒューズセットのいずれかで一致検出がなされると、置換制御信号bSWLONT又はbSWLONBが”L”になり、また、スペア選択信号SRDact<0:3>T,SRDact<0:3>Bのいずれか一つが”H”となる。従って、不良アドレスがアクセスされた時に、ノーマル置換制御信号NWLONが”L”、スペア置換制御信号SWLONが”H”となってロウデコーダが非活性になり、スペア選択信号SRDact<0:3>T,SRDact<0:3>Bにより一つのスペアロウデコーダが活性になる。
【0035】
不良アドレスがアクセスされた場合以外は、置換制御信号bSWLONT,bSWLONBは”H”であり、ノーマル置換制御信号NWLONが”H”、スペア置換制御信号SWLONが”L”であって、選択したアドレスのロウデコーダがそのまま活性化される。
【0036】
この実施の形態によると、先の実施の形態と同様に、配線遅延の影響を低減できるという効果が得られるのみならず、先の実施の形態の派生品として簡単な設計で容量の小さいDRAMを得ることができる。また、先の実施の形態に比べてメモリセルアレイの容量が半分であるが、ヒューズ回路の容量が変わらないため、先の実施の形態に比べて高い救済効率が得られる。
【0037】
[実施の形態3]
図6は、別の実施の形態によるDRAMの構成を、図1に対応させて示している。図1と基本構成は同じであり、ヒューズ回路40もそれぞれ27個のヒューズセットからなる2段のヒューズ回路列列40a,40bにより構成されている。但し、ヒューズ回路列40a,40bのうち、それぞれ二つずつ、計4個のヒューズセットFS<0>TB〜FS<3>TBが、他のヒューズセットと異なり、上部セルアレイ10aと下部セルアレイ10bの両方に対応可能とされている。
【0038】
即ち、ヒューズセットFS<0>TB〜FS<3>TBが他のヒューズセットと異なる点は、第1に、ヒューズ回路列40aの二つのヒューズセットFS<0>TB,FS<1>TBは、中継ドライバ60aに入る上部セルアレイ10aのための置換制御信号bSWLONTを出力する端子の他、中継ドライバ60bに入る下部セルアレイ10bのための置換制御信号bSWLONBを出力する端子を有する。同様に、ヒューズ回路列40bの二つのヒューズセットFS<2>TB,FS<3>TBは、中継ドライバ60bに入る下部セルアレイ10bのための置換制御信号bSWLONBを出力する端子の他、中継ドライバ60aに入る上部セルアレイ10aのための置換制御信号bSWLONTを出力する端子を有する。
【0039】
第2に、ヒューズ回路列40aの二つのヒューズセットFS<0>TB,FS<1>TBは、中継ドライバ50aに入る上部セルアレイ10aのためのスペア選択信号SRDact<0:3>Tを出力する端子の他、中継ドライバ50bに入る下部セルアレイ10bのためのスペア選択信号SRDact<0:3>Tを出力する端子を有する。同様に、ヒューズ回路列40bの二つのヒューズセットFS<2>TB,FS<3>TBは、中継ドライバ50bに入る下部セルアレイ10bのためのスペア選択信号SRDact<0:3>Bを出力する端子の他、中継ドライバ50aに入る上部セルアレイ10aのためのスペア選択信号SRDact<0:3>Tを出力する端子を有する。
残りの25個ずつのヒューズセットは、図4と同様である。
【0040】
近年、微細化に伴うプロセス上の困難から、メモリセルアレイの上端に欠陥が多いとか、マスクが完璧に作成できない、等の理由により、欠陥の偏在が予想以上の場合が生じる。この場合、平均的な欠陥の発生確率に基づいてメモリセルアレイの上半分と下半分に対応するヒューズセットを十分に設けても、ヒューズセットが不足する事態が生じうる。この実施の形態は、いずれの救済領域にも対応できるヒューズセットを混在させることにより、この様な事態に対処可能としている。
【0041】
ロウアドレスRAやバンクアドレスBAがメモリセルアレイ10の上部セルアレイ10aと下部セルアレイ10bに共通の場合に、これらで上部セルアレイ10aと下部セルアレイ10bの識別はできない。従って、ヒューズセットFS<0>TB〜FS<3>TBにおいては、上部セルアレイ10aと下部セルアレイ10bを識別する情報をヒューズデータとして記憶する。
【0042】
そして、上部セルアレイ10a用としてセットされた場合には、入力アドレスと不良アドレスが一致したときに置換制御信号bSWLONTを”L”、bSWLONBを”H”のままとし、上部用のスペア選択信号SRDact<0:3>Tの一つを”H”とする。このとき、下部用のスペア選択信号SRDact<0:3>Bは”L”のままである。また下部セルアレイ10b用としてセットされた場合には、入力アドレスと不良アドレスが一致したときに置換制御信号bSWLONBを”L”、bSWLONTを”H”のままとし、下部用のスペア選択信号SRDact<0:3>Bの一つを”H”とする。このとき、上部用のスペア選択信号SRDact<0:3>Tは”L”のままである。
【0043】
図7は具体的に、図6におけるヒューズセットFS<0>TB〜FS<3>TBの一つの構成を、先の実施の形態の図4に対応させて示している。ヒューズf0〜f14は、図4に比べて一つ多い。これらのうち、ヒューズf0〜f10は、図4の場合と同様、不良アドレス指定用である。ヒューズf11は、このヒューズセットを上部セルアレイ10a用として指定するためのもの、ヒューズf12は、下部セルアレイ10b用として指定するためのものである。ヒューズf13,f14は、4つのスペアロウデコーダの一つを選択する情報を記憶するものである。
【0044】
そして、不良アドレス一致検出により置換制御信号を出力するためのANDゲートとしては、比較器401の出力とヒューズf11のデータの積をとるANDゲート402−1と、比較器401の出力とヒューズf12のデータの積をとるANDゲート402−2とが用意されている。これらのANDゲート402−1,402−2の出力は、それぞれ他のヒューズセットの対応する出力と共に、NORゲート404−1,404−2に入り、上部セルアレイ10a,下部セルアレイ10b用の置換制御信号bSWLONT,bSWLONBを出力するようになっている。
【0045】
そして、ANDゲート402−1の出力により活性化されて、ヒューズf13,f14のデータをデコードするデコーダ403−1と、ANDゲート402−2の出力により活性化されて、ヒューズf13,f14のデータをデコードするデコーダ403−2とが設けられている。これらのデコーダ403−1,403−2の出力は、それぞれ他のヒューズセットの対応するデコーダ出力と共に、ORゲート405−1,405−2に入り、上部セルアレイ10a用のスペア選択信号SRDact<0:3>T,下部セルアレイ10b用のスペア選択信号SRDact<0:3>Bを出力するようになっている。
【0046】
従ってヒューズf11を切断して、このヒューズセットが上部セルアレイ10a用としてセットされた場合には、不良アドレスがアクセスされたとき、置換制御信号bSWLONTが”L”で、上部用のスペア選択信号SRDact<0:3>Tの一つが”H”となる。これにより不良ロウの置換制御がなされる。ヒューズf12を切断して下部セルアレイ10b用としてセットされた場合には、不良アドレスがアクセスされたとき、置換制御信号bSWLONBが”L”となり、下部用のスペア選択信号SRDact<0:3>Bの一つが”H”となって、不良ロウの置換制御がなされる。
【0047】
この実施の形態によると、実施の形態1と同様の効果が得られる他、ヒューズ回路の不良救済範囲が広くなる結果、メモリセルアレイの欠陥の偏在が大きい場合にも救済が可能になり、救済効率の向上が図られる。
【0048】
[実施の形態4]
図8は、図7のヒューズセットと同様の機能を、一つヒューズを減らして実現する実施の形態である。即ち、図7においては、ヒューズf11,f12をそれぞれ、上部セルアレイ10a,下部セルアレイ10bに対応させている。これに対して、図8の構成では、一つのヒューズf11を上部セルアレイ10aと下部セルアレイ10bとに対応可能とする。
【0049】
そのために、一つのANDゲート402のNORゲート404−1,404−2への接続配線を、実線で示す配線と破線で示す配線とでマスクオプションにより切り換え可能としている。同様に、ANDゲート402の出力により活性化される一つのデコーダ403の出力のORゲート405−1,405−2への接続配線を、実線で示す配線と破線で示す配線とでマスクオプションにより切り換え可能としている。
ヒューズf12とf13とが、4つのスペアロウデコーダの一つを選択する情報を記憶するもので、その出力がデコーダ403に入る。
【0050】
この様に、一つのヒューズセットの異なる救済領域への割り当てを、ヒューズによらず、マスクオプションにより一部の配線接続を変更することで、変更することができる。即ち、ヒューズ、ANDゲート及びデコーダと一つずつ減らして、図7のヒューズセットと同様の機能を実現することができる。
【0051】
[実施の形態5]
図9は、別の実施の形態による構成を、図1に対応させて示している。図1の実施の形態では、ヒューズ回路40は、2段のヒューズ回路列40a,40bが、メモリセルアレイ10のビット線方向に重ねられ、各段のヒューズセットはワード線方向に配列されている。これに対して、図9では、ヒューズ回路40の配置を、図1の場合に対して90°回転させた状態にしている。即ち、ヒューズ回路40の2段のヒューズ回路列40a,40bは、メモリセルアレイ10のワード線方向に重ねられ、各段のヒューズセットはビット線方向に配列されている。その他の構成は、図1と同様である。
【0052】
実際のヒューズ回路のレイアウトは、メモリセルアレイ10とそのデコード回路部を含むコア回路に対して、周辺回路として、集積回路チップ上で最適決定される。従って、図1とはヒューズ回路列の方向が直交する図9のレイアウトもあり得る。この場合も、ヒューズ回路列を一列ではなく、2段構成とすることにより、ヒューズ回路40からロウデコーダRDまでの配線の遅延を小さくすることができ、先の実施の形態と同様の効果が得られる。
図9に示すヒューズ回路40のレイアウトは、図6の実施の形態で説明した構成のヒューズ回路40に対しても同様に適用可能である。
【0053】
[実施の形態6]
図10は、更に別の実施の形態による構成を、図1及び図9に対応させて示している。この実施の形態の場合、メモリセルアレイ10のロウデコーダ列20とは反対側にヒューズ回路40を配置している。ヒューズ回路40の構成及び、メモリセルアレイ10との関係での配列方向は、図9と同様である。ヒューズ回路40からの信号線は、上部セルアレイ10aと下部セルアレイ10bの間を通過して、ロウデコーダ列20にまで導かれる。
この場合も、ヒューズ回路列を一列ではなく、2段構成とすることにより、ヒューズ回路40からロウデコーダRDまでの配線の遅延を小さくすることができ、先の実施の形態と同様の効果が得られる。
図10に示すヒューズ回路40のレイアウトは、図6の実施の形態で説明した構成のヒューズ回路40を用いた場合にも同様に適用可能である。
【0054】
[実施の形態7]
図11は、更に別の実施の形態による構成を、図1に対応させて示している。この実施の形態の場合、メモリセルアレイ10は、それぞれが例えば8バンクにより構成された上部セルアレイ10a、中間セルアレイ10b及び下部セルアレイ10cの3段構成となっている。これに対応して、ヒューズ回路40は、上部ヒューズ回路列40a、中間ヒューズ回路列40b及び下部ヒューズ回路列40cの3段構成としている。
【0055】
各ヒューズ回路列40a,40b,40cは、それぞれ27個ずつのヒューズセットFS<0>T〜FS<26>T,FS<0>M〜FS<26>M,FS<0>B〜FS<26>Bにより構成されている。そして、各ヒューズ回路列40a,40b,40cから得られる置換制御信号bSWLONT,bSWLONM,bSWLONBは、それぞれ中継ドライバ60a,60b,60cにより、相補信号に変換されて、上部セルアレイ10a,中間セルアレイ10b,下部セルアレイ10cのロウデコーダ部に送られる。
【0056】
