JP2021163942A - Winding iron core, manufacturing method of winding iron core, and winding iron core manufacturing device - Google Patents

Winding iron core, manufacturing method of winding iron core, and winding iron core manufacturing device Download PDF

Info

Publication number
JP2021163942A
JP2021163942A JP2020067557A JP2020067557A JP2021163942A JP 2021163942 A JP2021163942 A JP 2021163942A JP 2020067557 A JP2020067557 A JP 2020067557A JP 2020067557 A JP2020067557 A JP 2020067557A JP 2021163942 A JP2021163942 A JP 2021163942A
Authority
JP
Japan
Prior art keywords
steel sheet
grain
oriented electrical
electrical steel
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020067557A
Other languages
Japanese (ja)
Inventor
辰彦 坂井
Tatsuhiko Sakai
修一 中村
Shuichi Nakamura
秀行 濱村
Hideyuki Hamamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2020067557A priority Critical patent/JP2021163942A/en
Publication of JP2021163942A publication Critical patent/JP2021163942A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

To provide a winding iron core which can be manufactured from a distortion application type magnetic domain control material without a distortion removing sinter pure step, a manufacturing method of the winding iron core, and a winding iron core manufacturing device.SOLUTION: A winding iron core 10 of the present invention is formed so that distortion 20 for controlling each magnetic domain extended in a width direction crossed to a pressure extension direction individually folds and processes a directional electromagnetic steel plate 40 applied to a front face, and is assembled in a winding shape. In a portion which becomes a folding part R1 and its neighborhood region in the folding processing, a groove 25 extended in the width direction is formed on the front face of the directional electromagnetic steel plate 40.SELECTED DRAWING: Figure 1

Description

本発明は、巻鉄芯、巻鉄芯の製造方法および巻鉄芯製造装置に関する。 The present invention relates to a wound iron core, a method for producing a wound iron core, and a wound iron core manufacturing apparatus.

トランスの鉄芯には積鉄心と巻鉄芯とがある。そのうち、巻鉄芯は、一般に、方向性電磁鋼板を層状に積み重ねて、ドーナツ状(巻回形状)に巻回し、その後、その巻回体を加圧してほぼ角型に成形することにより製造される。この成形工程によって方向性電磁鋼板全体に機械的な加工歪(塑性変形歪)が入り、その加工歪が方向性電磁鋼板の鉄損を大きく劣化させる要因となるため、歪取り焼鈍を行なう必要がある。 There are two types of iron cores for transformers: stacked iron cores and wound iron cores. Of these, the wound iron core is generally manufactured by stacking directional electromagnetic steel sheets in layers, winding them in a donut shape (winding shape), and then pressurizing the wound body to form a substantially square shape. NS. This forming process causes mechanical machining strain (plastic deformation strain) to be applied to the entire grain-oriented electrical steel sheet, and the machining strain causes the iron loss of the grain-oriented electrical steel sheet to be significantly deteriorated. be.

鉄芯に用いられる方向性電磁鋼板には、磁化容易軸が一方向に揃った電磁鋼板である方向性電磁鋼板が用いられる。そのような方向性電磁鋼板には、方向性電磁鋼板の表面に、圧延方向と交差する方向に周期的にレーザ照射を行ない、局所的な急加熱(及び、急加熱から常温方向への急冷)を行なうことによって、細い複数の歪(磁区制御用の歪)を導入して、その部位に発生する還流磁区を起点に180°磁区を細分化することで鉄損を低減させた、いわゆる歪付与型の磁区制御材がある(例えば、特許文献1参照)。しかしながら、このような磁区制御用の歪を付与した歪付与型の磁区制御材である方向性電磁鋼板を、巻鉄芯に用いた場合には、前述した歪取り焼鈍工程を行なうことによって、(磁区制御用の起点となる歪、及び、加工歪を含む)歪が消失してしまうため、結果として磁区制御効果も消失し、鉄損の低い巻鉄芯にならない。したがって、歪付与型の磁区制御材は、一般に、加圧成形や焼鈍工程が不要な積鉄芯にのみ使用される。 As the grain-oriented electrical steel sheet used for the iron core, a grain-oriented electrical steel sheet, which is an electromagnetic steel sheet having easily magnetized axes aligned in one direction, is used. For such grain-oriented electrical steel sheets, the surface of the grain-oriented electrical steel sheets is periodically laser-irradiated in a direction intersecting the rolling direction to locally quench (and rapidly cool from rapid heating to room temperature). By performing this, a plurality of thin strains (strains for controlling magnetic domains) are introduced, and the 180 ° magnetic domain is subdivided starting from the recirculation magnetic domain generated at that site to reduce iron loss, so-called strain imparting. There is a type magnetic domain control material (see, for example, Patent Document 1). However, when a grain-oriented electrical steel sheet, which is a strain-imparting type magnetic domain control material to which such strain for magnetic domain control is applied, is used for the wound iron core, the strain-removing annealing step described above is performed. Since the strain that is the starting point for magnetic domain control and the strain (including machining strain) disappear, the magnetic domain control effect also disappears, and the wound iron core with low iron loss cannot be obtained. Therefore, the strain-imparting magnetic domain control material is generally used only for a steel core that does not require a pressure forming or annealing step.

また、方向性電磁鋼板には、その表面に、圧延方向と交差する方向に周期的に溝を形成することで、還流磁区と同様の効果により、180°磁区を細分化して鉄損を低減した、鉄損が低減される磁区制御効果を得る、いわゆる溝形成型の磁区制御材もある(例えば、特許文献2参照)。このような溝形成型の磁区制御材は、歪取り焼鈍を行なっても磁区制御効果が消失しないため、巻鉄芯の材料として用いることができる。しかしながら、溝形成型の鉄損改善効果(磁区制御効果)は、歪付与型の鉄損改善効果に比べて小さいという欠点がある。また、溝を形成する方法として、歯形プレスによる機械加工、エッチングによる化学的加工が実用に供されているが、そうした方法は、非接触式で磁区制御用の歪を付与するレーザや電子ビーム等を照射する方法と比べて、歯形プレスでは、機械設備が大掛かりになったり、歯形が損耗する等といった問題があり、また、エッチング法では、廃液処理やマスクが必要になる等といった、コストや生産能力上の問題があった。溝形成法として、レーザや電子ビーム等を照射する溝加工法であれば、非接触式であるというメリットがあるが、このレーザや電子ビーム等による溝加工法は、磁区制御用の歪を付与する場合に比べて大きなパワーを必要とするために、方向性電磁鋼板の全面に溝を加工しようとすると、生産能力やコストが増加するといった問題があった。 In addition, by forming grooves on the surface of the grain-oriented electrical steel sheet periodically in the direction intersecting the rolling direction, the 180 ° magnetic domain was subdivided and iron loss was reduced by the same effect as the reflux magnetic domain. There is also a so-called groove-forming type magnetic domain control material that obtains a magnetic domain control effect in which iron loss is reduced (see, for example, Patent Document 2). Such a groove-forming type magnetic domain control material can be used as a material for a wound iron core because the magnetic domain control effect is not lost even if strain relief annealing is performed. However, the groove-forming type iron loss improving effect (magnetic domain control effect) has a drawback that it is smaller than the strain-imparting type iron loss improving effect. Further, as a method of forming a groove, machining by a tooth profile press and chemical processing by etching are put into practical use, and such a method is a non-contact type, such as a laser or an electron beam that imparts distortion for magnetic domain control. Compared to the method of irradiating the tooth profile, the tooth profile press has problems such as large-scale mechanical equipment and wear of the tooth profile, and the etching method requires waste liquid treatment and a mask, which is costly and production. There was a capacity problem. As a groove forming method, a groove processing method that irradiates a laser or an electron beam has an advantage of being a non-contact type, but this groove processing method using a laser or an electron beam imparts distortion for magnetic domain control. Since a large amount of power is required as compared with the case where the method is used, there is a problem that the production capacity and the cost increase when the groove is formed on the entire surface of the directional electromagnetic steel plate.

ところで、近年、巻鉄芯の製造方法として、鋼板を個別に(1枚や2枚といった、極少数枚ごとに)折り曲げ加工して切断し、それらの個々に加工された鋼板を複数層にわたって積層することにより巻鉄芯を角型形状に成形する方法(いわゆる、「ユニコア」と呼ばれる巻鉄芯製造方法;以下、ユニコア製法とも称する)が知られるようになった。こうした方法を用いることで、折り曲げ部の曲率Rを極めて小さくすることができ、鋼板の内側で測定した曲率Rの値を、3mm以下とすることができ、折り曲げ加工に起因して鋼板に導入される加工歪の及ぶ範囲を、曲率Rが3mm以下となるように規定される小さな折り曲げ部近傍のみに限定することが可能となる。なお、曲率Rの下限は、特に限定されないが、折り曲げ装置の能力等に依存しており、現実的には1mm程度になる場合が多い。
この方法により巻鉄芯を製造する場合には、局所的な折り曲げ加工を行なうことから、加工歪が、その折り曲げによって生じる角部の近傍の領域内にしか生じないため、巻鉄芯全体としての鉄損劣化を少なくすることができ、したがって、歪取り焼鈍を不要にできるという利点がある。そのため、鉄損が極めて低い歪付与型の磁区制御材を巻鉄芯の材料として使用できる。
By the way, in recent years, as a method for manufacturing a wound iron core, steel plates are individually bent (for each very small number of sheets such as one or two) and cut, and the individually processed steel sheets are laminated over a plurality of layers. As a result, a method of forming a wound iron core into a square shape (so-called "unicore" wound iron core manufacturing method; hereinafter, also referred to as a unicore manufacturing method) has come to be known. By using such a method, the curvature R of the bent portion can be made extremely small, and the value of the curvature R measured inside the steel sheet can be set to 3 mm or less, which is introduced into the steel sheet due to the bending process. It is possible to limit the range covered by the machining strain to only the vicinity of a small bent portion defined so that the curvature R is 3 mm or less. The lower limit of the curvature R is not particularly limited, but it depends on the ability of the bending device and the like, and in reality, it is often about 1 mm.
When the wound iron core is manufactured by this method, since the local bending process is performed, the processing strain is generated only in the region near the corner portion caused by the bending, so that the wound iron core as a whole There is an advantage that iron loss deterioration can be reduced and therefore strain removal annealing can be eliminated. Therefore, a strain-imparting magnetic domain control material having extremely low iron loss can be used as the material for the wound iron core.

