JP3828830B2 - Wrapped iron core and its manufacturing method - Google Patents

Wrapped iron core and its manufacturing method Download PDF

Info

Publication number
JP3828830B2
JP3828830B2 JP2002152659A JP2002152659A JP3828830B2 JP 3828830 B2 JP3828830 B2 JP 3828830B2 JP 2002152659 A JP2002152659 A JP 2002152659A JP 2002152659 A JP2002152659 A JP 2002152659A JP 3828830 B2 JP3828830 B2 JP 3828830B2
Authority
JP
Japan
Prior art keywords
iron core
steel sheet
wound iron
wound
rolling direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002152659A
Other languages
Japanese (ja)
Other versions
JP2003347128A (en
Inventor
辰彦 坂井
政男 藪本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002152659A priority Critical patent/JP3828830B2/en
Publication of JP2003347128A publication Critical patent/JP2003347128A/en
Application granted granted Critical
Publication of JP3828830B2 publication Critical patent/JP3828830B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、磁気特性の優れた巻きトランスの鉄芯とその製造方法に係わる。
【0002】
【従来の技術】
圧延方向に磁化容易軸がそろった方向性電磁鋼板がトランス鉄芯材料として用いられている。方向性電磁鋼板の製造方法として、特公昭58−26405号公報に方向性電磁鋼板の連続生産設備にて、圧延方向にほぼ垂直に、且つ圧延方向に周期的な線状の歪みを導入し、鉄損を低減する方法が開示されている。この方法の原理は、表面歪みを起点として形成される板厚方向に深い環流磁区により180°磁壁間隔が細分化される結果、特に渦電流損が低減されるというものであり、磁区制御と呼ばれる。歪み導入方法としてはレーザ照射を用いる方法が非接触、高速処理、制御性の観点で最も優れた方法として実用に供されている。
【0003】
ところで、トランス鉄芯の種類には大別して積み鉄芯と巻き鉄芯の二種類がある。積み鉄芯の製造工程では、方向性電磁鋼板は積層されるのみであり、特に鋼板に変形は生じないため歪み取り焼鈍の必要はない。一方、巻き鉄芯の製造工程では、鋼板を積層した後にロール状に巻き締めて、角形の鉄芯形状に圧縮加工する。その際に鋼板に変形が発生することから、そこでの不要な歪みを取るために焼鈍を行う。その結果、レーザ照射等により付与された線状歪みも同時に除去されるため磁区制御効果、すなわち鉄損低減効果も消失する。従って、従来、磁区制御された方向性電磁鋼板は積み鉄芯にのみにしか使用できないという問題があった。
【0004】
そこで巻き鉄芯にも適用できる磁区制御方法として、鋼板表面に周期的な溝を形成する方法が、例えば特公昭63−44804号公報、US.PAT.4750949号、特開平7−220913号公報等に歯形プレス・ロール、エッチング、レーザ加工等を用いることが種々提案されている。溝形成による磁区制御の原理は空隙と鋼板の透磁率の違いを利用し、鋼板表面に磁極を発生させ、環流磁区と同様の磁区細分化効果を得るものである。しかし、磁区細分化の源は鋼板表面に限られるため、鉄損低減効果が歪みによる場合に比べ低いという問題がある。また、鋼板に溝を形成するには歯形プレス等の機械方式は歯型の摩耗が問題であり、またエッチングによる方法はレジスト処理・除去等により工程が複雑化する。レーザによる溝加工ではレーザ歪み導入に比べ要求されるパワーが大幅に増加するという問題があった。すなわち磁気特性、製造プロセスの双方でレーザ歪みによる磁区制御方法が優れており、これを巻き鉄芯に使用することが望まれていた。
【0005】
【発明が解決しようとする課題】
本発明の課題は、レーザ照射による歪み付与で周期的な環流磁区を形成し、磁区制御された方向性電磁鋼板を巻き鉄芯に使用することを可能ならしめ、磁気特性にすぐれた巻き鉄芯とその製造方法を提供することにある。
【0006】
【課題を解決するための手段】
本発明者らは巻き鉄芯の製造工程を詳細に検討し、巻き鉄芯の製造工程にて歪み取り焼鈍を行った後に、積層された鋼板を分解して、一枚毎にあるいは数枚単位で巻き線へ組み込み、鉄芯を再構成する工程に着目した。この工程で鋼板毎に線状、または点列状歪みを付与するためのレーザ照射を行えば、従来の製造効率を大きく損なうことなく、またこの工程以降は焼鈍工程がないため、優れた鉄損特性を保持したまま巻き鉄芯が製造可能であるという知見を得た。
【0007】
すなわち本発明は、方向性電磁鋼板を用いて形成し、歪み取り焼鈍を行って製造された巻き鉄芯であって、鉄芯を構成する鋼板の全て、あるいは一部の表面に、鋼板の圧延方向に概垂直な線状、または点列状の歪みが圧延方向に概一定の間隔で付与されていることを特徴とする巻き鉄芯である。
また本発明は、方向性電磁鋼板を使用した巻き鉄芯の製造方法において、所望の巻形状の鉄芯を形成し、歪み取り焼鈍を行った後に、鉄芯を構成する鋼板の全て、あるいは一部の表面に、鋼板の圧延方向に概垂直な線状、または点列状の歪みを、圧延方向に概一定の間隔で付与することを特徴とする巻き鉄芯の製造方法である。
また本発明は、方向性電磁鋼板を使用した巻き鉄芯の製造方法において、複数枚の鋼板を重ね合わせ所望の巻形状の鉄芯を形成し、歪み取り焼鈍を行った後に、鉄芯を構成する鋼板の全て、あるいは一部の表面に、鋼板の圧延方向に概垂直な線状、または点列状の歪みを、圧延方向に概一定の間隔で付与することを特徴とする巻き鉄芯の製造方法。
また本発明は、方向性電磁鋼板を使用した巻き鉄芯の製造方法において、一枚の帯状鋼板をロール成形して所望の巻形状の鉄芯を形成し、歪み取り焼鈍を行った後に、鉄芯を巻き解く工程にて鋼板表面に、圧延方向に概垂直な線状、または点列状の歪みを、圧延方向に概一定の間隔で付与することを特徴とする巻き鉄芯の製造方法である。
また本発明は、レーザ照射により歪みを付与することを特徴とする巻き鉄芯の製造方法である。
また本発明は、レーザ照射時の集光ビーム形状、パワー密度、レーザ波長、または照射速度の調整により鋼板表面の絶縁皮膜剥離痕が発生しないようにすることを特徴とする巻き鉄芯の製造方法である。
【0008】
尚、本発明で定義する線状、あるいは点列状の歪みとは、環流磁区発生の源となる圧縮、あるいは張力歪みであり、鋼板母材の溶融・再凝固、あるいは変形などを伴わない比較的強度の弱い歪みである。且つ巻き鉄芯製造工程で行う、歪み取り焼鈍条件である、例えば800℃、数時間の焼鈍では消失してしまう歪みである。この歪みは例えばX線回折により測定が可能であり、且つ磁区観察用の電子顕微鏡により、歪み付与部の環流磁区を観測することができるので、本発明で定義される歪みを判別することが可能である。また歪み取り焼鈍を行うことで消失するため、焼鈍で消滅しにくい溶融・再凝固部や変形等により発生する歪みとも区別が可能である。
【0009】
【発明の実施の形態】
以下実施例を用いて、本発明の作用を説明する。
図1は本発明に係わる方法の説明図である。まず、方向性電磁鋼板1を切断し積層する。この時、方向性電磁鋼板の圧延方向は図中のL方向に相当する。次にロール状に巻き締めた後、所望の角形状に成形する。その後、変形部の歪みを取るための焼鈍を行う。焼鈍温度、時間は例えば800℃、4時間である。焼鈍工程が完了した後、レーザ照射装置2を用いて、鋼板一枚毎に分離し、L方向に垂直なC方向にレーザビームを線状にスキャン照射する。レーザ光は光ファイバー7により導光され、照射装置2中の図示されないガルバノモータ駆動のスキャンミラーとfθレンズによりレーザビーム6は圧延方向に概垂直にスキャン集光照射される。また、移動装置3により鋼板の外形に沿ってL方向に移動し、鋼板全面にレーザビームが照射される。ここでスキャン繰り返し周波数と照射装置2の移動速度によりL方向照射間隔Plが調整され、線状、または点列状の歪み4が得られる。
【0010】
本発明において、レーザビームはパルスあるいは連続波レーザであり、また集光形状は点状、あるいは楕円状であり、従来のレーザ歪み導入法で供されてきたいずれの方法であっても構わない。レーザ照射による周期的な歪みにより、方向性電磁鋼板の鉄損は低減される。
また特に、レーザ集光ビーム形状、パワー密度、波長、スキャン速度により、被照射部の到達温度を電磁鋼板の表面被膜融点以下に調整することで、表面被膜の剥離が抑制される。この様な特殊な方法によって形成された場合、表面に地鉄が露出しないため、より絶縁性に優れるという利点を有する。
レーザ照射の後、各鋼板は分離前と同じ順番で巻き線を挟み込む様に鉄芯に再構成され、最終的な巻きトランス5が製作される。
【0011】
また巻き鉄芯を製造する別の方法として、圧延方向に長い、一枚の帯状鋼板をロール状に巻き、更に所望の角形状に成型して、歪み取り焼鈍を行う方法がある。この方法で成型した後、鉄芯を一層毎に巻き解くと同時に切断する。本発明ではこの巻き解き工程にて鋼板にレーザ照射を行う。これにより移動する鋼板に対して連続的にレーザ照射を行うことが可能であるため効率的な製造を行える。レーザビームを照射し、切断した後、各鋼板を一枚毎に巻き線に挿入することで巻きトランス5を製造する。
【0012】
図1にて説明した製造方法にて、巻きトランスを製造した。製造条件は連続波YAGレーザ出力50W、照射ピッチPl=5mmである。この条件にて製造した巻き鉄芯を使用したトランスと、レーザを照射せずに製造したトランスの性能を比較を行ったところ、本発明の方法のトランスが効率で約7%優れていた。
またこの巻き鉄芯を分解し、各鋼板の磁区構造を磁区観察用電子顕微鏡で観察したところ、レーザ照射を行い歪みを付与した部分に環流磁区が形成され、180°磁壁間隔が細分化されていることが確認された。
【0013】
本発明では、巻き鉄芯製造工程の中で焼鈍工程の後、巻きトランス最終組み立ての前にレーザ照射歪みによる磁区制御を行うため、磁区制御効果が焼鈍により消失することがなく、鉄損特性の優れた材料を巻き鉄芯材として使用することが可能となる。
【0014】
【発明の効果】
以上の本発明によれば、レーザ歪み付与により環流磁区を形成し、磁気特性を改善した方向性電磁を巻き鉄芯に用いることができるため、磁気特性の優れた巻きトランスを提供することが可能である。
【図面の簡単な説明】
【図1】本発明に係わる巻き鉄芯とその製造方法の工程説明図である。
【符号の説明】
1 方向性電磁鋼板 2 レーザ照射装置
3 移動装置 4 線状歪み
5 巻き鉄芯 6 レーザビーム
7 光ファイバー L 方向性電磁鋼板の圧延方向
C 方向性電磁鋼板の板幅方向
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an iron core of a wound transformer having excellent magnetic properties and a method for manufacturing the same.
[0002]
[Prior art]
Directional electrical steel sheets with easy magnetization axes in the rolling direction are used as transformer iron core materials. As a method for producing grain-oriented electrical steel sheets, in Japanese Patent Publication No. Sho 58-26405, in a continuous production facility for grain-oriented electrical steel sheets, a linear strain that is substantially perpendicular to the rolling direction and periodic in the rolling direction is introduced. A method for reducing iron loss is disclosed. The principle of this method is that the 180 ° domain wall spacing is subdivided by the deep circulating magnetic domain in the plate thickness direction formed from the surface strain as a result, and in particular, eddy current loss is reduced, which is called magnetic domain control. . As a method for introducing strain, a method using laser irradiation has been put to practical use as the most excellent method in terms of non-contact, high-speed processing, and controllability.
[0003]
By the way, there are two types of transformer iron cores: a stacked iron core and a wound iron core. In the manufacturing process of the stacked iron core, the grain-oriented electrical steel sheets are only laminated, and there is no need for strain relief annealing because the steel sheets are not particularly deformed. On the other hand, in the manufacturing process of a wound iron core, after laminating steel plates, the steel sheet is wound into a roll shape and compressed into a square iron core shape. At that time, deformation occurs in the steel plate, and thus annealing is performed in order to remove unnecessary distortion. As a result, since the linear distortion imparted by laser irradiation or the like is removed at the same time, the magnetic domain control effect, that is, the iron loss reduction effect disappears. Therefore, conventionally, there has been a problem that magnetic domain-controlled grain-oriented electrical steel sheets can only be used for stacked iron cores.
[0004]
Therefore, as a magnetic domain control method applicable to a wound iron core, a method of forming periodic grooves on the surface of a steel sheet is disclosed in, for example, Japanese Patent Publication No. 63-44804, US Pat. PAT. Various use of a tooth profile press / roll, etching, laser processing, etc. is proposed in Japanese Patent No. 4750949, Japanese Patent Laid-Open No. 7-220913, and the like. The principle of magnetic domain control by groove formation utilizes the difference between the magnetic permeability of the air gap and the steel sheet, generates magnetic poles on the steel sheet surface, and obtains the same magnetic domain refinement effect as the circulating magnetic domain. However, since the source of magnetic domain refinement is limited to the steel plate surface, there is a problem that the effect of reducing iron loss is lower than that due to strain. Further, in order to form a groove in a steel plate, a tooth type press or other mechanical method has a problem of tooth wear, and an etching method complicates the process by resist processing / removal. The groove processing by laser has a problem that the required power is greatly increased compared to the introduction of laser distortion. That is, the magnetic domain control method by laser distortion is excellent in both the magnetic characteristics and the manufacturing process, and it has been desired to use this for a wound iron core.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to form a periodic recirculating magnetic domain by applying strain by laser irradiation, and to make it possible to use a magnetically controlled directional electrical steel sheet for a wound iron core, which has excellent magnetic properties. And providing a manufacturing method thereof.
[0006]
[Means for Solving the Problems]
The present inventors have examined the manufacturing process of the wound iron core in detail, and after performing strain relief annealing in the manufacturing process of the wound iron core, disassemble the stacked steel sheets, one by one or several units We focused on the process of reconstructing the iron core. By performing laser irradiation to give linear or point-sequence distortion to each steel plate in this process, there is no significant loss in conventional manufacturing efficiency, and since there is no annealing process after this process, excellent iron loss It was found that a wound iron core can be manufactured while maintaining the characteristics.
[0007]
That is, the present invention is a wound iron core formed by using a grain-oriented electrical steel sheet and subjected to strain relief annealing, and the steel sheet is rolled on all or part of the surface of the steel sheet constituting the iron core. A wound iron core characterized in that linear or point-like strains approximately perpendicular to the direction are imparted at substantially constant intervals in the rolling direction.
Further, the present invention provides a method for manufacturing a wound iron core using a grain-oriented electrical steel sheet, and after forming a desired wound iron core and performing strain relief annealing, all or one of the steel sheets constituting the iron core. A method for producing a wound iron core is characterized in that linear or point-like strains approximately perpendicular to the rolling direction of the steel sheet are applied to the surface of the portion at substantially constant intervals in the rolling direction.
The present invention also relates to a method for manufacturing a wound iron core using grain-oriented electrical steel sheets, wherein a plurality of steel sheets are superposed to form a desired wound iron core, and the iron core is formed after performing strain relief annealing. The wound iron core is characterized in that all or a part of the surface of the steel sheet is subjected to linear or point-sequence distortions substantially perpendicular to the rolling direction of the steel sheet at substantially constant intervals in the rolling direction. Production method.
The present invention also relates to a method for manufacturing a wound iron core using grain-oriented electrical steel sheets, in which a strip-shaped steel sheet is roll-formed to form a desired wound iron core and subjected to strain relief annealing. In a method of manufacturing a wound iron core, characterized in that in the step of unwinding the core, linear or point-like strains approximately perpendicular to the rolling direction are imparted to the steel sheet surface at approximately regular intervals in the rolling direction. is there.
Moreover, this invention is a manufacturing method of the wound iron core characterized by giving distortion by laser irradiation.
Further, the present invention provides a method for producing a wound iron core characterized in that an insulating film peeling trace on a steel sheet surface is not generated by adjusting a focused beam shape, power density, laser wavelength, or irradiation speed during laser irradiation. It is.
[0008]
Note that the linear or point-sequence distortion defined in the present invention is a compression or tension strain that is a source of generation of circulating magnetic domains, and is a comparison that does not involve melting / re-solidification or deformation of the steel plate base material. This is a weak strain. In addition, it is a strain that disappears in annealing for several hours, for example, 800 ° C., which is a strain relief annealing condition performed in the wound iron core manufacturing process. This strain can be measured by, for example, X-ray diffraction, and the circulating magnetic domain of the strain imparting portion can be observed by an electron microscope for observing the magnetic domain, so that the strain defined in the present invention can be determined. It is. Further, since it disappears by performing strain relief annealing, it is also possible to distinguish from strain generated due to a melted / re-solidified portion or deformation that does not easily disappear by annealing.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The operation of the present invention will be described below with reference to examples.
FIG. 1 is an explanatory diagram of a method according to the present invention. First, the grain-oriented electrical steel sheet 1 is cut and laminated. At this time, the rolling direction of the grain-oriented electrical steel sheet corresponds to the L direction in the figure. Next, after winding in a roll shape, it is formed into a desired square shape. Thereafter, annealing is performed to remove the distortion of the deformed portion. The annealing temperature and time are, for example, 800 ° C. and 4 hours. After the annealing step is completed, the laser irradiation device 2 is used to separate each steel plate, and a laser beam is linearly scanned in the C direction perpendicular to the L direction. The laser beam is guided by the optical fiber 7, and the laser beam 6 is scan-condensed and irradiated almost perpendicularly to the rolling direction by a scan mirror (not shown) driven by a galvano motor and an fθ lens in the irradiation device 2. Further, the moving device 3 moves in the L direction along the outer shape of the steel sheet, and the entire surface of the steel sheet is irradiated with the laser beam. Here, the L-direction irradiation interval Pl is adjusted by the scan repetition frequency and the moving speed of the irradiation apparatus 2, and a linear or dot-sequence distortion 4 is obtained.
[0010]
In the present invention, the laser beam is a pulse or continuous wave laser, and the condensing shape is a dot or ellipse, and any of the methods provided by the conventional laser distortion introducing method may be used. The iron loss of the grain-oriented electrical steel sheet is reduced by periodic distortion caused by laser irradiation.
In particular, peeling of the surface coating is suppressed by adjusting the temperature reached by the irradiated portion to be equal to or lower than the melting point of the surface coating of the electromagnetic steel sheet by the laser focused beam shape, power density, wavelength, and scanning speed. When formed by such a special method, since the ground iron is not exposed on the surface, there is an advantage that the insulating property is more excellent.
After the laser irradiation, each steel plate is reconfigured into an iron core so as to sandwich the windings in the same order as before separation, and the final winding transformer 5 is manufactured.
[0011]
As another method for producing a wound iron core, there is a method in which one strip-shaped steel plate that is long in the rolling direction is wound into a roll shape, and further formed into a desired square shape, followed by strain relief annealing. After molding by this method, the iron core is unrolled layer by layer and cut at the same time. In the present invention, the steel sheet is irradiated with laser in this unwinding step. As a result, it is possible to continuously irradiate the moving steel sheet with the laser, so that efficient production can be performed. After irradiating and cutting the laser beam, the winding transformer 5 is manufactured by inserting each steel plate into the winding one by one.
[0012]
A winding transformer was manufactured by the manufacturing method described in FIG. The manufacturing conditions are a continuous wave YAG laser output of 50 W and an irradiation pitch Pl = 5 mm. When the performance of a transformer using a wound iron core manufactured under these conditions and a transformer manufactured without laser irradiation were compared, the transformer of the method of the present invention was about 7% more efficient.
Moreover, when this wound iron core was disassembled and the magnetic domain structure of each steel plate was observed with an electron microscope for magnetic domain observation, a circulating magnetic domain was formed in the portion subjected to laser irradiation to give distortion, and the 180 ° domain wall interval was subdivided. It was confirmed that
[0013]
In the present invention, since the magnetic domain control by laser irradiation distortion is performed after the annealing step in the wound iron core manufacturing process and before the final assembly of the winding transformer, the magnetic domain control effect is not lost by annealing, and the iron loss characteristics are reduced. It becomes possible to use an excellent material as a wound iron core material.
[0014]
【The invention's effect】
According to the present invention as described above, a directional electromagnetic wave with improved magnetic characteristics can be used for a wound iron core by forming a circulating magnetic domain by applying laser distortion, and therefore it is possible to provide a wound transformer with excellent magnetic characteristics. It is.
[Brief description of the drawings]
FIG. 1 is a process explanatory diagram of a wound iron core and a manufacturing method thereof according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Directional electrical steel sheet 2 Laser irradiation apparatus 3 Moving apparatus 4 Linear distortion 5 Coiled iron core 6 Laser beam 7 Optical fiber L Rolling direction of directionality electrical steel sheet C Direction of width of directionality electrical steel sheet

Claims (6)

方向性電磁鋼板を用いて形成し、歪み取り焼鈍を行って製造された巻き鉄芯であって、鉄芯を構成する鋼板の全て、あるいは一部の表面に、鋼板の圧延方向に概垂直な線状、または点列状の歪みが圧延方向に概一定の間隔で付与されていることを特徴とする巻き鉄芯。A wound iron core formed by using a grain-oriented electrical steel sheet and subjected to strain relief annealing, and is substantially perpendicular to the rolling direction of the steel sheet on all or part of the surface of the steel sheet constituting the iron core. A wound iron core characterized in that linear or point-strain distortion is imparted at substantially constant intervals in the rolling direction. 方向性電磁鋼板を使用した巻き鉄芯の製造方法において、所望の巻形状の鉄芯を形成し、歪み取り焼鈍を行った後に、鉄芯を構成する鋼板の全て、あるいは一部の表面に、鋼板の圧延方向に概垂直な線状、または点列状歪みを、圧延方向に概一定の間隔で付与することを特徴とする巻き鉄芯の製造方法。In the manufacturing method of the wound iron core using the grain-oriented electrical steel sheet, after forming the desired wound-shaped iron core and performing strain relief annealing, all or a part of the surface of the steel sheet constituting the iron core, A method for producing a wound iron core, characterized by imparting linear or point-sequence distortions substantially perpendicular to the rolling direction of a steel sheet at substantially constant intervals in the rolling direction. 方向性電磁鋼板を使用した巻き鉄芯の製造方法において、複数枚の鋼板を重ね合わせ所望の巻形状の鉄芯を形成し、歪み取り焼鈍を行った後に、鉄芯を構成する鋼板の全て、あるいは一部の表面に、鋼板の圧延方向に概垂直な線状、または点列状の歪みを、圧延方向に概一定の間隔で付与することを特徴とする巻き鉄芯の製造方法。In the manufacturing method of a wound iron core using a grain-oriented electrical steel sheet, a plurality of steel sheets are overlapped to form a desired wound iron core, and after performing strain relief annealing, all of the steel sheets constituting the iron core, Alternatively, a method for producing a wound iron core, characterized in that a linear or point-sequence distortion substantially perpendicular to the rolling direction of the steel sheet is applied to a part of the surface at substantially constant intervals in the rolling direction. 方向性電磁鋼板を使用した巻き鉄芯の製造方法において、一枚の帯状鋼板をロール状に成形して所望の巻形状の鉄芯を形成し、歪み取り焼鈍を行った後に、鉄芯を巻き解く工程にて鋼板表面に、圧延方向に概垂直な線状、または点列状の歪みを、圧延方向に概一定の間隔で付与することを特徴とする巻き鉄芯の製造方法。In a method for manufacturing a wound iron core using grain-oriented electrical steel sheets, a single strip steel sheet is formed into a roll shape to form a desired wound iron core, and after performing strain relief annealing, the iron core is wound. A method for producing a wound iron core, characterized in that, in the step of unwinding, linear or point-strain distortion substantially perpendicular to the rolling direction is imparted to the steel sheet surface at substantially constant intervals in the rolling direction. レーザ照射により歪みを付与することを特徴とする請求項2〜4のいずれか1項に記載の巻き鉄芯の製造方法。The method for producing a wound iron core according to any one of claims 2 to 4, wherein distortion is imparted by laser irradiation. レーザ照射時の集光ビーム形状、パワー密度、レーザ波長、または照射速度の調整により鋼板表面の絶縁皮膜剥離痕が発生しないようにすることを特徴とする請求項5に記載の巻き鉄芯の製造方法。The manufacture of a wound iron core according to claim 5, wherein an insulating film peeling trace on the steel sheet surface is not generated by adjusting a focused beam shape, power density, laser wavelength, or irradiation speed at the time of laser irradiation. Method.
JP2002152659A 2002-05-27 2002-05-27 Wrapped iron core and its manufacturing method Expired - Fee Related JP3828830B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002152659A JP3828830B2 (en) 2002-05-27 2002-05-27 Wrapped iron core and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002152659A JP3828830B2 (en) 2002-05-27 2002-05-27 Wrapped iron core and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2003347128A JP2003347128A (en) 2003-12-05
JP3828830B2 true JP3828830B2 (en) 2006-10-04

Family

ID=29769942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002152659A Expired - Fee Related JP3828830B2 (en) 2002-05-27 2002-05-27 Wrapped iron core and its manufacturing method

Country Status (1)

Country Link
JP (1) JP3828830B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6436843B2 (en) * 2015-04-13 2018-12-12 株式会社ダイヘン Separation method for winding core joint and outer peripheral steel plate cutting device for winding core
JP2021163942A (en) * 2020-04-03 2021-10-11 日本製鉄株式会社 Winding iron core, manufacturing method of winding iron core, and winding iron core manufacturing device
JP7372549B2 (en) * 2020-04-03 2023-11-01 日本製鉄株式会社 Wound iron core, wound iron core manufacturing method, and wound iron core manufacturing device

Also Published As

Publication number Publication date
JP2003347128A (en) 2003-12-05

Similar Documents

Publication Publication Date Title
JP5935880B2 (en) Oriented electrical steel sheet and manufacturing method thereof
EP2554685B1 (en) Grain oriented electrical steel sheet and method for manufacturing same
JP6200908B2 (en) Method for producing grain-oriented electrical steel sheet
KR101234452B1 (en) Low core loss unidirectional electromagnetic steel plate and method of manufacturing the same
JP4319715B2 (en) Unidirectional electrical steel sheet with excellent magnetic properties and manufacturing method thereof
CN101979676B (en) Method for improving magnetic property of oriented silicon steel through laser scribing
RU2509814C1 (en) Electric sheet steel with oriented grains and method of its production
EP3561087A1 (en) Grain-oriented electrical steel sheet and magnetic domain refinement method therefor
EP2799560A1 (en) Electric mattress and method for manufacturing same
KR101382645B1 (en) Oriented electrical steel sheets and method for manufacturing the same
JP2021163942A (en) Winding iron core, manufacturing method of winding iron core, and winding iron core manufacturing device
JP2018037572A (en) Wound core, and manufacturing method of wound core
JP2004056090A (en) Grain oriented magnetic steel sheet excellent in magnetic property and its production
CN111183571B (en) Core board and manufacturing method thereof
KR20160126015A (en) Grain-oriented electrical steel sheet for low-noise transformer, and method for manufacturing said sheet
RU2547377C2 (en) Fabrication of textured steel sheet
CN111542622B (en) Oriented electrical steel sheet and method for refining magnetic domain thereof
JP3828830B2 (en) Wrapped iron core and its manufacturing method
JP2018035412A (en) Method for producing grain oriented silicon steel sheet, and grain oriented silicon steel sheet
JP4598321B2 (en) Oriented electrical steel sheet with excellent magnetic properties
JP2005340619A (en) Winding iron core and transformer using the same
JP7372549B2 (en) Wound iron core, wound iron core manufacturing method, and wound iron core manufacturing device
JP7372520B2 (en) Grain-oriented electrical steel sheet, wound iron core, method for producing grain-oriented electrical steel sheet, and method for manufacturing wound iron core
JP4663249B2 (en) Magnetic steel sheet for iron core
CN116508120A (en) Coiled iron core

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060707

R151 Written notification of patent or utility model registration

Ref document number: 3828830

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090714

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120714

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130714

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130714

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130714

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130714

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130714

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees