JP3830328B2 - ビタビ復号回路 - Google Patents

ビタビ復号回路 Download PDF

Info

Publication number
JP3830328B2
JP3830328B2 JP2000135767A JP2000135767A JP3830328B2 JP 3830328 B2 JP3830328 B2 JP 3830328B2 JP 2000135767 A JP2000135767 A JP 2000135767A JP 2000135767 A JP2000135767 A JP 2000135767A JP 3830328 B2 JP3830328 B2 JP 3830328B2
Authority
JP
Japan
Prior art keywords
value
circuit
metric
received data
metric value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000135767A
Other languages
English (en)
Other versions
JP2001320283A (ja
Inventor
公一朗 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2000135767A priority Critical patent/JP3830328B2/ja
Publication of JP2001320283A publication Critical patent/JP2001320283A/ja
Application granted granted Critical
Publication of JP3830328B2 publication Critical patent/JP3830328B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Detection And Correction Of Errors (AREA)
  • Error Detection And Correction (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Description

【0001】
本発明は、受信した畳み込み符号を復号するため一般的に用いられるビタビ復号回路に関し、特に、軟判定のメトリック値を算出し、そのメトリック値に対して受信データの電力値に応じて重み付けをしてからビタビ復号を実施するビタビ復号回路に関するものである。
【発明の属する技術分野】
【0002】
【従来の技術】
図11は、社団法人電波産業界から発行された“地上波ディジタルテレビジョン放送暫定方式”に記載されたディジタル放送(以後、地上波ディジタル放送と呼ぶ)の受信機の概略を示すブロック図である。
【0003】
図11に示した受信機10は、無線のディジタル変調信号、例えばOFDM(Orthogonal Frequency Division Multiplexing)変調信号を受信し、キャリア信号およびクロック信号等を用いて復調することによりベースバンドの信号(I成分およびQ成分からなる受信データ)を出力する受信部1と、受信部1から出力されたベースバンドのディジタル受信データを復調すると共に復号したディジタル信号を生成する受信データ抽出部2と、受信データ抽出部2により復号された受信データから元の音声信号や画像信号を再生する受信データ処理部とから構成される。
【0004】
受信データ抽出部2は、ベースバンドのディジタル受信データを復調すると共に伝送路歪み補正等を実施するディジタル復調回路4と、復調信号に対して送信側で与えられた遅延時間と反対の遅延時間を与えることにより、受信データから送信側で生成されたストリーム列を再現するデインターリーブ回路5と、ストリーム列を復号することにより受信データを再生する復号回路6とからなる。
【0005】
復号回路6は、さらに、ストリーム列に畳み込まれた信号を誤りを訂正しつつ復号するビタビ復号回路7と、送信側で付加されたリードソロモン符号のパリティを含む信号列からパリティを用いて誤りを検出することにより訂正をおこなうリードソロモン復号回路8とから構成される。
【0006】
ビタビ復号回路7としては、入力データであるI成分値およびQ成分値から算出、例えば、I成分値およびQ成分値のMSB(Most Significant Bit)データを抽出したメトリック値が“0”と“1”の2値で表される1ビットメトリック値(硬判定データ)を使用してビタビ復号をおこなう硬判定のビタビ復号回路(デコーダ)と、多値メトリック値(例えば、3ビットメトリック値等)を利用してビタビ復号をおこなう軟判定のビタビ復号回路とが知られている。また、軟判定のビタビ復号回路と硬判定のビタビ復号回路とでは、軟判定のビタビ復号回路の方が約2dB程度だけ誤り訂正能力が高いことが知られている。このため、従来の地上波ディジタル放送に用いられるビタビ復号回路としては、軟判定のビタビ復号回路が用いられており、従来のビタビ復号回路は、多値の軟判定メトリック値を算出している。
【0007】
次に、図11の受信データ抽出部2の動作について説明する。
受信部1から受信データ抽出部2に入力したベースバンド受信データは、ディジタル復調回路4においてI成分とQ成分からなるIQデータに復調されると共に、その復調データに対応した電力情報が検出される。復調されたIQデータはデインターリーブ回路5で、元のストリーム列に戻され、ビタビ回路7の軟判定回路11に入力する。軟判定回路11に入力したIQデータは、仮判定回路13によりデマッピングされることにより、受信データの信号点位置が仮判定される。この仮判定された信号点位置と、入力データ(IQデータ)がメトリック値演算回路14に入力され、メトリック値演算回路14では、各復号データにういてのメトリック値が算出される。例えば、地上波ディジタル放送の中で伝送レートがもっとも高い64QAMが変調方式として用いられているときには、1入力信号(IQデータ)に対して6個のデータが復号されるので、メトリック値演算回路14からの出力は6個のメトリック値が出力されることになる。
【0008】
図12は、従来の軟判定回路を用いたビタビ復号回路の概略の構成を示すブロック図である。
図12のビタビ復号回路7は、多値メトリック値により軟判定をおこなう軟判定回路11と、軟判定回路11の判定結果(軟判定メトリック値)に基づいてビタビ復号を実施するビタビデコーダ12からなる。
【0009】
軟判定回路11は、更に、ディジタル復調回路4で復調されデインターリーブ回路5で元のストリーム列に戻されたI成分及びQ成分のベースバンド受信データから、該データに基づいてデマッピング処理を実施することにより信号点の位置を判定する仮判定回路13と、仮判定回路13により仮判定されたデータとベースバンド受信データとからメトリック値を算出するメトリック値演算回路14と、算出されたメトリック値に対してディジタル復調回路4において検出された受信データの電力値(電力情報)を乗算する乗算器15と、電力値が乗算されたメトリック値である乗算器15からの出力データを、ビタビデコーダ12により処理可能である所定のビット数のメトリック値に変換する変換回路16とからなる。
【0010】
ビタビデコーダ12は、畳み込まれた受信データから算出したメトリック値と自分自身が推定した最尤パス(もっとも確からしいパス)との差を入力毎に算出積算して、最尤パスとそれ以外のパスが持つ積算したメトリック値(パスメトリック値)の差を拡大させることで、最尤パスを判別しデータを復号している。
【0011】
図13は、メトリック値演算回路14から出力される6このメトリック値の具体例を示した図である。
図13は、変調方式が64QAMである場合の信号点マップの一部であり、仮判定回路13に入力されたI成分およびQ成分からなる受信データを、図13中に示した四角印Pとする。判定回路13では、このマップの各信号点中から、受信データの信号点である四角印Pにもっとも近い信号点が入力データの信号点として仮判定される。すなわち、図13の場合には、図13中の三角印の信号点Uが入力データの信号点として仮判定される。この信号点Uについての6個の復号データ(b0、b1、b2、b3、b4、b5)の各ビットは、(0、0、1、1、1、1)となる。
【0012】
次に、メトリック値演算回路14では、仮判定回路13における上記仮判定値と、ビタビ復号回路7に入力される受信データを用いて、以下に示すようにメトリック値が算出される。
【0013】
6個の復号データ(b0、b1、b2、b3、b4、b5)の各々について、以下に示すW0は“0”に対するメトリック値であり、W1は、“1”に対するメトリック値とする。また、各メトリック値(LLX、LLV、L0〜L5)等は、全てマップ中の距離を2乗した値とする。
【0014】
仮判定点である信号点U=(0、0、1、1、1、1)に対して、0ビット目(b0)を入れ替えた信号点は、(1、0、1、1、1、1)の信号点V0となる。信号点U=(0、0、1、1、1、1)の0ビット目(b0)は、X軸上のビットの仮判定値が“0”ということになり、従って、そのb0の“0”に対するメトリック値であるW0は、W0=LLXとなり、b0の“1”に対するメトリック値であるW1は、W1=L0となる。上記から、信号点U=(0、0、1、1、1、1)の0ビット目(b0)の多値メトリック値は(LLX―L0)となる。
【0015】
同様にして、b2の多値メトリック値は(L2−LLX)となり、b4の多値メトリック値は(L4−LLX)となる。
【0016】
また、5ビット目を入れ替えた信号点は、(0、0、1、1、1、0)となる。5ビット目(b5)は、Y軸上のビット仮判定値が“1”であるので、W0=L5、W1=LLYとなる。従って、b5の多値メトリック値は(L5−LLY)となる。
【0017】
同様にして、b1の多値メトリック値は(LLY−L1)となり、b3の多値メトリック値は(L3−LLY)となる。
【0018】
このように各復号データのメトリック値は、データ“0”からの距離の2乗値と、データ“1”からの距離の2乗値の差分を取ることにより、入力したデータから仮判定されて復号された各データが、“1”または“0”のどちらのデータに近いかを数値で表すことができる。
【0019】
次に、乗算器15では、メトリック値演算回路14において算出された6個のメトリック値全てに対して、同じ電力情報が乗算される。この乗算により、6個の各メトリック値に対して電力情報による重み付けをおこなわれる。この重み付けは、受信電力が大きい(受信信号の確からしさが高い)場合には、メトリック値の差が拡大されるように重み付けが実施され、受信電力が小さい(受信信号の確からしさが低い)場合には、メトリック値の差が縮小されるように重み付けが実施される。
【0020】
乗算器15により重み付けられた各メトリック値は、変換回路16により、ビタビデコーダ12で扱うことができるビット数のメトリック値に変換される。例えば、ビタビデコーダ12で扱うことができるメトリック値が4ビットであるならば、そのメトリック値の数値は、10進数で0から15までの値となる。具体的には、ビタビデコーダ12の構成にもよるが、例えば、入力データがもっとも“1”に確からしいときには、変換回路16により変換されたメトリック値は“0”となり、もっとも“0”に確からしいときには、変換回路16により変換されたメトリック値は“15”となる。
【0021】
また、入力信号の確からしさがもっとも低いとき(入力データから“0”または“1”と判断できないとき)には、変換回路16により変換されたメトリック値は、中間値である“8”となる。具体的には、例えば、マルチパス等の影響で受信データの信頼性が低くなったときには、電力情報が小さくなるので、その場合の受信データがビタビ復号においてもっとも影響が少なくなるようなメトリック値(“0”と“1”に対する変換されたメトリック値の中間値を示す8付近のメトリック値)に変換される。
【0022】
変換回路16により信頼性が低くなった受信データに対しては上記の変換が実施されるため、ビタビデコーダ12では、信頼性の少ないデータ以外の信頼性の高い入力データから求めたメトリック値を主に使うことができる。このため、ビタビデコーダ12では、最尤パスを求めてビタビ復号を実行することができる。
【0023】
【発明が解決しようとする課題】
従来の地上波ディジタル放送としては、変調方式として64QAM、16QAM、QPSK、DQPSKの4方式が使用可能である。また、地上波ディジタル放送では、変調方式毎に電力情報(電力値)が所定値に保持される。
【0024】
ところが、マルチパス等の影響により電力値が小さくなる場合があり、その場合には、受信信号に対するノイズ成分等が大きくなるのでデータの信頼性が低くなる。
【0025】
例えば、“0”を示すメトリック値を仮にMT0とし、“1”を示すメトリック値を仮にMT1とした場合について考える。上記した従来のビタビ復号回路の乗算器15では、受信電力が小さい(受信信号の確からしさが低い)場合には、メトリック値の差が縮小されるように重み付けが実施されるので、上記した各メトリック値中の任意のメトリック値であるMTERRxxは、乗算器15から出力されるときには全て(MT0+MT1)/2付近の中間値になってしいまい、その中間値が変換回路16に入力され、後段のビタビデコーダ12にも中間値が入力される。
【0026】
また、例えば、4ビットメトリック値を用いてビタビデコードされるビタビ復号回路について考えると、変調方式が64QAMであって、受信電力が小さい場合には、復号される6個のメトリック値の全てが“0”と“1”の中間値をあらわすメトリック値“8”となり、その“8”が6個連続してビタビデコーダ12に入力されることになる。
【0027】
さらに、上記のような電力値の小さい入力データがX回(Xは任意の正数)続く場合について考えると、その場合には、ビタビデコーダ12に入力されるメトリック値は、6*X回連続してメトリック値“8”が入力されることになる。
【0028】
上記したように最尤パスを判別してデータを復号しているビタビデコーダ12にとっては、上記のようにメトリック値の中間値が入力されることは、復号されるデータが“1”でも“0”でもない入力信号が入力されることになる。これは、ビタビデコーダ12にとって、入力データを使わず自身が推定した最尤パスのみで以降のパスを推定しなければならないことになる。
【0029】
ビタビデコーダ12は、メトリックの中間値が正常なメトリック値に対してランダムに挿入される場合には、その他の正常なメトリック値により最尤パスを推定することができるが、上記のように連続して中間値に変換されたメトリック値が入力される場合には、受信データの畳み込まれたデータ系列がビタビデコーダ12に入力されなくなってしまう。その結果、ビタビデコーダ12は、送信側で畳み込まれた符号系列とは違った符号系列を推定してしまい、誤った復号をおこなう場合があるという問題があった。
【0030】
本発明は上記の問題点を解決するためになされたものであり、マルチパス等の影響により受信データの電力値が小さくなる場合や変動する場合であっても、復号の誤りが発生しにくいビタビ復号回路回路を提供することを目的とする。
【0031】
【課題を解決するための手段】
上述の目的を達成するため、請求項1記載のビタビ復号回路は、ディジタル復調された畳み込み符号の受信データについて、デマッピングにより信号点位置を仮判定する仮判定回路と、該仮判定した信号点位置から各メトリック値を演算するメトリック値演算回路と、前記メトリック値に対して受信データの電力値に基づく重み付けをする乗算器と、前記メトリック値を多値メトリック値に変換する変換回路とを有して受信データの軟判定を実施する軟判定回路と、該軟判定された受信データの多値メトリック値をビタビ復号するビタビデコーダとからなるビタビ復号回路であって、前記デマッピングされた各信号点位置毎に、上下左右方向何れか隣の信号点位置では信号点を示すビットの何れかが反転する座標配置を受信データの変調方式毎および前記各ビット毎に予め保持し、前記仮判定された信号点位置と前記予め格納された座標配置と一致する受信データのメトリック値のみを選択して前記乗算器に送出するメトリック値選択回路を更に備えることを特徴とする。
【0032】
請求項2の本発明は、請求項1記載のビタビ復号回路において、前記受信データの変調方式毎に前記各メトリック値の大きさを判別し、該メトリック値の大きさが所定値未満である場合に、前記メトリック値選択回路に前記選択を実施させるメトリック値判別回路を更に備えることを特徴とする。
【0033】
請求項3の本発明は、請求項1記載のビタビ復号回路において、前記受信データの電力値が所定値未満であるものを判別する電力値判別回路と、前記判別された電力値を前記所定値以上に変換して前記乗算器に出力する電力値変換回路とを更に備えることを特徴とする。
【0034】
請求項4の本発明は、請求項2記載のビタビ復号回路において、前記受信データの電力値が所定値未満であるものを判別する電力値判別回路と、前記判別された電力値を前記所定値以上に変換して前記乗算器に出力する電力値変換回路とを更に備えることを特徴とする。
【0035】
請求項5の本発明は、請求項2記載のビタビ復号回路において、前記受信データの電力値が所定値未満であるものを判別する電力値判別回路と、前記判別された電力値を前記受信データの変調方式毎に規定されるレベルに変換するレベル変換回路とを更に備えることを特徴とする。
【0036】
請求項6の本発明は、請求項4記載のビタビ復号回路において、前記受信データと該受信データをビタビ復号した結果を再畳み込み符号化したデータとの不一致数を所定期間分積算することにより時間当たりのビタビ復号訂正数を演算するエラー回路を更に備え、前記電力値変換回路は、前記ビタビ復号訂正数の数値が最小になるように、前記所定値以上の電力値を可変できることを特徴とする。
【0037】
請求項7の本発明は、請求項2記載のビタビ復号回路において、前記受信データと該受信データをビタビ復号した結果を再畳み込み符号化したデータとの不一致数を所定期間分積算することにより時間当たりのビタビ復号訂正数を演算するエラー回路と、前記受信データの電力値が所定値未満であるものを判別する電力値判別回路と、前記電力値判別回路により前記電力値が前記所定値よりも小さいと判別された場合に、前記ビタビ復号訂正数の数値が最小になるように、前記メトリック値選択回路により選択されたメトリック値に対して該メトリック値が有するゲインを変更できるゲイン変更メトリック値算出回路とを更に備えることを特徴とする。
【0038】
【発明の実施の形態】
以下、本発明を発明の実施の形態を示す図面により詳述する。
実施の形態1.
図1は、本発明の実施の形態1のビタビ復号回路の構成を示すブロック図である。 なお、図1において、図11および図12に示した従来のビタビ復号回路と同じ機能の部分については同じ符号を付し、重複する説明を省略する。
【0039】
図1の実施の形態1のビタビ復号回路7が図12に示した従来のビタビ復号回路7と異なる主な点は、従来のビタビ復号回路7では、軟判定回路11中のメトリック値演算回路14で演算されたメトリック値は全て乗算器15に入力されるようになっていたが、実施の形態1の軟判定回路31中にメトリック値選択回路17を備えて、演算されたメトリック値から変調情報により選択された一部のみが乗算器15に入力し、他のメトリック値は変換回路16に入力するようにした点である。
【0040】
メトリック値選択回路17は、図11に示したディジタル復調回路4から受信データの変調方式を示す変調情報を受信し、その変調情報に基づいてメトリック値演算回路14から入力する各メトリック値に対する選択を実施する。選択内容としては、各メトリック値について、次段の乗算器15でディジタル復調回路4から受信データの電力値(電力情報)に基づいた重み付けを実施させるか否かを選択するものである。また、メトリック値選択回路17は、上記選択結果に従って、重み付けを実施させるメトリック値については乗算器15に送出し、重み付けを実施しないメトリック値については変換回路16に送出する。
【0041】
次に本実施の形態1のビタビ復号回路の動作について説明する。
図2は、変調方式が64QAMである場合のデマッピングした信号配置を示す図である。
上記したように、受信データから各復号データのメトリック値を求めるためにW0およびW1を定め、W0およびW1は、各々“0”に対するメトリック値と“1”に対するメトリック値をあらわしている。W0およびW1の差分の絶対値である|W0−W1|の数値が大きいほど、受信データは“0”あるいは“1”についてのもっとも確からしいメトリック値を持つことになる。逆に、|W0−W1|の絶対値が0に近くなるほど、“0”でも“1”でもないもっとも不確かなメトリック値を持つことになる。また、W0およびW1は、受信データから仮判定される信号点によって変化する。
【0042】
本実施の形態1のメトリック値選択回路17では、図2に示したように、受信データを仮判定する信号点の位置(以下、シンボル位置と記す)によっては、ビットが反転するシンボル位置が隣接している場合と、ビットが反転するシンボル位置が隣接していない場合が存在することに着目して選択するようにした。
【0043】
例えば、受信データから仮判定されたシンボル位置から復号されるb0が、範囲Aの中の何(いず)れかの信号点と仮判定された場合、すなわち、I成分レベルが+1と−1の位置の信号点(16点)に仮判定された場合について考える。その場合には、範囲Aの中の何(いず)れの信号点も、b0が左右隣の信号点では+と−が反転している。つまり、範囲Aの中の各信号点は、隣のシンボル位置でb0がビット反転する信号点といえる。
【0044】
つまり、変調方式が64QAMの場合の64個のシンボル位置のうち、受信データが範囲A中の16個のシンボル位置何れかに仮判定された場合にだけ、隣のシンボル位置におけるb0のビットが反転していることになる。言いかえれば、仮判定結果が範囲Aの中のシンボル位置である場合に限り、メトリック値演算回路14で求める各復号データのメトリックを示す|W0−W1|の値が小さくなる。ところが、仮判定結果が範囲A以外の48個のシンボル位置である場合には、ビット反転をおこすシンボル位置は隣接せず、遠くにあることから、|W0−W1|の値が大きくなる。従って、仮判定結果が範囲A以外の48個のシンボル位置である場合には、例え受信データの電力値が小さい場合であっても、その仮判定結果は信頼できるデータとして考えられる。
【0045】
上記のb0の場合と同様にして、b1についても64シンボル位置中の範囲Bにおける16個のシンボル位置では隣のシンボル位置においてビットが反転する。b2あるいはb3については、64シンボル位置中の各々範囲C1+C2、D1+D2の32個のシンボル位置において隣のシンボル位置でビットが反転する。b4あるいはb5については、64シンボル位置中の64個全てのシンボル位置において隣のシンボル位置でビットが反転する。
【0046】
本実施の形態1では、上記の範囲A、B、C1+C2、D1+D2を用いて、ビットが反転するシンボルが隣接しないシンボル位置に仮判定された受信データ、すなわち、|W0−W1|の値が大きい受信データについては、電力値による重み付けが必要でないと判断し、メトリック値選択回路17で各メトリック値の選択を実施する。
【0047】
また、受信データがビットが反転するシンボル位置に仮判定される確率は、上記したように、b0あるいはb1については16/64であることから1/4であり、b2あるいはb3については32/64であることから1/2であり、b4あるいはb5については64/64であることから1である。逆に、受信データがビットが反転しないシンボル位置に仮判定される確率は、b0あるいはb1については3/4であり、b2あるいはb3については1/2であり、b4あるいはb5については0である。
【0048】
また、図2では、変調方式が64QAMである場合についての例を示したが、上記したように、地上波ディジタル放送の変調方式としては64QAMの他に、16QAM、QPSK、DQPSKが使用可能であり、変調方式によって復号される受信データに対する上記確率が異なってくる。そこで、本実施の形態1のメトリック値選択回路17は、図11のディジタル変調回路4で検出された変調形式を示す変調情報と、各変調方式毎に異なる上記確率とを利用して、各データ(メトリック値)に対して、受信データの電力値による重み付けを実施するか否かを選択する。
【0049】
例えば、図2の変調方式が64QAMである場合は、b0およびb1についてのメトリック値には乗算器15で電力値による重み付けをせず、b2、b3、b4、および、b5についてのメトリック値のみに電力値による重み付けを乗算器15で実施するように選択する。
【0050】
電力値による重み付けが不用と選択されたメトリック値(本実施の形態の場合には、b0およびb1に対するメトリック値)は、上記したように|W0−W1|の値が大きいと考えられ、受信データの電力値の変動に無関係と考えられるころから、メトリック値選択回路17は、メトリック値演算回路14からの出力|W0−W1|を変換回路16に直接に入力することにより、受信データの“1”または“0”に対するもっとも確からしいメトリック値を出力する。
【0051】
仮に、受信機10が、ディジタル復調回路4で検出される受信データの電力値(電力情報)が、安定した一定値を示し、その電力値が1に正規化される受信機であることとして、マルチパス等の影響により電力値が極端に小さく(0に近い数値)なった場合について考える。その場合、メトリック値選択回路17では、b2、b3、b4、および、b5の各復号データが、|W0−W1|が小さな数値であると判別され、電力値による重み付けが必要と選択される。b2、b3、b4、および、b5の各復号データについては、乗算器15において電力値による重み付けが実施される。b2、b3、b4、および、b5の各復号データに重み付けした結果の|W0−W1|の値は、ほぼ0となる。この重み付けされた結果を変換回路16に入力することにより、b2、b3、b4、および、b5の各復号データが持つメトリック値は、上記したように“1”または“0”に対するメトリックの中間値が出力される。
【0052】
従って、従来のビタビ復号回路では、b0〜b5までの全ての各復号データに対して同様に電力値による重み付けしていたので、電力値が小さい場合には、b0およびb1に対しても重み付けされて“1”または“0”に対するメトリックの中間値を出力していたものが、本実施の形態1では、b0およびb1に対して重み付けしないので、受信データのb0およびb1に対して“1”または“0”に対するもっとも確からしいメトリック値を出力することができる。
【0053】
すなわち、受信データの変調方式が64QAMである場合の本実施の形態1では、マルチパス等で受信データの電力値が小さくなった場合でも、6個の復号データの中で、2個(b0およびb1)については“1”または“0”に対する中間値のメトリック以外の“1”または“0”に対するもっとも確からしいメトリック値を出力できることになる。
【0054】
以上のように、本実施の形態1では、受信データの変調方式の違いにより異なるビットが反転する信号点の座標配置と、受信データから仮判定される信号点によって、電力値による重み付けをするメトリック値を選択するようにしたので、受信データの電力値が小さい場合にも、“1”または“0”に対するメトリックの中間値が連続してビタビデコーダ12に入力することが減少し、ビタビデコーダ12の誤り訂正能力を改善することができる。
【0055】
実施の形態2.
上記した実施の形態1は、メトリック値選択回路17において、受信データの変調情報のみによりメトリック値の選択を実施するものについて説明したが、以下の実施の形態2では、実施の形態1の受信データの変調情報に加えて、メトリック値演算回路14で仮判定される受信データのシンボル位置および受信データの各復号データのビット毎のメトリック値を用いて、電力値による重み付けを実施するメトリック値をメトリック値選択回路17にて選択する実施の形態を示す。
【0056】
図3は、本発明の実施の形態2のビタビ復号回路の構成を示すブロック図である。
図3の実施の形態2のビタビ復号回路7が実施の形態1のビタビ復号回路7と異なる主な点は、実施の形態1ではディジタル復調回路4から受信データの変調情報が直接に軟判定回路31中のメトリック値選択回路17に入力されていたものが、実施の形態2では軟判定回路41中にメトリック値判別回路18を備えて、変調情報がメトリック値判別回路18を介してメトリック値選択回路17に入力されるようになっている点である。
【0057】
メトリック値判別回路18は、ディジタル復調回路4からの変調情報に加えて、メトリック値演算回路14で生成されたメトリック値が入力されるようになっており、その変調情報およびメトリック値により、メトリック値の大小を判別する。
【0058】
次に本実施の形態2のビタビ復号回路の動作について説明する。
図4は、変調方式が64QAMである場合に受信信号をデマッピングした一例を示す図である。
本実施の形態2では、実施の形態1と同様に、地上波ディジタル放送の変調方式が64QAMである場合における各復号データのメトリック値について考えることとする。
【0059】
実施の形態1に示したように、変調情報のみで選択するメトリックを考える場合には、各復号データのビットb2、b3、b4、b5についてのみの信頼性が低いと判断し、それらのビットについてのみに電力重み付けをするようにした。つまり、ビットb0およびb1については電力重み付けを実施しないで変換回路16に入力させるようにしていた。ところが、実施の形態1において、図4に示したように受信データのシンボル位置がRで示される位置に仮判定された場合には、ビットb0についても反転するシンボル位置が隣接していることが判った。すなわち、受信データのシンボル位置がRで示される位置に仮判定され、かつ、電力値が小さい場合には、各復号データのビットb2、b3、b4、b5に加えて、ビットb0についても信頼性が低いデータと考えられるが、実施の形態1では、このビットb0については対応していなかった。
【0060】
本実施の形態2では、電力値が小さいときに受信されたデータの信頼性を実施の形態1よりもさらに正確に判定するために、変調情報に加えてメトリック値演算回路14で生成されたメトリック値を用いることにより、例えば、メトリック値選択回路17で上記ビットb0についても対応できるようにして、選択されるメトリック値の信頼性を向上させるようにした。
【0061】
図4では、上記したように受信データの信号点位置はRで示されている。この信号点位置Rについては、以後の説明を容易にするためにI成分レベルが+1、Q成分レベルが−5で表されたシンボル位置Vzと重なるか非常に近傍の位置とする。
【0062】
この信号点位置Rのメトリック値を、図13を用いて説明したようにI成分およびQ成分のレベルで考え、図2を用いて実施の形態1の所で説明したように、受信データから各復号データのメトリック値を各復号データのビットについて求める場合には、各シンボル位置間を2値として、次のように考えられる。
【0063】
b0(の“0”)に対するメトリック値|W0−W1|が|W0−W1|=2の2乗=4であり、b1(の“1”)に対するメトリック値|W0−W1|が|W0−W1|=10の2乗=100であり、同様にしてb2に対するメトリック値は6の2乗=36であり、b3に対するメトリック値は2の2乗=4であり、b4に対するメトリック値も2の2乗=4であり、b5に対するメトリック値も2の2乗=4となる。
【0064】
図4に示したように、受信データの信号点位置Rがシンボル位置Vzで示される場合には、b0、b3、b4およびb5については、ビットが反転するシンボル位置が隣接しているが、b1およびb2についてはビットが反転するシンボル位置が隣接しておらず、シンボル位置Vzから離れた位置であることが判る。
【0065】
従って、図4からは、上記のように受信データの信号点位置Rがシンボル位置Vzで示される場合には、b0、b3、b4およびb5についての復号データの確からしさ(メトリック値)と、b1およびb2についての復号データの確からしさ(メトリック値)は明らかに異なっており、b1およびb2については電力値による重み付けに関係なく(例え電力値が小さい場合であっても)、それぞれ“1”に対するもっとも確からしいメトリック値を持たせることができる。
【0066】
また、b0,b3,b4,b5については、電力値が低いことから受信データのメトリック値についても信頼性が低いと判断される場合には、乗算器15により電力値による重み付けをおこなうことで、各復号データのメトリック値を“1”と“0”の中間値として持たせるようにする。
【0067】
上記の処理を可能にするために、メトリック値判別回路18では、|W0−W1|のメトリック値を判別して判別結果をメトリック値選択回路17に出力する。するようにする。例えば、ビットが反転するシンボル位置が隣接している場合には、|W0−W1|の値は小さくなり、隣接していないときには大きくなることを利用して、|W0−W1|の値を判別する。
【0068】
また、その際の隣接するシンボル位置間の距離については、受信データの変調方式によって変わり、例えば、64QAMの場合の隣接シンボル距離<16QAMの場合の隣接シンボル距離<QPSKの場合の隣接シンボル距離の関係があることから、|W0−W1|の大きさを判別する閾値は、ディジタル変調回路4から入力してくる変調情報毎に変更する必要がある。
【0069】
また、メトリック値判別回路18で|W0−W1|の値を判別した結果、所定値以上の数値(上記例では、4よりも大きい数値)を持っている復号データについては、上記したように受信データの電力値の変動に無関係であることになる。従って、その所定値以上の数値を持っている復号データについては、メトリック値選択回路17により、|W0−W1|の値を変換回路16に直接入力するようにして、“1”または“0”に対するもっとも確からしいメトリック値を出力する。
【0070】
仮に、受信機10が、ディジタル復調回路4で検出される受信データの電力値(電力情報)が、安定した一定値を示し、その電力値が1に正規化される受信機であることとして、マルチパス等の影響により電力値が極端に小さく(0に近い数値)なった場合について考える。その場合、メトリック値判別回路18では、b0、b3、b4、および、b5の各復号データについては、|W0−W1|が小さな数値であると判別され、メトリック値選択回路17において電力値による重み付けが必要と選択されることになる。そして、b0、b3、b4、および、b5の各復号データは、乗算器15において電力値による重み付けが実施される。b0、b3、b4、および、b5の各復号データに重み付けした結果の|W0−W1|の値は、ほぼ0となる。この重み付けされた結果を変換回路16に入力することにより、b0、b3、b4、および、b5の各復号データが持つメトリック値は、上記したように“1”または“0”に対するメトリックの中間値が出力される。
【0071】
従って、従来のビタビ復号回路では、b0〜b5までの全ての各復号データに対して同様に電力値による重み付けしていたので、電力値が小さい場合には、b0およびb1に対しても重み付けされて“1”または“0”に対するメトリックの中間値を出力していたものが、本実施の形態2では、b1およびb2に対して重み付けしないので、受信データのb1およびb2に対して“1”または“0”に対するもっとも確からしいメトリック値を出力することができる。
【0072】
すなわち、受信データの変調方式が64QAMである場合の本実施の形態2では、マルチパス等で受信データの電力値が小さくなった場合でも、6個の復号データの中で、2個(b1およびb2)については“1”または“0”に対する中間値のメトリック以外の“1”または“0”に対するもっとも確からしいメトリック値を出力できることになる。
【0073】
以上のように、本実施の形態2では、受信データの変調方式の違いによる信号点配置と、受信データから仮判定される信号点と、仮判定された受信データの信号点位置と符号が反転するシンボル位置との間のマップ上の距離を用いたメトリック値とによって、電力値による重み付けをするメトリック値を選択するようにしたので、受信データの電力値が小さい場合にも、“1”または“0”に対するメトリックの中間値が連続してビタビデコーダ12に入力することが減少し、ビタビデコーダ12の誤り訂正能力を改善することができる。また、実施の形態1の場合よりも、電力値による重み付けをするメトリック値の選択を正しく実施できるので、ビタビデコーダ12の誤り訂正能力をさらに改善することができる。
【0074】
実施の形態3.
上記した実施の形態2では、受信データから仮判定した信号点位置とマップ上の距離を用いたメトリック値により、重み付けするメトリック値を選択し、選択したメトリック値に対して電力値で重み付けをしていたが、次の実施の形態3では、受信データから検出された電力値が所定の電力値以下である場合に、その検出された電力値を例えば“1”等の所定の電力値に変換してから、選択されたメトリック値に対して電力値による重み付けを実施するものを示す。
【0075】
図5は、本発明の実施の形態3のビタビ復号回路の構成を示すブロック図である。
図5の実施の形態3のビタビ復号回路7が実施の形態1のビタビ復号回路7と異なる主な点は、実施の形態1ではディジタル復調回路4から受信データの電力値が直接に軟判定回路31中の乗算器15に入力されていたものが、実施の形態3では軟判定回路51中に電力値判別回路19および電力値変換回路20を備えて、電力値が電力値判別回路19および電力値変換回路20を介して乗算器15に入力されるようになっている点である。また、電力値変換回路20は、ディジタル復調回路4から受信データの電力値に加えて、電力値判別回路19の判別結果が入力されるようになっており、その判別結果により、電力値を変換するようにしている点である。
【0076】
電力値判別回路19は、例えば、図11のディジタル復調回路4から入力する電力情報(受信データの電力値)について、その値の大小を判別するものである。電力値変換回路20は、電力値判別回路19から出力される判別結果によって、受信データの電力値を所定値に変換するものである。
【0077】
次に本実施の形態3のビタビ復号回路の動作について説明する。
例えば、実施の形態1の軟判定回路31では、メトリック値選択回路17はディジタル復調回路4からの変調情報のみにより重み付けするメトリック値を選択しており、そのメトリック値選択回路17によって選択されるメトリック値の数が多く、かつ、受信データの電力値が極端に小さく連続して受信する場合には、電力値による重み付けされた結果のメトリック値が変換回路16で変換されたメトリック値は、“1”または“0”に対するメトリックの中間値が数多く出力されてしまう。
【0078】
そこで、本実施の形態3の軟判定回路51では、受信データの電力値がマルチパス等の影響により極端に小さくなった場合には、電力値判別回路19および電力値変換回路20により、入力する電力値を所定値に増幅してから、乗算器15に送出してメトリック値の重み付けに使用させるようにした。
【0079】
すなわち、電力値判別回路19にて、入力する電力値が所定値未満の極端に小さい電力値であると判別された場合には、電力値判別回路19は電力値変換回路20に対して入力する電圧値を所定値に変換するように指示を出力する。電力値変換回路20では、電力値判別回路19からの指示により、入力する電力値を所定値に変換し、変換した電力値を乗算器15に出力する。乗算器15では、変換された電力値により、受信データに対応したメトリック値に対して重み付けを実施する。
【0080】
以上のように、本実施の形態3では、例え、メトリック値選択回路17が受信データの変調情報のみによってメトリックを選択する場合であっても、電力値が極端に小さい受信データは、その電力値を所定値(例えば1など)に変換して乗算するようにした。そのため、電力値の極端に小さい受信データのメトリック値については、例えば、上記した一定値が1である場合には電力値に影響されなくなって、受信データの仮判定点からメトリック値演算回路14で算出されたメトリック値となり、その結果、メトリックの中間値が連続してビタビデコーダ12に入力することを実施の形態1よりもさらに少なくでき、ビタビデコーダ12の誤り訂正能力をさらに改善することができる。
【0081】
実施の形態4.
上記した実施の形態3では、受信した変調情報のみに基づいて重み付けするメトリック値を選択すると共に、重み付けする電力値については、所定の電力値以下の電力値を所定値に変換してから重み付けに用いていたが、次の実施の形態4では、実施の形態3で実施したことに加えて、実施の形態2で説明したように、メトリック値演算回路14で仮判定される受信データのシンボル位置および受信データの各復号データのビット毎のメトリック値を用いて、電力値による重み付けを実施するメトリック値をメトリック値選択回路17にて選択する実施の形態を示す。
【0082】
図6は、本発明の実施の形態4のビタビ復号回路の構成を示すブロック図である。
図6の実施の形態4のビタビ復号回路7が実施の形態3のビタビ復号回路7と異なる主な点は、実施の形態3では軟判定回路51中に電力値判別回路19および電力値変換回路20を備えて、電力値が電力値判別回路19および電力値変換回路20を介して乗算器15に入力されるようにしているのみであったが、本実施の形態4では、さらに実施の形態2に示したメトリック値判別回路18を備えて、メトリック値判別回路18は、ディジタル復調回路4からの変調情報に加えて、メトリック値演算回路14で生成されたメトリック値が入力されるようになっており、その変調情報およびメトリック値により、メトリック値の大小を判別して、変調情報毎に異なるメトリック値の大小の判別結果をメトリック値選択回路17に入力する点である。
【0083】
次に本実施の形態4のビタビ復号回路の動作について説明する。
メトリック値判別回路18に係る動作については、上記した実施の形態2で詳細に説明しているの内容と同様であり、電力値判別回路19および電力値変換回路20に係る動作については、上記した実施の形態3で詳細に説明した内容と同様である。
【0084】
すなわち、本実施の形態4の軟判定回路61では、メトリック値判別回路18により、変調情報に加えてメトリック値演算回路14で生成されたメトリック値を用いて変調情報を判別することにより、電力値が極端に小さい場合でもメトリック値選択回路17にて選択されるメトリック値の信頼性を向上させるようにすると共に、受信データの電力値がマルチパス等の影響により極端に小さくなった場合には、電力値判別回路19および電力値変換回路20により、入力する電力値を所定値に増幅してから、乗算器15に送出してメトリック値の重み付けに使用させるようにしている。
【0085】
以上のように、本実施の形態4では、上記実施の形態2に示したように変調情報と距離を用いたメトリック値とによって、電力値による重み付けをするメトリック値を正確に選択できるので、受信データの電力値が小さい場合にも、“1”または“0”に対するメトリックの中間値が連続してビタビデコーダ12に入力することが減少させることができるのみでなく、さらに、上記実施の形態3に示したように、電力値が極端に小さい受信データは、その電力値を所定値(例えば1など)に変換して乗算するので、電力値の極端に小さい受信データのメトリック値については、受信データの仮判定点からメトリック値演算回路14で算出されたメトリック値となって、メトリックの中間値が連続してビタビデコーダ12に入力することをさらに減少させることができるので、ビタビデコーダ12の誤り訂正能力を、上記実施の形態2および実施の形態3よりもさらに改善することができる。
【0086】
実施の形態5.
上記した実施の形態4では、仮判定した信号点位置およびシンボル位置、および、受信データから算出したメトリック値を用いて重み付けするメトリックを選択すると共に、所定値以下の電力値については一定値に変換してメトリック値の重み付けに用いるようにしていたが、次の実施の形態5では、電力値を電力値判別回路19で判別した結果と、変調方式を示す変調情報とから、仮判定回路13に入力する電力が小さい受信データ(IQデータ)に対して、任意のゲインを加えるレベル変換を実施し、そのレベル変換した受信データにより、メトリック値を算出させる実施の形態を示す。
【0087】
図7は、本発明の実施の形態5のビタビ復号回路の構成を示すブロック図である。
図7の実施の形態5のビタビ復号回路7が、実施の形態4のビタビ復号回路7と異なる主な点は、実施の形態4では、軟判定回路61中に乗算器15、メトリック値判別回路18、電力値判別回路19および電力値変換回路20を備えて、電力値が電力値判別回路19および電力値変換回路20を介して乗算器15に入力されていたものが、実施の形態5では、軟判定回路71中にメトリック値判別回路18および電力値判別回路19の他に、入力される受信データ(IQデータ)に対して任意のゲインを加えることができるレベル変換回路21を備え、変調情報はメトリック値判別回路18に入力されると共にレベル変換回路21にも入力され、電力値判別回路19の判別結果もレベル変換回路21に入力されるようにしている点である。
【0088】
メトリック値判別回路18および電力値判別回路19については、上記した実施の形態2〜4にて既に詳細に説明しているので、重複する説明を省略する。
【0089】
レベル変換回路21は、電力値判別回路19による電力値の判別結果(電力値のレベル)と、ディジタル復調回路4から入力する受信データの変調情報を利用して、判別された電力値の対応する受信データに対して、任意のゲインを加えるものであり、言わば、受信データ(IQデータ)の電力レベルを任意に変化させて出力できるレベル変換回路である。
【0090】
次に本実施の形態5のビタビ復号回路の動作について説明する。
図8は、変調方式がQPSKである場合に受信信号をデマッピングした一例を示す図である。
例えば、図8に示したようにQPSKの信号点マップでは、1個の受信データに対して2個の復号データが復号される。復号データのビットb0はI成分レベルにより直接メトリック値が算出され、ビットb1はQ成分レベルにより直接メトリック値が算出される。例えば、実線矢印で示された受信データJ1の復号データ(b0、b1)は、(b0、b1)=(0、1)のシンボル位置K2の近傍となる。また、図7に示すビタビ復号回路7が4ビット軟判定メトリックを使用する場合には、変換回路16のビットb0に対するメトリック値は15となり、ビットb1に対するメトリック値は0となる。この軟判定のメトリック値である15と0は、それぞれ“0”と“1”に対するもっとも確からしいメトリック値を有することになる。
【0091】
また、図8の点線矢印で示された電力値が小さい受信データJ2(M点)の復号データ(仮判定点)は、(b0、b1)=(0、0)のシンボル位置K1となる。しかし、受信データJ2の各々のメトリック値は、メトリック値演算回路14と変換回路16によって(9、9)となり、中間値に近いメトリック値を有するようになる。
【0092】
例えば、図8のように変調方式がQPSKである場合には、4分割されたIQ座標上には各々1点しかシンボル位置を有していないので、任意の受信データ(例えばJ2等)に+ゲインを加えても、受信データの復号データが異なったシンボル位置に移動することはない。このため、電力が小さい受信データが連続して入力される場合には、電力値判別回路19で判別された小さい電力値を有する受信データに対して、仮判定回路13の前段に挿入されたレベル変換回路21を使用して、+ゲインを加えることで、メトリック値演算回路14で生成されるメトリック値を拡大し、変換回路16から“1”と“0”に対するメトリックの中間値が連続して出力されないようにすることができる。
【0093】
例えば、点線矢印の受信データJ2(M点)をレベル変換回路21により、3倍のレベルになるようにゲインを加えてやると、受信データJ2は、N点の受信データJ3まで拡大される。すると、変換回路16からの出力されるメトリック値は、元の(9、9)から(13、13)になる。従って、ビタビデコーダ12には、元の“1”と“0”の中点に近いメトリック値でなく、“0”に近いメトリック値が入力されるようになる。なお、レベル変換回路21としては、例えば、ディジタル復調回路4中にはディジタル復調回路4自身の復号出力と後段にて必要とされる受信レベルとの整合を取るためのレベル変換回路を内蔵していることから、そのディジタル復調回路4中のレベル変換回路を、本実施の形態5のレベル変換回路21として兼用させることも可能である。
【0094】
以上のように、本実施の形態5では、例えばQPSK方式のように、4分割されたIQ座標上に各々1点の信号点を持つ変調方式によって変調された信号をメトリック値に変換する場合には、電力値判別回路19により電力値が小さいと判別された受信データについて仮判定回路13の前段で受信データのレベル変換するようにした。そのため、後段に乗算器を設ける必要が無くなり、電力値が小さい受信データのメトリック値については、“1”または“0”に対する距離を拡大したメトリック値として出力することができ、ビタビデコーダ12には、“1”または“0”に対する中間値のメトリック値が入力されにくくなることから、ビタビデコーダ12の誤り訂正能力を改善することができる。
【0095】
実施の形態6.
上記した実施の形態4では、変調情報と距離を用いたメトリック値とによって、電力値による重み付けをするメトリック値を正確に選択し、電力値が極端に小さい受信データは、その電力値を所定値(例えば1など)に変換してから乗算するビタビ復号回路であったが、次に本実施の形態6では、ビタビ復号を再畳み込み復号したデータと受信データとの不一致数を求め、その不一致数により、変換する電力値を可変制御する実施の形態を示す。
【0096】
図9は、本発明の実施の形態6のビタビ復号回路の構成を示すブロック図である。
図9の実施の形態6のビタビ復号回路71が、実施の形態4のビタビ復号回路7と異なる主な点は、実施の形態4のビタビ復号回路7には備えていないエラー回路23を実施の形態5では備えている点と、実施の形態4の軟判定回路61中の電力値変換回路20が、実施の形態6の軟判定回路81中では電力値を可変させて変換できる可変電力値変換回路22になっており、その可変電力値変換回路22にはエラー回路23の出力が入力される点である。
【0097】
可変電力値変換回路22は、その出力がエラー回路23の出力により可変制御される以外は、実施の形態3〜5に記載した電力値変換回路20と同様の構成および機能を有している。
【0098】
エラー回路23は、図11の受信機10に対してディジタル信号を送出する送信機内に設けられる符号化回路と同様な回路を備え、入力する受信データ(IQデータ)と、ビタビデコーダ12の出力を再度畳み込み符号化したデータとから、不一致のデータ数を所定時間毎に計数し、その所定時間後とのデータの不一致数を可変電力値変換回路22に出力する回路である。
【0099】
次に本実施の形態6のビタビ復号回路の動作について説明する。
エラー回路22では、ビタビデコーダ12で復号したデータを送信側と同様な符号化回路を用いて再畳み込み符号化したデータと、仮判定回路13に入力する前の受信データとから、双方のデータが不一致となるデータ数を計数し、所定期間内だけその計数結果を積算する。この処理により、エラー回路22では、ビタビデコーダ12において入力した受信データを所定期間内に訂正した個数が計数されることになる。このビタビデコーダ12の所定期間当たりの訂正数は、ビタビデコーダ12の誤り訂正結果を示すBER(bit Error Rate)の値とほぼ同じ結果を示している。
【0100】
本実施の形態6のビタビ復号回路71は、上記のようにエラー回路22で測定された所定期間当りの訂正数がBERの値とほぼ同じであることを利用して、エラー回路22の出力がもっとも小さくなるように、受信データが持つ電力値を可変電力値変換回路23で可変制御するようにした。なお、可変電力値変換回路23では、電力値判別回路19により電力が小さいと判別された受信データが有する電力値についてのみ電力値を変換しており、従って、上記した可変制御についても、電力が小さいと判別された受信データが有する電力値についてのみ実施される。
【0101】
以上のように、本実施の形態6では、エラー回路23で計測されたビタビデコーダ12の訂正数がもっとも小さくなるように、電力値判定回路19で電力が小さいと判別された電力値について可変制御するようにしたので、マルチパス等の影響により受信データの電力値が様々に変動する場合であっても、電力値の変動に対応させて最適なメトリック値を算出することができるので、ビタビデコーダ12の誤り訂正能力を改善することができる。
【0102】
実施の形態7.
上記した実施の形態6では、エラー回路23にてビタビ復号されたデータを再度畳み込み符号化したデータと、受信データとの不一致数をビタビデコーダ12の訂正数として所定時間だけ計数し、エラー回路23から出力されるビタビデコーダ12の訂正数により、メトリック値を重み付けするために変換される電力値を可変制御していたが、次の実施の形態7のビタビ復号回路72では、エラー回路23から出力されるビタビデコーダ12の訂正数により、メトリック値選択回路17で選択されたメトリック値に対してゲイン変更を実施し、そのゲイン変更されたメトリック値に対して電力値による重み付けを実施するものを示す。
【0103】
図10は、本発明の実施の形態7のビタビ復号回路の構成を示すブロック図である。
図10の実施の形態7のビタビ復号回路72が、実施の形態6のビタビ復号回路71と異なる主な点は、実施の形態6のビタビ復号回路71には備えていないゲイン変更メトリック値算出回路24を、実施の形態7ではメトリック値選択回路17と乗算器15の間に備えて、電力値判別回路19の出力がゲイン変更メトリック値算出回路24に入力されるようになっている点と、実施の形態6の軟判定回路81中の可変電力値変換回路22が、実施の形態7の軟判定回路91中では無くなっており、エラー回路23の出力がゲイン変更メトリック値算出回路24に入力されるようになっている点である。
【0104】
ゲイン変更メトリック値算出回路24は、メトリック値選択回路17で選択されたメトリック値に対して、エラー回路22から出力されるビタビデコーダ12の所定時間当たりの訂正数を利用して、ゲインを変更(増加)させたメトリック値を算出する回路である。
【0105】
次に本実施の形態7のビタビ復号回路の動作について説明する。
メトリック値選択回路17で重み付けが必要であると選択され、電力値判別回路19で電力値が小さいと判別された受信データに対応するメトリック値は、変換回路16によって“1”または“0”に対するメトリックの中間値とを出力させる。このことから、メトリック値選択回路17で重み付けが必要であると選択され、電力値判別回路19で電力値が小さいと判別された受信データが連続する場合には、ビタビデコーダ12の所定期間当たりの訂正数を増加させる。また、上記したように、ビタビデコーダ12の所定期間当たりの訂正数と、ビタビデコーダ12の誤り訂正結果を示すBER(bit Error Rate)の値とは、ほぼ同じ結果を示すことから、上記の場合には、ビタビデコーダ12のBERが悪化していると考えられる。
【0106】
本実施の形態7のビタビ復号回路72は、エラー回路22で測定したビタビデコーダ12の所定期間当たりの訂正数(≒BER)を用いて、ゲイン変更メトリック値算出回路24によってメトリック値選択回路17から入力するメトリック値を拡大させるようにゲインを変更させることにより、エラー回路22の測定結果がもっとも小さくなるようにする。その後、ゲインが変更されたメトリック値が乗算器15に入力されて、電力値による重み付けがおこなわれる。なお、ゲイン変更メトリック値算出回路24では、電力値判別回路19により電力値が小さいと判別された電力値に対応する受信データのメトリック値についてのみゲインの変更が実施され、従って、“1”または“0”に対するメトリックの中間値を発生させていると考えられるメトリック値のみに対してゲインの変更を実施している。
【0107】
以上のように、本実施の形態7では、エラー回路23の出力結果によって、“1”または“0”に対するメトリックの中間値を発生させていると考えられ、かつ、電力重み付けする前のメトリック値に対して、ゲインを変更(増加)させることによりメトリック値を拡大するようにしたので、ビタビデコーダ12に入力していたメトリックの中間値を減少させることができ、ビタビデコーダ12の誤り訂正能力を改善することができる。
【0108】
【発明の効果】
以上のように請求項1の発明によれば、受信データの変調方式の違いによって電力情報による重み付けをするメトリック値を選択するようにしたので、
受信データの電力値が小さい場合にも、“1”または“0”に対するメトリックの中間値が連続してビタビデコーダ12に入力することを減少させることができるようになって、ビタビデコーダ12の誤り訂正能力を改善することができ、また、回路規模の増加を最小限度に抑えることができる。
【0109】
また、請求項2の発明によれば、仮判定したシンボル位置と、受信データの信号点位置との距離を用いたメトリック値と受信データの変調情報とから、電力値により重み付けをするメトリック値を選択するようにしたので、
電力値が小さい場合の受信データの信頼性が正確に判別できるようになり、“1”または“0”に対するメトリックの中間値が連続してビタビデコーダ12に入力することを減少させることができるようになって、ビタビデコーダ12の誤り訂正能力をさらに改善することができる。
【0110】
また、請求項3の発明によれば、受信データの変調情報のみによってメトリック値を選択し、電力値が極端に小さい受信データについては、その電力情報を所定値(例えば1など)に変換して乗算するようにしたので、
電力値の極端に小さい受信データのメトリック値は、受信データの信号点位置と仮判定されたシンボル位置からメトリック値演算回路で算出した距離のみの値となる。その結果、メトリックの中間値が連続してビタビデコーダ12に入力することをさらに少なくすることができ、ビタビデコーダ12の誤り訂正能力をさらに改善することができ、回路規模の増加を最小限度に抑えることができる。
【0111】
また、請求項4の発明によれば、仮判定したシンボル位置と、受信データの信号点位置との距離を用いたメトリック値と受信データの変調情報とから、電力値により重み付けをするメトリック値を選択すると共に、電力値が極端に小さい受信データについては、その電力値を所定値(例えば1など)に変換してからメトリック値の重み付けのために乗算するようにしたので、
電力値の極端に小さい受信データのメトリック値は、受信データの信号点位置と仮判定されたシンボル位置からメトリック値演算回路で算出した距離のみの値となる。その結果、受信データを復号したメトリック値の中から信頼性の低いメトリック値を正確に抽出することができる。さらに、全てのメトリック値を抽出して重み付けをおこなう場合でも、ビタビデコーダ12には連続した中間値が入力されにくくできるため、ビタビデコーダ12の誤り訂正能力をさらに改善することができる。
【0112】
また、請求項5の発明によれば、例えばQPSK方式のように4分割された座標上にそれぞれ1点の信号点を持つ変調方式によって変調した信号をメトリック値に変換する場合に、電力値が小さいと判別された受信データについては仮判定回路の前段でレベル変換するようにしたので、
後段に乗算器が必要無くなり、電力が小さい場合の受信データのメトリック値は、“1”または“0”に対する距離が拡大されてメトリック値として出力されることから、ビタビデコーダ12に“1”または“0”に対するメトリック値の中間値を入力されにくくすることができ、ビタビデコーダ12の誤り訂正能力を改善することができる。また、レベル変換回路を前段のディジタル復調回路ブロックに内蔵されている回路と兼用する場合には、回路規模の増加を最小限度にすることができる。
【0113】
また、請求項6の発明によれば、電力が小さいと判別された電力値を可変制御することにより、エラー回路で計測されたビタビデコーダ12の訂正数がもっとも小さくなるようにしたので、
マルチパス等の影響により電力値が様々に変動する場合に、最適に重み付けられたメトリック値を算出することができ、ビタビデコーダ12の誤り訂正能力を改善することができる。
【0114】
また、請求項7の発明によれば、エラー回路の出力と電力判別結果によって、“1”または“0”に対する中間値を発生させているメトリック値に対して、メトリック値を拡大するようにゲインを変更したので、
変換回路からビタビデコーダに入力するメトリックの中間値を減少させることができ、ビタビデコーダ12の誤り訂正能力を改善することができる。
【図面の簡単な説明】
【図1】 本発明の実施の形態1のビタビ復号回路の構成を示すブロック図である。
【図2】 変調方式が64QAMである場合のデマッピングした信号配置を示す図である。
【図3】 本発明の実施の形態2のビタビ復号回路の構成を示すブロック図である。
【図4】 変調方式が64QAMである場合に受信信号をデマッピングした一例を示す図である。
【図5】 本発明の実施の形態3のビタビ復号回路の構成を示すブロック図である。
【図6】 本発明の実施の形態4のビタビ復号回路の構成を示すブロック図である。
【図7】 本発明の実施の形態5のビタビ復号回路の構成を示すブロック図である。
【図8】 変調方式がQPSKである場合に受信信号をデマッピングした一例を示す図である。
【図9】 本発明の実施の形態6のビタビ復号回路の構成を示すブロック図である。
【図10】 本発明の実施の形態7のビタビ復号回路の構成を示すブロック図である。
【図11】 従来の地上波ディジタル放送の受信機を示すブロック図である。
【図12】 図11中のビタビ復号回路の構成を示すブロック図である。
【図13】 変調方式が64QAMである場合に受信信号をデマッピングした一例を示す図である。
【符号の説明】
1 受信部、 2 受信データ抽出部、 3 受信データ処理部、 4 ディジタル復調回路、 5 デインターリーブ回路、 6 復号回路、 7、71、72 ビタビ復号回路、 8 リードソロモン復号回路、 10 受信機、 11 軟判定回路、 12 ビタビデコーダ、 13 仮判定回路、14 メトリック値演算回路、 15 乗算器、 16 変換回路、 17 メトリック値選択回路、 18 メトリック値判別回路、 19 電力値判別回路、 20 電力値変換回路、 21 レベル変換回路、 22 可変電力値変換回路、 23エラー回路、 24 ゲイン変更メトリック値算出回路、 31、41、51、61、71、81、91 軟判定回路。

Claims (7)

  1. ディジタル復調された畳み込み符号の受信データについて、デマッピングにより信号点位置を仮判定する仮判定回路と、該仮判定した信号点位置から各メトリック値を演算するメトリック値演算回路と、前記メトリック値に対して受信データの電力値に基づく重み付けをする乗算器と、前記メトリック値を多値メトリック値に変換する変換回路とを有して受信データの軟判定を実施する軟判定回路と、
    該軟判定された受信データの多値メトリック値をビタビ復号するビタビデコーダとからなるビタビ復号回路であって、
    前記デマッピングされた各信号点位置毎に、上下左右方向何れか隣の信号点位置では信号点を示すビットの何れかが反転する座標配置を受信データの変調方式毎および前記各ビット毎に予め保持し、前記仮判定された信号点位置と前記予め格納された座標配置と一致する受信データのメトリック値のみを選択して前記乗算器に送出するメトリック値選択回路を更に備えることを特徴とするビタビ復号回路。
  2. 前記受信データの変調方式毎に前記各メトリック値の大きさを判別し、該メトリック値の大きさが所定値未満である場合に、前記メトリック値選択回路に前記選択を実施させるメトリック値判別回路を更に備えることを特徴とする請求項1記載のビタビ復号回路。
  3. 前記受信データの電力値が所定値未満であるものを判別する電力値判別回路と、前記判別された電力値を前記所定値以上に変換して前記乗算器に出力する電力値変換回路とを更に備えることを特徴とする請求項1記載のビタビ復号回路。
  4. 前記受信データの電力値が所定値未満であるものを判別する電力値判別回路と、前記判別された電力値を前記所定値以上に変換して前記乗算器に出力する電力値変換回路とを更に備えることを特徴とする請求項2記載のビタビ復号回路。
  5. 前記受信データの電力値が所定値未満であるものを判別する電力値判別回路と、前記判別された電力値を前記受信データの変調方式毎に規定されるレベルに変換するレベル変換回路とを更に備えることを特徴とする請求項2記載のビタビ復号回路。
  6. 前記受信データと該受信データをビタビ復号した結果を再畳み込み符号化したデータとの不一致数を所定期間分積算することにより時間当たりのビタビ復号訂正数を演算するエラー回路を更に備え、
    前記電力値変換回路は、前記ビタビ復号訂正数の数値が最小になるように、前記所定値以上の電力値を可変できることを特徴とする請求項4記載のビタビ復号回路。
  7. 前記受信データと該受信データをビタビ復号した結果を再畳み込み符号化したデータとの不一致数を所定期間分積算することにより時間当たりのビタビ復号訂正数を演算するエラー回路と、
    前記受信データの電力値が所定値未満であるものを判別する電力値判別回路と、
    前記電力値判別回路により前記電力値が前記所定値よりも小さいと判別された場合に、前記ビタビ復号訂正数の数値が最小になるように、前記メトリック値選択回路により選択されたメトリック値に対して該メトリック値が有するゲインを変更できるゲイン変更メトリック値算出回路とを更に備えることを特徴とする請求項2記載のビタビ復号回路。
JP2000135767A 2000-05-09 2000-05-09 ビタビ復号回路 Expired - Lifetime JP3830328B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000135767A JP3830328B2 (ja) 2000-05-09 2000-05-09 ビタビ復号回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000135767A JP3830328B2 (ja) 2000-05-09 2000-05-09 ビタビ復号回路

Publications (2)

Publication Number Publication Date
JP2001320283A JP2001320283A (ja) 2001-11-16
JP3830328B2 true JP3830328B2 (ja) 2006-10-04

Family

ID=18643805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000135767A Expired - Lifetime JP3830328B2 (ja) 2000-05-09 2000-05-09 ビタビ復号回路

Country Status (1)

Country Link
JP (1) JP3830328B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4984281B2 (ja) * 2006-08-18 2012-07-25 学校法人 名城大学 誤り訂正装置、受信装置、誤り訂正方法および誤り訂正プログラム

Also Published As

Publication number Publication date
JP2001320283A (ja) 2001-11-16

Similar Documents

Publication Publication Date Title
JP3749281B2 (ja) データ受信機
JP3926499B2 (ja) 畳み込み符号軟判定復号方式の受信装置
US7006429B2 (en) Transmitter, receiver and transmitting method in multi-carrier transmission system
US6084926A (en) Method and system for demodulating radio signals
EP1182839A2 (en) Convolutionally encoded QAM transmission
WO2006025676A1 (en) Method and apparatus for calculating log-likelihood ratio for decoding in a receiver for a mobile communication system
WO2008038749A1 (fr) circuit de calcul du logarithme de rapport de vraisemblance, appareil émetteur, procédé et programme de calcul du logarithme de rapport de vraisemblance
KR101704096B1 (ko) 연판정 준 ml 검출기에서 로그 우도율 클리핑을 수행하는 프로세스 및 그 검출기
US8156397B2 (en) Method and system for feedback of decoded data characteristics to a decoder in stored data access and decoding operations to assist in additional decoding operations
JP3712371B2 (ja) 復調復号装置、受信装置および復調復号方法
JP4380407B2 (ja) ブランチメトリック演算方法
CN109861943B (zh) 多维8psk信号的译码方法、译码器及接收机
CN101141229A (zh) 检测穿刺位置的装置和方法
AU2007214342A1 (en) Demodulation method
JP3830328B2 (ja) ビタビ復号回路
JP2002314436A (ja) 軟判定復号装置及び軟判定復号方法
JP3237864B2 (ja) 軟判定ビタビ復号方法
JP2710696B2 (ja) 軟判定ビタビ復号方法
US6426981B1 (en) Process and device for decoding a radio frequency transmission channel, especially for a terrestrial digital broadcast using OFDM modulation
JPH05244017A (ja) ビタビ復号器
JP7460438B2 (ja) 受信状態表示方法、受信装置
JP4188769B2 (ja) 送信方法および装置ならびに受信方法および装置およびこれらを利用した通信システム
JP3657525B2 (ja) 復調復号装置、受信システムおよび復調復号方法
JP5444038B2 (ja) 受信装置
JP3356329B2 (ja) 受信装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060711

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3830328

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130721

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term