すなわち、以上から分かるように、歪付与型の磁区制御材は、巻鉄芯に用いた場合に歪取り焼鈍工程に伴う歪の消失に起因して鉄損が低くならないという欠点を有するが、溝形成型の磁区制御材と比べて鉄損改善効果が高く安価であるという利点を有することから、歪取り焼鈍工程を排除できるユニコア製法により歪付与型の磁区制御材を用いて巻鉄芯を製造すれば、歪付与型の磁区制御材の欠点を解消してその利点を存分に生かすことが可能となる。 That is, as can be seen from the above, the strain-imparting magnetic domain control material has a drawback that the iron loss does not decrease due to the disappearance of strain due to the strain-removing annealing step when used for a wound iron core. Since it has the advantage of being more effective in improving iron loss and being cheaper than the formation-type magnetic domain control material, a wound iron core is manufactured using a strain-imparting magnetic domain control material by the Unicore manufacturing method that can eliminate the strain-removing annealing process. By doing so, it is possible to eliminate the drawbacks of the strain-imparting magnetic domain control material and make full use of its advantages.

特開2003−347128号公報Japanese Unexamined Patent Publication No. 2003-347128 国際公開第2011/125672号International Publication No. 2011/125672

しかしながら、ユニコア製法により歪付与型の磁区制御材(歪付与型で磁区制御された方向性電磁鋼板)を用いて巻鉄芯を製造した場合であっても、依然として折り曲げ加工した際に角となる部位や、その近傍には加工歪(塑性変形歪)が残存するため、そうした領域では鉄損の劣化が生じる。そのため、折り曲げ加工において角となる部位及びその近傍に残存する、加工歪に伴う鉄損劣化の改善が、求められている。 However, even when the wound steel core is manufactured by the strain-imparted magnetic domain control material (oriented electrical steel sheet whose magnetic domain is controlled by the strain-applied type) by the Unicore manufacturing method, it still becomes a corner when bent. Since processing strain (plastic deformation strain) remains in or near the portion, deterioration of iron loss occurs in such a region. Therefore, it is required to improve the deterioration of iron loss due to the machining strain, which remains in the corner portion and the vicinity thereof in the bending process.

本発明は前記事情に鑑みてなされたもので、歪取り焼鈍工程を伴うことなく歪付与型の磁区制御材により製造できるとともに、折り曲げ加工部位の加工歪に伴う鉄損劣化を抑制できる巻鉄芯、巻鉄芯の製造方法および巻鉄芯製造装置を提供することを目的とする。 The present invention has been made in view of the above circumstances, and is a wound iron core that can be manufactured by a strain-imparting magnetic domain control material without a strain-removing annealing step and can suppress iron loss deterioration due to machining strain of a bent portion. , A method of manufacturing a wound iron core and an apparatus for producing a wound iron core.

前記目的を達成するために、本発明は、圧延方向と交差する幅方向に延びる磁区制御用の歪が、表面に付与された方向性電磁鋼板を、個別に折り曲げ加工し、巻回形状に組付けることで形成された巻鉄芯であって、前記折り曲げ加工において折曲部となる部位及びその近傍の領域では、前記方向性電磁鋼板の表面に、前記幅方向に延びる溝が形成されている、巻鉄芯を提供するものである。 In order to achieve the above object, the present invention individually bends a grain-oriented electrical steel sheet to which a strain for controlling a magnetic domain extending in a width direction intersecting a rolling direction is applied to the surface and assembles it into a wound shape. A groove extending in the width direction is formed on the surface of the grain-oriented electrical steel sheet in a portion of the wound steel core formed by attaching the steel core, which becomes a bent portion in the bending process and a region in the vicinity thereof. , Provides a wound steel core.

上記構成に係る本発明の巻鉄芯は、鋼板表面に磁区制御用の歪を付与して還流磁区を形成することにより鉄損が改善された方向性電磁鋼板から形成される巻鉄芯であり、個別に折り曲げ加工された各方向性電磁鋼板を層状に積み重ねて巻回形状に組み付けて成る(歪取り焼鈍を行なわないユニコア製法により製造される)とともに、各方向性電磁鋼板の折り曲げ加工において折曲部となる部位及びその近傍に鋼板圧延方向と交差する方向に延びる複数の溝が形成された巻鉄芯である。 The wound steel core of the present invention according to the above configuration is a wound steel core formed of a grain-oriented electrical steel sheet in which iron loss is improved by applying strain for controlling magnetic zones to the surface of the steel sheet to form a reflux magnetic zone. Each grain-oriented electrical steel sheet that has been individually bent is stacked in layers and assembled into a wound shape (manufactured by the Unicore manufacturing method that does not perform strain removal and annealing), and is folded in the bending process of each grain-oriented electrical steel sheet. It is a wound steel core in which a plurality of grooves extending in a direction intersecting the rolling direction of a steel sheet are formed in and near a portion to be a curved portion.

方向性電磁鋼板に対して局所的に折り曲げ加工を施す場合には、その折り曲げ部の近傍から数mm〜数十mmの範囲で加工歪が生じる。この加工歪は、方向性電磁鋼板の鉄損を劣化させる要因となり、周期的な磁区制御用の歪(互いに所定の間隔を隔てた複数の磁区制御用の歪)を起点に還流磁区を形成して磁区制御を行なった方向性電磁鋼板を用いる場合では、鉄損改善代が相殺される問題がある。そこで、本発明者らは、折り曲げ部近傍では、折り曲げ部を起点にして主に曲げ方向に発生する張力によって、加工歪が生じていることに着目し、当該部位を中心に数mm〜数十mmの範囲で張力方向とほぼ垂直に溝を周期的に形成(互いに所定の間隔を隔てた複数の溝を形成)したところ、鉄芯全体の鉄損が数%改善されるという知見を得た。これは、溝形成により応力が緩和されて、加工歪の影響が緩和されたものと推定される。また、周期的な溝形成は、磁区制御効果があることから、これも鉄損改善に寄与していると考えられる。 When the grain-oriented electrical steel sheet is locally bent, processing strain occurs in the range of several mm to several tens of mm from the vicinity of the bent portion. This machining strain becomes a factor that deteriorates the iron loss of the grain-oriented electrical steel sheet, and forms a reflux magnetic domain starting from the strain for periodic magnetic domain control (strain for controlling a plurality of magnetic domains separated from each other by a predetermined interval). When a grain-oriented electrical steel sheet with magnetic domain control is used, there is a problem that the iron loss improvement allowance is offset. Therefore, the present inventors have focused on the fact that machining strain is generated in the vicinity of the bent portion due to the tension generated mainly in the bending direction starting from the bent portion, and several mm to several tens around the bent portion. It was found that when grooves were periodically formed in the range of mm almost perpendicular to the tension direction (multiple grooves were formed at predetermined intervals from each other), the iron loss of the entire iron core was improved by several percent. .. It is presumed that this is because the stress was relaxed by the groove formation and the influence of the machining strain was relaxed. Further, since the periodic groove formation has a magnetic domain control effect, it is considered that this also contributes to the improvement of iron loss.

溝を形成する方法としては、例えば、エッチング、機械的なプレス、電子ビーム、レーザ等を挙げることができる。しかしながら、エッチングは廃液処理を要し、機械プレスは歯形の寿命があり、また、電子ビームは、真空チャンバが必要など、装置が大型化あるいは高コスト化するため、大気中で非接触加工が可能なレーザ加工法によって溝を形成することが好ましい。また、各方向性電磁鋼板の折り曲げ加工された部位および/またはその近傍に形成されるこのような溝は、磁区制御用の歪に代えてまたは加えて設けられる。 Examples of the method for forming the groove include etching, mechanical pressing, electron beam, laser and the like. However, etching requires waste liquid treatment, mechanical presses have a tooth profile life, and electron beams require a vacuum chamber, which increases the size and cost of the equipment, so non-contact processing is possible in the atmosphere. It is preferable to form the groove by a suitable laser processing method. Further, such a groove formed in and / or in the vicinity of the bent portion of each grain-oriented electrical steel sheet is provided in place of or in addition to the strain for controlling the magnetic domain.

また、本発明は、方向性電磁鋼板の表面にビームを照射することで、前記方向性電磁鋼板の圧延方向と交差する幅方向に延びる磁区制御用の歪を付与する、歪付与ステップと、前記方向性電磁鋼板の表面にビームを照射することで、前記方向性電磁鋼板の前記幅方向に延びる溝を形成する、溝形成ステップと、磁区制御用の歪が付与され溝が形成された前記方向性電磁鋼板を、個別に折り曲げ加工する、折り曲げ加工ステップと、前記折り曲げ加工された前記方向性電磁鋼板を、巻回形状に組付けることで、巻鉄芯を形成する、組付けステップと、を有し、前記歪付与ステップは、前記方向性電磁鋼板の表面のうち、前記折り曲げ加工において折曲部となる部位及びその近傍以外の領域において、前記磁区制御用の歪の付与を行い、前記溝形成ステップは、前記方向性電磁鋼板の表面のうち、前記折り曲げ加工において折曲部となる部位及びその近傍の領域で、前記溝を形成する、巻鉄芯の製造方法を提供する。 Further, the present invention comprises a strain applying step of irradiating the surface of a grain-oriented electrical steel sheet with a beam to impart a strain for controlling a magnetic zone extending in a width direction intersecting the rolling direction of the grain-oriented electrical steel sheet. By irradiating the surface of the grain-oriented electrical steel sheet with a beam, a groove forming step for forming a groove extending in the width direction of the grain-oriented electrical steel sheet, and the direction in which the strain for controlling the magnetic zone is applied and the groove is formed. A bending step in which the electrical steel sheets are individually bent, and an assembly step in which the electrical steel sheets that have been bent are assembled in a wound shape to form a wound steel core. The strain applying step applies strain for controlling the magnetic zone in a region other than the portion to be a bent portion in the bending process and its vicinity on the surface of the grain-oriented electrical steel sheet, and the groove is formed. The forming step provides a method for manufacturing a wound steel core, which forms the groove in a portion of the surface of the grain-oriented electrical steel sheet that becomes a bent portion in the bending process and a region in the vicinity thereof.

また、本発明は、方向性電磁鋼板の表面にビームを照射することで、前記方向性電磁鋼板の圧延方向と交差する幅方向に延びる磁区制御用の歪を付与し、前記方向性電磁鋼板の表面にビームを照射することで、前記方向性電磁鋼板の前記幅方向に延びる溝を形成する、ビーム照射部と、磁区制御用の歪が付与され溝が形成された前記方向性電磁鋼板を、個別に折り曲げ加工する、折り曲げ加工部と、前記折り曲げ加工された前記電磁鋼板を、巻回形状に組付けることで、巻鉄芯を形成する、組付け部と、を有し、前記ビーム照射部は、前記方向性電磁鋼板の表面のうち、前記折り曲げ加工において折曲部となる部位及びその近傍以外の領域において、前記磁区制御用の歪の付与を行い、前記方向性電磁鋼板の表面のうち、前記折り曲げ加工において折曲部となる部位及びその近傍の領域で、前記溝を形成する、巻鉄芯の製造装置を提供する。 Further, in the present invention, by irradiating the surface of the grain-oriented electrical steel sheet with a beam, strain for controlling the magnetic zone extending in the width direction intersecting the rolling direction of the grain-oriented electrical steel sheet is applied, and the grain-oriented electrical steel sheet is subjected to a strain for controlling the magnetic zone. By irradiating the surface with a beam, a beam irradiation portion that forms a groove extending in the width direction of the grain-oriented electrical steel sheet, and the grain-oriented electrical steel sheet to which strain for magnetic zone control is applied and the groove is formed are formed. The beam irradiation unit has a bending portion that is individually bent and an assembly portion that forms a wound iron core by assembling the bent electromagnetic steel sheet into a wound shape. On the surface of the grain-oriented electrical steel sheet, the strain for controlling the magnetic zone is applied in a region other than the portion to be a bent portion in the bending process and its vicinity, and the surface of the grain-oriented electrical steel sheet Provided is a winding iron core manufacturing apparatus for forming the groove in a portion to be a bent portion in the bending process and a region in the vicinity thereof.

上記構成の巻鉄芯の製造方法および製造装置は、磁区制御を行なっていない電磁鋼板を用意し、この電磁鋼板に対してレーザや電子ビーム等のビームを照射することにより還流磁区の起点となる磁区制御用の歪を付与して磁区制御を行なうとともに、それぞれの方向性電磁鋼板ごとに折り曲げ加工を施して、層状に積み重ね、巻回形状に組み付けることにより巻鉄芯を形成するユニコア製法を採用する。 For the method and apparatus for manufacturing the wound iron core having the above configuration, an electromagnetic steel sheet that is not subjected to magnetic domain control is prepared, and the electromagnetic steel sheet is irradiated with a beam such as a laser or an electron beam to serve as the starting point of the magnetic domain. A unicore manufacturing method is adopted in which strain for magnetic domain control is applied to control magnetic domains, and each grain-oriented electrical steel sheet is bent, stacked in layers, and assembled into a wound shape to form a wound iron core. do.

また、上記構成の製造方法および製造装置では、同一のビーム照射装置を用い、ビームの照射条件を変えることで、方向性電磁鋼板の表面に対する溝付与と磁区制御用の歪付与とを切り替えて行なうようにしてもよい。ここで、ビーム照射装置が照射するビームとしては、レーザや電子ビーム等を挙げることができる。 Further, in the manufacturing method and the manufacturing apparatus having the above configuration, the same beam irradiation apparatus is used, and by changing the beam irradiation conditions, groove addition to the surface of the grain-oriented electrical steel sheet and strain addition for magnetic domain control are switched. You may do so. Here, examples of the beam irradiated by the beam irradiating device include a laser and an electron beam.

また、本発明においては、表面にビームを照射することで、圧延方向と交差する幅方向に延びる磁区制御用の歪が付与された方向性電磁鋼板を別途入手し、そうした磁区制御用の歪が付与された方向性電磁鋼板に対して、溝を形成するようにしてもよい。 Further, in the present invention, by irradiating the surface with a beam, a grain-oriented electrical steel sheet to which a strain for controlling a magnetic domain extending in a width direction intersecting the rolling direction is applied is separately obtained, and the strain for controlling such a magnetic domain is generated separately. Grooves may be formed with respect to the imparted grain-oriented electrical steel sheet.

本発明の巻鉄芯は、個別に折り曲げ加工された方向性電磁鋼板をドーナツ状(巻回形状)に組付けることで形成されるため、歪取り焼鈍工程を伴うことなく歪付与型の磁区制御材により製造できるとともに、方向性電磁鋼板の折り曲げ加工において折曲部となる部位及びその近傍に、方向性電磁鋼板の幅方向に延びる溝が形成されているため、折り曲げ加工部位の加工歪に伴う鉄損劣化を抑制できる。 Since the wound steel core of the present invention is formed by assembling individually bent grain-oriented electrical steel sheets in a donut shape (winding shape), strain-applying magnetic domain control without a strain-removing annealing step. It can be manufactured from wood, and since grooves extending in the width direction of the grain-oriented electrical steel sheet are formed in and near the bent portion in the bending process of the grain-oriented electrical steel sheet, it accompanies the machining strain of the grained grain. It is possible to suppress deterioration of iron loss.

本発明の一実施の形態に係る巻鉄芯の斜視図を示し、巻鉄芯を構成する各方向性電磁鋼板の折り曲げ部に線状溝を含む拡大された層断面を含んでいる。A perspective view of a wound iron core according to an embodiment of the present invention is shown, and an enlarged layer cross section including a linear groove is included in a bent portion of each grain-oriented electrical steel sheet constituting the wound iron core. 比較例の巻鉄芯の鉄損を100とした場合に、本発明の巻鉄芯の鉄損がどのようになるのかを示す図である。It is a figure which shows what the iron loss of the wound iron core of this invention becomes when the iron loss of the wound iron core of the comparative example is 100. 本発明の一実施の形態に係る巻鉄芯を構成する方向性電磁鋼板の、折り曲げ加工した際の折曲部周辺における溝の形成形態を示す断面図である。It is sectional drawing which shows the formation form of the groove around the bent part at the time of bending process of the grain-oriented electrical steel sheet which constitutes the wound iron core which concerns on one Embodiment of this invention. 様々な溝間隔(レーザ照射ピッチ)における溝形成範囲と鉄損比との間の関係を示す図である。It is a figure which shows the relationship between the groove formation range and iron loss ratio at various groove intervals (laser irradiation pitch). 本発明の一実施の形態に係る巻鉄芯の製造方法および製造装置の概略斜視図である。It is a schematic perspective view of the manufacturing method and the manufacturing apparatus of the wound iron core which concerns on one Embodiment of this invention. 本発明の一実施の形態に係る巻鉄芯の製造方法および製造装置におけるレーザ照射態様を示す概略模式図であり、(a)はレーザ照射装置およびその走査方向を示し、(b)は集光ビーム形状を示している。It is a schematic schematic diagram which shows the manufacturing method of the wound iron core which concerns on one Embodiment of this invention, and the laser irradiation mode in the manufacturing apparatus, (a) shows a laser irradiation apparatus and its scanning direction, (b) is light-collecting. The beam shape is shown.

以下、図面を参照して、本発明の一実施の形態に係る巻鉄芯、巻鉄芯の製造方法および巻鉄芯製造装置について説明する。
図1は、本発明の一実施の形態に係る巻鉄芯10を示している。この巻鉄芯10は、中空部15を有する略直方体形状を成しており、ユニコア製法を用いることで、その角部Rが局所的に折り曲げ加工されている。また、巻鉄芯10は、方向性電磁鋼板40の表面に、方向性電磁鋼板40の圧延方向(長手方向)Dと交差する方向に直線的に又は曲率をもって延びる複数の磁区制御用の歪20を付与することで、還流磁区を起点に180°磁区を細分化することで鉄損が改善された、複数の方向性電磁鋼板40から形成されている。巻鉄芯10は、個別に折り曲げ加工された方向性電磁鋼板(本実施の形態では、その厚み及び幅が同一)40を層状に積み重ね、ドーナツ状(巻回形状)に組み付けることで形成される(図5も参照)。局所的な折り曲げ加工を行なうことから、加工歪(塑性変形歪)が、その折り曲げ部の近傍にしか生じないため、巻鉄芯10全体としての鉄損の劣化を少なくすることができる。したがって、本実施の形態に係る方向性電磁鋼板40は、積層の前後で歪取り焼鈍を実施する必要がない。
Hereinafter, the wound iron core, the method for manufacturing the wound iron core, and the wound iron core manufacturing apparatus according to the embodiment of the present invention will be described with reference to the drawings.
FIG. 1 shows a wound iron core 10 according to an embodiment of the present invention. The wound iron core 10 has a substantially rectangular parallelepiped shape having a hollow portion 15, and its corner portion R is locally bent by using a unicore manufacturing method. Further, the wound steel core 10 extends on the surface of the grain-oriented electrical steel sheet 40 linearly or with curvature in a direction intersecting the rolling direction (longitudinal direction) D of the grain-oriented electrical steel sheet 40. Is formed from a plurality of grain-oriented electrical steel sheets 40 in which the iron loss is improved by subdividing the 180 ° magnetic section starting from the reflux magnetic section. The wound iron core 10 is formed by stacking individually bent directional electromagnetic steel sheets (in the present embodiment, the thickness and width thereof are the same) 40 in layers and assembling them in a donut shape (wound shape). (See also FIG. 5). Since the local bending process is performed, the processing strain (plastic deformation strain) is generated only in the vicinity of the bent portion, so that the deterioration of the iron loss of the wound iron core 10 as a whole can be reduced. Therefore, the grain-oriented electrical steel sheet 40 according to the present embodiment does not need to be strain-removed and annealed before and after laminating.

また、磁区制御用の歪20は、具体的には、方向性電磁鋼板40の表面に、所定の間隔Pl(例えば4mm)で導入されており、この磁区制御用の歪20を起点として還流磁区が発生し、方向性電磁鋼板40の長手方向Dの磁区である180°磁区が細分化され、鉄損が磁区制御用の歪20導入前に比べて約10%程度改善されている。 Specifically, the strain 20 for magnetic domain control is introduced on the surface of the grain-oriented electrical steel sheet 40 at a predetermined interval Pl (for example, 4 mm), and the recirculation magnetic domain starts from the strain 20 for magnetic domain control. The 180 ° magnetic domain, which is the magnetic domain in the longitudinal direction D of the grain-oriented electrical steel sheet 40, is subdivided, and the iron loss is improved by about 10% as compared with that before the introduction of the strain 20 for controlling the magnetic domain.

また、本実施の形態において、方向性電磁鋼板40を折り曲げ加工した際の角部(したがって、巻鉄芯10の4つの角部)において、方向性電磁鋼板が折れ曲がる点である折曲部及びその近傍の領域には、方向性電磁鋼板40の圧延方向Dと交差する方向に直線的に又は曲率をもって延びる複数の溝25が、所定の間隔で形成されている。 Further, in the present embodiment, at the corners (hence, the four corners of the wound steel core 10) when the grain-oriented electrical steel sheet 40 is bent, the bent portion, which is the point at which the grain-oriented electrical steel sheet bends, and the bent portion thereof. In the vicinity region, a plurality of grooves 25 extending linearly or with a curvature in a direction intersecting the rolling direction D of the grain-oriented electrical steel sheet 40 are formed at predetermined intervals.

これらの溝25は、方向性電磁鋼板40を折り曲げ加工した際に、角部Rにおいて方向性電磁鋼板40が折れ曲がる部分(頂辺。折曲部)R1の両側に、方向性電磁鋼板40の圧延方向Dに沿った1mm〜50mmの範囲(溝形成範囲)Xにわたって、2mm〜10mmの間隔Plで形成される。例えば、角部Rにおける折曲部R1の両側25mmの溝形成範囲X内に、レーザ加工により4mmの間隔で溝25を形成し、溝25の深さは平均値で25μmとすることができる。
なお、図1には、折曲R1及びその近傍の領域(即ち、溝形成範囲Xに対応)に形成される溝25が、実線で示されるとともに、それ以外の方向性電磁鋼板40の表面の全体にわたって形成される複数の磁区制御用の歪20が、一部破線で示されている。
These grooves 25 are formed by rolling the grain-oriented electrical steel sheet 40 on both sides of a portion (top. Bent portion) R1 where the grain-oriented electrical steel sheet 40 bends at a corner portion R when the grain-oriented electrical steel sheet 40 is bent. It is formed at intervals of 2 mm to 10 mm Pl over a range (groove formation range) X of 1 mm to 50 mm along the direction D. For example, the grooves 25 can be formed at intervals of 4 mm by laser processing within the groove forming range X of 25 mm on both sides of the bent portion R1 at the corner portion R, and the depth of the grooves 25 can be set to 25 μm on average.
In FIG. 1, the groove 25 formed in the bent R1 and the region in the vicinity thereof (that is, corresponding to the groove forming range X) is shown by a solid line, and the other surface of the grain-oriented electrical steel sheet 40 is shown. A plurality of magnetic domain control strains 20 formed over the entire area are partially shown by broken lines.

また、本実施の形態に係る巻鉄芯10は、例えば図示しない一次巻線と二次巻線とが、中空部15を貫通するように巻かれることで、トランスとなるものであり、一次巻線または二次巻線に電流を流すと、中空部15の周りを環流する磁束の磁気回路すなわち閉磁路が形成されるものである。また、本実施の形態に係る方向性電磁鋼板40は、圧延方向Dに結晶粒の磁化容易軸(体心立方晶の<100>方向)の方向がほぼ揃っている電磁鋼板であって、圧延方向Dに磁化が向いた複数の磁区が磁壁を挟んで配列した構造を有する。このような方向性電磁鋼板40は、磁力線が一定な方向を向くトランス用の鉄芯材料として適している。ここで、方向性電磁鋼板40の磁化容易軸は、巻鉄芯10では、巻鉄芯10の周方向(中空部15の周りを環流する方向)に対応するように組み付けられる。 Further, the wound iron core 10 according to the present embodiment becomes a transformer by winding, for example, a primary winding and a secondary winding (not shown) so as to penetrate the hollow portion 15, and is a primary winding. When a current is passed through the wire or the secondary winding, a magnetic circuit of magnetic flux circulating around the hollow portion 15, that is, a closed magnetic path is formed. Further, the grain-oriented electrical steel sheet 40 according to the present embodiment is an electrical steel sheet in which the directions of the easy-to-magnetize axes of the crystal grains (the <100> direction of the body-centered cubic crystal) are substantially aligned with the rolling direction D, and are rolled. It has a structure in which a plurality of magnetic domains whose magnetization is oriented in the direction D are arranged with a magnetic domain wall in between. Such a grain-oriented electrical steel sheet 40 is suitable as an iron core material for a transformer in which the lines of magnetic force are directed in a certain direction. Here, the easily magnetized shaft of the grain-oriented electrical steel sheet 40 is assembled in the wound iron core 10 so as to correspond to the circumferential direction of the wound iron core 10 (the direction of circulating around the hollow portion 15).

図2は、比較例の巻鉄芯の鉄損を100とした場合に、本実施の形態に係る巻鉄芯10の鉄損がどのようになるのかを示す図である。比較例の巻鉄芯は、本実施の形態に係る巻鉄芯10と同じ磁区制御用の歪20が付与されているが、折り曲げ加工される際の折曲部R1及びその近傍の領域には、溝25は形成されていない。図2に示すように、本発明の巻鉄芯10は、比較例の巻鉄芯に対して約2%の鉄損低減が実現できている。 FIG. 2 is a diagram showing how the iron loss of the wound iron core 10 according to the present embodiment becomes when the iron loss of the wound iron core of the comparative example is 100. The wound iron core of the comparative example is provided with the same magnetic domain control strain 20 as the wound iron core 10 according to the present embodiment, but the bent portion R1 and the region in the vicinity thereof when being bent are subjected to the same strain 20. , The groove 25 is not formed. As shown in FIG. 2, the wound iron core 10 of the present invention can realize an iron loss reduction of about 2% with respect to the wound iron core of the comparative example.

図3は、図1に示す本実施の形態に係る巻鉄芯10を構成する方向性電磁鋼板40の、折り曲げ加工した際の折曲部R1周辺における溝25の形成形態を示す断面図であり、溝25の形成間隔Plおよび方向性電磁鋼板40の角部Rにおける折曲部R1や、溝形成範囲Xを示している。この例では、溝25が、方向性電磁鋼板40の角部Rの折曲部R1直上に形成され、この折曲部R1から1mmの間隔Plで、他の溝25が形成されている。 FIG. 3 is a cross-sectional view showing a form of forming a groove 25 around the bent portion R1 when the grain-oriented electrical steel sheet 40 constituting the wound iron core 10 according to the present embodiment shown in FIG. 1 is bent. , The formation interval Pl of the groove 25, the bent portion R1 at the corner portion R of the grain-oriented electrical steel sheet 40, and the groove formation range X are shown. In this example, the groove 25 is formed directly above the bent portion R1 of the corner portion R of the grain-oriented electrical steel sheet 40, and another groove 25 is formed at a distance Pl 0 of 1 mm from the bent portion R1.

図4は、溝25の様々な間隔Pl(レーザ照射ピッチ)における溝形成範囲X(mm)と鉄損比との間の関係を示している。図4は、溝25の間隔Plを1mmから12mmまで変更し、また、溝形成範囲Xを、最大70mmまで変更して、それぞれ対応する巻鉄芯を製作し、鉄損を比較した結果である。また、図4における鉄損比は、溝25を形成していない巻鉄芯における鉄損の値を100とした場合の、鉄損の相対値である。 FIG. 4 shows the relationship between the groove formation range X (mm) and the iron loss ratio at various intervals Pl (laser irradiation pitch) of the grooves 25. FIG. 4 shows the results of comparing the iron losses by manufacturing the corresponding wound iron cores by changing the spacing Pl of the grooves 25 from 1 mm to 12 mm and changing the groove formation range X up to a maximum of 70 mm. .. Further, the iron loss ratio in FIG. 4 is a relative value of the iron loss when the value of the iron loss in the wound iron core not forming the groove 25 is 100.

図4から分かるように、P1=1mmの場合には、溝形成範囲Xが広がるほど鉄損が増加した。これは、折り曲げ加工によって生じた加工歪が緩和される影響より、磁区制御用の歪付与から溝形成に変更したことによる鉄損改善効果の低下の影響の方が大きくなり、溝形成範囲X全体としての鉄損を増大させたからである。また、Pl=2mmの場合には、鉄損が100を下回り、Pl=4mmおよびPl=6mmの場合には、溝形成範囲Xが20mm〜40mm程度のときに、鉄損が最大2%も低減した。一方、Plが増加すると鉄損低減効果は減少するが、Pl=10mmまでは鉄損が低下する傾向にあり、Plが10mmを超えると、鉄損は溝25を形成しない場合と同等であった。これは、溝間隔Plが大きくなると、折り曲げ加工によって生じた加工歪を緩和する応力付与が不十分になるからと考えられる。また、Pl=10mm以下でも溝形成範囲Xが50mmを超えると鉄損が増大する。これは、磁区制御用の歪20を付与することで鉄損を改善していた影響が小さくなり、折り曲げ加工によって生じた加工歪の影響が相対的に大きくなったために、鉄損を劣化させたものと考えられる。 As can be seen from FIG. 4, when P1 = 1 mm, the iron loss increased as the groove formation range X widened. This is because the effect of reducing the iron loss improving effect due to the change from magnetic domain control strain application to groove formation is greater than the effect of alleviating the processing strain caused by bending, and the entire groove formation range X This is because the iron loss as a result was increased. Further, when Pl = 2 mm, the iron loss is less than 100, and when Pl = 4 mm and Pl = 6 mm, the iron loss is reduced by up to 2% when the groove formation range X is about 20 mm to 40 mm. bottom. On the other hand, when Pl increases, the iron loss reduction effect decreases, but the iron loss tends to decrease until Pl = 10 mm, and when Pl exceeds 10 mm, the iron loss is equivalent to the case where the groove 25 is not formed. .. It is considered that this is because when the groove spacing Pl becomes large, the stress applied to alleviate the processing strain generated by the bending process becomes insufficient. Further, even if Pl = 10 mm or less, iron loss increases when the groove formation range X exceeds 50 mm. This is because the effect of improving the iron loss by applying the strain 20 for magnetic domain control became smaller, and the effect of the processing strain generated by the bending process became relatively large, so that the iron loss deteriorated. It is considered to be.

したがって、溝25は、方向性電磁鋼板40の折り曲げ加工において生じる角部Rにおける折曲部R1を中心に、近傍と見なせる、方向性電磁鋼板40の圧延方向Dに1mm〜50mmの範囲において、2mm〜10mmの溝間隔Plで、形成されることが好ましいといえる。 Therefore, the groove 25 is 2 mm in the range of 1 mm to 50 mm in the rolling direction D of the grain-oriented electrical steel sheet 40, which can be regarded as being close to the bent portion R1 at the corner portion R generated in the bending process of the grain-oriented electrical steel sheet 40. It can be said that it is preferably formed with a groove spacing of 10 mm.

図5は、本発明の一実施の形態に係る巻鉄芯の製造方法および製造装置を概略的に示している。
先ず、図5を参照しながら、本実施形態に係る巻鉄芯の製造装置について説明する。
図5に示すように、本実施形態に係る巻鉄芯の製造装置は、例えば、方向性電磁鋼板40を巻き回して形成されたフープ材40aを保持する鋼板供給部50から、方向性電磁鋼板40を、搬送速度V1(例えば30m/s)で、繰り出すことで、方向性電磁鋼板40の供給を受ける。
FIG. 5 schematically shows a method and an apparatus for manufacturing a wound iron core according to an embodiment of the present invention.
First, the winding iron core manufacturing apparatus according to the present embodiment will be described with reference to FIG.
As shown in FIG. 5, the wound steel core manufacturing apparatus according to the present embodiment is, for example, from a steel sheet supply unit 50 that holds a hoop material 40a formed by winding a grain-oriented electrical steel sheet 40, from a grain-oriented electrical steel sheet. By feeding the 40 at a transport speed V1 (for example, 30 m / s), the grain-oriented electrical steel sheet 40 is supplied.

鋼板供給部50から供給される方向性電磁鋼板40の表面に、ビーム照射部52からビーム90を照射して、方向性電磁鋼板40の圧延方向Dと交差する、方向性電磁鋼板40の幅方向Wに延びる複数の磁区制御用の歪20を、所定の間隔Plで付与する。なお、ビーム照射部52から照射されるビームの種類としては、特に限定されるものではない。レーザであれば高エネルギーの光源を容易に安価で入手できるため好ましいが、電子ビーム等であっても、レーザと同様に用いることができる。 The width direction of the grain-oriented electrical steel sheet 40, which irradiates the surface of the grain-oriented electrical steel sheet 40 supplied from the steel sheet supply section 50 with the beam 90 from the beam irradiation section 52 and intersects the rolling direction D of the grain-oriented electrical steel sheet 40. A plurality of strains 20 for controlling magnetic zones extending to W are applied at predetermined intervals Pl. The type of beam emitted from the beam irradiation unit 52 is not particularly limited. A laser is preferable because a high-energy light source can be easily and inexpensively obtained, but an electron beam or the like can also be used in the same manner as a laser.

折り曲げ加工部54によって、磁区制御用の歪20が付与されて磁区制御された方向性電磁鋼板40を、適宜適当なサイズに切断するとともに、1枚ずつといったように、少数枚毎に個別に折り曲げる、折り曲げ加工を行う(即ち、ユニコア製法を用いる)。こうして得られた方向性電磁鋼板40では、折り曲げ加工で生じる角部Rにおける折曲部R1の曲率が、極めて小さくなるため、折り曲げ加工によって、方向性電磁鋼板40に付与される加工歪は、極めて小さいものとなる。
組付け部56(図示せず)によって、折り曲げ加工された方向性電磁鋼板40を、層状に積み重ね、巻回形状に組み付けることで、巻鉄芯10が製造される。
The magnetic domain-controlled directional electromagnetic steel sheet 40 to which strain 20 for magnetic domain control is applied by the bending section 54 is cut into an appropriate size and individually bent in small numbers, such as one by one. , Perform bending (that is, use the Unicore manufacturing method). In the grain-oriented electrical steel sheet 40 thus obtained, the curvature of the bent portion R1 at the corner portion R generated by the bending process is extremely small, so that the processing strain applied to the grain-oriented electrical steel sheet 40 by the bending process is extremely small. It will be small.
The wound iron core 10 is manufactured by stacking the bent directional electromagnetic steel sheets 40 in layers and assembling them into a wound shape by the assembling portion 56 (not shown).

制御部58は、鋼板供給部50、ビーム照射部52、折り曲げ加工部54及び組付け部56と、直接に又はネットワーク等を介して、有線又は無線で接続されている(図示の一部は省略)。
制御部58は、折り曲げ加工部54で折り曲げられる折り曲げ加工の際の折曲部R1の位置が、鋼板供給部50から供給される(例えば長尺の)方向性電磁鋼板40のどの部位にあるかを、折り曲げ加工部54からの信号S1に基づいて計算する。
そして、制御部58は、ビーム照射部52に信号S2を出力することで、ビーム照射部52の動作を鋼板供給部50の動作と同期させ、鋼板供給部50から供給される方向性電磁鋼板40上の、折り曲げ加工の際に折曲部R1となる部位に基づいて、ビーム照射が行えるように、ビーム照射部52の動作を制御する。
The control unit 58 is connected to the steel plate supply unit 50, the beam irradiation unit 52, the bending unit 54, and the assembly unit 56 directly or via a network or the like by wire or wirelessly (a part of the figure is omitted). ).
In the control unit 58, which part of the (for example, long) grain-oriented electrical steel sheet 40 supplied from the steel plate supply unit 50 is the position of the bending portion R1 at the time of bending that is bent by the bending unit 54. Is calculated based on the signal S1 from the bending unit 54.
Then, the control unit 58 synchronizes the operation of the beam irradiation unit 52 with the operation of the steel plate supply unit 50 by outputting the signal S2 to the beam irradiation unit 52, and the directional electromagnetic steel plate 40 supplied from the steel plate supply unit 50. The operation of the beam irradiation unit 52 is controlled so that the beam irradiation can be performed based on the portion that becomes the bent portion R1 during the bending process.

例えば、制御部58の制御によって、ビーム照射部52のビーム照射条件(ビームの、パワー、集光形状及び照射速度)を、相対的に低いパワー密度のビームを照射する条件とすることで、方向性電磁鋼板40の表面の全領域に対して、磁区制御用の歪20を付与するようにし、一方で、折り曲げ加工において折曲部R1となる部位及びその近傍の領域では、ビーム照射部52のビーム照射条件を、よりパワー密度の高いビームを照射する条件とすることで、付与された磁区制御用の歪20の上に、溝25を(上書き的に)形成するようにすることができる。 For example, by controlling the control unit 58, the beam irradiation conditions (power, focusing shape, and irradiation speed of the beam) of the beam irradiation unit 52 can be set to conditions for irradiating a beam having a relatively low power density. A strain 20 for controlling the magnetic domain is applied to the entire surface region of the electrical steel sheet 40, while the beam irradiation portion 52 is applied to the portion that becomes the bent portion R1 in the bending process and the region in the vicinity thereof. By setting the beam irradiation condition to irradiate a beam having a higher power density, the groove 25 can be formed (overwriting) on the applied strain 20 for magnetic domain control.

また、制御部58の制御によって、折り曲げ加工において折曲部R1となる部位及びその近傍以外の領域については、ビーム照射部52のビーム照射条件を、相対的にパワー密度の低いビームを照射する条件とすることで、磁区制御用の歪20を付与するようにし、一方で、折り曲げ加工において折曲部R1となる部位及びその近傍の領域では、ビーム照射部52のビーム照射条件を、よりパワー密度の高いビームを照射する条件に切り替えることで、溝25を形成するように、ビームを切り替えるようにしてもよい。 Further, under the control of the control unit 58, the beam irradiation condition of the beam irradiation unit 52 is set to the condition of irradiating a beam having a relatively low power density for the region other than the portion that becomes the bending portion R1 in the bending process and its vicinity. By setting, the strain 20 for magnetic domain control is applied, while the beam irradiation condition of the beam irradiation unit 52 is set to a higher power density in the portion that becomes the bent portion R1 in the bending process and the region in the vicinity thereof. The beam may be switched so as to form the groove 25 by switching to the condition of irradiating the beam having a high density.

次に、図5を参照しながら、本実施形態に係る巻鉄芯の製造方法について説明する。
フープ材40aは、磁区制御用の歪付与による磁区制御を行なっていない長尺の方向性電磁鋼板40をロール状にしたものである。鋼板供給部50から繰り出されたフープ材40aは、制御された一定速度V1でビーム照射部52へ向けて搬送される。ビーム照射装置52Aからレーザ光等のビームを方向性電磁鋼板40に照射し、方向性電磁鋼板40の幅方向Wに走査することにより、幅方向Wに延びる磁区制御用の歪20を方向性電磁鋼板40の表面上に形成する(歪付与ステップ)。なお、磁区制御用の歪20は、方向性電磁鋼板40の表面のうち、折り曲げ加工の際に折曲部R1となる部位及びその近傍の以外の領域のみで、方向性電磁鋼板40の圧延方向Dと交差する幅方向Wに延びる磁区制御用の歪20を付与するのが好ましいが、方向性電磁鋼板40全体に磁区制御用の歪を付与し、その後に、後述する溝形成ステップで、溝25を上書き的に形成するようにしてもよい。
Next, a method for manufacturing the wound iron core according to the present embodiment will be described with reference to FIG.
The hoop material 40a is a roll of a long directional electromagnetic steel sheet 40 that is not subjected to magnetic domain control by applying strain for magnetic domain control. The hoop material 40a unwound from the steel plate supply unit 50 is conveyed toward the beam irradiation unit 52 at a controlled constant speed V1. By irradiating the directional electromagnetic steel sheet 40 with a beam such as laser light from the beam irradiating device 52A and scanning the directional electromagnetic steel sheet 40 in the width direction W, the strain 20 for controlling the magnetic zone extending in the width direction W is directional electromagnetic. It is formed on the surface of the steel plate 40 (strain applying step). The strain 20 for magnetic domain control is limited to a region other than the portion that becomes the bent portion R1 at the time of bending and the vicinity thereof on the surface of the grain-oriented electrical steel sheet 40, and the rolling direction of the grain-oriented electrical steel sheet 40. It is preferable to apply the magnetic domain control strain 20 extending in the width direction W intersecting with D, but the magnetic domain control strain is applied to the entire grain-oriented electrical steel sheet 40, and then the grooves are formed in the groove forming step described later. 25 may be formed by overwriting.

また、ビーム照射部52は、前述した磁区制御用の歪20の付与に加え、方向性電磁鋼板40の表面のうち、折り曲げ加工において折曲部R1となる部位及びその近傍の領域で、方向性電磁鋼板40の圧延方向Dと交差する幅方向Wに延びる溝25も形成する(溝形成ステップ)。 Further, in addition to applying the strain 20 for controlling the magnetic domain described above, the beam irradiating unit 52 is directional in the portion of the surface of the grain-oriented electrical steel sheet 40 that becomes the bent portion R1 in the bending process and the region in the vicinity thereof. A groove 25 extending in the width direction W intersecting the rolling direction D of the electrical steel sheet 40 is also formed (groove forming step).

また、折り曲げ加工部54は、歪付与ステップで磁区制御用の歪20が付与され、溝形成ステップで溝25が形成された方向性電磁鋼板40を、1枚ずつといったように、少数枚毎に個別に折り曲げ加工を行う(即ち、ユニコア製法を用いる)(折り曲げ加工ステップ)。こうして得られた方向性電磁鋼板40では、折り曲げ加工で生じる折曲部R1の曲率が、極めて小さくなるため、折り曲げ加工によって、方向性電磁鋼板40に付与される加工歪は、極めて小さいものとなる。
組付け部56は、折り曲げ加工された方向性電磁鋼板40を、巻回形状に組付けることで、巻鉄芯10を形成する(組付けステップ)。
Further, in the bending section 54, the strain 20 for magnetic domain control is applied in the strain applying step, and the grain-oriented electrical steel sheets 40 in which the grooves 25 are formed in the groove forming step are formed one by one. Bending is performed individually (that is, the Unicore manufacturing method is used) (folding step). In the grain-oriented electrical steel sheet 40 thus obtained, the curvature of the bent portion R1 generated by the bending process is extremely small, so that the machining strain applied to the grain-oriented electrical steel sheet 40 by the bending process is extremely small. ..
The assembling portion 56 forms the wound iron core 10 by assembling the bent directional electromagnetic steel plate 40 into a wound shape (assembling step).

図6は、ビーム照射部52におけるビーム照射態様を概略的に示している。ビーム照射部52から照射されるビームの種類としては、特に限定されるものではなく、例えば、レーザであっても電子ビームであってもよい。ビーム光は、図示しないビーム光源から、図示しない光ファイバまたはミラー反射伝送系によりビーム出射部へと導かれ、ビーム照射装置52A内にある多面体の回転ポリゴンミラー、又は、ガルバノモータによる振動ミラーによって、方向性電磁鋼板40の幅方向Wに走査され、fθレンズや放物面ミラーで集光されて、方向性電磁鋼板40に対して照射される。 FIG. 6 schematically shows a beam irradiation mode in the beam irradiation unit 52. The type of beam emitted from the beam irradiation unit 52 is not particularly limited, and may be, for example, a laser or an electron beam. The beam light is guided from a beam light source (not shown) to a beam emitting part by an optical fiber or a mirror reflection transmission system (not shown), and is provided by a polyhedral rotating polygon mirror in the beam irradiation device 52A or a vibration mirror by a galvano motor. It is scanned in the width direction W of the directional electromagnetic steel plate 40, collected by an fθ lens or a parabolic mirror, and irradiated to the directional electromagnetic steel plate 40.

また、磁区制御用の歪20を付与する場合及び溝25を形成する場合のビーム照射条件の条件例として、レーザを用いる場合の条件例を挙げると、磁区制御用の歪20を付与する場合には、レーザパワーPを300Wとし、集光形状としてビーム走査方向の径dxを0.1mm、その直交方向の径dyを4.0mmとした楕円形状とし、ビーム走査速度Vxを20m/sとするように設定することができる。一方、溝25を形成する場合には、レーザパワーPを2000Wとし、集光形状としてビーム走査方向の径dxを0.05mm、その直交方向の径dyを0.3mmとした楕円形状とし、ビーム走査速度Vxを30m/sとするように設定することができる。なお、ビームパワーの変更は、ビーム照射装置52Aのパワー調整機能によって行なわれ、集光径の変更は、ビーム照射装置52A内のビーム拡大・集光機能によって行なわれ、また、走査速度の変更は、ビーム照射装置52A内のビーム走査機能である振動ミラーあるいは回転ポリゴンミラーの速度変更によって行なわれてもよい。 Further, as an example of the condition of the beam irradiation condition when the strain 20 for magnetic domain control is applied and when the groove 25 is formed, an example of the condition when a laser is used is given when the strain 20 for magnetic domain control is applied. Has an elliptical shape in which the laser power P is 300 W, the diameter dx in the beam scanning direction is 0.1 mm, and the diameter dy in the orthogonal direction is 4.0 mm, and the beam scanning speed Vx is 20 m / s. Can be set as. On the other hand, when the groove 25 is formed, the laser power P is 2000 W, and the condensing shape is an elliptical shape in which the diameter dx in the beam scanning direction is 0.05 mm and the diameter dy in the orthogonal direction is 0.3 mm. The scanning speed Vx can be set to 30 m / s. The beam power is changed by the power adjustment function of the beam irradiation device 52A, the focusing diameter is changed by the beam enlargement / focusing function in the beam irradiation device 52A, and the scanning speed is changed. , It may be performed by changing the speed of the vibration mirror or the rotating polygon mirror, which is the beam scanning function in the beam irradiation device 52A.

なお、本発明は、前述した実施の形態に限定されず、その要旨を逸脱しない範囲で種々変形して実施できる。例えば、前述の実施の形態では、磁区制御用の歪20を付与する場合及び溝25を形成する場合を、同一のビーム照射装置52Aで行なう実施態様を説明したが、磁区制御用の歪20を付与する場合と、溝25を形成する場合とで、それぞれ独立のビーム照射部を用いて行うようにしてもよい。
また、前述の実施の形態においては、自ら、方向性電磁鋼板40の表面にビームを照射することで、方向性電磁鋼板40の圧延方向Dと交差する幅方向Wに延びる磁区制御用の歪20を付与しているが、磁区制御用の歪20が付与された方向性電磁鋼板40を、外部から取得し、そうして取得した方向性電磁鋼板40に対して、溝25を形成するようにしてもよい。その場合には、歪付与ステップ(ビーム照射部)を不要とすることができる。
また、前述した実施の形態では、方向性電磁鋼板40の角部Rにおける折曲部R1直上に溝25が形成されているが、折曲部R1直上に溝25を形成しなくてもよい。
また、以上では、磁区制御用の歪20を、レーザや電子ビームといったビームを用いて付与する例を用いて説明を行ったが、磁区制御用の歪20を付与する手法は、それらに限定されるものではなく、その他の公知の手法を用いることもできる。例えば、磁区制御用の歪20を付与するに当たって、プラズマを照射することで付与したり、又は、方向性電磁鋼板40の表面を硬質の突起でけがいたり若しくはショットピーニング等を用いたりして、方向性電磁鋼板40に圧縮応力を与えることで付与したり、することも可能である。
また、以上では、溝25を、レーザや電子ビームを用いて形成する例を用いて説明を行ったが、溝25を形成する手法は、それらに限定されるものではなく、その他の公知の手法を用いることもできる。例えば、溝25を付与するに当たって、レーザや電子ビーム以外のビームを照射することで付与したり、エッチングを行ったり、又は、機械的なプレスを行ったりして、形成することも可能である。
また、本発明の要旨を逸脱しない範囲内において、前述した実施の形態の一部または全部を組み合わせてもよく、あるいは、前述した実施の形態のうちの1つから構成の一部が省かれてもよい。
The present invention is not limited to the above-described embodiment, and can be modified in various ways without departing from the gist thereof. For example, in the above-described embodiment, the embodiment in which the strain 20 for magnetic domain control is applied and the groove 25 is formed by the same beam irradiation device 52A has been described, but the strain 20 for magnetic domain control has been described. The beam irradiation unit may be used independently of the case of applying the beam and the case of forming the groove 25.
Further, in the above-described embodiment, the strain 20 for controlling the magnetic zone extending in the width direction W intersecting the rolling direction D of the grain-oriented electrical steel sheet 40 by irradiating the surface of the grain-oriented electrical steel sheet 40 with a beam by itself. However, the grain-oriented electrical steel sheet 40 to which the strain 20 for controlling the magnetic zone is imparted is acquired from the outside, and the groove 25 is formed in the grain-oriented electrical steel sheet 40 thus acquired. You may. In that case, the distortion applying step (beam irradiation unit) can be eliminated.
Further, in the above-described embodiment, the groove 25 is formed directly above the bent portion R1 at the corner portion R of the grain-oriented electrical steel sheet 40, but the groove 25 may not be formed directly above the bent portion R1.
Further, in the above description, the method of applying the strain 20 for magnetic domain control using an example of applying the strain 20 for magnetic domain control using a beam such as a laser or an electron beam has been described, but the method of applying the strain 20 for magnetic domain control is limited to them. However, other known methods can also be used. For example, when applying the strain 20 for magnetic domain control, the strain 20 is applied by irradiating with plasma, or the surface of the grain-oriented electrical steel sheet 40 is scratched with a hard protrusion or shot peening is used to obtain a direction. It is also possible to apply or apply compressive stress to the electrical steel sheet 40.
Further, in the above description, the groove 25 is formed by using an example of forming the groove 25 by using a laser or an electron beam, but the method of forming the groove 25 is not limited to these, and other known methods. Can also be used. For example, when the groove 25 is formed, it can be formed by irradiating a beam other than a laser or an electron beam, etching, or mechanically pressing.
Further, a part or all of the above-described embodiments may be combined within a range that does not deviate from the gist of the present invention, or a part of the configuration may be omitted from one of the above-described embodiments. May be good.

10 巻鉄芯
20 磁区制御用の歪
25 溝
40 方向性電磁鋼板
50 鋼板供給部
52 ビーム照射部
52A ビーム照射装置
54 折り曲げ加工部
56 組付け部
R 角部
R1 折曲部
10-wound iron core 20 Distortion for magnetic domain control 25 Groove 40 Directional electromagnetic steel plate 50 Steel plate supply part 52 Beam irradiation part 52A Beam irradiation device 54 Bending part 56 Assembling part R Square part R1 Bending part

Claims (7)

圧延方向と交差する幅方向に延びる磁区制御用の歪が、表面に付与された方向性電磁鋼板を、個別に折り曲げ加工し、巻回形状に組付けることで形成された巻鉄芯であって、
前記折り曲げ加工において折曲部となる部位及びその近傍の領域では、前記方向性電磁鋼板の表面に、前記幅方向に延びる溝が形成されている、巻鉄芯。
The strain for controlling the magnetic domain extending in the width direction intersecting the rolling direction is a wound iron core formed by individually bending a grain-oriented electrical steel sheet applied to the surface and assembling it into a wound shape. ,
A wound iron core in which a groove extending in the width direction is formed on the surface of the grain-oriented electrical steel sheet in a portion to be a bent portion in the bending process and a region in the vicinity thereof.
前記溝は、前記圧延方向に2mm〜10mmの間隔で形成され、
前記折り曲げ加工において折曲部となる部位の近傍は、前記折り曲げ加工において折曲部となる部位を中心に、前記圧延方向に1mm〜50mmの範囲である、請求項1に記載の巻鉄芯。
The grooves are formed at intervals of 2 mm to 10 mm in the rolling direction.
The wound iron core according to claim 1, wherein the vicinity of the portion that becomes the bent portion in the bending process is in the range of 1 mm to 50 mm in the rolling direction, centering on the portion that becomes the bending portion in the bending process.
方向性電磁鋼板の表面にビームを照射することで、前記方向性電磁鋼板の圧延方向と交差する幅方向に延びる磁区制御用の歪を付与する、歪付与ステップと、
前記方向性電磁鋼板の表面にビームを照射することで、前記方向性電磁鋼板の前記幅方向に延びる溝を形成する、溝形成ステップと、
磁区制御用の歪が付与され溝が形成された前記方向性電磁鋼板を、個別に折り曲げ加工する、折り曲げ加工ステップと、
前記折り曲げ加工された前記方向性電磁鋼板を、巻回形状に組付けることで、巻鉄芯を形成する、組付けステップと、
を有し、
前記歪付与ステップは、前記方向性電磁鋼板の表面のうち、前記折り曲げ加工において折曲部となる部位及びその近傍以外の領域において、前記磁区制御用の歪の付与を行い、
前記溝形成ステップは、前記方向性電磁鋼板の表面のうち、前記折り曲げ加工において折曲部となる部位及びその近傍の領域で、前記溝を形成する、巻鉄芯の製造方法。
A strain applying step of irradiating the surface of the grain-oriented electrical steel sheet with a beam to impart a strain for controlling a magnetic domain extending in a width direction intersecting the rolling direction of the grain-oriented electrical steel sheet.
A groove forming step of forming a groove extending in the width direction of the grain-oriented electrical steel sheet by irradiating the surface of the grain-oriented electrical steel sheet with a beam.
A bending step in which the grain-oriented electrical steel sheet to which strain for magnetic domain control is applied and a groove is formed is individually bent.
Assembling step of forming a wound iron core by assembling the bent magnetic steel sheet in a wound shape.
Have,
In the strain applying step, strain for controlling the magnetic domain is applied in a region other than the portion to be a bent portion in the bending process and its vicinity on the surface of the grain-oriented electrical steel sheet.
The groove forming step is a method for manufacturing a wound iron core, wherein the groove is formed in a portion of the surface of the grain-oriented electrical steel sheet that becomes a bent portion in the bending process and a region in the vicinity thereof.
前記歪付与ステップと前記溝形成ステップは、同一のビーム照射装置を用い、前記ビームの、パワー、集光形状及び照射速度の少なくともいずれか一つを変更することで、前記磁区制御用の歪付与ステップと前記溝形成ステップとの処理を切り替える、請求項3に記載の巻鉄芯の製造方法。 In the strain applying step and the groove forming step, the same beam irradiation device is used, and at least one of the power, the condensing shape, and the irradiation speed of the beam is changed to apply strain for controlling the magnetic domain. The method for manufacturing a wound iron core according to claim 3, wherein the process of switching between the step and the groove forming step is switched. 表面にビームを照射することで、圧延方向と交差する幅方向に延びる磁区制御用の歪が付与された方向性電磁鋼板を用い、
前記方向性電磁鋼板の表面にビームを照射することで、前記方向性電磁鋼板の前記幅方向に延びる溝を形成する、溝形成ステップと、
磁区制御用の歪が付与され溝が形成された前記方向性電磁鋼板を、個別に折り曲げ加工する、折り曲げ加工ステップと、
前記折り曲げ加工された前記方向性電磁鋼板を、巻回形状に組付けることで、巻鉄芯を形成する、組付けステップと、
を有し、
前記溝形成ステップは、前記方向性電磁鋼板の表面のうち、前記折り曲げ加工において折曲部となる部位及びその近傍の領域でのみ、前記溝を形成する、巻鉄芯の製造方法。
By irradiating the surface with a beam, a grain-oriented electrical steel sheet with strain for controlling magnetic domains extending in the width direction intersecting the rolling direction is used.
A groove forming step of forming a groove extending in the width direction of the grain-oriented electrical steel sheet by irradiating the surface of the grain-oriented electrical steel sheet with a beam.
A bending step in which the grain-oriented electrical steel sheet to which strain for magnetic domain control is applied and a groove is formed is individually bent.
Assembling step of forming a wound iron core by assembling the bent magnetic steel sheet in a wound shape.
Have,
The groove forming step is a method for manufacturing a wound iron core, wherein the groove is formed only in a portion of the surface of the grain-oriented electrical steel sheet that becomes a bent portion in the bending process and a region in the vicinity thereof.
方向性電磁鋼板の表面にビームを照射することで、前記方向性電磁鋼板の圧延方向と交差する幅方向に延びる磁区制御用の歪を付与し、前記方向性電磁鋼板の表面にビームを照射することで、前記方向性電磁鋼板の前記幅方向に延びる溝を形成する、ビーム照射部と、
磁区制御用の歪が付与され溝が形成された前記方向性電磁鋼板を、個別に折り曲げ加工する、折り曲げ加工部と、
前記折り曲げ加工された前記電磁鋼板を、巻回形状に組付けることで、巻鉄芯を形成する、組付け部と、
を有し、
前記ビーム照射部は、
前記方向性電磁鋼板の表面のうち、前記折り曲げ加工において折曲部となる部位及びその近傍以外の領域において、前記磁区制御用の歪の付与を行い、
前記方向性電磁鋼板の表面のうち、前記折り曲げ加工において折曲部となる部位及びその近傍の領域で、前記溝を形成する、巻鉄芯の製造装置。
By irradiating the surface of the grain-oriented electrical steel sheet with a beam, strain for controlling the magnetic zone extending in the width direction intersecting the rolling direction of the grain-oriented electrical steel sheet is applied, and the surface of the grain-oriented electrical steel sheet is irradiated with the beam. As a result, the beam irradiation unit that forms the groove extending in the width direction of the grain-oriented electrical steel sheet,
A bending portion that individually bends the grain-oriented electrical steel sheet to which strain for magnetic domain control is applied and a groove is formed, and
An assembling portion that forms a wound iron core by assembling the bent electromagnetic steel sheet into a wound shape.
Have,
The beam irradiation unit
On the surface of the grain-oriented electrical steel sheet, a strain for controlling the magnetic domain is applied in a region other than the portion to be a bent portion in the bending process and its vicinity.
An apparatus for manufacturing a wound iron core, which forms the groove in a portion of the surface of the grain-oriented electrical steel sheet that becomes a bent portion in the bending process and a region in the vicinity thereof.
表面にビームを照射することで、圧延方向と交差する幅方向に延びる磁区制御用の歪が付与された方向性電磁鋼板を用い、前記方向性電磁鋼板の表面にビームを照射することで、前記方向性電磁鋼板の前記幅方向に延びる溝を形成する、ビーム照射部と、
磁区制御用の歪が付与され溝が形成された前記方向性電磁鋼板を、個別に折り曲げ加工する、折り曲げ加工部と、
前記折り曲げ加工された前記方向性電磁鋼板を、巻回形状に組付けることで、巻鉄芯を形成する、組付け部と、
を有し、
前記ビーム照射部は、
前記方向性電磁鋼板の表面のうち、前記折り曲げ加工において折曲部となる部位及びその近傍の領域でのみ、前記溝を形成する、巻鉄芯の製造装置。
By irradiating the surface with a beam, a grain-oriented electrical steel sheet having a strain for controlling a magnetic zone extending in the width direction intersecting the rolling direction is used, and by irradiating the surface of the grain-oriented electrical steel sheet with a beam, the above-mentioned A beam irradiation portion that forms a groove extending in the width direction of the grain-oriented electrical steel sheet, and
A bending portion that individually bends the grain-oriented electrical steel sheet to which strain for magnetic domain control is applied and a groove is formed, and
An assembling portion that forms a wound iron core by assembling the bent-processed grain-oriented electrical steel sheet in a wound shape.
Have,
The beam irradiation unit
An apparatus for manufacturing a wound iron core, which forms the groove only in a portion of the surface of the grain-oriented electrical steel sheet that becomes a bent portion in the bending process and a region in the vicinity thereof.
JP2020067557A 2020-04-03 2020-04-03 Winding iron core, manufacturing method of winding iron core, and winding iron core manufacturing device Pending JP2021163942A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020067557A JP2021163942A (en) 2020-04-03 2020-04-03 Winding iron core, manufacturing method of winding iron core, and winding iron core manufacturing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020067557A JP2021163942A (en) 2020-04-03 2020-04-03 Winding iron core, manufacturing method of winding iron core, and winding iron core manufacturing device

Publications (1)

Publication Number Publication Date
JP2021163942A true JP2021163942A (en) 2021-10-11

Family

ID=78003751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020067557A Pending JP2021163942A (en) 2020-04-03 2020-04-03 Winding iron core, manufacturing method of winding iron core, and winding iron core manufacturing device

Country Status (1)

Country Link
JP (1) JP2021163942A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022092096A1 (en) * 2020-10-26 2022-05-05 日本製鉄株式会社 Winding iron core, method for manufacturing winding iron core, and winding iron core manufacturing apparatus
WO2022092117A1 (en) * 2020-10-26 2022-05-05 日本製鉄株式会社 Wound core, method for manufacturing wound core, and wound core manufacturing device
JP7473864B1 (en) 2022-11-22 2024-04-24 日本製鉄株式会社 Wound core

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022092096A1 (en) * 2020-10-26 2022-05-05 日本製鉄株式会社 Winding iron core, method for manufacturing winding iron core, and winding iron core manufacturing apparatus
WO2022092117A1 (en) * 2020-10-26 2022-05-05 日本製鉄株式会社 Wound core, method for manufacturing wound core, and wound core manufacturing device
JPWO2022092096A1 (en) * 2020-10-26 2022-05-05
JP7193047B2 (en) 2020-10-26 2022-12-20 日本製鉄株式会社 Wound core, wound core manufacturing method, and wound core manufacturing apparatus
JP7473864B1 (en) 2022-11-22 2024-04-24 日本製鉄株式会社 Wound core

Similar Documents

Publication Publication Date Title
JP2021163942A (en) Winding iron core, manufacturing method of winding iron core, and winding iron core manufacturing device
JP5935880B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP6293067B2 (en) Oriented electrical steel sheet with low iron loss and high magnetic flux density
JP5234222B2 (en) Oriented electrical steel sheet and manufacturing method thereof
RU2440426C1 (en) Method for obtaining electromagnetic steel plate with orientation grains, magnetic domains of which are controlled by means of application of laser beam
JP4319715B2 (en) Unidirectional electrical steel sheet with excellent magnetic properties and manufacturing method thereof
WO2016136176A1 (en) Grain-oriented electrical steel sheet and production method therefor
WO2012014290A1 (en) Orientated electromagnetic steel sheet and manufacturing method for same
JP6638599B2 (en) Wound iron core and method of manufacturing the wound iron core
JP7167779B2 (en) Method for manufacturing iron core, wound iron core, method for manufacturing stacked iron core, and method for manufacturing electromagnetic steel sheet for iron core
WO2019189857A1 (en) Iron core for transformer
JP2004056090A (en) Grain oriented magnetic steel sheet excellent in magnetic property and its production
JP2015161024A (en) Grain-oriented electrical steel sheet for low-noise transformer, and method for production thereof
KR890014755A (en) Electrical steel domain refining method to reduce core loss
JP2002292484A (en) Device for processing groove using laser
JP2007308770A (en) Low core loss grain-oriented electrical steel sheet and method of manufacturing the same
JP7372549B2 (en) Wound iron core, wound iron core manufacturing method, and wound iron core manufacturing device
JP3828830B2 (en) Wrapped iron core and its manufacturing method
JP2005340619A (en) Winding iron core and transformer using the same
JP7180763B2 (en) Grain-oriented electrical steel sheet and manufacturing method thereof
JP7375728B2 (en) Manufacturing method and manufacturing equipment for core members for stacked core transformers
KR101673828B1 (en) Method of manufacturing grain-oriented electrical steel sheet exhibiting low iron loss
CN116508120A (en) Coiled iron core
JP2021025073A (en) Oriented electromagnetic steel sheet, wound iron core, oriented electromagnetic steel sheet production method, and wound iron core production method
JP2011208228A (en) Device and method for cutting grain oriented silicon steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230925

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20231212