同様に、各ヒューズ回路列40a,40b,40cから得られるスペア選択信号SRDact<0:3>T,SRDact<0:3>M,SRDact<0:3>Bは、それぞれ中継ドライバ50a,50b,50cを介して、上部セルアレイ10a,中間セルアレイ10b,下部セルアレイ10cのロウデコーダ部に送られる。
【0057】
この様に、メモリセルアレイ10の容量が大きくなり、それに伴ってヒューズセット数が多くなる場合には、ヒューズ回路40を2段構成に限らず、3段構成とすることにより、配線遅延の影響をより効果的に低減することが可能になる。更に、4段以上のヒューズ回路列として構成することも可能である。
【0058】
[実施の形態8]
図12は、更に別の実施の形態による構成を、図1に対応させて示している。この実施の形態の場合、メモリセルアレイ10は、図1と同様に上部セルアレイ10aと下部セルアレイ10bにより構成されているが、ヒューズ回路40を3段のヒューズ回路列40a,40b,40cにより構成している。
【0059】
3段のヒューズ回路列40a,40b,40cは例えば、いずれも24個のヒューズセットにより構成されるものとする。上段ヒューズ回路列40aの24個のヒューズセットFS<0>T〜FS<23>Tと、中段の半分のヒューズセットFS<24>T〜FS<35>Tとが、上部セルアレイ10aの不良救済用である。中段の残り半分のヒューズセットFS<0>B〜FS<11>Bと、下段ヒューズ回路列40cの24個のヒューズセットFS<12>T〜FS<35>Tとが、下部セルアレイ10bの不良救済用である。
【0060】
即ち、ここまでの実施の形態では、ヒュース回路40を複数段のヒューズ回路列で構成とする場合に、一段のヒューズ回路列がメモリセルアレイの同じ救済領域に対応するものとしたが、この実施の形態では、一段のヒューズ回路列をメモリセルアレイの異なる救済領域に対応させるようにしている。それ以外は、図1の実施の形態と同様である。
この実施の形態によっても、先の実施の形態と同様の効果が得られる。
【0061】
以上においては、専らDRAMを説明したが、この発明はこれに限られるものではなく、SRAM,EEPROM等の他の各種半導体メモリを含む集積回路に同様に適用することが可能である。
【0062】
【発明の効果】
以上述べたようにこの発明によれば、複数の記憶回路セットからなる不良アドレス記憶回路を複数段の記憶回路列に分割して重ねることにより、従来のように複数の記憶回路セットを一列に並べる場合に比べて、各記憶回路セットからデコード回路に接続される制御信号線の配線遅延を小さいものとすることができる。これにより、冗長回路方式を採用した半導体メモリのアクセス時間の増大を抑制することができる。
【図面の簡単な説明】
【図1】この発明の実施の形態によるDRAMの要部構成を示す図である。
【図2】同実施の形態の一つのバンクと一つのヒューズ回路列に着目した具体構成を示す図である。
【図3】同実施の形態の一つのバンクの内部構成を示す図である。
【図4】同実施の形態の一つのヒューズセットの構成を示す図である。
【図5】他の実施の形態によるDRAMの要部構成を示す図である。
【図6】他の実施の形態によるDRAMの要部構成を示す図である。
【図7】図6の実施の形態において複数救済領域に対応させたヒューズ回路の構成を示す図である。
【図8】図7の構成を変形した実施の形態を示す図である。
【図9】他の実施の形態によるDRAMの要部構成を示す図である。
【図10】他の実施の形態によるDRAMの要部構成を示す図である。
【図11】他の実施の形態によるDRAMの要部構成を示す図である。
【図12】他の実施の形態によるDRAMの要部構成を示す図である。
【図13】従来のDRAMのメモリセルアレイとヒューズ回路の関係を示すである。
【符号の説明】
10…メモリセルアレイ、20…ロウデコーダ列、30…カラムデコーダ、40…ヒューズ回路、40a,40b…ヒューズ回路列、FS<0>T〜FS<26>T,FS<0>B〜FS<26>B…ヒューズセット、50a,50b,60a,60b…中継ドライバ、401…比較器、402…ANDゲート、403…デコーダ、404…NORゲート、405…ORゲート。

Claims (8)

  1. ノーマルセルアレイ及びこのノーマルセルアレイの不良セルを置換するための冗長セルアレイを有するメモリセルアレイと、
    前記ノーマルセルアレイの不良アドレスを記憶し外部から供給されるアドレスと不良アドレスの一致検出を行って前記ノーマルセルアレイの不良セルを前記冗長セルアレイで置換するための複数の記憶回路セットにより構成される不良アドレス記憶回路とを備え、
    前記不良アドレス記憶回路を構成する複数の記憶回路セットは、複数段の記憶回路列に分割され、各記憶回路列内の記憶回路セットが第1の方向に、前記複数段の記憶回路列が前記第1の方向と直交する第2の方向に並べられている
    ことを特徴とする半導体メモリ集積回路。
  2. 前記メモリセルアレイは、少なくとも二つのセルアレイ領域に分けられ、各セルアレイ領域がノーマルセルアレイとこのノーマルセルアレイの不良セルを置換するための冗長セルアレイとを有し、且つ
    前記不良アドレス記憶回路を構成する複数段の記憶回路列は、それぞれ前記各セルアレイ領域に対応して、各セルアレイ領域内の不良セル置換を行うものとして配置されている
    ことを特徴とする請求項1記載の半導体メモリ集積回路。
  3. 前記複数段の記憶回路列の一部の記憶回路セットが、複数のセルアレイ領域の不良セル置換に対応可能とされている
    ことを特徴とする請求項2記載の半導体メモリ集積回路。
  4. 前記第1の方向は、前記メモリセルアレイのワード線方向であり、前記第2の方向は、前記メモリセルアレイのビット線方向である
    ことを特徴とする請求項1記載の半導体メモリ集積回路。
  5. 前記第1の方向は、前記メモリセルアレイのビット線方向であり、前記第2の方向は、前記メモリセルアレイのワード線方向である
    ことを特徴とする請求項1記載の半導体メモリ集積回路。
  6. 前記各記憶回路セットは、
    不良アドレスを記憶するための第1のヒューズ回路と、
    記憶回路セットの使用の可否を指定するための第2のヒューズ回路と、
    前記冗長セルアレイの一つを選択するための第3のヒューズ回路と、
    前記第1のヒューズ回路の出力と外部から供給されるアドレスとの一致検出を行う比較器と、
    この比較器の出力と前記第2のヒューズ回路の出力の積をとって置換制御信号を出力するための論理ゲートと、
    この論理ゲートの出力により活性化されて前記第3のヒューズ回路のデータをデコードしてスペア選択信号を出力するためのデコーダとを有する
    ことを特徴とする請求項1記載の半導体メモリ集積回路。
  7. 前記一部の記憶回路セットは、
    不良アドレスを記憶するための第1のヒューズ回路と、
    前記複数のセルアレイ領域を指定するための第2のヒューズ回路と、
    前記冗長セルアレイの一つを選択するための第3のヒューズ回路と、
    前記第1のヒューズ回路の出力と外部から供給されるアドレスとの一致検出を行う比較器と、
    この比較器の出力と前記第2のヒューズ回路の各一つずつの出力との積をとって前記複数のセルアレイ領域に対する各置換制御信号を出力するための複数の論理ゲートと、
    これらの論理ゲートの出力によりそれぞれ活性化されて前記第3のヒューズ回路のデータをデコードして対応するセルアレイ領域に対する各スペア選択信号を出力するための複数のデコーダとを有する
    ことを特徴とする請求項3記載の半導体メモリ集積回路。
  8. 前記一部の記憶回路セットは、
    不良アドレスを記憶するための第1のヒューズ回路と、
    記憶回路セットの使用の可否を指定するための第2のヒューズ回路と、
    前記冗長セルアレイの一つを選択するための第3のヒューズ回路と、
    前記第1のヒューズ回路の出力と外部から供給されるアドレスとの一致検出を行う比較器と、
    この比較器の出力と第2のヒューズ回路の出力の積をとって置換制御信号を出力するための論理ゲートと、
    この論理ゲートの出力により活性化されて前記第3のヒューズ回路のデータをデコードしてスペア選択信号を出力するためのデコーダとを有し、且つ、
    前記論理ゲート及びデコーダの出力信号配線は、複数のセルアレイ領域のいずれかに対する置換制御信号線及びスペア選択信号線として、マスクオプションにより配設される
    ことを特徴とする請求項3記載の半導体メモリ集積回路。
JP2000349602A 2000-11-16 2000-11-16 半導体メモリ集積回路 Expired - Fee Related JP3836315B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000349602A JP3836315B2 (ja) 2000-11-16 2000-11-16 半導体メモリ集積回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000349602A JP3836315B2 (ja) 2000-11-16 2000-11-16 半導体メモリ集積回路

Publications (2)

Publication Number Publication Date
JP2002157896A JP2002157896A (ja) 2002-05-31
JP3836315B2 true JP3836315B2 (ja) 2006-10-25

Family

ID=18822976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000349602A Expired - Fee Related JP3836315B2 (ja) 2000-11-16 2000-11-16 半導体メモリ集積回路

Country Status (1)

Country Link
JP (1) JP3836315B2 (ja)

Also Published As

Publication number Publication date
JP2002157896A (ja) 2002-05-31

Similar Documents

Publication Publication Date Title
US6519192B2 (en) Semiconductor memory device having a large band width and allowing efficient execution of redundant repair
KR100790442B1 (ko) 글로벌 리던던시를 갖는 메모리소자 및 그 동작 방법
US5555212A (en) Method and apparatus for redundancy word line replacement in a semiconductor memory device
US6314030B1 (en) Semiconductor memory having segmented row repair
US6707730B2 (en) Semiconductor memory device with efficient and reliable redundancy processing
KR100368367B1 (ko) 반도체 기억 장치
JPH0817197A (ja) 半導体記憶装置
JP3103068B2 (ja) 修復可能半導体メモリ・デバイスでの冗長ワード線置換のための方法および装置
JP2002015593A (ja) 半導体記憶装置
JPH11250688A (ja) 半導体記憶装置
US7027339B2 (en) Memory device employing open bit line architecture for providing identical data topology on repaired memory cell block and method thereof
JPH05242693A (ja) 半導体記憶装置
US5272672A (en) Semiconductor memory device having redundant circuit
US5978931A (en) Variable domain redundancy replacement configuration for a memory device
US6914814B2 (en) Dedicated redundancy circuits for different operations in a flash memory device and methods of operating the same
JP3112018B2 (ja) 冗長メモリを有する半導体記憶装置
US5881003A (en) Method of making a memory device fault tolerant using a variable domain redundancy replacement configuration
JPH04222998A (ja) 半導体メモリ装置
JP2769659B2 (ja) 半導体記憶装置
JP3688443B2 (ja) 半導体記憶装置
US5877992A (en) Data-bit redundancy in semiconductor memories
JP3836315B2 (ja) 半導体メモリ集積回路
US6262923B1 (en) Semiconductor memory device with redundancy function
JP3512957B2 (ja) 半導体記憶装置
US6754113B2 (en) Topography correction for testing of redundant array elements

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060726

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090804

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees