JP3829442B2 - A/d変換装置 - Google Patents

A/d変換装置 Download PDF

Info

Publication number
JP3829442B2
JP3829442B2 JP32639197A JP32639197A JP3829442B2 JP 3829442 B2 JP3829442 B2 JP 3829442B2 JP 32639197 A JP32639197 A JP 32639197A JP 32639197 A JP32639197 A JP 32639197A JP 3829442 B2 JP3829442 B2 JP 3829442B2
Authority
JP
Japan
Prior art keywords
gain
data
input
converter
moving average
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32639197A
Other languages
English (en)
Other versions
JPH11163731A (ja
Inventor
正夫 野呂
章 十河
了 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Corp
Original Assignee
Yamaha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Corp filed Critical Yamaha Corp
Priority to JP32639197A priority Critical patent/JP3829442B2/ja
Publication of JPH11163731A publication Critical patent/JPH11163731A/ja
Priority to US09/492,442 priority patent/US6445320B1/en
Application granted granted Critical
Publication of JP3829442B2 publication Critical patent/JP3829442B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Analogue/Digital Conversion (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、オーバーサンプリングを用いてΔΣ型のA/D変換を行う際に入力ゲインを調整して広いダイナミックレンジでA/D変換を行うのに好適なA/D変換装置に関する。
【0002】
【従来の技術】
アナログ信号をデジタル信号に変換するA/D変換器においては、その精度を向上する目的で、いわゆるフローティング方式が採用されることがある。このフローティング方式のA/D変換器にあっては、変換後のデジタル信号に基づいて、入力アナログ信号のゲインを調整する。図11に、従来のフローティング方式に係わるA/D変換システムのブロック図を示す。
【0003】
この図において、100は入力アナログ信号Sinが供給される入力ゲインコントロール回路であって、制御信号Cに基づいて入力ゲインを調整する。200は、入力ゲインコントロール回路100に接続されるA/D変換器であって、回路100の出力信号をアナログ信号からデジタル信号に変換する。300はA/D変換器200の後段に設けられたCPUであって、このCPU300は、コントロールプログラムを図示せぬ作業用のメインメモリにロードして、このプログラムに基づいて、デジタル信号の値が所定範囲内になるように制御信号Cを生成する。
【0004】
以上の構成により、入力アナログ信号Sinのレベルがある値を越えると、CPU300はこれを検知して入力ゲインを減少させるように制御信号Cを生成する。一方、入力アナログ信号Sinのレベルがある値を下回ると、CPU300はこれを検知して、入力ゲインを増加させるように制御信号Cを制御する。これにより、A/D変換器200の入力信号のレベルが所定範囲内になるように調整している。例えば、入力ゲインを4段階で切り換えるとすれば、8ビット精度のA/D変換器200を用いて、10ビット精度のA/D変換器を実現することできる。
【0005】
【発明が解決しようとする課題】
ところで、このようなA/D変換システムにおいては、A/D変換器200の入力レベルを適正に保つためにCPU300とプログラムを用いて制御信号Cを生成していたので、以下に述べる問題がある。
まず、入力ゲインを制御するために、CPU300とプログラムを格納するためのメモリが必要となり、構成が複雑になる。
また、CPU300で演算処理を行うため、制御信号Cの生成に時間がかかり、レスポンスが良くない。例えば、入力アナログ信号が急峻に立ち上がった場合に、演算処理に時間がかかると、入力アナログ信号の変化に追随して制御信号Cを生成することができず、信号波形がクリップされてしまうことがある。
また、A/D変換器200の出力ビット数を増やした場合、CPU300の演算処理に負荷が生じる。
【0006】
本発明は、上述した事情に鑑みてなされたものであり、簡易な構成で、入力アナログ信号の入力ゲインを適切に切り換えることにより、広いダイナミックレンジを確保できるA/D変換装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記課題を解決すため、請求項1に記載の発明にあっては、入力信号のゲインを制御信号に基づいて調整する入力ゲイン調整部と、前記入力ゲイン調整部によってゲイン調整された前記入力信号を予め定められたオーバーサンプリング周波数でオーバーサンプリングし1ビットのデータに変換して出力するA/D変換部と、前記A/D変換部から連続して出力されるn個のデータの移動平均を示す移動平均データを算出する移動平均算出部と、前記移動平均算出部によって算出された移動平均データに基づいて、ゲイン調整された前記入力信号のレベルが一定の範囲内に収まるように前記制御信号を生成するゲインコントロール部とを備え、前記nの値は、前記移動平均データに含まれるノイズ成分の最大値が前記A/D変換部の量子化雑音の半分以下となるように、前記オーバーサンプリング周波数と、前記入力信号の信号帯域を用いて求められた数値よりも大きい整数値に設定されていることを特徴とする。
【0008】
また、請求項2に記載の発明にあっては、入力信号のゲインを制御信号に基づいて調整する入力ゲイン調整部と、前記入力ゲイン調整部によってゲイン調整された前記入力信号をオーバーサンプリングし、1ビットのデータに変換して出力するA/D変換部と、前記A/D変換部から出力されたデータに基づいて、前記入力信号の波高値を検出する検出部と、前記検出部によって検出された波高値に基づいて、ゲイン調整された前記入力信号のレベルが一定の範囲内に収まるように前記制御信号を生成するゲインコントロール部と、前記制御信号に基づいて生成された前記データの重み付け係数を記憶する記憶部とを備え、前記ゲインコントロール部は、ゲインを下げる方向には応答性を速く、ゲインを上げる方向には応答性を遅くするように前記制御信号を生成し、当該A/D変換装置の後段に設けられたデータ処理回路において、前記A/D変換部から出力されるデータと、当該データに対応して前記記憶手段に記憶されている重み付け係数とに基づいて、多ビットのデジタルデータを生成することを特徴とする。
【0009】
また、請求項3に記載の発明にあっては、入力信号のゲインを制御信号に基づいて調整する入力ゲイン調整部と、前記入力ゲイン調整部によってゲイン調整された前記入力信号をオーバーサンプリングし1ビットのデータに変換して出力するA/D変換部と、前記A/D変換部から出力されたデータの移動平均を示す移動平均データを算出する移動平均算出部と、前記移動平均算出部によって算出された移動平均データに基づいて、ゲイン調整された前記入力信号のレベルが一定の範囲内に収まるように前記制御信号を生成するゲインコントロール部とを備え、前記ゲインコントロール部は、ゲインを下げる方向には応答性を速く、ゲインを上げる方向には応答性を遅くするように前記制御信号を生成することを特徴とする。
【0011】
また、請求項に記載の発明にあっては、前記制御信号に基づいて生成された前記データの重み付け係数を記憶する記憶部を備え、当該A/D変換装置の後段に設けられたデータ処理回路において、前記A/D変換部から出力されるデータと、当該データに対応して前記記憶手段に記憶されている重み付け係数とに基づいて、多ビットのデジタルデータを生成することを特徴とする。
【0012】
【発明の実施の形態】
1.実施形態の構成
以下、図面を参照しつつ、本発明の一実施形態に係わるΔΣ型A/D変換器の構成を説明する。
1−1:全体構成
まず、本実施形態に係わるΔΣ型A/D変換器のブロック図を図1に示す。図において、1はゲインコントロール付きA/D変換器であって、入力アナログ信号Sinのレベルを調整する入力ゲイン調整部と1ビットA/D変換器から構成される。この1ビットA/D変換器においては、オーバーサンプリングを行うことにより、シェーピングノイズを加えつつ1ビットのビットストリームデータDを生成している。例えば、入力アナログ信号Sinの帯域が、24KHzであったとすると、6MHzあるいは12MHzといったサンプリング周波数でA/D変換を行う。
【0013】
次に、2はゲインコントロール回路であって、ビットストリームデータDに基づいて、ゲイン調整された入力アナログ信号Sinの波高値を検出する。すなわち、この例にあっては、1ビットのビットストリームデータDを多ビットのデータに変換することなく、ビットストリームデータDからゲイン調整された入力アナログ信号Sinの波高値を直接検出している。このため、多ビットへの変換処理を省略することができる。また、ゲインコントロール回路2は検出された波高値に基づいて、入力ゲインを制御する制御信号CONTを生成し、制御信号CONTをゲインコントロール付きA/D変換器1に供給する。
【0014】
次に、3は重み付けレジスタであって、そこにはビットストリームデータDと制御信号CONTが供給されるようになっており、制御信号CONTに基づいて入力ゲインに対応した重み付け係数Kが格納される。
【0015】
以上の構成により、ゲインコントロール付きA/D変換器1が入力アナログ信号SinをオーバーサンプリングしてビットストリームデータDを生成すると、ゲインコントロール回路は、ビットストリームデータDに基づいてゲイン調整された入力アナログ信号Sinの波高値を検出し、これに基づいて制御信号CONTを生成する。ゲインコントロール付きA/D変換器1は、この制御信号CONTに基づいて、入力アナログ信号Sinのフロントエンドにおける入力ゲインを調整する。これにより、入力アナログ信号Sinのレベルが大きくなると入力ゲインが下げられ、入力アナログ信号Sinのレベルが小さくなると入力ゲインが上げられ、この結果、A/D変換される信号のレベルが一定の範囲内に収まるようになる。
【0016】
1−2:ゲインコントロール付きA/D変換器の構成
次に、ゲインコントロール付きA/D変換器1の構成例について、3つの態様を取り上げ説明する。
1−2−1:第1の態様
第1の態様は、フィードバック抵抗の値を切り換えることにより、ゲインの調整を行うものである。図2は、第1の態様に係わるゲインコントロール付きA/D変換器1の回路図である。同図に示すようにゲインコントロール付きA/D変換器1は、オペアンプ110、コンパレータ115、抵抗111,114,116〜119、コンデンサ112,113、スイッチ120,121から構成される。
【0017】
オペアンプ110の負入力端子には、抵抗111を介して入力アナログ信号Sinが供給され、また、その正入力端子には基準電圧Vrefが供給されるようになっている。また、オペアンプ110の負入力端子と出力端子との間には、コンデンサ112,113が接続されており、さらに、コンデンサ112とコンデンサ113の接続点は、抵抗114を介して接地されている。したがって、オペアンプ110、コンデンサ112,113および抵抗111,114は2次のローパスフィルタを構成している。
【0018】
また、オペアンプ110の出力端子は、コンパレータ115の入力端子と接続されている。コンパレータ115は、クロック信号CKに同期して、入力された信号のレベルを所定のスッレッシュホールドレベルと比較して1ビットのビットストリームデータDを生成する。このビットストリームデータDの出力は、最終的に出力されるデジタル信号のサンプリング周波数のN倍のビットレート(例えば、64倍、128倍)で行われる。なお、この例では、ビットストリームデータDを用いて、各種の波形処理が行われるが、最終的には、デシメーションフィルタ(図示せず)によって、ビットストリームデータDを多ビットのデジタル信号に変換するとともに間引き処理を施して、サンプリング周波数に対応したデジタル信号として出力されるようになっている。
【0019】
また、スイッチ121の端子121aには、正の基準電圧(例えば、5V)が供給され、一方、その端子121bには、負の基準電圧(例えば、0V)が供給されるようになっている。また、スイッチ121の切換動作は、その制御端子に供給されるビットストリームデータDによって制御される。具体的には、ビットストリームデータDが「1」を示す場合には端子121aが選択され、一方、ビットストリームデータDが「0」を示す場合には端子121bが選択されるようになっている。これにより、ビットストリームデータDの値に応じて正または負の基準電圧が選択される。
【0020】
また、スイッチ120は、スイッチ120A〜120Dから構成されており、スイッチ120A〜120Dの一方の各端子は、抵抗116〜119に各々接続されており、他方の各端子はスイッチ121の端子121cと接続されている。また、スイッチ120A〜120Dの開閉動作は、制御信号CONTによって制御されるようになっている。ここで、抵抗116〜119の抵抗値の比は、1:2:4:8になるように設定されている。したがって、制御信号CONTによって、フィードバック抵抗の抵抗値を切り換えることができ、コンパレータ115に入力される信号のゲインを調整することが可能となる。この例では、スイッチ120A〜120Dの開閉動作を適宜制御することにより、16段階のゲイン調整が可能となる。
【0021】
以上の構成により、制御信号CONTによって、入力アナログ信号Sinを増幅するゲインを切り換えつつ、オーバーサンプリングを行って、2次のノイズシェーピングを施すことが可能となる。
【0022】
1−2−2:第2の態様
第2の態様は、帰還電流の値を切り換えることにより、重み付けを切り換えるものである。
図3は、第2の態様に係わるゲインコントロール付きA/D変換器1の回路図である。同図に示すようにゲインコントロール付きA/D変換器1は、オペアンプ110、コンパレータ115、抵抗111,114、コンデンサ112,113、制御部122、電流切換部123から構成されている。
【0023】
制御部122は、ビットストリームデータDと制御信号CONTに基づいて、電流切換信号a〜d,/a〜/dを生成する。なお、バーの記号として「/」を用いることにする。具体的には、ビットストリームデータDが「1」であるならば、制御信号CONTに応じて電流切換信号a〜dの少なくとも1つをアクティブとし、ビットストリームデータDが「0」であるならば、制御信号CONTに応じて電流切換信号/a〜/dの少なくとも1つをアクティブとしている。
【0024】
また、電流切換部123は電流源Ioutと、PチャンネルFETp1〜p9とNチャンネルFETn1〜n9から構成されている。PチャンネルFETp1とp2〜p5はカレントミラー回路を構成しており、また、NチャンネルFETn1とn2〜n5も同様にカレントミラー回路を構成している。ここで、PチャンネルFETp1のゲート幅と、PチャンネルFETp2〜p5の各ゲート幅は、例えば、1:1:2:4:8の比率となるように形成され、また、NチャンネルFETn1のゲート幅と、nチャンネルFETn2〜n5の各ゲート幅は、例えば、1:1:2:4:8の比率となるように形成される。カレントミラー回路においては、ゲート幅に応じた電流が流れるので、電流源Ioutを流れる電流値をiとすれば、PチャンネルFETp2〜p5に流れる電流値は、各々i,2i,4i,8iとなる。また同様に、NチャンネルFETn2〜n5に流れる電流値は、各々i,2i,4i,8iとなる。
【0025】
ところで、PチャンネルFETp6〜p9とNチャンネルFETn6〜n9は、スイッチとして作用し、電流切換信号a〜d,/a〜/dに応じて、オン状態とオフ状態が切り替わるようになっている。したがって、例えば、電流切換信号bをアクティブとし、他の電流切換信号を非アクティブにすると、2iの電流が電流切換部123から流れ出る。また、電流切換信号/bおよび/cをアクティブとし、他の電流切換信号を非アクティブにすれば、6iの電流が電流切換部123に流れ込む。このように、電流切換信号a〜d,/a〜/dを適宜選択することにより、フィードバックする電流値を切り換えることができるから、入力ゲインを16段階で調整可能である。
【0026】
このようにして、第2の態様にあっては、制御信号CONTに基づいて、フィードバックする電流値を切り換えるようにしたので、入力アナログ信号Sinを増幅するゲインを切り換えつつ、オーバーサンプリングを行って、2次のノイズシェーピングを施すことが可能となる。
【0027】
ところで、ゲインコントロール付きA/D変換器1をIC化する場合、第1の態様では各種の抵抗を用意してこれを切り換えるため、ICの内部に精度の良い抵抗を形成する必要がある。これらの抵抗に要するマスク面積はFETと比較して極めて大きい。したがって、第2の態様のように、FETによって電流切換部123を構成し、電流をフィードバックすることによって、ゲインコントロール付きA/D変換器1全体のマスク面積を減少させることができる。
【0028】
1−2−3:第3の態様
第3の態様は、帰還するパルスの数を切り換えることにより、重み付けを切り換えるものである。
図4は、第3の態様に係わるゲインコントロール付きA/D変換器1の回路図である。同図に示すようにゲインコントロール付きA/D変換器1は、オペアンプ110、コンパレータ115、抵抗111,114,124、コンデンサ112,113、パルス制御部125から構成されている。
【0029】
ここで、パルス制御部125は、ビットストリームデータDが「1」であるならば、正極性のパルスを制御信号CONTに応じた数だけ生成出力し、ビットストリームデータDが「0」であるならば、負極性のパルスを制御信号CONTに応じた数だけ生成出力する。
【0030】
例えば、クロック信号CKが図5(a)に示すものであり、メインクロック信号CKmが図5(b)に示すものであるとする。なお、メインクロック信号CKmは、図示せぬ水晶発振器で生成され、クロック信号CKは、メインクロック信号CKmを分周することによって生成されるようになっている。したがって、クロック信号CKとメインクロック信号CKmは同期している。ここで、制御信号CONTが「1」を示す場合には、パルス制御部125の出力信号は図5(c)に示す波形となり、制御信号CONTが「2」を示す場合には、パルス制御部125の出力信号は図5(d)に示す波形となる。すなわち、メインクロック信号CKmに同期したパルスが、制御信号CONTで指示される数だけフィードバックされる。
【0031】
この場合、制御の対象となるのはパルスの数であり、個々のパルス幅は、メインクロック信号CKmのパルス幅によって定まる。メインクロック信号CKmは、上述したように水晶発振器で生成されるので、そのパルス幅は極めて精度がよい。したがって、この例によれば、フィードバック量を高い精度で制御することが可能となる。
【0032】
このように、第3の態様にあっては、制御信号CONTに基づいて、フィードバックするパルス数を切り換えるようにしたので、入力アナログ信号Sinを増幅するゲインを切り換えつつ、オーバーサンプリングを行って、2次のノイズシェーピングを施すことが可能となる。
【0033】
1−3:ゲインコントロール回路の構成
次に、ゲインコントロール回路2の構成を説明する。図6はゲインコントロール回路2のブロック図である。図において、210は、移動平均算出部であって、ビットストリームデータDに基づいて、移動平均データD’を算出する。具体的には、ビットストリームデータDのデータ値「1」を「1」に、そのデータ値「0」を「−1」に対応付けて、対応付けたn個の値を加算して移動平均データD’を生成している。
【0034】
この例のように、2次のノイズシェーピングを施す1ビットA/D変換器において、入力アナログ信号Sinの信号帯域を24KHz、256倍のオーバーサンプリングを行うとすれば、ビットストリームデータDの周波数特性は、図7に示すものとなる。図中の斜線部分はノイズ成分S(f)であり、次式で与えられる。
【数1】
Figure 0003829442
【0035】
また、移動平均算出部210において、n個のビットストリームデータDに基づいて移動平均データD’を算出すれば、移動平均処理の伝達関数H(f)は、次式で与えられる。
【数2】
Figure 0003829442
【0036】
したがって、移動平均データD’に含まれるノイズ成分N(f)は、数1,数2より、次式で与えられる。
【数3】
Figure 0003829442
【0037】
ところで、ゲインコントロール回路2は、移動平均データD’のピーク値がAD受信信号レベルの飽和レベルを越えるか否かを検出して、あるダイナミックレンジに収まるように制御信号CONTを生成するので、ノイズ成分N(f)は、受信信号のピーク値の半分以下であればよい。ここで、1ビット量子化器の場合、信号の最大値は量子化雑音rと等しい。
したがって、ノイズ成分N(f)は次式の条件を満たす必要がある。
【数4】
Figure 0003829442
【0038】
また、
|SIN(nf・2π/fs)|<1
|SIN4(nf/fs)|<1
であるから、数4から次式が導かれる。
n>16fs/πf
ここで、f=fs/2のときノイズ成分N(f)は最大値となるから、この値を上記した式に代入すると、
n>32/π≒10.2
となる。したがって、移動平均を算出する際に用いるビットストリームデータDの個数nを11以上に設定すれば良いことになる。
【0039】
例えば、n=16とした場合、0Hzに対する24KHzの減衰量は、0.16%(−0.014dB)となる。この場合には、信号帯域(0Hz〜24KHz)の周波数特性を十分平坦に保ちつつ、ピーク値を検出することができる。そこで、この例にあっては、n=16に設定し、移動平均算出部210は16個のビットストリームデータDに基づいて移動平均データD’を算出している。
【0040】
このように、移動平均算出部210では、オーバーサンプリング周波数と入力アナログ信号Sinの信号帯域とに応じて、移動平均を算出する際の元になるビットストリームデータDの個数nを設定したので、シェーピングノイズを十分抑圧するとともに入力アナログ信号Sinの信号帯域における周波数特性を平坦にすることができる。この結果、移動平均算出部210は、制御信号CONTを生成するのに十分な精度をもって、ゲイン調整された入力アナログ信号Sinの波高値を移動平均データD’として検出することができる。
【0041】
次に、図6に示す220は最大値検出部であって、所定時間内の移動平均データD’の最大値を検出し、これを予め定められれた第1の閾値R1と比較する。そして、検出された最大値が第1の閾値R1より大きい場合には、ゲインダウンを指示する減衰制御信号C1を生成する。一方、検出された最大値が第1の閾値R1より小さい場合には、その値を出力する。ここで、第1の閾値R1は、入力アナログ信号Sinのスルーレートとゲインコントロール制御系の応答性とを考慮して定められており、飽和レベルよりも低い値に設定されている。
【0042】
次に、230は最大値保持レジスタであって、最大値検出部220から出力される最大値を一定個数保持する。したがって、この最大値保持レジスタ230を参照すれば、過去の所定期間内における移動平均データD’の最大値変化を検知することができる。
【0043】
次に、240は判定回路あって、ゲインアップを指示するか否かを判定する。具体的には、最大値レジスタ230の内容を読み出し、これを第2の閾値R2と比較することにより、一定時間、最大値が第2の閾値R2を越えることが無かった場合にのみ、ゲインアップを指示する増加制御信号C2を生成するとともに、最大値レジスタ230の内容をリセットする。一方、一定時間の内、最大値が第2の閾値R2を越えることがあった場合には、増加制御信号C2を生成することなく現在の入力ゲインを維持する。
【0044】
すなわち、移動平均データD’の値が、ある時間連続して第2の閾値R2を下回った場合にのみ、増加制御信号C2が生成される。したがって、入力ゲインを減少させる場合は、第1の閾値R1を上回ると直ちにゲイン制御が行われ、一方、入力ゲインを増加させる場合には、所定時間連続して第2の閾値R2を下回るとゲイン制御が行われる。
【0045】
このように、入力ゲインを減少させる方向と入力ゲインを増加させる方向で応答性を異なるように設定したのは、以下の理由による。まず、入力ゲインを減少させる場合には、ゲイン切換に伴うノイズが混入する可能性があるものの、入力アナログ信号Sinのレベルが大きすぎて、波形がクリップするといった不都合は生じない。一方、入力ゲインを増加させる場合に、ゲイン増加前と比較して大レベルの入力アナログ信号Sinが入来すると、信号波形がクリップしてしまう可能性がある。この場合には、ダイナミックレンジを越える情報は失われてしまうので、回復することができず、大きな歪みとなってしまう。そこで、この例にあっては、入力ゲインを減少させる方向の応答性は速くなるように減制御信号C1を生成し、一方、入力ゲインを増加させる方向の応答性は遅くなるように増加制御信号C2を生成し、これらの信号を制御信号CONTとして、ゲインコントロール付きA/D変換器1と重み付けレジスタ3とに出力している。
【0046】
1−4:重み付けレジスタの構成
次に、重み付けレジスタ3について説明する。重み付けレジスタ3には、制御信号CONTが供給され、制御信号CONTに応じた重み付け係数Kが格納される。具体的には、初期状態で予め定められた重み付け係数Kが格納されており、制御信号CONTに応じて重み付け係数Kを変更するようになっている。
【0047】
ここで、重み付け係数Kは入力ゲインGの逆数として与えられる。すなわち。入力ゲインGが大きくなれば重み付け係数Kは小さくなり、逆に、入力ゲインGが小さくなれば重み付け係数Kは大きくなる。
【0048】
したがって、重み付けレジスタ3を参照することによって、入力ゲインGに応じた重み付け係数Kを検知できる。このため、本システムの後段に用いられるデータ処理回路においては、重み付けレジスタ3の内容を参照してデータ処理を行う。例えば、演算処理を重み付け係数Kに対して行って、処理済みの重み付け係数Kとこれに対応するビットストリームデータDに基づいて、最終的に出力する多ビットのデジタルデータを生成することが行われる。
【0049】
2.実施形態の動作
次に、本実施形態の動作を図面を参照しつつ説明する。図8は本実施形態に係わるΔΣ型A/D変換器の動作を示すフローチャートである。
まず、ΔΣ型A/D変換器に電源電圧が供給されると、ゲインコントロール付きA/D変換器1のゲイン切換および重み付けレジスタ3に格納される重み付け係数Kが、初期状態にプリセットされる(ステップS1)。この例にあっては、ゲインコントロール付きA/D変換器1においてゲイン切換をG1,G2,G3,G4(G1<G2<G3<G4)といったように4段階で行うものとする。また、重み付け係数Kも4段階用意され、それらの値は、K1=1/G1,K2=1/G2,K3=1/G3,K4=1/G4とする。ここで、初期状態にあっては、例えば、入力ゲインG1と重み付け係数K1を選択する。このように、最小の入力ゲインを選択するのは、始めから入力アナログ信号Sinのレベルが大きい場合に、大きなゲインで増幅すると、波形がクリップされて情報が失われるおそれがあるが、最小の入力ゲインに設定しておけば、波形がクリップされることはなく確実にA/D変換が行われるからである。
【0050】
次に、ゲインコントロール付きA/D変換器1は、入力ゲインG1で入力アナログ信号Sinを増幅するとともに、オーバーサンプリングを施してビットストリームデータDを生成する(ステップS2)。この場合、2次のノイズシェーピングが行われ、ノイズ成分が入力アナログ信号Sinの周波数帯域よりも高域に発生する。例えば、256倍のオーバーサンプリングを行うものとすれば、図7に示すようにノイズ成分S(f)は、fs/2(=6.144MHz)をピーク周波数とする特性を示す。
【0051】
この後、ゲインコントロール回路2の内部に設けられた移動平均算出部210は、16個のビットストリームデータDに基づいて、移動平均データD’を算出する(ステップS3)。例えば、図9に示すようにビットストリームデータDが、…D1,D2,D3,…D16,D17,D18…といったように生成されるものとすると、時刻t1においてはD1〜D16に基づいて移動平均データD’が生成され、次の時刻t2においてはD2〜D17に基づいて移動平均データD’が生成され、さらに、時刻t3においてD3〜D18に基づいて移動平均データD’が生成される。すなわち、ビットストリームデータDを1個づつずらしながら、16個の平均値を算出する。
【0052】
次に、移動平均データD’が最大値検出部220に供給されると、最大値検出部220は所定期間中の移動平均データD’に基づいてその最大値を検出し(ステップS4)、検出された最大値が第1の閾値R1を越えるか否かを判定する(ステップS5)。最大値が第1の閾値R1を越える場合は、判定結果はYESとなり、最大値検出部220は減衰制御信号C1を生成する。ただし、初期状態においては、入力ゲインの設定が最小の入力ゲインG1となるように設定されているので、入力アナログ信号Sinの増幅率は低く抑えられている。したがって、初期状態において最大値が第1の閾値R1を越えるようなことはなく、初期状態からある程度の時間が経過して、入力ゲインの値が、G2以上に切り換わった状態で減衰制御信号C1が生成される。
【0053】
ここで、減衰制御信号C1がゲインコントロール付きA/D変換器1に供給されると、入力ゲインの切換処理がなされる(ステップS7)。この場合、検出された最大値が、第1の閾値R1を越えると直ちに入力ゲインを下げる方向にゲイン切換が行われるので、短時間のうちに入力アナログ信号Sinのレベルを減衰させることができる。したがって、入力アナログ信号Sinの波高値が急峻に立ち上がる場合であっても、信号波形がクリップされて情報が失われることはない。
【0054】
また、減衰制御信号C1が重み付けレジスタ3に供給されると、そこに格納されている重み付け係数Kが更新され(ステップS8)、ステップS5に戻る。例えば、現在の重み付け係数KがK3である場合に、減衰制御信号C1が供給されると、重み付け係数がK3からK2に更新される。
【0055】
一方、ステップS5において、最大値検出部220において、検出された最大値が第1の閾値R1を越えない場合には、判定結果はNOとなり、ステップS9に進んで、検出された最大値が最大値保持レジスタ230に格納される。
【0056】
この後、判定回路240は、最大値保持レジスタ230の内容を参照し、所定時間継続して最大値が第2の閾値R2を下回ったか否かを判定する(ステップS10)。所定時間継続して最大値が第2の閾値R2を下回った場合には、移動平均データD’の値が、継続して小レベルにとどまっていることになるので、急にそのレベルが大きくなる可能性は低く、むしろSN比を改善するために、入力ゲインを大きな値に切り換えることが適切である。このため、判定回路240は、最大値保持レジスタ230の内容をリセットするとともに(ステップS11)、増加制御信号C2を生成する(ステップS12)。
【0057】
この後、増加制御信号C2をゲインコントロール付きA/D変換器1が検知すると、入力ゲインが増大する方向にゲイン切換処理が行われるとともに(ステップS7)、重み付け係数Kの更新がなされ(ステップS8)、ステップS5に戻って、処理を繰り返す。また、ステップS10において、所定時間継続して最大値が第2の閾値R2を下回らない場合には、判定結果はNOとなり、ステップS5に戻る。
【0058】
例えば、移動平均データD’の最大値が図10に示すものであり、増加制御信号C2を生成する条件である第2の閾値R2を下回る所定時間をTrとする。また、図に示す時刻t4において入力ゲインG2が選択されているものとする。この例のように、時刻t5において移動平均データD’の最大値が第2の閾値R2を下回り、この状態が維持されたまま所定時間Tr経過して時刻t6に至ると、判定回路240は増加制御信号C2を生成する。増加制御信号C2をゲインコントロール付きA/D変換器1が検知すると、入力ゲインを増加させる方向に入力ゲインの切り換えが行われる。これにより、時刻t6において入力ゲインがG2からG3に変化すると、ゲイン変化に応じて移動平均データD’の最大値が増加する。
【0059】
この後、移動平均データD’の最大値は減少し時刻t7において再び第2の閾値R2を下回り、時刻t8において第2の閾値R2を上回る。この場合、時刻t7から時刻t8までの時間Taは、所定時間Trと比較して短い。このため、時刻t8において、増加制御信号C2は生成されず入力ゲインG3が維持される。
【0060】
この後、移動平均データD’の最大値が増加して時刻t9に至ると、最大値が第1の閾値R1に等しくなる。すると、減衰制御信号C1が生成され、入力ゲインを減少させる方向に入力ゲインの切り換えが行われる。これにより、時刻t9において入力ゲインがG3からG2に変化すると、ゲイン変化に応じて移動平均データD’の最大値が減少する。
【0061】
このように、移動平均データD’の変化に応じてゲイン切換が行われるので、ダイナミックレンジを拡大するとともに、高い精度でA/D変換を行うことができる。
【0062】
3.まとめ
以上、説明したように本実施形態によれば、移動平均算出部210において、所定数のビットストリームデータDの移動平均を算出し、これにより入力アナログ信号Sinの波高値を求めたので、オーバーサンプリング方式の1ビットA/D変換において、簡易な構成で入力アナログ信号Sinの入力ゲインを調整することができる。
【0063】
また、移動平均を算出する際に用いるビットストリームデータDの数は、オーバーサンプリング周波数と入力アナログ信号Sinの信号帯域とに応じて定めたので、シェーピングノイズを十分抑圧するとともに、入力アナログ信号Sinの信号帯域における周波数特性を平坦にすることができる。
【0064】
また、移動平均データD’に基づく入力ゲインの制御は、簡易な論理回路で構成することができるので、CPUとコントロールプログラムとを用いる従来の方式と比較して、構成を簡略化することができ、しかも、応答性を改善することができる。この結果、入力アナログ信号Sinが急峻に立ち上がった場合でも余裕をもって入力ゲインを減衰させる制御を行うことができ、制御が間に合わず、信号がクリップされるといったことがない。さらに、本実施形態に係わるΔΣ型A/D変換器を使用するCPU等は、ゲイン制御を意識する必要がなく、単に得られたビットストリームデータDの処理を行えばよい。これにより、例えば、後段でプログラムを用いて波形処理を行う場合には、ゲイン制御を考慮することなく波形処理のプログラムを作成することができる。
【0065】
また、本実施形態に係わるゲイン制御においては、入力ゲインを減少させる方向の応答性を速くなるように設定したので、入力アナログ信号Sinが急峻に立ち上がった場合には、直ちに入力ゲインを減少させて信号がクリップすることを回避することができる。一方、入力ゲインを増加させる方向の応答性を遅くなるように設定したので、一旦、入力アナログ信号Sinのレベルが減少して第2の閾値R2を下回ったとしても、これが所定時間継続しない限り入力ゲインの切換は行われない。したがって、瞬間的に入力アナログ信号Sinのレベルが第2の閾値R2を割り込んでも直ぐには入力ゲインを増加させる方向にゲイン切換が行われないで、この後、入力アナログ信号Sinが急峻に立ち上がった場合に、信号がクリップされることがない。この結果、クリップによって情報が失われることがないので、歪みがない波形をデジタル信号として取り込むことができる。
【0066】
また、重み付けレジスタ3には、入力ゲインGに応じた重み付け係数Kを格納したので、この重み付けレジスタ3を参照することにより、入力ゲインGを正確にデイジタル信号に反映させることができる。
【0067】
4.変形例
以上、本発明に係わる実施形態を説明したが、本発明は上述した実施形態に限定されるものではなく、以下に述べる各種の変形が可能である。
▲1▼上述した実施形態としては、入力アナログ信号Sinの信号帯域として音声信号帯域を一例として説明したが、本発明はこれに限定されるものではなく、映像信号帯域であってもよい。
【0068】
▲2▼上述した実施形態にあっては、入力アナログ信号Sinの波高値を算出するために、ビットストリームデータDの移動平均を算出したが、これは、ビットストリームデータDを多ビットのデジタルデータに変換する処理を省略することにより、簡易な構成で入力ゲインの調整を行うことを目的とするものであった。したがって、本発明は移動平均に限定されるものではなく、適当な周波数特性を持つフィルタを移動平均算出部210の替わりに用いてもよい。要は、ビットストリームデータDに基づいて、ゲイン調整された入力アナログ信号Sinの波高値を検出できる検出手段であればどのようなものを用いてもよい。
【0069】
▲3▼上述した実施形態において、図4に示すゲインコントロール付きA/D変換器1においては、制御信号CONTに応じた正パルスの数および負のパルス数を電圧の形式でフィードバックしたが、これを電流の形式でフィードバックするようにしてもよい。また、パルス数の替わりに、制御信号CONTに応じたパルス幅を有する信号を生成し、これを電圧または電流の形式でフィードバックするようにしてもよい。
【0070】
▲4▼上述した実施形態においては、移動平均データD’の最大値が所定時間継続して、第2の閾値R2を下回ると、判定回路240は増加制御信号C2を生成するようにしたが、移動平均データD’の値が所定時間継続して第2の閾値R2を下回ると、増加制御信号C2を生成するようにしてもよい。また、第2の閾値R2よりもレベルの低い第3の閾値R3を設定し、第3の閾値R3を移動平均データD’が下回った場合には、第2の閾値R2を下回ってから所定時間経過前であっても増加制御信号C2を生成するようにしてもよい。この場合は、入力アナログ信号Sinのレベルが急峻に立ち下がる場合のSN比を改善することができる。
【0071】
【発明の効果】
上述したように本発明に係る発明特定事項によれば、オバーサンプリングによって得られた1ビットのデータから移動平均を算出することにより、入力信号の波高値を算出し、これを用いて入力信号のゲインを調整したので、簡易な構成で、A/D変換のダイナミックレンジを拡大するとともに高い精度でA/D変換を行うことができる。
また、ゲインを上げる方向と下げる方向とでゲイン切換の応答性を異なるようにしたので、信号波形がクリップによって失われることがない。
【図面の簡単な説明】
【図1】 本実施形態に係わるΔΣ型A/D変換器のブロック図である。
【図2】 同実施形態の第1の態様に係わるゲインコントロール付きA/D変換器1の回路図である。
【図3】 同実施形態の第2の態様に係わるゲインコントロール付きA/D変換器1の回路図である。
【図4】 同実施形態の第3の態様に係わるゲインコントロール付きA/D変換器1の回路図である。
【図5】 同実施形態の第3の態様に係わるゲインコントロール付きA/D変換器1の各部の波形を示すタイミングチャートである。
【図6】 同実施形態に係わるゲインコントロール回路2のブロック図である。
【図7】 同実施形態に係わるビットストリームデータDの周波数特性を示す図である。
【図8】 同実施形態に係わるΔΣ型A/D変換器の動作を示すフローチャートである。
【図9】 同実施形態に係わるビットストリームデータDと移動平均データD’の関係を示す図である。
【図10】 同実施形態に係わる移動平均データD’の最大値とゲイン切換の関係を示す図である。
【図11】 従来のフローティング方式に係わるA/D変換システムのブロック図である。
【符号の説明】
1…ゲインコントロール付きA/D変換器(入力ゲイン調整部、A/D変換部)、2…ゲインコントロール部、3…重み付けレジスタ(記憶部)、210…移動平均算出部(検出部)、Sin…入力アナログ信号(入力信号)、CONT…制御信号、D…ビットストリームデータ(データ)、D’…移動平均データ。

Claims (4)

  1. 入力信号のゲインを制御信号に基づいて調整する入力ゲイン調整部と、
    前記入力ゲイン調整部によってゲイン調整された前記入力信号を予め定められたオーバーサンプリング周波数でオーバーサンプリングし、1ビットのデータに変換して出力するA/D変換部と、
    前記A/D変換部から連続して出力されるn個のデータの移動平均を示す移動平均データを算出する移動平均算出部と、
    前記移動平均算出部によって算出された移動平均データに基づいて、ゲイン調整された前記入力信号のレベルが一定の範囲内に収まるように前記制御信号を生成するゲインコントロール部とを備え、
    前記nの値は、前記移動平均データに含まれるノイズ成分の最大値が前記A/D変換部の量子化雑音の半分以下となるように、前記オーバーサンプリング周波数と、前記入力信号の信号帯域を用いて求められた数値よりも大きい整数値に設定されている
    ことを特徴とするA/D変換装置。
  2. 入力信号のゲインを制御信号に基づいて調整する入力ゲイン調整部と、
    前記入力ゲイン調整部によってゲイン調整された前記入力信号をオーバーサンプリングし、1ビットのデータに変換して出力するA/D変換部と、
    前記A/D変換部から出力されたデータに基づいて、前記入力信号の波高値を検出する検出部と、
    前記検出部によって検出された波高値に基づいて、ゲイン調整された前記入力信号のレベルが一定の範囲内に収まるように前記制御信号を生成するゲインコントロール部と、
    前記制御信号に基づいて生成された前記データの重み付け係数を記憶する記憶部とを備え、
    前記ゲインコントロール部は、ゲインを下げる方向には応答性を速く、ゲインを上げる方向には応答性を遅くするように前記制御信号を生成し、
    当該A/D変換装置の後段に設けられたデータ処理回路において、前記A/D変換部から出力されるデータと、当該データに対応して前記記憶手段に記憶されている重み付け係数とに基づいて、多ビットのデジタルデータを生成する
    ことを特徴とするA/D変換装置。
  3. 入力信号のゲインを制御信号に基づいて調整する入力ゲイン調整部と、
    前記入力ゲイン調整部によってゲイン調整された前記入力信号をオーバーサンプリングし、1ビットのデータに変換して出力するA/D変換部と、
    前記A/D変換部から出力されたデータの移動平均を示す移動平均データを算出する移動平均算出部と、
    前記移動平均算出部によって算出された移動平均データに基づいて、ゲイン調整された前記入力信号のレベルが一定の範囲内に収まるように前記制御信号を生成するゲインコントロール部とを備え、
    前記ゲインコントロール部は、ゲインを下げる方向には応答性を速く、ゲインを上げる方向には応答性を遅くするように前記制御信号を生成する
    ことを特徴とするA/D変換装置。
  4. 前記制御信号に基づいて生成された前記データの重み付け係数を記憶する記憶部を備え、
    当該A/D変換装置の後段に設けられたデータ処理回路において、前記A/D変換部から出力されるデータと、当該データに対応して前記記憶手段に記憶されている重み付け係数とに基づいて、多ビットのデジタルデータを生成する
    ことを特徴とする請求項1または3に記載のA/D変換装置。
JP32639197A 1919-11-27 1997-11-27 A/d変換装置 Expired - Fee Related JP3829442B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP32639197A JP3829442B2 (ja) 1997-11-27 1997-11-27 A/d変換装置
US09/492,442 US6445320B1 (en) 1919-11-27 2000-01-27 A/D conversion apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32639197A JP3829442B2 (ja) 1997-11-27 1997-11-27 A/d変換装置

Publications (2)

Publication Number Publication Date
JPH11163731A JPH11163731A (ja) 1999-06-18
JP3829442B2 true JP3829442B2 (ja) 2006-10-04

Family

ID=18187283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32639197A Expired - Fee Related JP3829442B2 (ja) 1919-11-27 1997-11-27 A/d変換装置

Country Status (1)

Country Link
JP (1) JP3829442B2 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4817890B2 (ja) * 2005-03-17 2011-11-16 パナソニック株式会社 増幅装置、ポーラ変調送信装置及び無線通信装置
US7268714B2 (en) * 2005-06-17 2007-09-11 Analog Devices, Inc. Rapid response current measurement system and method
WO2007080715A1 (ja) * 2006-01-16 2007-07-19 Pioneer Corporation ディジタル受信装置
JP2007329840A (ja) * 2006-06-09 2007-12-20 Seiko Npc Corp デルタシグマ変調器
DE102007035417A1 (de) 2007-07-28 2009-01-29 Chemische Fabrik Budenheim Kg Halogenfreies Flammschutzmittel
JPWO2012032690A1 (ja) * 2010-09-07 2013-12-12 パナソニック株式会社 デルタシグマ変調器、積分器、および無線通信装置
JP2013058925A (ja) * 2011-09-08 2013-03-28 Ricoh Co Ltd デルタシグマ型変調回路
JP5464202B2 (ja) 2011-12-12 2014-04-09 株式会社デンソー 内燃機関の電子制御装置
JP7030470B2 (ja) * 2017-10-05 2022-03-07 キヤノン株式会社 信号処理装置、信号処理方法、及びプログラム

Also Published As

Publication number Publication date
JPH11163731A (ja) 1999-06-18

Similar Documents

Publication Publication Date Title
US7408489B2 (en) Method and system for mixed analog-digital automatic gain control
US6445320B1 (en) A/D conversion apparatus
US7948412B2 (en) Delta-sigma modulator
US7924960B1 (en) Input/output data rate synchronization using first in first out data buffers
US7061416B2 (en) Adaptive-type sigma-delta A/D converter
US20040138769A1 (en) Digital amplifier and method for adjusting gain of same
JP3829442B2 (ja) A/d変換装置
JP2010507957A (ja) 自動利得制御回路、そのような回路を具備したシステム、及び自動利得制御方法
JP2008526064A (ja) デジタル/アナログ変換
US9154098B2 (en) Amplifier circuit and amplification method
US11342892B2 (en) Amplifier and signal processing circuit
US6278750B1 (en) Fully integrated architecture for improved sigma-delta modulator with automatic gain controller
JP3214981B2 (ja) Agc機能付きデルタシグマ型a/d変換器
JP2000022458A (ja) パルス波増幅装置
JPS61133713A (ja) Agc装置
US6603355B2 (en) Active common mode feedback for unbalanced input and feedback signals and methods thereof
US6940344B2 (en) D-class signal amplification circuit
US11133785B2 (en) Digital-to-analog converter and amplifier for headphones
US20020030544A1 (en) System and method providing level shifting in single ended to differential conversion
JP3048262B2 (ja) ミューティング装置
US20230179224A1 (en) Adaptive bias techniques for amplifiers in sigma delta modulators
US6625232B1 (en) Smart DC offset correction loop
US8035446B1 (en) Natural sampling for a digital Class-D power amplifier
JPH0575468A (ja) Σδ変調器
US8077060B2 (en) Distributed threshold adjustment for high speed receivers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060703

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130721

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees